
Portis: key management and smart contract
interaction using end-to-end encryption

Itay Radotzki Tom Teman

June 11, 2019

Abstract

Using end-to-end encryption would allow users to maintain absolute and sole

control over their private keys and to interact with smart contracts, without

the risk of losing access to their wallet if they misplace their device containing

the only copy of their private key, while enjoying a “cloud-like” experience,

as users will be able to access the same wallet from different devices, using

a familiar email and password login mechanism from their existing browsers,

without installing any third-party applications. Other solutions in the ecosys-

tem introduce friction into the onboarding process by placing the burden on

the end user, requiring them to install their third-party solution before they

can begin using a Decentralized Application (DApp). Portis aims to eliminate

that friction by offering developers an SDK. Once integrated, users are able

to manage their private key inside their existing browser, letting them sign

transactions and manage their crypto assets. At the same time, they remain

the sole owners of their private keys, as our end-to-end encryption architecture

makes sure nobody can access the user’s unencrypted private key - besides

the user itself.

1



1 Introduction

By offering complex functionality via smart contracts, DApps can leverage the ad-

vantages of blockchain technology whilst also being able to provide an easy-to-use

product or service. An essential component of DApps is a provider which allows

users to securely store their private key and use it to sign transactions that are

relayed by the provider to the blockchain. Private key management is a difficult

challenge for tech-savvy individuals, let alone for average users. One approach is

using a service which acts as a custodian of the users’ private keys and signs trans-

actions on their behalf, using a standard OAuth architecture to determine access to

said private keys. The problem with this custodial approach is the “If You Don’t

Own Your Keys, You Don’t Own Your Crypto” adage. If the service is hacked,

destroyed or malicious, the user’s funds could be stolen or lost forever. The ethos

of the blockchain ecosystem is that users should be the sole owners of their private

keys. So although this approach seemingly offers an easy solution to the challenge

of key management, offering simple key recovery mechanisms, it is counterproduc-

tive to the goal of decentralized apps, preserving the same issues stemming from

centralized services.

Another approach is storing the private key inside the user’s device. While this key

management solution does make sure users are the only ones who have access to their

private key and is non-custodial, it introduces the risk that users might misplace

their device, thus losing access to their wallet forever. In addition, the concept that

your digital identity and value is tied to a specific device, and that losing that device

would mean forfeiting both, is a foreign concept for the average user, which is used

to cloud services, meaning they can always access their account as long as they have

their login credentials. In this day and age, losing your smartphone does not equate

losing access to your bank account, social networks, etc. Furthermore, if a user

wishes to access the same wallet on multiple devices, they need to manually import

their private key, which can be an intimidating process for the average person. Once

more, users are accustomed to being able to access the same account on multiple

devices in an easy and familiar manner.

If we want to reach mainstream adoption, we need to offer users a solution which

feels just as simple as using web2 applications, without compromising the underlying

principles of decentralization or security.

We propose a key management solution that employs end-to-end encryption. Portis

lets users enjoy the best of both worlds, as they remain the sole custodians of their

private keys, yet don’t need to worry about losing them forever if they misplace their

2



device. In addition, since their encrypted private key is stored on the cloud, they

can access the same wallet on multiple devices using a familiar email and password

login flow.

Finally, while other solutions demand the user installs a third-party plugin, applica-

tion or browser to use any decentralized application, our approach is to instead ask

the developers to integrate our SDK with a few lines of code, removing that burden

for their users, without compromising security or making DApps or any other service

the custodians of private keys.

2 Components

Portis is more than a cryptocurrency wallet, it also enables users to interact with

smart contracts. Once the Portis SDK has been integrated into a DApp, it lets users

sign transactions and messages with their private key. It adheres to the standard

protocols of doing that for each blockchain (for example, when used in an Ethereum

DApp, Portis generates a standard web3 provider instance). The private key never

leaves a user’s device in its unencrypted form.

2.1 Client

The encryption and decryption of the user’s private keys happen in only two loca-

tions. The first location is the Wallet, which is a web application that runs under

the portis.io domain and allows users to view, send, receive and purchase crypto

assets. In addition, users can also export their private keys, import pre-existing

private keys, set up 2FA, and more. The second location is the Widget, another

web application that runs under the portis.io domain. The Widget is where trans-

actions and messages are signed when users are interacting with a DApp. All of

the transactions and messages that need to be signed, as well as all other calls to

the blockchain, are received from the SDK and are then relayed to the blockchain

from the Widget, through the node that was defined when the Portis instance was

initialized in the DApp. The resulting transaction hashes are then relayed back to

the SDK, which in turn exposes it to the DApp.

Since the underlying encryption is the same for both the Wallet and the Widget,

for the sake of brevity we will treat them as one in this technical paper, and refer to

them as the Client. The Client is where the end-to-end encryption takes place and

is the only location where the user’s private key exists in its decrypted form.

3



2.2 SDK

The Portis SDK is an open-source library that acts as a proxy between the DApp

and the Widget. It is a gateway that lets DApps communicate with the blockchain

using the relevant standard protocol as well as generate transactions and messages

to be signed inside the Widget.

2.3 Communication

The code of the Portis web SDK is hosted under the DApp domain. It generates an

iframe pointing to the portis.io domain, in which the Client code is loaded. The SDK

and Client communicate with each other using the browser’s native postMessage

mechanism.

3 Encryption

Portis lets users create an encryption key on their Client, so once they generate

blockchain wallets on their devices, they will be able to encrypt them using said

encryption key, and store the encrypted wallets on the Portis servers.

All cryptographic keys are generated and managed by the user on their devices, and

all encryption is done locally in the Client. Portis servers are never in the position

of learning your cryptographic keys. When the already encrypted data travels be-

tween the user’s device and our servers, it is encrypted and authenticated by TLS.

All of the user’s sensitive data is encrypted when they create their account using 64

random bytes generated on the Client, protected using a password that they select.

Nobody on earth knows this password besides them as it never leaves the Client.

Using a KDF algorithm, a Backup Recovery Phrase is derived from the password,

to offer users a means of resetting their password in case they forget it. We do not

have the ability to recover users’ data if they forget their Password and lose their

Backup Recovery Phrase (because of end-to-end security).

We strive to bring the best security architectures to people who are not themselves

security experts. Not everyone wishes to become a security expert and most will not

read this document, but everyone is entitled to security whether or not they seek to

understand how it works. Concealing the necessary complexity of the design from

users when they just want to use a DApp or manage their cryptocurrency funds

is all well and good, but we should never conceal the security design from security

experts, system and security administrators, or curious users. If the security of a

4



system depends on some aspects of the design kept secret, then those aspects would

actually be weaknesses. Therefore, we strive to be open about how our system works

as much as possible.

We use the browser’s native Crypto interface of the Web Crypto API for the follow-

ing cryptographic functions: getRandomValues, importKey, deriveBits, digest, sign,

encrypt, decrypt, exportKey, generateKey.

3.1 Create Account

Step 1: The User generates a secret. User inputs an email and a password into

the client.

Step 2: The Client generates an encryption key. The client gener-

ates an encryptionKey of 64 random bytes using the browser’s native function

Crypto.getRandomValues().

Step 3: The Client encrypts the encryption key. The Client selects a Key

Derivation Function (KDF). The default choice is PBKDF2. PBKDF2 is a password-

based key derivation function that uses a password, a variable-length salt, and an

iteration count and applies a pseudorandom function to these to produce a key. Our

implementation uses SHA-256 as the pseudorandom function.

The Client selects the number off KDF iterations to run. The default choice is

100,000. The client runs the KDF with the password as the secret, the email as the

salt and the relevant number of iterations. The KDF function returns a key, which

we will call passwordDerivedKey.

The Client runs the AES-CBC encryption algorithm, with the encryptionKey as

the plaintext, the passwordDerivedKey as the secret, and 16 random bytes as the

IV (using the browser’s native function Crypto.getRandomValues()), returning the

encryptedEncryptionKey cipher, composed of the encryptedEncryptionKey, the IV

and the encryption algorithm mode.

Step 4: The Client hashes the password. The Client runs PBKDF2 with SHA-

256 as the pseudorandom function, using the passwordDerivedKey as the secret and

the password as the salt, running a single iteration. This returns the passwordHash.

The passwordHash serves as the Client’s authentication key against the Server.

Step 5: The Client generates a forgot password hash. The client hashes the

passwordDerivedKey using SHA-512, returning a passwordDerivedKeyHash (this will

be used for the ”forgot password” flow).

Step 6: The Client generates and encrypts an asymmetric key pair for

secure client-to-client communication. The Client runs RSA-OAEP 2048 with

a SHA-1 hashing algorithm to generate a pair of both an asymmetricPublicKey

5



and asymmetricPrivateKey. The Client runs the AES-CBC encryption algorithm,

with the asymmetricPrivateKey as the plaintext and the encryptionKey as the se-

cret, returning the encryptedAsymmetricPrivateKey cipher, composed of the en-

cryptedAsymmetricPrivateKey, the IV and the encryption algorithm mode. For now,

these asymmetricPublicKey and encryptedAsymmetricPrivateKey have no function

but will be used later on as asymmetric keys for secure client-to-client communica-

tion.

Step 7: The Client stores the encrypted values on the Server. The Client

sends the following data to the Server, which stores these values: selected KDF,

selected number of KDF iterations, email, passwordHash, passwordDerivedKey-

Hash, encryptedEncryptionKey cipher, asymmetricPublicKey, and encryptedAsym-

metricPrivateKey cipher.

3.2 Login

Step 1: The Client fetches encryption metadata from the Server. The

User inputs their email and password into the Client. The Client calls the relevant

Server API, passing along the email, and receives back the following values: KDF

(the type of Key Derivation Function used by the Client during the create account

flow), KDF ITERATIONS (number of KDF iterations used in the KDF process

during the create account flow) and USER VERSION (for internal use).

Step 2: The Client generates the passwordDerivedKey. The Client runs the

6



relevant Key Derivation Function with password as the secret, email as the salt and

uses the relevant number of iterations obtained during Step 1. The Key Derivation

Function returns a key, which we will call passwordDerivedKey.

Step 3: The Client generates a passwordHash. The Client runs PBKDF2

with SHA-256 as the pseudorandom function, using the passwordDerivedKey as the

secret and the password as the salt, running a single iteration. This returns the

passwordHash.

Step 4: The Client fetches encrypted keys and creates a session. The

Client calls the relevant Server API, passing along the email, passwordHash and

two-factor authentication code (if relevant). If the Server determines the credentials

are valid, the response to the Client contains the encryptedEncryptionKey cipher

and the encryptedAsymmetricPrivateKey cipher. In addition, the response contains

an HttpOnly and secure cookie with a JWT token, which is used to maintain a

standard session between the Client and the Server for subsequent API calls.

Step 5: Client extracts encryption keys. The Client runs the AES-CBC de-

cryption algorithm, with the encryptedEncryptionKey as the ciphertext, the IV and

the passwordDerivedKey as the secret, returning the plaintext encryptionKey . The

Client runs the AES-CBC decryption algorithm, with the encryptedAsymmetricPri-

vateKey as the ciphertext, the IV and the encryptionKey as the secret, returning

the plaintext asymmetricPrivateKey . The asymmetricPrivateKey is never stored

in a persistent manner and only exists inside the browser’s process memory, as a

JavaScript variable.

7



3.3 Wallet Creation

To create a new wallet, the user must be signed in, which means the Client has the

encryptionKey available in the browser’s process memory and a valid JWT.

Step 1: The Client generates a blockchain wallet. The Client generates a

wallet for the required blockchain using an appropriate library (for example, for

Ethereum it uses the createRandom function of the ethers.js library). The newly

created wallet will be composed of a mnemonicPhrase or other equivalent master

seed phrase .

Step 2: The Client encrypts the wallet created in Step 1. The Client runs

the AES-CBC encryption algorithm, with the wallet’s mnemonicPhrase as the plain-

text and the encryptionKey as the secret, returning the encryptedMnemonicPhrase

cipher, composed of the encryptedMnemonicPhrase, the IV and the encryption al-

gorithm mode.

Step 3: The Client stores the encryptedMnemonicPhrase cipher as well

as the wallet public address on the Server.

3.4 Wallet Fetching

To fetch their wallet from the Server, the user must be signed in, which means the

Client has theencryptionKey available in the browser’s process memory and a valid

JWT.

Step 1: The Client fetches the wallet. The Client calls the relevant Server API.

If the JWT is valid, the response to the Client will contain the encryptedMnemon-

icPhrase cipher or the encryptedPrivateKey cipher (the latter in case the wallet was

created via an imported private key, see 3.5 Wallet Import).

Step 2: The Client decrypts the wallet. The Client runs the AES-CBC decryp-

tion algorithm, with the encryptedMnemonicPhrase or the encryptedPrivateKey as

the ciphertext, the IV, and the encryptionKey as the secret, returning the plaintext

mnemonicPhrase or privateKey .

3.5 Wallet Import

To import a wallet, the user must be signed in, which means the Client has the

encryptionKey available in the browser’s process memory and a valid JWT.

Step 1: The user inputs a mnemonic phrase or a private key.

Step 2: The Client encrypts the wallet provided by the user. The Client

runs the AES-CBC encryption algorithm, with the mnemonicPhrase or private key

8



as the plaintext and the encryptionKey as the secret, returning the encryptedM-

nemonicPhraseOrPK cipher, composed of the encryptedMnemonicPhrase or en-

cryptedPrivateKey, the IV and the encryption algorithm mode.

Step 3: The Client stores the encryptedMnemonicPhrase or the encrypt-

edPrivateKey cipher as well as the wallet public address on the Server.

4 Persistent Session

The encryptionKey is never stored in a persistent manner and only exists inside

the browser’s process memory. That means that if a user resets their session while

using a DApp (for instance: refreshes their browser), they will need to re-enter their

credentials to access their wallet and sign transactions. From a UX perspective,

this is an issue. To solve this problem, users locally store an encrypted copy of their

credentials, which never leaves their device, using a secret stored on the Server. This

secret can be fetched using a valid JWT, which expires after a set amount of time.

The encrypted copy of their credentials, stored on their client, can only be decrypted

with a secret stored on the Server, which can only be fetched using a valid JWT.

As the JWT is an HttpOnly and secure cookie, it cannot be hijacked (for example

via attack vectors such XSS), unless the attacker has direct physical access to the

user’s browser, assuming the device itself isn’t compromised.

4.1 Persist Session

To persist their session, the user must be signed in, which means the following values

are available on the Client: email ,password, encryptionKey, valid JWT.

Step 1: Get persistent session secret from the Server. The Client calls the

Server API to fetch the persistent session secret. If the JWT is valid, the response to

the Client will contain a persistentSessionSecret in the form of 32 random bytes. If a

persistentSessionSecret already exists on the Server for the current JWT, that value

is returned. Otherwise, a new persistentSessionSecret is generated on the Server

and returned instead.

Step 2: Encrypt user credentials and store them in the Client. The Client

runs the AES-CBC encryption algorithm, with a stringified JSON of the email and

password as the plaintext and the persistentSessionSecret as the secret, returning

the encryptedCredentials cipher, composed of the encryptedCredentials, the IV and

the encryption algorithm mode. The encryptedCredentials cipher is stored in the

browser’s localStorage.

9



4.2 Use Persisted Session

To make use of a persisted session, the encryptedCredentials cipher must be stored

in the Client.

Step 1: Verify the user logged into the DApp before. The Client checks if

the DApp is authorized, i.e. if the user logged into this DApp before. If the DApp is

not authorized the user will have to log in with their email and password instead of

using the persistent session, even if the encryptedCredentials cipher is available on

the Client. The Client identifies the DApp according to its domain, by inspecting

the document.referrer value inside the Widget iframe. The Wallet is always consid-

ered an authorized DApp (even if the user’s first login was to a DApp).

Step 2: Get persistent session secret from the Server and decrypt user

credentials. If the encryptedCredentials cipher is available on the Client, and the

DApp is authorized, the Client calls the relevant Server API to fetch the persistent

session secret. If the JWT is valid, the response to the Client will contain a persis-

tentSessionSecret in the form of 32 random bytes.

The client runs the AES-CBC decryption algorithm, with the encryptedCredentials

as the ciphertext, the IV and the persistentSessionSecret as the secret, returning

the plaintext email and password stringified JSON.

Step 3: Carry out the login flow. Once these two values are available in the

Client memory, the Client can initiate the login flow. The login flow will, in turn,

generate a new JWT, and as a result, a new persistentSessionSecret will be created

in the persist session phase of the persistent session flow.

5 Two-Factor Authentication (2FA)

Two-factor Authentication works as an extra step in the login process, a second

security layer, that will reconfirm the user’s identity. Its purpose is to make at-

tackers’ life harder and reduce fraud risks. Portis uses otplib library, a Time-based

(TOTP) and HMAC-based (HOTP) One-Time Password library[1], with a window

parameter of 2 (meaning tokens in the 2 previous and the 2 future windows would

be considered valid), and a time step of 30 seconds (meaning each window would

last 30 seconds). We intend to add support for U2F at a later stage.

10



5.1 2FA Initialization

When a user sets up 2FA on their Portis account, their two-factor authentication

secret is sent to the Portis Server, where it is encrypted with the AES GCM 256

encryption algorithm, using a secret stored on the Portis servers.

5.2 2FA Login flow

When the Client sends a login request with an email and passwordHash, although

they are valid, the response could indicate that 2FA is enabled. In such a scenario,

the Client will prompt the user to input the required 2FA code, and will then send

the same request to the server, only this time with the 2FA code as well. If both the

credentials and the 2FA code are valid, the response will be just like in the normal

login flow, including the encryptedEncryptionKey cipher, the encryptedAsymmet-

ricPrivateKey cipher, and the JWT cookie. From that point on the login flow can

continue as normal.

6 Forgot Password

Other solutions which don’t employ end-to-end encryption, store the private key on

the user’s device (either encrypted or plaintext), or alternatively - offer custodial

services and store the user’s private key on their server, letting the user interact

with it through standard centralized authentication methods. The former solution

means that if that user never backed up their private key and lost their device - they

can never access their wallet again. The latter solution introduces the risk of lost or

stolen private keys as the custodial service is a single point of failure which could be

compromised. With Portis, as long as a user remembers their password, they can

access their wallet from any device, and losing an existing device no longer means

their crypto assets are gone forever. In addition, if the Portis servers were hacked

and the encrypted private keys stolen, as long as the password chosen by the user

is non-trivial (i.e. not susceptible to dictionary attacks), decrypting those private

keys would be practically impossible. However, due to the nature of end-to-end

encryption, if a user forgets their password, they also lose access to their private

key, and hence to their crypto assets. To overcome this challenge, users are given a

Backup Recovery Phrase, composed of 24 words, which they are encouraged to write

down and store somewhere safe. There are two reasons for this mechanism, instead

of telling users to write down and store a copy of their password. The first reason

11



is that the password they used might be sensitive and used for other services, so if

their written-down Backup Recovery Phrase is compromised, it will not pose a risk

to any of the other services for which the user is using that password. The second

reason is to support our future plans of letting users store a copy of their encrypted

private keys themselves (either on another device or using a different service, either

centralized, like iCloud, or decentralized like IPFS). With the Backup Recovery

Phrase and a copy of their encrypted private keys, users will be able to recover their

private keys even if Portis ceases to exist.

6.1 Initialization

To restore a user’s account in case they forget their password, the passwordDerived-

Key is needed. That is because the passwordDerivedKey can decrypt the encrypt-

edEncryptionKey stored on the Server, which in turn can decrypt the encrypted

wallets also stored on the Server. In order to offer a more human-friendly solution

for the user to backup and store that value (preferably by writing it down on a piece

of paper), a Backup Recovery Phrase is generated on the Client, with the BIP39

entropyToMnemonic function, using the passwordDerivedKey as the entropy. This

Backup Recovery Phrase, which consists of 24 words, is displayed to the user in the

Client.

6.2 Recovery

To begin the recovery flow, the user inputs their email and Backup Recovery Phrase

(24 words). The Client converts the Backup Recovery Phrase into the password-

DerivedKey using the BIP39 mnemonicToEntropy function. The Client hashes the

passwordDerivedKey using SHA-512, returning a passwordDerivedKeyHash . The

Client sends the email and passwordDerivedKeyHash to the Server, and if they

match the values stored on the Server, the user receives an email with a random

6-digit code which was generated on the Server. This step adds an extra layer of

security, as it verifies the user also owns the email they originally registered with, in

addition to having the 24 words of the Backup Recovery Phrase.

The Create Account flow now takes place, meaning the user enters a new password

into the Client and then sends the Server the following values: selected KDF, selected

number of KDF iterations, 6-digit code, email, passwordHash, oldPasswordDerived-

KeyHash, newPasswordDerivedKeyHash, encryptedEncryptionKey cipher, asymmet-

ricPublicKey , and encryptedAsymmetricPrivateKey cipher. The Server returns to

the Client the oldEncryptedEncryptionKey.

12



The client runs the AES-CBC decryption algorithm, with the oldEncryptedEncryp-

tionKey as the ciphertext, the IV and the oldPasswordDerivedKey as the secret,

returning the plaintext oldEncryptionKey.

The Login flow now takes place, with the new password . The encrypted wallets are

fetched from the Server and for each wallet the client runs the AES-CBC decryption

algorithm, with the encryptedMnemonicPhrase as the ciphertext, the IV, and the

oldEncryptionKey as the secret, returning the plaintext mnemonicPhrase .

The wallet encryption phase of the Wallet Creation flow now takes place for each

pre-existing wallet. The Client runs the AES-CBC encryption algorithm, with the

wallet’s mnemonicPhrase as the plaintext and the newEncryptionKey as the se-

cret, returning the encryptedMnemonicPhrase cipher, composed of the encryptedM-

nemonicPhrase , the IV and the encryption algorithm mode.

The Client updates the encrytpedMnemonicPhrase cipher on the Server.

7 Summary

The average person won’t and shouldn’t care about blockchain. To promote main-

stream adoption we need to make sure we abstract away from the user as much

as we can without compromising security. Most importantly, that means that said

abstraction cannot extend to the realm of their private keys.

Private key management is one of (if not) the biggest challenges for users

in the blockchain ecosystem.

While custodial solutions are able to offer users an experience which feels very fa-

miliar, we believe they are a step in the wrong direction, as “unstoppable apps”

are not really unstoppable if they hinge on a centralized service, as they could be

compromised in various ways. Alternatively, placing the burden squarely on the

shoulders of users by requiring them to manage their private keys on their own is

too demanding of individuals who are not necessarily tech-savvy. By using end-to-

end encryption, users enjoy a familiar experience (email and password login flow),

without requiring them to install anything, while making sure they are the only

ones able to access their unencrypted private keys. In addition, accessing the same

private key on multiple devices is as simple as typing in their credentials in their

new device. In addition, just as the common user doesn’t care about blockchain,

they definitely don’t care which blockchain. For that reason, Portis supports mul-

13



tiple blockchains, which makes life easier for both users and developers. Finally,

we are focusing on numerous usability issues, to make sure any transition from a

standard web2 to a decentralized application will be as frictionless as possible. Such

efforts include integrating with the Gas Stations Network[2], to remove the bur-

den of network fees from users, offering direct-to-wallet purchases of cryptocurrency

through services such as sendwyre.com, and working together with DApp developers

to better understand and tackle useflow pain points.

8 What’s Next?

Our long term vision is to let users manage multiple private keys for different types

of DApps, encrypting each of those keys differently. Each of those keys will have

varying roles in a single identity smart contract, which will provide additional levels

of control and account recovery mechanisms. So while a user might want your end-

to-end encrypted private key to have the highest permissions level, they can also

generate unencrypted private keys for interacting with DApps that have little to no

value. Obviously, there will also be a migration path for the private keys used for

DApps. A user might start off by interacting with a DApp using an unencrypted

private key, but will revoke that key and assign their end-to-end encrypted key as

the one permissioned to interact with that DApp at a later stage, as their account

accumulates value in said DApp.

14



References

[1] Time-based (TOTP) and HMAC-based (HOTP) One-Time Password library,

https://github.com/yeojz/otplib

[2] EIP-1613, Gas Stations Network, https://github.com/ethereum/EIPs/blob/

master/EIPS/eip-1613.md, Yoav Weiss, Dror Tirosh, Alex Forshtat,

Tabookey, 2018

15

https://github.com/yeojz/otplib
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1613.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1613.md

	Introduction
	Components
	Client
	SDK
	Communication

	Encryption
	Create Account
	Login
	Wallet Creation
	Wallet Fetching
	Wallet Import

	Persistent Session
	Persist Session
	Use Persisted Session

	Two-Factor Authentication (2FA)
	2FA Initialization
	2FA Login flow

	Forgot Password
	Initialization
	Recovery

	Summary
	What's Next?

