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THE P-SERIES
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is called the p-series. Its sum is finite for p > 1 and is infinite for p ≤ 1.
If p = 1 we have the harmonic series.

For p > 1, the sum of the p-series (the Riemann zeta function ζ(p)) is a monotone
decreasing function of p.

For almost all values of p the value of the sum is not known. For instance, the
exact value of the sum
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n3 is a mystery. But, of course, one can always find

accurate approximations for any given p.

Some of the known sums and approximations are
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One often compares to a p-series when using the Comparison Test.

Example. Test the series
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n2+3 for convergence.
Solution. Observe that
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for every n ≥ 1. The series
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n2 converges (p-series with p = 2 > 1). So the

given series converges too, by the Comparison Test.

Or when using the Limit Comparison Test.

Example. Test the series
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for convergence.

Solution. Observe that
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diverges (p-series with p = 1
2 ≤ 1). So the given series diverges

as well, by the Limit Comparison Test.


