Calculus Notes
Grinshpan

THE P-SERIES

The series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\ldots+\frac{1}{n^{p}}+\ldots
$$

is called the p-series. Its sum is finite for $p>1$ and is infinite for $p \leq 1$.
If $p=1$ we have the harmonic series.
For $p>1$, the sum of the p-series (the Riemann zeta function $\zeta(p)$) is a monotone decreasing function of p.

For almost all values of p the value of the sum is not known. For instance, the exact value of the sum $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is a mystery. But, of course, one can always find accurate approximations for any given p.

Some of the known sums and approximations are

$$
\begin{array}{ll}
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} &
\end{array} \sum_{n=1}^{\infty} \frac{1}{n^{3}} \approx 1.2020569
$$

One often compares to a p-series when using the Comparison Test.
Example. Test the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+3}$ for convergence.
Solution. Observe that

$$
\frac{1}{n^{2}+3}<\frac{1}{n^{2}}
$$

for every $n \geq 1$. The series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges (p-series with $p=2>1$). So the given series converges too, by the Comparison Test.

Or when using the Limit Comparison Test.
Example. Test the series $\sum_{n=1}^{\infty} \frac{n}{n^{3 / 2}+3}$ for convergence.
Solution. Observe that

$$
\frac{n}{n^{3 / 2}+3}: \frac{1}{\sqrt{n}}=\frac{n^{3 / 2}}{n^{3 / 2}+3}=\frac{1}{1+3 n^{-3 / 2}} \rightarrow 1 \neq 0, \quad n \rightarrow \infty
$$

The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges (p-series with $p=\frac{1}{2} \leq 1$). So the given series diverges as well, by the Limit Comparison Test.

