Free Software, Free Society

Selected Essays of Richard M. Stallman
Third Edition

Richard M. Stallman

This is the third edition of Free Software, Free Society: Selected Essays of
Richard M. Stallman.

Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1335

Copyright (©) 2002, 2010, 2015 Free Software Foundation, Inc.

Verbatim copying and distribution of this entire book are permitted
worldwide, without royalty, in any medium, provided this notice is
preserved. Permission is granted to copy and distribute translations
of this book from the original English into another language provided
the translation has been approved by the Free Software Foundation
and the copyright notice and this permission notice are preserved on
all copies.

ISBN 978-0-9831592-5-4

Cover design and photograph by Kyle Winfree.

111

Table of Contents

Foreword to the Third Edition...........coo . iv
Foreword to the First Editionoooo i, vi
Preface . .. X

© 00 O O = W N+~

—_
e}

11
12
13
14
15

16
17

18
19
20
21

Part I: The GNU Project and Free Software

What Is Free Software?........... i, 3
The GNU Projecto 9
The Initial Announcement of the GNU Operating System... 26
Free Software Is Even More Important Now................... 28
Why Schools Should Exclusively Use Free Software........... 34
Measures Governments Can Use to Promote Free Software.. 36
Why Free Software Needs Free Documentation................ 40
Selling Free Software...................... 43
Free Hardware and Free Hardware Designs.................... 46
Applying the Free Software Criteria............................ b4
Part II: What’s in a Name?

What’s in a Name? ... 61
Linux and the GNU System 64
Categories of Free and Nonfree Software....................... 68
Why Open Source Misses the Point of Free Software......... 75
Did You Say “Intellectual Property”?

It’s a Seductive Mirage ... 83
Why Call It the Swindle? ... 87
Words to Avoid (or Use with Care)

Because They Are Loaded or Confusing....................... 89
Part III: Copyright and Injustice
The Right to Read............... o 107
Misinterpreting Copyright—A Series of Errors............... 113
Science Must Push Copyright Aside....................... ... 124

Copyright vs. Community
in the Age of Computer Networks............................ 127

v

Part IV: Software Patents: Danger to Programmers

22 Software Patents and Literary Patents........................ 145
23 The Danger of Software Patents............................... 148
24 Giving the Software Field Protection from Patents.......... 164
Part V: Free Software Licensing
25 Introduction to the Licenses.................................... 169
26 How to Choose a License for Your Own Work 174
27 The X Window System Trap............ccoooviiiiiiiii i, 178
28 Programs Must Not Limit the Freedom to Run Them...... 181
29 What Is Copyleft? 184
30 Why Copyleft? 187
31 Copyleft: Pragmatic Idealism 188
32 The GNU General Public License........................... .. 191
33 Why Upgrade to GPLv3.............. 204
34 The GNU Lesser General Public License...................... 207
35 GNU Free Documentation License............................. 210
36 On Selling Exceptions to the GNU GPL...................... 219
Part VI: Traps and Challenges
37 Can You Trust Your Computer?.....................oi, 225
38 The JavaScript Trap...........ccoooiii 230
39 Releasing Free Software If You Work at a University........ 234
40 Nonfree DRM’d Games on GNU/Linux: Good or Bad?..... 236
41 The Danger of E-Books.................. 238
42 E-books Must Increase Our Freedom, Not Decrease It 240
43 Who Does That Server Really Serve? 243
Part VII: Value Community and Your Freedom
44 Avoiding Ruinous Compromisesoooo... 253
45 Overcoming Social Inertia ... 256
46 Freedom or Power? 257
47 Imperfection Is Not the Same as Oppression................. 259
48 How Much Surveillance Can Democracy Withstand?........ 261
A: A Note on Software................. 271
B: Translations of “Free Software” and “Gratis Software” 274
C: The Free Software Song............ ..., 277

Foreword to the Third Edition v
Foreword to the Third Edition

A love letter to Richard Stallman, by Jacob Appelbaum

We live in information societies where machines intermediate our lives.

Software and hardware are as important to our information age as the in-
ternet itself. Free Software is the political theory born from the mind of a
revolutionary who believes that, just as we should have control over our own
lives, we should also be able to understand and control the machines that are
extensions of ourselves. This theory, as supported by the Free Software Founda-
tion, has become a practice and a tradition for millions of people over the last
three decades.

Free Software as a political theory acknowledges the role of software and
hardware systems in our societies. Critiquing past and present systems is neces-
sary. We may find ourselves unable to understand or modify these systems. We
become beholden to others in ways that produce injustices and are themselves
an injustice. The outcomes of these systems are not always obvious, particularly
when one is forced into using them, and especially when they are normalized and
branded as the standard. Free Software as a practice is not merely a critique: it
is an alternative that provides liberty, resting on free standards, freely available
to all.

Free Software is a paradigm shift where we are at liberty to understand and
learn from those who have come before us, where we are free to grow and share,
to learn from mistakes, to benefit as we learn, and to share those benefits with
everyone. When we use copyleft, we ensure that all future users of our work get
the same liberty. Free Software ensures that future generations will also be able
to decode entire histories of data. It ensures not only our liberties, but theirs as
well.

In times of mass surveillance, Free Software brings much needed transparency
and with it verifiability. Free Software enables us to encrypt, to ensure integrity,
to authorize, and to anonymize ourselves. In a world of ever increasing privatiza-
tion, we find in Free Software a pillar of communal action towards free societies.
The benefits of Free Software are impossible to fully enumerate as they vary
as much as the benefits of liberty itself. Advancing the cause of Free Soft-
ware is never ending, like all struggles for justice, and requires eternal vigilance.
Advancing the cause of Free Software is difficult, and those advocating and im-
plementing Free Software are often carrying essential ideas forward against all
odds.

Copyright (© 2015 Free Software Foundation, Inc.
This is the foreword to Free Software, Free Society: Selected Essays of Richard
M. Stallman, 3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 In-
ternational License (http://creativecommons.org/licenses/by-nd/4.0/).

http://creativecommons.org/licenses/by-nd/4.0/

Foreword to the Third Edition vi

The efforts invested in Free Software are not merely about knowledge, they
are about empowerment: empowerment to study, empowerment to modify, em-
powerment to share, and empowerment to enable sharing with others. Commit-
ment to liberty in an information age requires a refusal to compromise on the
core principles of Free Software, with a commitment and honesty that demands
sacrifice. Many may refuse this burden, working only to enrich themselves in the
present moment; others will work to increase the breadth and depth of human
knowledge. Implemented as Free Software, we find a model of sustainability and
long-term vision that increases not only knowledge but practical direct ability
freely shared for all without exception. This is a worthy cause and its thoughtful-
ness has already enabled all of us; from the mundane to the most extraordinary,
Free Software is involved.

Richard Stallman is the revolutionary and theorist who has given the world
Free Software. His essays cover topics that have been essential reading for
decades, widely read and understood by people creating systems for our infor-
mation age and beyond. He has dedicated his life to the liberation of humanity,
and this book explains how we might each help with this cause of liberation.

JACOB APPELBAUM

Jacob Appelbaum is an independent computer-security researcher, journalist and
artist. He is a co-founder of Noisebridge, a Debian GNU/Linux developer, a core
member of the Tor Project, allegedly a WikiLeaks co-conspirator, and has collabo-
rated on several high-profile research projects. Because of his political views and the
recognition he’s received in each of his fields of endeavor, he has been repeatedly tar-
geted and detained by US law enforcement agencies. By birth an American, he works
and lives in exile in Berlin.

Foreword to the First Edition vii
Foreword to the First Edition

Every generation has its philosopher—a writer or an artist who captures the
imagination of a time. Sometimes these philosophers are recognized as such;
often it takes generations before the connection is made real. But recognized
or not, a time gets marked by the people who speak its ideals, whether in the
whisper of a poem, or the blast of a political movement.

Our generation has a philosopher. He is not an artist, or a professional writer.
He is a programmer. Richard Stallman began his work in the labs of MIT, as
a programmer and architect building operating system software. He has built
his career on a stage of public life, as a programmer and an architect founding
a movement for freedom in a world increasingly defined by “code.”

“Code” is the technology that makes computers run. Whether inscribed in
software or burned in hardware, it is the collection of instructions, first written in
words, that directs the functionality of machines. These machines—computers—
increasingly define and control our life. They determine how phones connect,
and what runs on TV. They decide whether video can be streamed across a
broadband link to a computer. They control what a computer reports back to
its manufacturer. These machines run us. Code runs these machines.

What control should we have over this code? What understanding? What
freedom should there be to match the control it enables? What power?

These questions have been the challenge of Stallman’s life. Through his works
and his words, he has pushed us to see the importance of keeping code “free.”
Not free in the sense that code writers don’t get paid, but free in the sense that
the control coders build be transparent to all, and that anyone have the right
to take that control, and modify it as he or she sees fit. This is “free software”;
“free software” is one answer to a world built in code.

“Free.” Stallman laments the ambiguity in his own term. There’s nothing to
lament. Puzzles force people to think, and this term “free” does this puzzling
work quite well. To modern American ears, “free software” sounds utopian,
impossible. Nothing, not even lunch, is free. How could the most important
words running the most critical machines running the world be “free.” How
could a sane society aspire to such an ideal?

Yet the odd clink of the word “free” is a function of us, not of the term. “Free”
has different senses, only one of which refers to “price.” A much more funda-
mental sense of “free” is the “free,” Stallman says, in the term “free speech,” or
perhaps better in the term “free labor.” Not free as in costless, but free as in
limited in its control by others. Free software is control that is transparent, and
open to change, just as free laws, or the laws of a “free society,” are free when

Copyright (© 2002 Free Software Foundation, Inc.

This foreword was originally published, in 2002, as the introduction to the first
edition. This, the original version, is part of Free Software, Free Society: Selected
Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 In-
ternational License (http://creativecommons.org/licenses/by-nd/4.0/).

http://creativecommons.org/licenses/by-nd/4.0/

Foreword to the First Edition viii

they make their control knowable, and open to change. The aim of Stallman’s
“free software movement” is to make as much code as it can transparent, and
subject to change, by rendering it “free.”

The mechanism of this rendering is an extraordinarily clever device called
“copyleft” implemented through a license called GPL. Using the power of copy-
right law, “free software” not only assures that it remains open, and subject to
change, but that other software that takes and uses “free software” (and that
technically counts as a “derivative”) must also itself be free. If you use and adapt
a free software program, and then release that adapted version to the public,
the released version must be as free as the version it was adapted from. It must,
or the law of copyright will be violated.

“Free software,” like free societies, has its enemies. Microsoft has waged a
war against the GPL, warning whoever will listen that the GPL is a “dangerous”
license. The dangers it names, however, are largely illusory. Others object to
the “coercion” in GPL’s insistence that modified versions are also free. But a
condition is not coercion. If it is not coercion for Microsoft to refuse to permit
users to distribute modified versions of its product Office without paying it
(presumably) millions, then it is not coercion when the GPL insists that modified
versions of free software be free too.

And then there are those who call Stallman’s message too extreme. But
extreme it is not. Indeed, in an obvious sense, Stallman’s work is a simple
translation of the freedoms that our tradition crafted in the world before code.
“Free software” would assure that the world governed by code is as “free” as our
tradition that built the world before code.

For example: A “free society” is regulated by law. But there are limits that
any free society places on this regulation through law: No society that kept its
laws secret could ever be called free. No government that hid its regulations
from the regulated could ever stand in our tradition. Law controls. But it does
so justly only when visibly. And law is visible only when its terms are knowable
and controllable by those it regulates, or by the agents of those it regulates
(lawyers, legislatures).

This condition on law extends beyond the work of a legislature. Think about
the practice of law in American courts. Lawyers are hired by their clients to
advance their clients’ interests. Sometimes that interest is advanced through lit-
igation. In the course of this litigation, lawyers write briefs. These briefs in turn
affect opinions written by judges. These opinions decide who wins a particular
case, or whether a certain law can stand consistently with a constitution.

All the material in this process is free in the sense that Stallman means.
Legal briefs are open and free for others to use. The arguments are transparent
(which is different from saying they are good) and the reasoning can be taken
without the permission of the original lawyers. The opinions they produce can
be quoted in later briefs. They can be copied and integrated into another brief
or opinion. The “source code” for American law is by design, and by principle,
open and free for anyone to take. And take lawyers do—for it is a measure of

Foreword to the First Edition ix

a great brief that it achieves its creativity through the reuse of what happened
before. The source is free; creativity and an economy is built upon it.

This economy of free code (and here I mean free legal code) doesn’t starve
lawyers. Law firms have enough incentive to produce great briefs even though
the stuff they build can be taken and copied by anyone else. The lawyer is a
craftsman; his or her product is public. Yet the crafting is not charity. Lawyers
get paid; the public doesn’t demand such work without price. Instead this
economy flourishes, with later work added to the earlier.

We could imagine a legal practice that was different—briefs and arguments
that were kept secret; rulings that announced a result but not the reasoning.
Laws that were kept by the police but published to no one else. Regulation that
operated without explaining its rule.

We could imagine this society, but we could not imagine calling it “free.”
Whether or not the incentives in such a society would be better or more efficiently
allocated, such a society could not be known as free. The ideals of freedom, of life
within a free society, demand more than efficient application. Instead, openness
and transparency are the constraints within which a legal system gets built, not
options to be added if convenient to the leaders. Life governed by software code
should be no less.

Code writing is not litigation. It is better, richer, more productive. But the
law is an obvious instance of how creativity and incentives do not depend upon
perfect control over the products created. Like jazz, or novels, or architecture,
the law gets built upon the work that went before. This adding and changing
is what creativity always is. And a free society is one that assures that its most
important resources remain free in just this sense.

This book collects the writing and lectures of Richard Stallman in a manner
that will make their subtlety and power clear. The essays span a wide range,
from copyright to the history of the free software movement. They include many
arguments not well known, and among these, an especially insightful account of
the changed circumstances that render copyright in the digital world suspect.
They will serve as a resource for those who seek to understand the thought of
this most powerful man—powerful in his ideas, his passion, and his integrity,
even if powerless in every other way. They will inspire others who would take
these ideas, and build upon them.

I don’t know Stallman well. I know him well enough to know he is a hard
man to like. He is driven, often impatient. His anger can flare at friend as easily
as foe. He is uncompromising and persistent; patient in both.

Yet when our world finally comes to understand the power and danger of
code—when it finally sees that code, like laws, or like government, must be
transparent to be free—then we will look back at this uncompromising and
persistent programmer and recognize the vision he has fought to make real: the
vision of a world where freedom and knowledge survives the compiler. And we
will come to see that no man, through his deeds or words, has done as much to
make possible the freedom that this next society could have.

Foreword to the First Edition X

We have not earned that freedom yet. We may well fail in securing it. But
whether we succeed or fail, in these essays is a picture of what that freedom could
be. And in the life that produced these words and works, there is inspiration
for anyone who would, like Stallman, fight to create this freedom.

LAWRENCE LESSIG

Lawrence Lessig is a Professor of Law at Harvard Law School, the director of the
Edmond J. Safra Foundation Center for Ethics, and the founder of Stanford Law
School’s Center for Internet and Society. For much of his career, he focused his

work on law and technology, especially as it affects copyright. He is the author of
numerous books and has served as a board member of many organizations,

including the Free Software Foundation.

Preface xi
Preface

The third edition of Free Software, Free Society holds updated versions of most
of the essays from the second edition, as well as many new essays. A third of
the essays are new.

As it was in previous editions, the initial section of the book is devoted to
the principles and philosophy of free software. It includes a more powerful pre-
sentation of why software ought to be free, an explanation of how our principles
determine our practical decisions, and addresses the question of freedom and
hardware designs.

The way we name and frame an issue affects how we think about it. Compa-
nies choose terminology to promote their framing; to accept that is to support
them. Thus, this edition has new material about how we at the FSF name things
and why.

The copyright section now presents a transcript of a speech that discusses
the overall issue of copyright law and how it should be changed.

The patents section proposes a solution for the problem caused by patents in
the computing field. I've kept essays about patents separate from those about
copyright, since the two issues should not be lumped together.

The licensing section is largely unchanged, still presenting the GNU licenses,
with an introduction written with Brett Smith giving their history and the mo-
tives for each of them, and an essay explaining why software projects should
upgrade to version 3 of the GNU General Public License.

This edition continues to address dangers and traps that the free software
community faces, including now the issues of nonfree games, e-books, and the
growing threat of digital surveillance.

I hope this book can show you how you might lose your freedom, teach you
how to protect it, and inspire you to value it.

Thank you to Jeanne Rasata for managing the project, editing the book,
formatting the text, and creating the index. Thanks also to Karl Berry for
technical assistance with Texinfo, and Kyle Winfree for designing and formatting
the cover.

RICHARD STALLMAN

Part I:
The GNU Project
and Free Software

Chapter 1: What Is Free Software? 3

1 What Is Free Software?

The Free Software Definition

The free software definition presents the criteria for whether a particular
software program qualifies as free software. From time to time we revise
this definition, to clarify it or to resolve questions about subtle issues. For
a list of the changes we've made to the definition of free software, please
see the “History” section, following the definition, at http://gnu.org/
philosophy/free-sw.html.

“Free software” means software that respects users’ freedom and community.
Roughly, it means that the users have the freedom to run, copy, distribute,
study, change and improve the software. Thus, “free software” is a matter of
liberty, not price. To understand the concept, you should think of “free” as in
“free speech,” not as in “free beer.” We sometimes call it “libre software” to
show we do not mean it is gratis.

We campaign for these freedoms because everyone deserves them. With these
freedoms, the users (both individually and collectively) control the program and
what it does for them. When users don’t control the program, we call it a
“nonfree” or “proprietary” program. The nonfree program controls the users,
and the developer controls the program; this makes the program an instrument
of unjust power.!

A program is free software if the program’s users have the four essential
freedoms:

e The freedom to run the program as you wish, for any purpose (freedom 0).

e The freedom to study how the program works, and change it so it does
your computing as you wish (freedom 1). Access to the source code is a
precondition for this.

e The freedom to redistribute copies so you can help your neighbor (free-
dom 2).

e The freedom to distribute copies of your modified versions to others (free-
dom 3). By doing this you can give the whole community a chance to
benefit from your changes. Access to the source code is a precondition for
this.

1 See “Free Software Is Even More Important Now” (p. 28) for more on this issue.

Copyright © 19962002, 20042007, 2009-2015 Free Software Foundation, Inc.

The free software definition was first published in 1996, on http://gnu.org.
This version is part of Free Software, Free Society: Selected Essays of Richard M.
Stallman, 3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 In-
ternational License (http://creativecommons.org/licenses/by-nd/4.0/).

http://gnu.org/philosophy/free-sw.html
http://gnu.org/philosophy/free-sw.html
http://gnu.org
http://creativecommons.org/licenses/by-nd/4.0/

4 Free Software, Free Society, 3rd ed.

A program is free software if it gives users adequately all of these freedoms.
Otherwise, it is nonfree. While we can distinguish various nonfree distribution
schemes in terms of how far they fall short of being free, we consider them all
equally unethical.

In any given scenario, these freedoms must apply to whatever code we plan
to make use of, or lead others to make use of. For instance, consider a program
A which automatically launches a program B to handle some cases. If we plan
to distribute A as it stands, that implies users will need B, so we need to judge
whether both A and B are free. However, if we plan to modify A so that it
doesn’t use B, only A needs to be free; we can ignore B.

The rest of this page clarifies certain points about what makes specific free-
doms adequate or not.

Freedom to distribute (freedoms 2 and 3) means you are free to redistribute
copies, either with or without modifications, either gratis or charging a fee for
distribution, to anyone anywhere. Being free to do these things means (among
other things) that you do not have to ask or pay for permission to do so.

You should also have the freedom to make modifications and use them pri-
vately in your own work or play, without even mentioning that they exist. If
you do publish your changes, you should not be required to notify anyone in
particular, or in any particular way.

The freedom to run the program means the freedom for any kind of person or
organization to use it on any kind of computer system, for any kind of overall job
and purpose, without being required to communicate about it with the developer
or any other specific entity. In this freedom, it is the user’s purpose that matters,
not the developer’s purpose; you as a user are free to run the program for your
purposes, and if you distribute it to someone else, she is then free to run it for
her purposes, but you are not entitled to impose your purposes on her.

The freedom to run the program as you wish means that you are not forbid-
den or stopped from doing so. It has nothing to do with what functionality the
program has, or whether it is useful for what you want to do.

The freedom to redistribute copies must include binary or executable forms of
the program, as well as source code, for both modified and unmodified versions.
(Distributing programs in runnable form is necessary for conveniently installable
free operating systems.) It is OK if there is no way to produce a binary or
executable form for a certain program (since some languages don’t support that
feature), but you must have the freedom to redistribute such forms should you
find or develop a way to make them.

In order for freedoms 1 and 3 (the freedom to make changes and the freedom
to publish the changed versions) to be meaningful, you must have access to the
source code of the program. Therefore, accessibility of source code is a necessary
condition for free software. Obfuscated “source code” is not real source code and
does not count as source code.

Freedom 1 includes the freedom to use your changed version in place of the
original. If the program is delivered in a product designed to run someone else’s
modified versions but refuse to run yours—a practice known as “tivoization” or

Chapter 1: What Is Free Software? 5

“lockdown,” or (in its practitioners’ perverse terminology) as “secure boot”—
freedom 1 becomes an empty pretense rather than a practical reality. These
binaries are not free software even if the source code they are compiled from is
free.

One important way to modify a program is by merging in available free
subroutines and modules. If the program’s license says that you cannot merge
in a suitably licensed existing module—for instance, if it requires you to be
the copyright holder of any code you add—then the license is too restrictive to
qualify as free.

Freedom 3 includes the freedom to release your modified versions as free
software. A free license may also permit other ways of releasing them; in other
words, it does not have to be a copyleft license. However, a license that requires
modified versions to be nonfree does not qualify as a free license.

In order for these freedoms to be real, they must be permanent and irre-
vocable as long as you do nothing wrong; if the developer of the software has
the power to revoke the license, or retroactively add restrictions to its terms,
without your doing anything wrong to give cause, the software is not free.

However, certain kinds of rules about the manner of distributing free software
are acceptable, when they don’t conflict with the central freedoms. For example,
copyleft (very simply stated) is the rule that when redistributing the program,
you cannot add restrictions to deny other people the central freedoms. This rule
does not conflict with the central freedoms; rather it protects them.

In the GNU Project, we use copyleft to protect the four freedoms legally
for everyone. We believe there are important reasons why it is better to use
copyleft. However, noncopylefted free software is ethical too. See “Categories
of Free Software” (p. 68) for a description of how “free software,” “copylefted
software” and other categories of software relate to each other.

“Free software” does not mean “noncommercial.” A free program must be
available for commercial use, commercial development, and commercial distri-
bution. Commercial development of free software is no longer unusual; such free
commercial software is very important. You may have paid money to get copies
of free software, or you may have obtained copies at no charge. But regardless
of how you got your copies, you always have the freedom to copy and change
the software, even to sell copies.

Whether a change constitutes an improvement is a subjective matter. If your
right to modify a program is limited, in substance, to changes that someone else
considers an improvement, that program is not free.

However, rules about how to package a modified version are acceptable, if
they don’t substantively limit your freedom to release modified versions, or your
freedom to make and use modified versions privately. Thus, it is acceptable for
the license to require that you change the name of the modified version, remove
a logo, or identify your modifications as yours. As long as these requirements are
not so burdensome that they effectively hamper you from releasing your changes,
they are acceptable; you’re already making other changes to the program, so you
won’t have trouble making a few more.

6 Free Software, Free Society, 3rd ed.

Rules that “if you make your version available in this way, you must make
it available in that way also” can be acceptable too, on the same condition. An
example of such an acceptable rule is one saying that if you have distributed a
modified version and a previous developer asks for a copy of it, you must send
one. (Note that such a rule still leaves you the choice of whether to distribute
your version at all.) Rules that require release of source code to the users for
versions that you put into public use are also acceptable.

A special issue arises when a license requires changing the name by which the
program will be invoked from other programs. That effectively hampers you from
releasing your changed version so that it can replace the original when invoked
by those other programs. This sort of requirement is acceptable only if there’s a
suitable aliasing facility that allows you to specify the original program’s name
as an alias for the modified version.

Sometimes government export control regulations and trade sanctions can
constrain your freedom to distribute copies of programs internationally. Software
developers do not have the power to eliminate or override these restrictions, but
what they can and must do is refuse to impose them as conditions of use of
the program. In this way, the restrictions will not affect activities and people
outside the jurisdictions of these governments. Thus, free software licenses must
not require obedience to any nontrivial export regulations as a condition of
exercising any of the essential freedoms.

Merely mentioning the existence of export regulations, without making them
a condition of the license itself, is acceptable since it does not restrict users. If
an export regulation is actually trivial for free software, then requiring it as a
condition is not an actual problem; however, it is a potential problem, since
a later change in export law could make the requirement nontrivial and thus
render the software nonfree.

A free license may not require compliance with the license of a nonfree pro-
gram. Thus, for instance, if a license requires you to comply with the licenses
of “all the programs you use,” in the case of a user that runs nonfree programs
this would require compliance with the licenses of those nonfree programs; that
makes the license nonfree.

It is acceptable for a free license to specify which jurisdiction’s law applies,
or where litigation must be done, or both.

Most free software licenses are based on copyright, and there are limits on
what kinds of requirements can be imposed through copyright. If a copyright-
based license respects freedom in the ways described above, it is unlikely to have
some other sort of problem that we never anticipated (though this does happen
occasionally). However, some free software licenses are based on contracts, and
contracts can impose a much larger range of possible restrictions. That means
there are many possible ways such a license could be unacceptably restrictive
and nonfree.

We can’t possibly list all the ways that might happen. If a contract-based
license restricts the user in an unusual way that copyright-based licenses cannot,

Chapter 1: What Is Free Software? 7

and which isn’t mentioned here as legitimate, we will have to think about it, and
we will probably conclude it is nonfree.

When talking about free software, it is best to avoid using terms like “give
away” or “for free,” because those terms imply that the issue is about price,
not freedom. Some common terms such as “piracy” embody opinions we hope
you won’t endorse. See “Words to Avoid (or Use with Care) Because They Are
Loaded or Confusing” (p. 89) for a discussion of these terms. We also have a
list of proper translations of “free software” into various languages (p. 274).

Finally, note that criteria such as those stated in this free software definition
require careful thought for their interpretation. To decide whether a specific
software license qualifies as a free software license, we judge it based on these
criteria to determine whether it fits their spirit as well as the precise words. If
a license includes unconscionable restrictions, we reject it, even if we did not
anticipate the issue in these criteria. Sometimes a license requirement raises an
issue that calls for extensive thought, including discussions with a lawyer, before
we can decide if the requirement is acceptable. When we reach a conclusion
about a new issue, we often update these criteria to make it easier to see why
certain licenses do or don’t qualify.

If you are interested in whether a specific license qualifies as a free software
license, see our list of licenses, at http://gnu.org/licenses/license-list.
html. If the license you are concerned with is not listed there, you can ask us
about it by sending us email at licensing@gnu.org.

If you are contemplating writing a new license, please contact the Free Soft-
ware Foundation first by writing to that address. The proliferation of different
free software licenses means increased work for users in understanding the li-
censes; we may be able to help you find an existing free software license that
meets your needs.

If that isn’t possible, if you really need a new license, with our help you can
ensure that the license really is a free software license and avoid various practical
problems.

Beyond Software

Software manuals must be free,? for the same reasons that software must be free,
and because the manuals are in effect part of the software.

The same arguments also make sense for other kinds of works of practical
use—that is to say, works that embody useful knowledge, such as educational
works and reference works. Wikipedia is the best-known example.

Any kind of work can be free, and the definition of free software has been
extended to a definition of free cultural works® applicable to any kind of works.

2 See “Why Free Software Needs Free Documentation” (p. 40).
3 See http://freedomdefined.org.

http://gnu.org/licenses/license-list.html
http://gnu.org/licenses/license-list.html
mailto:licensing@gnu.org
http://freedomdefined.org

8 Free Software, Free Society, 3rd ed.

Open Source?

Another group uses the term “open source” to mean something close (but not
identical) to “free software.” We prefer the term “free software” because, once
you have heard that it refers to freedom rather than price, it calls to mind
freedom. The word “open” never refers to freedom.*

4 See “Why Open Source Misses the Point of Free Software” (p. 75).

Chapter 2: The GNU Project 9

2 The GNU Project

The First Software-Sharing Community

When I started working at the MIT Artificial Intelligence Lab in 1971, I became
part of a software-sharing community that had existed for many years. Sharing
of software was not limited to our particular community; it is as old as computers,
just as sharing of recipes is as old as cooking. But we did it more than most.

The AI Lab used a timesharing operating system called ITS (the Incompati-
ble Timesharing System) that the lab’s staff hackers! had designed and written
in assembler language for the Digital PDP-10, one of the large computers of the
era. As a member of this community, an Al Lab staff system hacker, my job
was to improve this system.

We did not call our software “free software,” because that term did not yet
exist; but that is what it was. Whenever people from another university or a
company wanted to port and use a program, we gladly let them. If you saw
someone using an unfamiliar and interesting program, you could always ask to
see the source code, so that you could read it, change it, or cannibalize parts of
it to make a new program.

The Collapse of the Community

The situation changed drastically in the early 1980s when Digital discontinued
the PDP-10 series. Its architecture, elegant and powerful in the 60s, could not
extend naturally to the larger address spaces that were becoming feasible in the
80s. This meant that nearly all of the programs composing ITS were obsolete.
The AI Lab hacker community had already collapsed, not long before. In
1981, the spin-off company Symbolics had hired away nearly all of the hackers
from the AI Lab, and the depopulated community was unable to maintain itself.
(The book Hackers, by Steve Levy, describes these events, as well as giving a

! The use of “hacker” to mean “security breaker” is a confusion on the part of the
mass media. We hackers refuse to recognize that meaning, and continue using
the word to mean someone who loves to program, someone who enjoys play-
ful cleverness, or the combination of the two. See my article “On Hacking,” at
http://stallman.org/articles/on-hacking.html.

Copyright (© 1998, 2001, 2002, 2005-2008, 2010 Richard Stallman

The original version of this essay was published in Open Sources: Voices from
the Open Source Revolution, by Chris DiBona and others (Sebastopol: O’Reilly
Media, 1999), under the title “The GNU Operating System and the Free Software
Movement.” Though I was never a supporter of “open source,” I contributed this
article anyway, so that the ideas of the free software movement would not be entirely
absent from that book. This version is part of Free Software, Free Society: Selected
Essays of Richard M. Stallman, 3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 In-
ternational License (http://creativecommons.org/licenses/by-nd/4.0/).

http://stallman.org/articles/on-hacking.html
http://creativecommons.org/licenses/by-nd/4.0/

10 Free Software, Free Society, 3rd ed.

clear picture of this community in its prime.) When the AI Lab bought a new
PDP-10 in 1982, its administrators decided to use Digital’s nonfree timesharing
system instead of ITS.

The modern computers of the era, such as the VAX or the 68020, had their
own operating systems, but none of them were free software: you had to sign a
nondisclosure agreement even to get an executable copy.

This meant that the first step in using a computer was to promise not to help
your neighbor. A cooperating community was forbidden. The rule made by the
owners of proprietary software was, “If you share with your neighbor, you are a
pirate. If you want any changes, beg us to make them.”

The idea that the proprietary software social system—the system that says
you are not allowed to share or change software—is antisocial, that it is unethi-
cal, that it is simply wrong, may come as a surprise to some readers. But what
else could we say about a system based on dividing the public and keeping users
helpless? Readers who find the idea surprising may have taken the proprietary
software social system as a given, or judged it on the terms suggested by pro-
prietary software businesses. Software publishers have worked long and hard to
convince people that there is only one way to look at the issue.

When software publishers talk about “enforcing” their “rights” or “stopping
piracy,”? what they actually say is secondary. The real message of these state-
ments is in the unstated assumptions they take for granted, which the public is
asked to accept without examination. Let’s therefore examine them.

One assumption is that software companies have an unquestionable natural
right to own software and thus have power over all its users. (If this were a
natural right, then no matter how much harm it does to the public, we could
not object.) Interestingly, the US Constitution and legal tradition reject this
view; copyright is not a natural right, but an artificial government-imposed
monopoly that limits the users’ natural right to copy.

Another unstated assumption is that the only important thing about software
is what jobs it allows you to do—that we computer users should not care what
kind of society we are allowed to have.

A third assumption is that we would have no usable software (or would
never have a program to do this or that particular job) if we did not offer
a company power over the users of the program. This assumption may have
seemed plausible, before the free software movement demonstrated that we can
make plenty of useful software without putting chains on it.

If we decline to accept these assumptions, and judge these issues based on
ordinary commonsense morality while placing the users first, we arrive at very
different conclusions. Computer users should be free to modify programs to fit
their needs, and free to share software, because helping other people is the basis
of society.

There is no room here for an extensive statement of the reasoning behind
this conclusion, so I refer the reader to the articles “Why Software Should Not

2 See p. 99 for more on the erroneous use of the term “piracy.”

Chapter 2: The GNU Project 11

Have Owners,” at http://gnu.org/philosophy/why-free.html, and “Free
Software Is Even More Important Now” (p. 28).

A Stark Moral Choice

With my community gone, to continue as before was impossible. Instead, I faced
a stark moral choice.

The easy choice was to join the proprietary software world, signing nondis-
closure agreements and promising not to help my fellow hacker. Most likely I
would also be developing software that was released under nondisclosure agree-
ments, thus adding to the pressure on other people to betray their fellows too.

I could have made money this way, and perhaps amused myself writing code.
But I knew that at the end of my career, I would look back on years of building
walls to divide people, and feel I had spent my life making the world a worse
place.

I had already experienced being on the receiving end of a nondisclosure agree-
ment, when someone refused to give me and the MIT AI Lab the source code for
the control program for our printer. (The lack of certain features in this program
made use of the printer extremely frustrating.) So I could not tell myself that
nondisclosure agreements were innocent. I was very angry when he refused to
share with us; I could not turn around and do the same thing to everyone else.

Another choice, straightforward but unpleasant, was to leave the computer
field. That way my skills would not be misused, but they would still be wasted.
I would not be culpable for dividing and restricting computer users, but it would
happen nonetheless.

So I looked for a way that a programmer could do something for the good. I
asked myself, was there a program or programs that I could write, so as to make
a community possible once again?

The answer was clear: what was needed first was an operating system. That
is the crucial software for starting to use a computer. With an operating system,
you can do many things; without one, you cannot run the computer at all.
With a free operating system, we could again have a community of cooperating
hackers—and invite anyone to join. And anyone would be able to use a computer
without starting out by conspiring to deprive his or her friends.

As an operating system developer, I had the right skills for this job. So even
though I could not take success for granted, I realized that I was elected to do
the job. I chose to make the system compatible with Unix so that it would be
portable, and so that Unix users could easily switch to it. The name GNU was
chosen, following a hacker tradition, as a recursive acronym for “GNU’s Not
Unix.”

An operating system does not mean just a kernel, barely enough to run other
programs. In the 1970s, every operating system worthy of the name included
command processors, assemblers, compilers, interpreters, debuggers, text edi-
tors, mailers, and much more. ITS had them, Multics had them, VMS had
them, and Unix had them. The GNU operating system would include them too.

http://gnu.org/philosophy/why-free.html

12 Free Software, Free Society, 3rd ed.

Later I heard these words, attributed to Hillel:?

If I am not for myself, who will be for me?
If T am only for myself, what am I?
If not now, when?

The decision to start the GNU Project was based on a similar spirit.

Free as in Freedom

The term “free software” is sometimes misunderstood—it has nothing to do with
price. It is about freedom. Here, therefore, is the definition of free software.
A program is free software, for you, a particular user, if:
e You have the freedom to run the program as you wish, for any purpose.

e You have the freedom to modify the program to suit your needs. (To
make this freedom effective in practice, you must have access to the source
code, since making changes in a program without having the source code
is exceedingly difficult.)

e You have the freedom to redistribute copies, either gratis or for a fee.

e You have the freedom to distribute modified versions of the program, so
that the community can benefit from your improvements.

Since “free” refers to freedom, not to price, there is no contradiction between
selling copies and free software. In fact, the freedom to sell copies is crucial:
collections of free software sold on CD-ROMs are important for the community,
and selling them is an important way to raise funds for free software development.
Therefore, a program which people are not free to include on these collections
is not free software.

Because of the ambiguity of “free,” people have long looked for alternatives,
but no one has found a better term. The English language has more words
and nuances than any other, but it lacks a simple, unambiguous, word that
means “free,” as in freedom— “unfettered” being the word that comes closest in
meaning. Such alternatives as “liberated,” “freedom,” and “open” have either
the wrong meaning or some other disadvantage.

GNU Software and the GNU System

Developing a whole system is a very large project. To bring it into reach, I
decided to adapt and use existing pieces of free software wherever that was
possible. For example, I decided at the very beginning to use TEX as the principal
text formatter; a few years later, I decided to use the X Window System rather
than writing another window system for GNU.

Because of these decisions, and others like them, the GNU system is not the
same as the collection of all GNU software. The GNU system includes programs
that are not GNU software, programs that were developed by other people and
projects for their own purposes, but which we can use because they are free
software.

3 As an Atheist, I don’t follow any religious leaders, but I sometimes find I admire
something one of them has said.

Chapter 2: The GNU Project 13

Commencing the Project

In January 1984 I quit my job at MIT and began writing GNU software. Leaving
MIT was necessary so that MIT would not be able to interfere with distributing
GNU as free software. If I had remained on the staff, MIT could have claimed
to own the work, and could have imposed their own distribution terms, or even
turned the work into a proprietary software package. I had no intention of doing
a large amount of work only to see it become useless for its intended purpose:
creating a new software-sharing community.

However, Professor Winston, then the head of the MIT Al Lab, kindly invited
me to keep using the lab’s facilities.

The First Steps

Shortly before beginning the GNU Project, I heard about the Free University
Compiler Kit, also known as VUCK. (The Dutch word for “free” is written
with a v.) This was a compiler designed to handle multiple languages, including
C and Pascal, and to support multiple target machines. I wrote to its author
asking if GNU could use it.

He responded derisively, stating that the university was free but the compiler
was not. I therefore decided that my first program for the GNU Project would
be a multilanguage, multiplatform compiler.

Hoping to avoid the need to write the whole compiler myself, I obtained
the source code for the Pastel compiler, which was a multiplatform compiler
developed at Lawrence Livermore Lab. It supported, and was written in, an
extended version of Pascal, designed to be a system-programming language. I
added a C front end, and began porting it to the Motorola 68000 computer.
But I had to give that up when I discovered that the compiler needed many
megabytes of stack space, and the available 68000 Unix system would only allow
64k.

I then realized that the Pastel compiler functioned by parsing the entire
input file into a syntax tree, converting the whole syntax tree into a chain of
“instructions,” and then generating the whole output file, without ever freeing
any storage. At this point, I concluded I would have to write a new compiler
from scratch. That new compiler is now known as GCC; none of the Pastel
compiler is used in it, but I managed to adapt and use the C front end that I
had written. But that was some years later; first, I worked on GNU Emacs.

GNU Emacs

I began work on GNU Emacs in September 1984, and in early 1985 it was
beginning to be usable. This enabled me to begin using Unix systems to do
editing; having no interest in learning to use vi or ed, I had done my editing on
other kinds of machines until then.

At this point, people began wanting to use GNU Emacs, which raised the
question of how to distribute it. Of course, I put it on the anonymous ftp server
on the MIT computer that I used. (This computer, prep.ai.mit.edu, thus

14 Free Software, Free Society, 3rd ed.

became the principal GNU ftp distribution site; when it was decommissioned a
few years later, we transferred the name to our new ftp server.) But at that
time, many of the interested people were not on the internet and could not get
a copy by ftp. So the question was, what would I say to them?

I could have said, “Find a friend who is on the net and who will make a copy
for you.” Or I could have done what I did with the original PDP-10 Emacs: tell
them, “Mail me a tape and a SASE (self-addressed stamped envelope), and I
will mail it back with Emacs on it.” But I had no job, and I was looking for ways
to make money from free software. So I announced that I would mail a tape
to whoever wanted one, for a fee of $150. In this way, I started a free software
distribution business, the precursor of the companies that today distribute entire
GNU/Linux system distributions.

Is a Program Free for Every User?

If a program is free software when it leaves the hands of its author, this does
not necessarily mean it will be free software for everyone who has a copy of it.
For example, public domain software? (software that is not copyrighted) is free
software; but anyone can make a proprietary modified version of it. Likewise,
many free programs are copyrighted but distributed under simple permissive
licenses which allow proprietary modified versions.

The paradigmatic example of this problem is the X Window System. De-
veloped at MIT, and released as free software with a permissive license, it was
soon adopted by various computer companies. They added X to their propri-
etary Unix systems, in binary form only, and covered by the same nondisclosure
agreement. These copies of X were no more free software than Unix was.

The developers of the X Window System did not consider this a problem—
they expected and intended this to happen. Their goal was not freedom, just
“success,” defined as “having many users.” They did not care whether these
users had freedom, only that they should be numerous.

This led to a paradoxical situation where two different ways of counting
the amount of freedom gave different answers to the question, “Is this program
free?” If you judged based on the freedom provided by the distribution terms of
the MIT release, you would say that X was free software. But if you measured
the freedom of the average user of X, you would have to say it was proprietary
software. Most X users were running the proprietary versions that came with
Unix systems, not the free version.

4 See p. 70 for more on public domain software.

Chapter 2: The GNU Project 15

Copyleft and the GNU GPL

The goal of GNU was to give users freedom, not just to be popular. So we
needed to use distribution terms that would prevent GNU software from being
turned into proprietary software. The method we use is called “copyleft.”®

Copyleft uses copyright law, but flips it over to serve the opposite of its usual
purpose: instead of a means for restricting a program, it becomes a means for
keeping the program free.

The central idea of copyleft is that we give everyone permission to run the pro-
gram, copy the program, modify the program, and distribute modified versions—
but not permission to add restrictions of their own. Thus, the crucial freedoms
that define “free software” are guaranteed to everyone who has a copy; they
become inalienable rights.

For an effective copyleft, modified versions must also be free. This ensures
that work based on ours becomes available to our community if it is published.
When programmers who have jobs as programmers volunteer to improve GNU
software, it is copyleft that prevents their employers from saying, “You can’t
share those changes, because we are going to use them to make our proprietary
version of the program.”

The requirement that changes must be free is essential if we want to ensure
freedom for every user of the program. The companies that privatized the X
Window System usually made some changes to port it to their systems and
hardware. These changes were small compared with the great extent of X,
but they were not trivial. If making changes were an excuse to deny the users
freedom, it would be easy for anyone to take advantage of the excuse.

A related issue concerns combining a free program with nonfree code. Such
a combination would inevitably be nonfree; whichever freedoms are lacking for
the nonfree part would be lacking for the whole as well. To permit such com-
binations would open a hole big enough to sink a ship. Therefore, a crucial
requirement for copyleft is to plug this hole: anything added to or combined
with a copylefted program must be such that the larger combined version is also
free and copylefted.

The specific implementation of copyleft that we use for most GNU software
is the GNU General Public License, or GNU GPL for short. We have other kinds
of copyleft that are used in specific circumstances. GNU manuals are copylefted
also, but use a much simpler kind of copyleft, because the complexity of the
GNU GPL is not necessary for manuals.%

5 In 1984 or 1985, Don Hopkins (a very imaginative fellow) mailed me a letter.
On the envelope he had written several amusing sayings, including this one:
“Copyleft—all rights reversed.” I used the word “copyleft” to name the distri-
bution concept I was developing at the time.

6 We now use the GNU Free Documentation License (p. 210) for documentation.

16 Free Software, Free Society, 3rd ed.

The Free Software Foundation

As interest in using Emacs was growing, other people became involved in the
GNU project, and we decided that it was time to seek funding once again. So in
1985 we created the Free Software Foundation (FSF), a tax-exempt charity for
free software development. The FSF also took over the Emacs tape distribution
business; later it extended this by adding other free software (both GNU and
non-GNU) to the tape, and by selling free manuals as well.

Most of the FSF’s income used to come from sales of copies of free software
and of other related services (CD-ROMs of source code, CD-ROMs with binaries,
nicely printed manuals, all with the freedom to redistribute and modify), and
Deluxe Distributions (distributions for which we built the whole collection of
software for the customer’s choice of platform). Today the FSF still sells manuals
and other gear,” but it gets the bulk of its funding from members’ dues. You
can join the FSF at http://fsf.org/join.

Free Software Foundation employees have written and maintained a number
of GNU software packages. Two notable ones are the C library and the shell. The
GNU C Library is what every program running on a GNU/Linux system uses to
communicate with Linux. It was developed by a member of the Free Software
Foundation staff, Roland McGrath. The shell used on most GNU/Linux systems
is BASH, the Bourne Again Shell,® which was developed by FSF employee Brian
Fox.

We funded development of these programs because the GNU Project was
not just about tools or a development environment. Our goal was a complete
operating system, and these programs were needed for that goal.

Free Software Support

The free software philosophy rejects a specific widespread business practice, but
it is not against business. When businesses respect the users’ freedom, we wish
them success.

Selling copies of Emacs demonstrates one kind of free software business.
When the FSF took over that business, I needed another way to make a liv-
ing. I found it in selling services relating to the free software I had developed.
This included teaching, for subjects such as how to program GNU Emacs and
how to customize GCC, and software development, mostly porting GCC to new
platforms.

Today each of these kinds of free software business is practiced by a number
of corporations. Some distribute free software collections on CD-ROM; others
sell support at levels ranging from answering user questions, to fixing bugs, to
adding major new features. We are even beginning to see free software companies
based on launching new free software products.

7 See our online shop, at http://shop.fsf.org.
8 “Bourne Again Shell” is a play on the name “Bourne Shell,” which was the usual
shell on Unix.

http://fsf.org/join
http://shop.fsf.org

Chapter 2: The GNU Project 17

Watch out, though—a number of companies that associate themselves with
the term “open source” actually base their business on nonfree software that
works with free software. These are not free software companies, they are pro-
prietary software companies whose products tempt users away from freedom.
They call these programs “value-added packages,” which shows the values they
would like us to adopt: convenience above freedom. If we value freedom more,
we should call them “freedom-subtracted” packages.

Technical Goals

The principal goal of GNU is to be free software. Even if GNU had no tech-
nical advantage over Unix, it would have a social advantage, allowing users to
cooperate, and an ethical advantage, respecting the user’s freedom.

But it was natural to apply the known standards of good practice to the
work—for example, dynamically allocating data structures to avoid arbitrary
fixed size limits, and handling all the possible 8-bit codes wherever that made
sense.

In addition, we rejected the Unix focus on small memory size, by deciding
not to support 16-bit machines (it was clear that 32-bit machines would be the
norm by the time the GNU system was finished), and to make no effort to reduce
memory usage unless it exceeded a megabyte. In programs for which handling
very large files was not crucial, we encouraged programmers to read an entire
input file into core, then scan its contents without having to worry about I/0.

These decisions enabled many GNU programs to surpass their Unix counter-
parts in reliability and speed.

Donated Computers

As the GNU Project’s reputation grew, people began offering to donate machines
running Unix to the project. These were very useful, because the easiest way
to develop components of GNU was to do it on a Unix system, and replace the
components of that system one by one. But they raised an ethical issue: whether
it was right for us to have a copy of Unix at all.

Unix was (and is) proprietary software, and the GNU Project’s philosophy
said that we should not use proprietary software. But, applying the same rea-
soning that leads to the conclusion that violence in self defense is justified, I
concluded that it was legitimate to use a proprietary package when that was
crucial for developing a free replacement that would help others stop using the
proprietary package.

But, even if this was a justifiable evil, it was still an evil. Today we no longer
have any copies of Unix, because we have replaced them with free operating
systems. If we could not replace a machine’s operating system with a free one,
we replaced the machine instead.

18 Free Software, Free Society, 3rd ed.

The GNU Task List

As the GNU Project proceeded, and increasing numbers of system components
were found or developed, eventually it became useful to make a list of the re-
maining gaps. We used it to recruit developers to write the missing pieces. This
list became known as the GNU Task List. In addition to missing Unix compo-
nents, we listed various other useful software and documentation projects that,
we thought, a truly complete system ought to have.

Today,” hardly any Unix components are left in the GNU Task List—those
jobs had been done, aside from a few inessential ones. But the list is full of
projects that some might call “applications.” Any program that appeals to
more than a narrow class of users would be a useful thing to add to an operating
system.

Even games are included in the task list—and have been since the beginning.
Unix included games, so naturally GNU should too. But compatibility was not
an issue for games, so we did not follow the list of games that Unix had. Instead,
we listed a spectrum of different kinds of games that users might like.

The GNU Library GPL

The GNU C Library uses a special kind of copyleft called the GNU Library
General Public License,'!® which gives permission to link proprietary software
with the library. Why make this exception?

It is not a matter of principle; there is no principle that says proprietary
software products are entitled to include our code. (Why contribute to a project
predicated on refusing to share with us?) Using the LGPL for the C library, or
for any library, is a matter of strategy.

The C library does a generic job; every proprietary system or compiler comes
with a C library. Therefore, to make our C library available only to free soft-
ware would not have given free software any advantage—it would only have
discouraged use of our library.

One system is an exception to this: on the GNU system (and this includes
GNU/Linux), the GNU C Library is the only C library. So the distribution terms
of the GNU C Library determine whether it is possible to compile a proprietary
program for the GNU system. There is no ethical reason to allow proprietary
applications on the GNU system, but strategically it seems that disallowing
them would do more to discourage use of the GNU system than to encourage
development of free applications. That is why using the Library GPL is a good
strategy for the C library.

9 That was written in 1998. In 2009 we no longer maintain a long task list. The
community develops free software so fast that we can’t even keep track of it all.
Instead, we have a list of High Priority Projects, a much shorter list of projects
we really want to encourage people to write.

This license is now called the GNU Lesser General Public License, to avoid giv-
ing the idea that all libraries ought to use it. See “Why You Shouldn’t Use the
Lesser GPL for Your Next Library,” at http: //www . gnu. org/philosophy/
why-not-1gpl.html, for more information.

10

http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/philosophy/why-not-lgpl.html

Chapter 2: The GNU Project 19

For other libraries, the strategic decision needs to be considered on a case-by-
case basis. When a library does a special job that can help write certain kinds of
programs, then releasing it under the GPL, limiting it to free programs only, is a
way of helping other free software developers, giving them an advantage against
proprietary software.

Consider GNU Readline, a library that was developed to provide command-
line editing for BASH. Readline is released under the ordinary GNU GPL, not
the Library GPL. This probably does reduce the amount Readline is used, but
that is no loss for us. Meanwhile, at least one useful application has been made
free software specifically so it could use Readline, and that is a real gain for the
community.

Proprietary software developers have the advantages money provides; free
software developers need to make advantages for each other. I hope some day
we will have a large collection of GPL-covered libraries that have no parallel
available to proprietary software, providing useful modules to serve as building
blocks in new free software, and adding up to a major advantage for further free
software development.

Scratching an Itch?

Eric Raymond!! says that “Every good work of software starts by scratching a
developer’s personal itch.” 2 Maybe that happens sometimes, but many essential
pieces of GNU software were developed in order to have a complete free operating
system. They come from a vision and a plan, not from impulse.

For example, we developed the GNU C Library because a Unix-like system
needs a C library, BASH because a Unix-like system needs a shell, and GNU tar
because a Unix-like system needs a tar program. The same is true for my own
programs—the GNU C compiler, GNU Emacs, GDB and GNU Make.

Some GNU programs were developed to cope with specific threats to our
freedom. Thus, we developed gzip to replace the Compress program, which had
been lost to the community because of the LZW patents. We found people to
develop LessTif, and more recently started GNOME and Harmony, to address
the problems caused by certain proprietary libraries (see below). We are devel-
oping the GNU Privacy Guard to replace popular nonfree encryption software,
because users should not have to choose between privacy and freedom.

Of course, the people writing these programs became interested in the work,
and many features were added to them by various people for the sake of their
own needs and interests. But that is not why the programs exist.

1 Bric Raymond is a prominent open source advocate; see “Why Open Source
Misses the Point of Free Software” (p. 75).

12 Eric S. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary, rev. ed. (Sebastopol, Calif.: O’Reilly,
2001), p. 23.

20 Free Software, Free Society, 3rd ed.

Unexpected Developments

At the beginning of the GNU Project, I imagined that we would develop the
whole GNU system, then release it as a whole. That is not how it happened.

Since each component of the GNU system was implemented on a Unix sys-
tem, each component could run on Unix systems long before a complete GNU
system existed. Some of these programs became popular, and users began ex-
tending them and porting them—to the various incompatible versions of Unix,
and sometimes to other systems as well.

The process made these programs much more powerful, and attracted both
funds and contributors to the GNU Project. But it probably also delayed com-
pletion of a minimal working system by several years, as GNU developers’ time
was put into maintaining these ports and adding features to the existing com-
ponents, rather than moving on to write one missing component after another.

The GNU Hurd

By 1990, the GNU system was almost complete; the only major missing com-
ponent was the kernel. We had decided to implement our kernel as a collection
of server processes running on top of Mach. Mach is a microkernel developed at
Carnegie Mellon University and then at the University of Utah; the GNU Hurd
is a collection of servers (i.e., a herd of GNUSs) that run on top of Mach, and do
the various jobs of the Unix kernel. The start of development was delayed as we
waited for Mach to be released as free software, as had been promised.

One reason for choosing this design was to avoid what seemed to be the
hardest part of the job: debugging a kernel program without a source-level
debugger to do it with. This part of the job had been done already, in Mach,
and we expected to debug the Hurd servers as user programs, with GDB. But
it took a long time to make that possible, and the multithreaded servers that
send messages to each other have turned out to be very hard to debug. Making
the Hurd work solidly has stretched on for many years.

Alix

The GNU kernel was not originally supposed to be called the Hurd. Its original
name was Alix—named after the woman who was my sweetheart at the time.
She, a Unix system administrator, had pointed out how her name would fit
a common naming pattern for Unix system versions; as a joke, she told her
friends, “Someone should name a kernel after me.” I said nothing, but decided
to surprise her with a kernel named Alix.

It did not stay that way. Michael (now Thomas) Bushnell, the main developer
of the kernel, preferred the name Hurd, and redefined Alix to refer to a certain
part of the kernel—the part that would trap system calls and handle them by
sending messages to Hurd servers.

Later, Alix and I broke up, and she changed her name; independently, the
Hurd design was changed so that the C library would send messages directly to
servers, and this made the Alix component disappear from the design.

Chapter 2: The GNU Project 21

But before these things happened, a friend of hers came across the name Alix
in the Hurd source code, and mentioned it to her. So she did have the chance
to find a kernel named after her.

Linux and GNU /Linux

The GNU Hurd is not suitable for production use, and we don’t know if it ever
will be. The capability-based design has problems that result directly from the
flexibility of the design, and it is not clear whether solutions exist.

Fortunately, another kernel is available. In 1991, Linus Torvalds developed
a Unix-compatible kernel and called it Linux. It was proprietary at first, but
in 1992, he made it free software; combining Linux with the not-quite-complete
GNU system resulted in a complete free operating system. (Combining them
was a substantial job in itself, of course.) It is due to Linux that we can actually
run a version of the GNU system today.

We call this system version GNU/Linux, to express its composition as a
combination of the GNU system with Linux as the kernel. Please don’t fall into
the practice of calling the whole system “Linux,” since that means attributing
our work to someone else. Please give us equal mention.'?

Challenges in Our Future

We have proved our ability to develop a broad spectrum of free software. This
does not mean we are invincible and unstoppable. Several challenges make the
future of free software uncertain; meeting them will require steadfast effort and
endurance, sometimes lasting for years. It will require the kind of determination
that people display when they value their freedom and will not let anyone take
it away.

The following four sections discuss these challenges.

Secret Hardware

Hardware manufacturers increasingly tend to keep hardware specifications se-
cret. This makes it difficult to write free drivers so that Linux and XFree86 can
support new hardware. We have complete free systems today, but we will not
have them tomorrow if we cannot support tomorrow’s computers.

There are two ways to cope with this problem. Programmers can do reverse
engineering to figure out how to support the hardware. The rest of us can choose
the hardware that is supported by free software; as our numbers increase, secrecy
of specifications will become a self-defeating policy.

Reverse engineering is a big job; will we have programmers with sufficient
determination to undertake it? Yes—if we have built up a strong feeling that
free software is a matter of principle, and nonfree drivers are intolerable. And
will large numbers of us spend extra money, or even a little extra time, so we
can use free drivers? Yes, if the determination to have freedom is widespread.

13 See the “GNU/Linux FAQ,” at http://gnu.org/gnu/gnu-linux-faq.html, and
“Linux and the GNU System” (p. 64) for more on this issue.

http://gnu.org/gnu/gnu-linux-faq.html

22 Free Software, Free Society, 3rd ed.

[2008 note: this issue extends to the BIOS as well. There is a free BIOS, Li-
breBoot!* (a distribution of coreboot); the problem is getting specs for machines
so that LibreBoot can support them without nonfree “blobs.”]

Nonfree Libraries

A nonfree library that runs on free operating systems acts as a trap for free
software developers. The library’s attractive features are the bait; if you use the
library, you fall into the trap, because your program cannot usefully be part of
a free operating system. (Strictly speaking, we could include your program, but
it won’t run with the library missing.) Even worse, if a program that uses the
proprietary library becomes popular, it can lure other unsuspecting programmers
into the trap.

The first instance of this problem was the Motif toolkit, back in the 80s.
Although there were as yet no free operating systems, it was clear what problem
Motif would cause for them later on. The GNU Project responded in two ways:
by asking individual free software projects to support the free X Toolkit widgets
as well as Motif, and by asking for someone to write a free replacement for Mo-
tif. The job took many years; LessTif, developed by the Hungry Programmers,
became powerful enough to support most Motif applications only in 1997.

Between 1996 and 1998, another nonfree GUI toolkit library, called Qt, was
used in a substantial collection of free software, the desktop KDE.

Free GNU/Linux systems were unable to use KDE, because we could not use
the library. However, some commercial distributors of GNU/Linux systems who
were not strict about sticking with free software added KDE to their systems—
producing a system with more capabilities, but less freedom. The KDE group
was actively encouraging more programmers to use Qt, and millions of new
“Linux users” had never been exposed to the idea that there was a problem in
this. The situation appeared grim.

The free software community responded to the problem in two ways:
GNOME and Harmony.

GNOME, the GNU Network Object Model Environment, is GNU’s desktop
project. Started in 1997 by Miguel de Icaza, and developed with the support
of Red Hat Software, GNOME set out to provide similar desktop facilities, but
using free software exclusively. It has technical advantages as well, such as
supporting a variety of languages, not just C++. But its main purpose was
freedom: not to require the use of any nonfree software.

Harmony is a compatible replacement library, designed to make it possible
to run KDE software without using Qt.

In November 1998, the developers of Qt announced a change of license which,
when carried out, should make Qt free software. There is no way to be sure,
but I think that this was partly due to the community’s firm response to the
problem that Qt posed when it was nonfree. (The new license is inconvenient
and inequitable, so it remains desirable to avoid using Qt.)

14 See http://libreboot.org.

http://libreboot.org

Chapter 2: The GNU Project 23

[Subsequent note: in September 2000, Qt was rereleased under the GNU
GPL, which essentially solved this problem.]

How will we respond to the next tempting nonfree library? Will the whole
community understand the need to stay out of the trap? Or will many of us give
up freedom for convenience, and produce a major problem? Our future depends
on our philosophy.

Software Patents

The worst threat we face comes from software patents, which can put algorithms
and features off limits to free software for up to twenty years. The LZW com-
pression algorithm patents were applied for in 1983, and we still cannot release
free software to produce proper compressed GIFs. [As of 2009 they have ex-
pired.] In 1998, a free program to produce MP3 compressed audio was removed
from distribution under threat of a patent suit.

There are ways to cope with patents: we can search for evidence that a
patent is invalid, and we can look for alternative ways to do a job. But each
of these methods works only sometimes; when both fail, a patent may force all
free software to lack some feature that users want. What will we do when this
happens?

Those of us who value free software for freedom’s sake will stay with free
software anyway. We will manage to get work done without the patented fea-
tures. But those who value free software because they expect it to be technically
superior are likely to call it a failure when a patent holds it back. Thus, while
it is useful to talk about the practical effectiveness of the “bazaar” model of
development, and the reliability and power of some free software, we must not
stop there. We must talk about freedom and principle.

Free Documentation

The biggest deficiency in our free operating systems is not in the software—it is
the lack of good free manuals that we can include in our systems. Documentation
is an essential part of any software package; when an important free software
package does not come with a good free manual, that is a major gap. We have
many such gaps today.

Free documentation, like free software, is a matter of freedom, not price.
The criterion for a free manual is pretty much the same as for free software:
it is a matter of giving all users certain freedoms. Redistribution (including
commercial sale) must be permitted, online and on paper, so that the manual
can accompany every copy of the program.

Permission for modification is crucial too. As a general rule, I don’t believe
that it is essential for people to have permission to modify all sorts of articles
and books. For example, I don’t think you or I are obliged to give permission
to modify articles like this one, which describe our actions and our views.

But there is a particular reason why the freedom to modify is crucial for
documentation for free software. When people exercise their right to modify the
software, and add or change its features, if they are conscientious they will change

24 Free Software, Free Society, 3rd ed.

the manual, too—so they can provide accurate and usable documentation with
the modified program. A nonfree manual, which does not allow programmers to
be conscientious and finish the job, does not fill our community’s needs.

Some kinds of limits on how modifications are done pose no problem. For
example, requirements to preserve the original author’s copyright notice, the
distribution terms, or the list of authors, are OK. It is also no problem to require
modified versions to include notice that they were modified, even to have entire
sections that may not be deleted or changed, as long as these sections deal with
nontechnical topics. These kinds of restrictions are not a problem because they
don’t stop the conscientious programmer from adapting the manual to fit the
modified program. In other words, they don’t block the free software community
from making full use of the manual.

However, it must be possible to modify all the technical content of the man-
ual, and then distribute the result in all the usual media, through all the usual
channels; otherwise, the restrictions do obstruct the community, the manual is
not free, and we need another manual.

Will free software developers have the awareness and determination to pro-
duce a full spectrum of free manuals? Once again, our future depends on phi-
losophy.

‘We Must Talk about Freedom

Estimates today are that there are ten million users of GNU/Linux systems such
as Debian GNU/Linux and Red Hat “Linux.” Free software has developed such
practical advantages that users are flocking to it for purely practical reasons.

The good consequences of this are evident: more interest in developing free
software, more customers for free software businesses, and more ability to en-
courage companies to develop commercial free software instead of proprietary
software products.

But interest in the software is growing faster than awareness of the philosophy
it is based on, and this leads to trouble. Our ability to meet the challenges and
threats described above depends on the will to stand firm for freedom. To make
sure our community has this will, we need to spread the idea to the new users
as they come into the community.

But we are failing to do so: the efforts to attract new users into our commu-
nity are far outstripping the efforts to teach them the civics of our community.
We need to do both, and we need to keep the two efforts in balance.

“Open Source”

Teaching new users about freedom became more difficult in 1998, when a part
of the community decided to stop using the term “free software” and say “open
source software” instead.

Some who favored this term aimed to avoid the confusion of “free” with
“gratis”—a valid goal. Others, however, aimed to set aside the spirit of principle
that had motivated the free software movement and the GNU Project, and to
appeal instead to executives and business users, many of whom hold an ideology

Chapter 2: The GNU Project 25

that places profit above freedom, above community, above principle. Thus, the
rhetoric of “open source” focuses on the potential to make high-quality, powerful
software, but shuns the ideas of freedom, community, and principle.

The “Linux” magazines are a clear example of this—they are filled with
advertisements for proprietary software that works with GNU/Linux. When the
next Motif or Qt appears, will these magazines warn programmers to stay away
from it, or will they run ads for it?

The support of business can contribute to the community in many ways; all
else being equal, it is useful. But winning their support by speaking even less
about freedom and principle can be disastrous; it makes the previous imbalance
between outreach and civics education even worse.

“Free software” and “open source” describe the same category of software,
more or less, but say different things about the software, and about values. The
GNU Project continues to use the term “free software,” to express the idea that
freedom, not just technology, is important.

Try!

Yoda’s aphorism (“There is no ‘try’”) sounds neat, but it doesn’t work for me. I
have done most of my work while anxious about whether I could do the job, and
unsure that it would be enough to achieve the goal if I did. But I tried anyway,
because there was no one but me between the enemy and my city. Surprising
myself, I have sometimes succeeded.

Sometimes I failed; some of my cities have fallen. Then I found another
threatened city, and got ready for another battle. Over time, I've learned to
look for threats and put myself between them and my city, calling on other
hackers to come and join me.

Nowadays, often I'm not the only one. It is a relief and a joy when I see
a regiment of hackers digging in to hold the line, and I realize, this city may
survive—for now. But the dangers are greater each year, and now Microsoft
has explicitly targeted our community. We can’t take the future of freedom for
granted. Don’t take it for granted! If you want to keep your freedom, you must
be prepared to defend it.

26 Free Software, Free Society, 3rd ed.

3 The Initial Announcement of the
GNU Operating System

This is the original announcement of the GNU Project, posted by Richard Stall-
man on 27 September 1983.

The actual history of the GNU Project differs in many ways from this initial
plan. For example, the beginning was delayed until January 1984. Several of
the philosophical concepts of free software were not clarified until a few years
later.

From mit-vax!mit-eddie!RMS@MIT-0Z
From: RMS/MIT-0Z@mit-eddie

Newsgroups: net.unix-wizards,net.usoft
Subject: new Unix implementation

Date: Tue, 27-Sep-83 12:35:59 EST
Organization: MIT AI Lab, Cambridge, MA

Free Unix!

Starting this Thanksgiving I am going to write a complete Unix-compatible
software system called GNU (for Gnu’s Not Unix), and give it away free!

to everyone who can use it. Contributions of time, money, programs and
equipment are greatly needed.

To begin with, GNU will be a kernel plus all the utilities needed to write
and run C programs: editor, shell, C compiler, linker, assembler, and a few
other things. After this we will add a text formatter, a YACC, an Empire
game, a spreadsheet, and hundreds of other things. We hope to supply,
eventually, everything useful that normally comes with a Unix system, and
anything else useful, including on-line and hardcopy documentation.

GNU will be able to run Unix programs, but will not be identical to Unix. We
will make all improvements that are convenient, based on our experience with
other operating systems. In particular, we plan to have longer filenames,
file version numbers, a crashproof file system, filename completion perhaps,
terminal-independent display support, and eventually a Lisp-based window
system through which several Lisp programs and ordinary Unix programs can
share a screen. Both C and Lisp will be available as system programming
languages. We will have network software based on MIT’s chaosnet protocol,
far superior to UUCP. We may also have something compatible with UUCP.

! The wording here was careless. The intention was that nobody would have to
pay for permission to use the GNU system. But the words don’t make this clear,
and people often interpret them as saying that copies of GNU should always be
distributed at little or no charge. That was never the intent.

Copyright © 1983 Richard Stallman
This announcement is part of Free Software, Free Society: Selected Essays of
Richard M. Stallman, 3rd ed. (Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0
International License (http://creativecommons.org/licenses/by-nd/4.0/).

http://creativecommons.org/licenses/by-nd/4.0/

Chapter 3: The Initial Announcement of the GNU Operating System 27

Who Am I7?

I am Richard Stallman, inventor of the original much-imitated EMACS editor,
now at the Artificial Intelligence Lab at MIT. I have worked extensively

on compilers, editors, debuggers, command interpreters, the Incompatible
Timesharing System and the Lisp Machine operating system. I pioneered
terminal-independent display support in ITS. In addition I have implemented
one crashproof file system and two window systems for Lisp machines.

Why I Must Write GNU

I consider that the golden rule requires that if I like a program I must
share it with other people who like it. I cannot in good conscience sign a
nondisclosure agreement or a software license agreement.

So that I can continue to use computers without violating my principles, I
have decided to put together a sufficient body of free software so that I
will be able to get along without any software that is not free.

How You Can Contribute

I am asking computer manufacturers for donations of machines and money. I’m
asking individuals for donations of programs and work.

One computer manufacturer has already offered to provide a machine. But we
could use more. One consequence you can expect if you donate machines is
that GNU will run on them at an early date. The machine had better be able
to operate in a residential area, and not require sophisticated cooling or
power.

Individual programmers can contribute by writing a compatible duplicate

of some Unix utility and giving it to me. For most projects, such part-time
distributed work would be very hard to coordinate; the independently-written
parts would not work together. But for the particular task of replacing

Unix, this problem is absent. Most interface specifications are fixed by
Unix compatibility. If each contribution works with the rest of Unix, it
will probably work with the rest of GNU.

If T get donations of money, I may be able to hire a few people full or part
time. The salary won’t be high, but I’m looking for people for whom knowing
they are helping humanity is as important as money. I view this as a way of
enabling dedicated people to devote their full energies to working on GNU by
sparing them the need to make a living in another way.

For more information, contact me.
Arpanet mail:
RMS@MIT-MC. ARPA

Usenet:
...!mit-eddie!RMS@0Z ...!'mit-vax!RMS@0Z

US Snail:
Richard Stallman
166 Prospect St
Cambridge, MA 02139

28 Free Software, Free Society, 3rd ed.
4 Free Software Is Even More Important Now

Since 1983, the Free Software Movement has campaigned for computer users’
freedom—for users to control the software they use, rather than vice versa. When
a program respects users’ freedom and community, we call it “free software.”

We also sometimes call it “libre software” to emphasize that we're talking
about liberty, not price. Some proprietary (nonfree) programs, such as Photo-
shop, are very expensive; others, such as Flash Player, are available gratis—but
that’s a minor detail. Either way, they give the program’s developer power over
the users, power that no one should have.

Those two nonfree programs have something else in common: they are both
malware. That is, both have functionalities designed to mistreat the user. Pro-
prietary software nowadays is often malware because the developers’ power cor-
rupts them.! With free software, the users control the program, both individu-
ally and collectively. So they control what their computers do (assuming those
computers are loyal and do what the users’ programs tell them to do).

With proprietary software, the program controls the users, and some other
entity (the developer or “owner”) controls the program. So the proprietary
program gives its developer power over its users. That is unjust in itself, and
tempts the developer to mistreat the users in other ways.

Freedom means having control over your own life. If you use a program to
carry out activities in your life, your freedom depends on your having control
over the program. You deserve to have control over the programs you use, and
all the more so when you use them for something important in your life.

Users’ control over the program requires four essential freedoms.?

0. The freedom to run the program as you wish, for whatever purpose.

L See http://gnu.org/proprietary/proprietary.html for an evolving list of
these threats.
2 See p- 3 for the full definition of free software.

See http://gnu.org/help for ways to help the free software movement.

Copyright © 2015 Richard Stallman

A substantially edited version of this article was published on the Wired web
site as “Why Free Software Is More Important Now Than Ever Before” (Wired,
28 September 2013, http://wired.com/opinion/2013/09/why-free-software-
is-more-important-now-than-ever-before). This version of this essay is part
of Free Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed.
(Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 In-
ternational License (http://creativecommons.org/licenses/by-nd/4.0/).

http://gnu.org/proprietary/proprietary.html
http://gnu.org/help
Wired
http://wired.com/opinion/2013/09/why-free-software-unskip hfil penalty -@M hbox {}ignorespaces is-more-important-now-than-ever-before
http://wired.com/opinion/2013/09/why-free-software-unskip hfil penalty -@M hbox {}ignorespaces is-more-important-now-than-ever-before
http://creativecommons.org/licenses/by-nd/4.0/

Chapter 4: Free Software Is Even More Important Now 29

1. The freedom to study the program’s “source code,” and change it, so
the program does your computing as you wish. Programs are written
by programmers in a programming language—Ilike English combined with
algebra—and that form of the program is the “source code.” Anyone who
knows programming, and has the program in source code form, can read
the source code, understand its functioning, and change it too. When all
you get is the executable form, a series of numbers that are efficient for the
computer to run but extremely hard for a human being to understand, un-
derstanding and changing the program in that form are forbiddingly hard.

2. The freedom to make and distribute exact copies when you wish. (It is
not an obligation; doing this is your choice. If the program is free, that
doesn’t mean someone has an obligation to offer you a copy, or that you
have an obligation to offer him a copy. Distributing a program to users
without freedom mistreats them; however, choosing not to distribute the
program—using it privately—does not mistreat anyone.)

3. The freedom to make and distribute copies of your modified versions, when
you wish.

The first two freedoms mean each user can exercise individual control over
the program. With the other two freedoms, any group of users can together
exercise collective control over the program. With all four freedoms, the users
fully control the program. If any of them is missing or inadequate, the program
is proprietary (nonfree), and unjust.

Other kinds of works are also used for practical activities, including recipes
for cooking, educational works such as textbooks, reference works such as dic-
tionaries and encyclopedias, fonts for displaying paragraphs of text, circuit di-
agrams for hardware for people to build, and patterns for making useful (not
merely decorative) objects with a 3D printer. Since these are not software, the
free software movement strictly speaking doesn’t cover them; but the same rea-
soning applies and leads to the same conclusion: these works should carry the
four freedoms.

A free program allows you to tinker with it to make it do what you want (or
cease do to something you dislike). Tinkering with software may sound ridiculous
if you are accustomed to proprietary software as a sealed box, but in the Free
World it’s a common thing to do, and a good way to learn programming. Even
the traditional American pastime of tinkering with cars is obstructed because
cars now contain nonfree software.

30 Free Software, Free Society, 3rd ed.

The Injustice of Proprietariness

If the users don’t control the program, the program controls the users. With
proprietary software, there is always some entity, the developer or “owner” of
the program, that controls the program—and through it, exercises power over
its users. A nonfree program is a yoke, an instrument of unjust power.

In outrageous cases (though this outrage has become quite usual) proprietary
programs are designed to spy on the users, restrict them, censor them, and
abuse them.® For instance, the operating system of Apple iThings does all of
these, and so does Windows on mobile devices with ARM chips. Windows,
mobile phone firmware, and Google Chrome for Windows include a universal
back door that allows some company to change the program remotely without
asking permission. The Amazon Kindle has a back door that can erase books.

The use of nonfree software in the “internet of things” would turn it into the
“internet of telemarketers” as well as the “internet of snoopers.”

With the goal of ending the injustice of nonfree software, the free software
movement develops free programs so users can free themselves. We began in 1984
by developing the free operating system GNU. Today, millions of computers run
GNU, mainly in the GNU/Linux combination.®

Distributing a program to users without freedom mistreats those users; how-
ever, choosing not to distribute the program does not mistreat anyone. If you
write a program and use it privately, that does no wrong to others. (You do
miss an opportunity to do good, but that’s not the same as doing wrong.) Thus,
when we say all software must be free, we mean that every copy must come with
the four freedoms, but we don’t mean that someone has an obligation to offer
you a copy.

Nonfree Software and SaaSS

Nonfree software was the first way for companies to take control of people’s
computing. Nowadays, there is another way, called Service as a Software Substi-
tute, or SaaSS. That means letting someone else’s server do your own computing
tasks.

SaaSS doesn’t mean the programs on the server are nonfree (though they
often are). Rather, using SaaSS causes the same injustices as using a nonfree
program: they are two paths to the same bad place. Take the example of a
SaaSS translation service: The user sends text to the server, and the server
translates it (from English to Spanish, say) and sends the translation back to
the user. Now the job of translating is under the control of the server operator
rather than the user.

3 See footnote 1, on p. 28.

4 Marcelo Rinesi, “The Telemarketer Singularity,” 6 August 2015, http://ieet.
org/index.php/IEET/more/rinesi20150806.

5 See “The GNU Project” (p. 9), for more on the history of the GNU operating
system, and http://gnu.org/gnu/gnu-linux-faq.html, for the “GNU/Linux
FAQ.”

http://ieet.org/index.php/IEET/more/rinesi20150806
http://ieet.org/index.php/IEET/more/rinesi20150806
http://gnu.org/gnu/gnu-linux-faq.html

Chapter 4: Free Software Is Even More Important Now 31

If you use SaaSS, the server operator controls your computing. It requires
entrusting all the pertinent data to the server operator, which will be forced to
show it to the state as well-—who does that server really serve, after all?®

Primary and Secondary Injustices

When you use proprietary programs or SaaSS, first of all you do wrong to your-
self, because it gives some entity unjust power over you. For your own sake, you
should escape. It also wrongs others if you make a promise not to share. It is
evil to keep such a promise, and a lesser evil to break it; to be truly upright,
you should not make the promise at all.

There are cases where using nonfree software puts pressure directly on others
to do likewise. Skype is a clear example: when one person uses the nonfree Skype
client software, it requires another person to use that software too—thus both
surrender their freedom. (Google Hangouts have the same problem.) It is wrong
even to suggest using such programs. We should refuse to use them even briefly,
even on someone else’s computer.

Another harm of using nonfree programs and SaaSS is that it rewards the per-
petrator, encouraging further development of that program or “service,” leading
in turn to even more people falling under the company’s thumb.

All the forms of indirect harm are magnified when the user is a public entity
or a school.

Free Software and the State

Public agencies exist for the people, not for themselves. When they do comput-
ing, they do it for the people. They have a duty to maintain full control over
that computing so that they can assure it is done properly for the people. (This
constitutes the computational sovereignty of the state.) They must never allow
control over the state’s computing to fall into private hands.

To maintain control of the people’s computing, public agencies must not do
it with proprietary software (software under the control of an entity other than
the state). And they must not entrust it to a service programmed and run by
an entity other than the state, since this would be SaaSS.

Proprietary software has no security at all in one crucial case—against its
developer. And the developer may help others attack. Microsoft shows Win-
dows bugs to the NSA” (the US government digital spying agency) before fixing
them. We do not know whether Apple does likewise, but it is under the same
government pressure as Microsoft. If the government of any other country uses
such software, it endangers national security.® Do you want the NSA to break
into your government’s computers?

6 See “Who Does That Server Really Serve?” (p. 243) for more on this issue.

7 Sean Gallagher, “NSA Gets Early Access to Zero-Day Data from Microsoft, Oth-
ers,” 14 June 2013, http://arstechnica.com/security/2013/06/nsa-gets-
early-access-to-zero-day-data-from-microsoft-others/.

8 See “Measures Governments Can User to Promote Free Software” (p. 36) for our
suggested policies.

http://arstechnica.com/security/2013/06/nsa-gets-unskip hfil penalty -@M hbox {}ignorespaces early-access-to-zero-day-data-from-microsoft-others/
http://arstechnica.com/security/2013/06/nsa-gets-unskip hfil penalty -@M hbox {}ignorespaces early-access-to-zero-day-data-from-microsoft-others/

32 Free Software, Free Society, 3rd ed.

Free Software and Education

Schools (and this includes all educational activities) influence the future of soci-
ety through what they teach. They should teach exclusively free software, so as
to use their influence for the good. To teach a proprietary program is to implant
dependence, which goes against the mission of education. By training in use
of free software, schools will direct society’s future towards freedom, and help
talented programmers master the craft.

They will also teach students the habit of cooperating, helping other people.
Each class should have this rule: “Students, this class is a place where we share
our knowledge. If you bring software to class, you may not keep it for yourself.
Rather, you must share copies with the rest of the class—including the program’s
source code, in case someone else wants to learn. Therefore, bringing proprietary
software to class is not permitted except to reverse engineer it.”

Proprietary developers would have us punish students who are good enough
at heart to share software and thwart those curious enough to want to change
it. This means a bad education.”

Free Software: More Than “Advantages”

I'm often asked to describe the “advantages” of free software. But the word
“advantages” is too weak when it comes to freedom. Life without freedom is
oppression, and that applies to computing as well as every other activity in
our lives. We must refuse to give the developers of the programs or computing
services control over the computing we do. This is the right thing to do, for
selfish reasons; but not solely for selfish reasons.

Freedom includes the freedom to cooperate with others. Denying people that
freedom means keeping them divided, which is the start of a scheme to oppress
them. In the free software community, we are very much aware of the importance
of the freedom to cooperate because our work consists of organized cooperation.
If your friend comes to visit and sees you use a program, she might ask for a
copy. A program which stops you from redistributing it, or says you’re “not
supposed to,” is antisocial.

In computing, cooperation includes redistributing exact copies of a program
to other users. It also includes distributing your changed versions to them.
Free software encourages these forms of cooperation, while proprietary software
forbids them. It forbids redistribution of copies, and by denying users the source
code, it blocks them from making changes. SaaSS has the same effects: if your
computing is done over the web in someone else’s server, by someone else’s copy
of a program, you can’t see it or touch the software that does your computing,
so you can’t redistribute it or change it.

9 See http: //gnu.org/education for more discussion of the use of free software in
schools.

http://gnu.org/education

Chapter 4: Free Software Is Even More Important Now 33

Conclusion

We deserve to have control of our own computing; how can we win this control?
By rejecting nonfree software on the computers we own or regularly use, and
rejecting SaaSS. By developing free software!® (for those of us who are pro-
grammers). By refusing to develop or promote nonfree software or SaaSS. By
spreading these ideas to others.!!

We and thousands of users have done this since 1984, which is how we now
have the free GNU/Linux operating system that anyone—programmer or not—
can use. Join our cause, as a programmer or an activist. Let’s make all computer
users free.

10" See “How to Choose a License for Your Own Work” (p. 174) for our licensing
recommendations.
11 Qee http://gnu.org/help for the various ways you could help.

http://gnu.org/help

34 Free Software, Free Society, 3rd ed.

5 Why Schools Should Exclusively Use
Free Software

Educational activities (including schools) have a moral duty to teach only free
software.

All computer users ought to insist on free software: it gives users the freedom
to control their own computers—with proprietary software, the program does
what its owner or developer wants it to do, not what the user wants it to do. Free
software also gives users the freedom to cooperate with each other, to lead an
upright life. These reasons apply to schools as they do to everyone. However, the
purpose of this article is to present the additional reasons that apply specifically
to education.

Free software can save schools money, but this is a secondary benefit. Savings
are possible because free software gives schools, like other users, the freedom to
copy and redistribute the software; the school system can give a copy to every
school, and each school can install the program in all its computers, with no
obligation to pay for doing so.

This benefit is useful, but we firmly refuse to give it first place, because it
is shallow compared to the important ethical issues at stake. Moving schools
to free software is more than a way to make education a little “better”: it is a
matter of doing good education instead of bad education. So let’s consider the
deeper issues.

Schools have a social mission: to teach students to be citizens of a strong,
capable, independent, cooperating and free society. They should promote the
use of free software just as they promote conservation and voting. By teaching
students free software, they can graduate citizens ready to live in a free digital
society. This will help society as a whole escape from being dominated by
megacorporations.

In contrast, to teach a nonfree program is implanting dependence, which goes
counter to the schools’ social mission. Schools should never do this.

Why, after all, do some proprietary software developers offer gratis copies of
their nonfree programs to schools? Because they want to use the schools to im-
plant dependence on their products, like tobacco companies distributing gratis
cigarettes to school children.! They will not give gratis copies to these students

L' RJ Reynolds Tobacco Company was fined $15m in 2002 for handing out free
samples of cigarettes at events attended by children. See http://bbc.co.uk/
worldservice/sci_tech/features/health/tobaccotrial/usa.htm.

Copyright (© 2003, 2009, 2014 Richard Stallman

This essay was originally published on http://gnu.org, in 2003. This version is
part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed.
(Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 In-
ternational License (http://creativecommons.org/licenses/by-nd/4.0/).

http://bbc.co.uk/worldservice/sci_tech/features/health/tobaccotrial/usa.htm
http://bbc.co.uk/worldservice/sci_tech/features/health/tobaccotrial/usa.htm
http://gnu.org
http://creativecommons.org/licenses/by-nd/4.0/

Chapter 5: Why Schools Should Exclusively Use Free Software 35

once they’ve graduated, nor to the companies that they go to work for. Once
you’re dependent, you're expected to pay, and future upgrades may be expensive.

Free software permits students to learn how software works. Some students,
natural-born programmers, on reaching their teens yearn to learn everything
there is to know about their computer and its software. They are intensely
curious to read the source code of the programs that they use every day.

Proprietary software rejects their thirst for knowledge: it says, “The knowl-
edge you want is a secret—Ilearning is forbidden!” Proprietary software is the
enemy of the spirit of education, so it should not be tolerated in a school, except
as an object for reverse engineering.

Free software encourages everyone to learn. The free software community
rejects the “priesthood of technology,” which keeps the general public in igno-
rance of how technology works; we encourage students of any age and situation
to read the source code and learn as much as they want to know.

Schools that use free software will enable gifted programming students to
advance. How do natural-born programmers learn to be good programmers?
They need to read and understand real programs that people really use. You
learn to write good, clear code by reading lots of code and writing lots of code.
Only free software permits this.

How do you learn to write code for large programs? You do that by writing
lots of changes in existing large programs. Free Software lets you do this; pro-
prietary software forbids this. Any school can offer its students the chance to
master the craft of programming, but only if it is a free software school.

The deepest reason for using free software in schools is for moral education.
We expect schools to teach students basic facts and useful skills, but that is
only part of their job. The most fundamental task of schools is to teach good
citizenship, including the habit of helping others. In the area of computing, this
means teaching people to share software. Schools, starting from nursery school,
should tell their students, “If you bring software to school, you must share it with
the other students. You must show the source code to the class, in case someone
wants to learn. Therefore bringing nonfree software to class is not permitted,
unless it is for reverse-engineering work.”

Of course, the school must practice what it preaches: it should bring only
free software to class (except objects for reverse-engineering), and share copies
including source code with the students so they can copy it, take it home, and
redistribute it further.

Teaching the students to use free software, and to participate in the free
software community, is a hands-on civics lesson. It also teaches students the
role model of public service rather than that of tycoons. All levels of school
should use free software.

If you have a relationship with a school—if you are a student, a teacher, an
employee, an administrator, a donor, or a parent—it’s your responsibility to
campaign for the school to migrate to free software. If a private request doesn’t
achieve the goal, raise the issue publicly in those communities; that is the way
to make more people aware of the issue and find allies for the campaign.

36 Free Software, Free Society, 3rd ed.

6 Measures Governments Can Use to Promote
Free Software

This article suggests policies for a strong and firm effort to promote free software
within the state, and to lead the rest of the country towards software freedom.

The mission of the state is to organize society for the freedom and well-being
of the people. One aspect of this mission, in the computing field, is to encourage
users to adopt free software: software that respects the users’ freedom.! A
proprietary (nonfree) program tramples the freedom of those that use it; it is a
social problem that the state should work to eradicate.

The state needs to insist on free software in its own computing for the sake
of its computational sovereignty (the state’s control over its own computing).
All users deserve control over their computing, but the state has a responsibility
to the people to maintain control over the computing it does on their behalf.
Most government activities now depend on computing, and its control over those
activities depends on its control over that computing. Losing this control in an
agency whose mission is critical undermines national security.

Moving state agencies to free software can also provide secondary benefits,
such as saving money and encouraging local software-support businesses.

In this text, “state entities” refers to all levels of government, and means pub-
lic agencies including schools, public-private partnerships, largely state-funded
activities such as charter schools, and “private” corporations controlled by the
state or established with special privileges or functions by the state.

Education

The most important policy concerns education, since that shapes the future of
the country:

e Teach only free software
Educational activities, or at least those of state entities, must teach only free
software (thus, they should never lead students to use a nonfree program),
and should teach the civic reasons for insisting on free software. To teach
a nonfree program is to teach dependence, which is contrary to the mission
of the school.

1 See p. 3 for the full definition of free software.

Copyright © 2011-2014 Free Software Foundation, Inc.

This article was first published on http://gnu.org, in 2011. This version is
part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed.
(Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 In-
ternational License (http://creativecommons.org/licenses/by-nd/4.0/).

http://gnu.org
http://creativecommons.org/licenses/by-nd/4.0/

Chapter 6: Measures Governments Can Use to Promote Free Software 37

The State and the Public

Also crucial are state policies that influence what software individuals and or-
ganizations use:

Never require nonfree programs

Laws and public sector practices must be changed so that they never require
or pressure individuals or organizations to use a nonfree program. They
should also discourage communication and publication practices that imply
such consequences (including Digital Restrictions Management?).

Distribute only free software

Whenever a state entity distributes software to the public, including pro-
grams included in or specified by its web pages, it must be distributed as
free software, and must be capable of running on a platform containing
exclusively free software.

State web sites
State entity web sites and network services must be designed so that users
can use them, without disadvantage, by means of free software exclusively.

Free formats and protocols

State entities must use only file formats and communication protocols that
are well supported by free software, preferably with published specifications.
(We do not state this in terms of “standards” because it should apply to
nonstandardized interfaces as well as standardized ones.) For example,
they must not distribute audio or video recordings in formats that require
Flash or nonfree codecs, and public libraries must not distribute works with
Digital Restrictions Management.

Untie computers from licenses

Sale of computers must not require purchase of a proprietary software li-
cense. The seller should be required by law to offer the purchaser the option
of buying the computer without the proprietary software and without pay-
ing the license fee. The imposed payment is a secondary wrong, and should
not distract us from the essential injustice of proprietary software, the loss
of freedom which results from using it. Nonetheless, the abuse of forcing
users to pay for it gives certain proprietary software developers an addi-
tional unfair advantage, detrimental to users’ freedom. It is proper for the
state to prevent this abuse.

Computational Sovereignty

Several policies affect the computational sovereignty of the state. State entities
must maintain control over their computing, not cede control to private hands.
These points apply to all computers, including smartphones.

2

See both our anti-DRM campaigns page, at http://defectivebydesign.org/
what_is_drm, and p. 95 for more on this issue.

http://defectivebydesign.org/unskip hfil penalty -@M hbox {}ignorespaces what_is_drm
http://defectivebydesign.org/unskip hfil penalty -@M hbox {}ignorespaces what_is_drm

38 Free Software, Free Society, 3rd ed.

e Migrate to free software
State entities must migrate to free software, and must not install, or con-
tinue using, any nonfree software except under a temporary exception. Only
one agency should have the authority to grant these temporary exceptions,
and only when shown compelling reasons. This agency’s goal should be to
reduce the number of exceptions to zero.

e Develop free IT solutions
When a state entity pays for development of a computing solution, the con-
tract must require it be delivered as free software, and that it be designed
such that one can both run it and develop it on a 100-percent-free envi-
ronment. All contracts must require this, so that if the developer does not
comply with these requirements, the work cannot be paid for.

e Choose computers for free software
When a state entity buys or leases computers, it must choose among the
models that come closest, in their class, to being capable of running without
any proprietary software. The state should maintain, for each class of
computers, a list of the models authorized based on this criterion. Models
available to both the public and the state should be preferred to models
available only to the state.

e Negotiate with manufacturers
The state should negotiate actively with manufacturers to bring about the
availability in the market (to the state and the public) of suitable hard-
ware products, in all pertinent product areas, that require no proprietary
software.

e Unite with other states
The state should invite other states to negotiate collectively with manu-
facturers about suitable hardware products. Together they will have more
clout.

Computational Sovereignty IT

The computational sovereignty (and security) of the state includes control over
the computers that do the state’s work. This requires avoiding Service as a
Software Substitute,® unless the service is run by a state agency under the same
branch of government, as well as other practices that diminish the state control
over its computing. Therefore,

e State must control its computers

Every computer that the state uses must belong to or be leased by the
same branch of government that uses it, and that branch must not cede to
outsiders the right to decide who has physical access to the computer, who
can do maintenance (hardware or software) on it, or what software should
be installed in it. If the computer is not portable, then while in use it must
be in a physical space of which the state is the occupant (either as owner
or as tenant).

3 See “Who Does That Server Really Serve?” (p. 243) for more on SaaSS.

Chapter 6: Measures Governments Can Use to Promote Free Software 39

Influence Development

State policy affects free and nonfree software development:

e Encourage free
The state should encourage developers to create or enhance free software
and make it available to the public, e.g. by tax breaks and other financial
incentive. Contrariwise, no such incentives should be granted for develop-
ment, distribution or use of nonfree software.

e Don’t encourage nonfree
In particular, proprietary software developers should not be able to “do-
nate” copies to schools and claim a tax write-off for the nominal value of
the software. Proprietary software is not legitimate in a school.

E-Waste

Freedom should not imply e-waste:

e Replaceable software
Many modern computers are designed to make it impossible to replace their
preloaded software with free software. Thus, the only way to free them is
to junk them. This practice is harmful to society.

Therefore, it should be illegal, or at least substantially discouraged through
heavy taxation, to sell, import or distribute in quantity a new computer
(that is, not second-hand) or computer-based product for which secrecy
about hardware interfaces or intentional restrictions prevent users from de-
veloping, installing and using replacements for any and all of the installed
software that the manufacturer could upgrade. This would apply, in partic-
ular, to any device on which “jailbreaking” is needed to install a different
operating system, or in which the interfaces for some peripherals are secret.

Technological Neutrality

With the measures in this article, the state can recover control over its com-
puting, and lead the country’s citizens, businesses and organizations towards
control over their computing. However, some object on the grounds that this
would violate the “principle” of technological neutrality.

The idea of technological neutrality is that the state should not impose ar-
bitrary preferences on technical choices. Whether that is a valid principle is
disputable, but it is limited in any case to issues that are merely technical. The
measures advocated here address issues of ethical, social and political impor-
tance, so they are outside the scope of technological neutrality.* Only those who
wish to subjugate a country would suggest that its government be “neutral”
about its sovereignty or its citizens’ freedom.

4 See my article “Technological Neutrality and Free Software,” at http://www.
gnu.org/philosophy/technological-neutrality.html, for more on this issue.

http://www.unskip hfil penalty -@M hbox {}ignorespaces gnu.org/philosophy/technological-neutrality.html
http://www.unskip hfil penalty -@M hbox {}ignorespaces gnu.org/philosophy/technological-neutrality.html

40 Free Software, Free Society, 3rd ed.

7 Why Free Software Needs
Free Documentation

The biggest deficiency in free operating systems is not in the software—it is the
lack of good free manuals that we can include in these systems. Many of our
most important programs do not come with full manuals. Documentation is an
essential part of any software package; when an important free software package
does not come with a free manual, that is a major gap. We have many such
gaps today.

Once upon a time, many years ago, I thought I would learn Perl. I got a copy
of a free manual, but I found it hard to read. When I asked Perl users about
alternatives, they told me that there were better introductory manuals—but
those were not free.

Why was this? The authors of the good manuals had written them for
O’Reilly Associates, which published them with restrictive terms—no copying,
no modification, source files not available—which exclude them from the free
software community.

That wasn’t the first time this sort of thing has happened, and (to our
community’s great loss) it was far from the last. Proprietary manual publishers
have enticed a great many authors to restrict their manuals since then. Many
times I have heard a GNU user eagerly tell me about a manual that he is writing,
with which he expects to help the GNU Project—and then had my hopes dashed,
as he proceeded to explain that he had signed a contract with a publisher that
would restrict it so that we cannot use it.

Given that writing good English is a rare skill among programmers, we can
ill afford to lose manuals this way.

Free documentation, like free software, is a matter of freedom, not price. The
problem with these manuals was not that O’Reilly Associates charged a price for
printed copies—that in itself is fine. (The Free Software Foundation sells printed
copies of free GNU manuals, too.!) But GNU manuals are available in source
code form, while these manuals are available only on paper. GNU manuals come
with permission to copy and modify; the Perl manuals do not. These restrictions
are the problems.

The criterion for a free manual is pretty much the same as for free software:
it is a matter of giving all users certain freedoms. Redistribution (including com-
mercial redistribution) must be permitted, so that the manual can accompany

1 See http://shop.fsf.org/category/books/ and
http://gnu.org/doc/doc.html.

Copyright © 19962007, 2009 Free Software Foundation, Inc.

This essay was originally published on http://gnu.org, in 1996. This version is
part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed.
(Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 In-
ternational License (http://creativecommons.org/licenses/by-nd/4.0/).

http://shop.fsf.org/category/books/
http://gnu.org/doc/doc.html
http://gnu.org
http://creativecommons.org/licenses/by-nd/4.0/

Chapter 7: Why Free Software Needs Free Documentation 41

every copy of the program, on line or on paper. Permission for modification is
crucial too.

As a general rule, I don’t believe that it is essential for people to have per-
mission to modify all sorts of articles and books. The issues for writings are not
necessarily the same as those for software. For example, I don’t think you or
I are obliged to give permission to modify articles like this one, which describe
our actions and our views.

But there is a particular reason why the freedom to modify is crucial for
documentation for free software. When people exercise their right to modify
the software, and add or change its features, if they are conscientious they will
change the manual too—so they can provide accurate and usable documenta-
tion with the modified program. A manual which forbids programmers from
being conscientious and finishing the job, or more precisely requires them to
write a new manual from scratch if they change the program, does not fill our
community’s needs.

While a blanket prohibition on modification is unacceptable, some kinds of
limits on the method of modification pose no problem. For example, require-
ments to preserve the original author’s copyright notice, the distribution terms,
or the list of authors, are OK. It is also no problem to require modified ver-
sions to include notice that they were modified, even to have entire sections that
may not be deleted or changed, as long as these sections deal with nontechnical
topics. (Some GNU manuals have them.)

These kinds of restrictions are not a problem because, as a practical matter,
they don’t stop the conscientious programmer from adapting the manual to
fit the modified program. In other words, they don’t block the free software
community from making full use of the manual.

However, it must be possible to modify all the technical content of the man-
ual, and then distribute the result through all the usual media, through all the
usual channels; otherwise, the restrictions do block the community, the manual
is not free, and so we need another manual.

Unfortunately, it is often hard to find someone to write another manual
when a proprietary manual exists. The obstacle is that many users think that a
proprietary manual is good enough—so they don’t see the need to write a free
manual. They do not see that the free operating system has a gap that needs
filling.

Why do users think that proprietary manuals are good enough? Some have
not considered the issue. I hope this article will do something to change that.

Other users consider proprietary manuals acceptable for the same reason
so many people consider proprietary software acceptable: they judge in purely
practical terms, not using freedom as a criterion. These people are entitled to
their opinions, but since those opinions spring from values which do not include
freedom, they are no guide for those of us who do value freedom.

Please spread the word about this issue. We continue to lose manuals to
proprietary publishing. If we spread the word that proprietary manuals are
not sufficient, perhaps the next person who wants to help GNU by writing

42 Free Software, Free Society, 3rd ed.

documentation will realize, before it is too late, that he must above all make it
free.

We can also encourage commercial publishers to sell free, copylefted manuals
instead of proprietary ones.? One way you can help this is to check the distri-
bution terms of a manual before you buy it, and prefer copylefted manuals to
noncopylefted ones.

2 See http: //gnu.org/doc/other-free-books.html for a list of free books avail-
able from other publishers.

http://gnu.org/doc/other-free-books.html

Chapter 8: Selling Free Software 43

8 Selling Free Software

Many people believe that the spirit of the GNU Project is that you should not
charge money for distributing copies of software, or that you should charge as
little as possible—just enough to cover the cost. This is a misunderstanding.

Actually, we encourage people who redistribute free software! to charge as
much as they wish or can. If a license does not permit users to make copies and
sell them, it is a nonfree license. If this seems surprising to you, please read on.

The word “free” has two legitimate general meanings; it can refer either to
freedom or to price. When we speak of “free software”, we're talking about free-
dom, not price. (Think of “free speech”, not “free beer”.) Specifically, it means
that a user is free to run the program, change the program, and redistribute the
program with or without changes.

Free programs are sometimes distributed gratis, and sometimes for a sub-
stantial price. Often the same program is available in both ways from different
places. The program is free regardless of the price, because users have freedom
in using it.

Nonfree programs® are usually sold for a high price, but sometimes a store
will give you a copy at no charge. That doesn’t make it free software, though.
Price or no price, the program is nonfree because its users are denied freedom.

Since free software is not a matter of price, a low price doesn’t make the
software free, or even closer to free. So if you are redistributing copies of free
software, you might as well charge a substantial fee and make some money.
Redistributing free software is a good and legitimate activity; if you do it, you
might as well make a profit from it.

Free software is a community project, and everyone who depends on it ought
to look for ways to contribute to building the community. For a distributor, the
way to do this is to give a part of the profit to free software development projects
or to the Free Software Foundation. This way you can advance the world of free
software.

Distributing free software is an opportunity to raise funds for development.
Don’t waste it!

In order to contribute funds, you need to have some extra. If you charge too
low a fee, you won’t have anything to spare to support development.

2

1 See p. 3 for the full definition of free software.
Also known as “proprietary software.” See p. 73 for more on this category of
software.

For some views on the ideas of selling exceptions to free software licenses, such as the
GNU GPL, see p. 219.

Copyright © 1996-1998, 2001, 2007, 2015 Free Software Foundation, Inc.

This essay was originally published on http://gnu.org, in 1996. This version is
part of Free Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed.
(Boston: GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 In-
ternational License (http://creativecommons.org/licenses/by-nd/4.0/).

http://gnu.org
http://creativecommons.org/licenses/by-nd/4.0/

44 Free Software, Free Society, 3rd ed.

Will a Higher Distribution Price Hurt Some Users?

People sometimes worry that a high distribution fee will put free software out
of range for users who don’t have a lot of money. With proprietary software, a
high price does exactly that—but free software is different.

The difference is that free software naturally tends to spread around, and
there are many ways to get it.

Software hoarders try their damnedest to stop you from running a proprietary
program without paying the standard price. If this price is high, that does make
it hard for some users to use the program.

With free software, users don’t have to pay the distribution fee in order to use
the software. They can copy the program from a friend who has a copy, or with
the help of a friend who has network access. Or several users can join together,
split the price of one CD-ROM, then each in turn can install the software. A
high CD-ROM price is not a major obstacle when the software is free.

Will a Higher Distribution Price Discourage Use of Free Software?

Another common concern is for the popularity of free software. People think
that a high price for distribution would reduce the number of users, or that a
low price is likely to encourage users.

This is true for proprietary software—but free software is different. With
so many ways to get copies, the price of distribution service has less effect on
popularity.

In the long run, how many people use free software is determined mainly by
how much free software can do, and how easy it is to use. Many users do not
make freedom their priority; they may continue to use proprietary software if free
software can’t do all the jobs they want done. Thus, if we want to increase the
number of users in the long run, we should above all develop more free software.

The most direct way to do this is by writing needed free software® or manuals*
yourself. But if you do distribution rather than writing, the best way you can
help is by raising funds for others to write them.

The Term “Selling Software” Can Be Confusing Too

Strictly speaking, “selling” means trading goods for money. Selling a copy of a
free program is legitimate, and we encourage it.

However, when people think of “selling software,”® they usually imagine
doing it the way most companies do it: making the software proprietary rather
than free.

So unless you're going to draw distinctions carefully, the way this article does,
we suggest it is better to avoid using the term “selling software” and choose some
other wording instead. For example, you could say “distributing free software
for a fee”—that is unambiguous.

3 See the Savannah Task List, at http://savannah.gnu.org/projects/tasklist.
4 See nttp: //gnu.org/doc/doc.html.
5 See p. 101 for more on how the expression “sell software” is ambiguous.

http://savannah.gnu.org/projects/tasklist
http://gnu.org/doc/doc.html

Chapter 8: Selling Free Software 45

High or Low Fees, and the GNU GPL

Except for one special situation, the GNU General Public License (GNU GPL)
has no requirements about how much you can charge for distributing a copy of
free software. You can charge nothing, a penny, a dollar, or a billion dollars.
It’s up to you, and the marketplace, so don’t complain to us if nobody wants to
pay a billion dollars for a copy.

The one exception is in the case where binaries are distributed without the
corresponding complete source code. Those who do this are required by the
GNU GPL to provide source code on subsequent request. Without a limit on
the fee® for the source code, they would be able set a fee too large for anyone to
pay—such as a billion dollars—and thus pretend to release source code while in
truth concealing it. So in this case we have to limit the fee for source in order
to ensure the user’s freedom. In ordinary situations, however, there is no such
justification for limiting distribution fees, so we do not limit them.

Sometimes companies whose activities cross the line stated in the GNU GPL
plead for permission, saying that they “won’t charge money for the GNU soft-
ware” or such like. That won’t get them anywhere with us. Free software is
about freedom, and enforcing the GPL is defending freedom. When we defend
users’ freedom, we are not distracted by side issues such as how much of a distri-
bution fee is charged. Freedom is the issue, the whole issue, and the only issue.

6 See section 6 of the GNU GPL (p. 195).

46 Free Software, Free Society, 3rd ed.

9 Free Hardware and Free Hardware Designs

To what extent do the ideas of free software extend to hardware? Is it a
moral obligation to make our hardware designs free, just as it is to make
our software free? Does maintaining our freedom require rejecting hardware
made from nonfree designs?

Definitions

Free software is a matter of freedom, not price; broadly speaking, it means that
users are free to use the software and to copy and redistribute the software, with
or without changes. More precisely, the definition is formulated in terms of the
four essential freedoms.! To emphasize that “free” refers to freedom, not price,
we often use the French or Spanish word “libre” along with “free.”

Applying the same concept directly to hardware, free hardware means hard-
ware that users are free to use and to copy and redistribute with or without
changes. However, there are no copiers for hardware, aside from keys, DNA,
and plastic objects’ exterior shapes. Most hardware is made by fabrication from
some sort of design. The design comes before the hardware.

Thus, the concept we really need is that of a free hardware design. That’s
simple: it means a design that permits users to use the design (i.e., fabricate
hardware from it) and to copy and redistribute it, with or without changes. The
design must provide the same four freedoms that define free software.

Then we can refer to hardware made from a free design as “free hardware,”
or “free-design hardware” to avoid possible misunderstanding.

People first encountering the idea of free software often think it means you
can get a copy gratis. Many free programs are available for zero price, since it
costs you nothing to download your own copy, but that’s not what “free” means
here. (In fact, some spyware programs such as Flash Player and Angry Birds
are gratis although they are not free.) Saying “libre” along with “free” helps
clarify the point.?

1 See p- 3 for the list of the four freedoms.
For a growing list of the ways in which surveillance has spread across industries,
see http://gnu.org/philosophy/proprietary/proprietary-surveillance.
html.

Copyright (© 2015 Richard Stallman

Most of this article was published in two parts on the Wired web site, as “Why
We Need Free Digital Hardware Designs” (Wired, 11 March 2015, http://wired.
com/2015/03/need-free-digital-hardware-designs) and “Hardware Designs
Should Be Free. Here’s How to Do It.” (Wired, 18 March 2015, http://wired.com/
2015/03/richard-stallman-how-to-make-hardware-designs-free).

It was published on http://gnu.org in 2015. This version is part of Free
Software, Free Society: Selected Essays of Richard M. Stallman, 3rd ed. (Boston:
GNU Press, 2015).

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 In-
ternational License (http://creativecommons.org/licenses/by-nd/4.0/).

http://gnu.org/philosophy/proprietary/proprietary-surveillance.html
http://gnu.org/philosophy/proprietary/proprietary-surveillance.html
Wired
http://wired.com/2015/03/need-free-digital-hardware-designs
http://wired.com/2015/03/need-free-digital-hardware-designs
http://wired.com/2015/03/richard-stallman-how-to-make-hardware-designs-free
http://wired.com/2015/03/richard-stallman-how-to-make-hardware-designs-free
http://gnu.org
http://creativecommons.org/licenses/by-nd/4.0/

Chapter 9: Free Hardware and Free Hardware Designs 47

For hardware, this confusion tends to go in the other direction; hardware
costs money to produce, so commercially made hardware won’t be gratis (unless
it is a loss-leader or a tie-in), but that does not prevent its design from being
free/libre. Things you make in your own 3D printer can be quite cheap, but
not exactly gratis since you will have to pay for the raw materials. In ethical
terms, the freedom issue trumps the price issue totally, since a device that denies
freedom to its users is worth less than nothing.

The terms “open hardware” and “open source hardware” are used by some
with the same concrete meaning as “free hardware,” but those terms downplay
freedom as an issue. They were derived from the term “open source software,”
which refers more or less to free software but without talking about freedom or
presenting the issue as a matter of right or wrong.? To underline the importance
of freedom, we make a point of referring to freedom whenever it is pertinent;
since “open” fails to do that, let’s not substitute it for “free.”

Hardware and Software

Hardware and software are fundamentally different. A program, even in com-
piled executable form, is a collection of data which can be interpreted as in-
struction for a computer. Like any other digital work, it can be copied and
changed using a computer. A copy of a program has no inherent physical form
or embodiment.

By contrast, hardware is a physical structure and its physicality is crucial.
While the hardware’s design might be represented as data, in some cases even
as a program, the design is not the hardware. A design for a CPU can’t execute
a program. You won’t get very far trying to type on a design for a keyboard or
display pixels on a design for a screen.

Furthermore, while you can use a computer to modify or copy the hard-
ware design, a computer can’t convert the design into the physical structure it
describes. That requires fabrication equipment.

The Boundary between Hardware and Software

What is the boundary, in digital devices, between hardware and software? It
follows from the definitions. Software is the operational part of a device that
can be copied and changed in a computer; hardware is the operational part that
can’t be. This is the right way to make the distinction because it relates to the
practical consequences.

There is a gray area between hardware and software that contains firmware
that can be upgraded or replaced, but is not meant ever to be upgraded or
replaced once the product is sold. In conceptual terms, the gray area is rather
narrow. In practice, it is important because many products fall in it. We can
treat that firmware as hardware with a small stretch.

3 See “Why Open Source Misses the Point of Free Software” (p. 75) for more on
this issue.

48 Free Software, Free Society, 3rd ed.

Some have said that preinstalled firmware programs and Field-Programmable
Gate Array chips (FPGAs) “blur the boundary between hardware and software,”
but I think that is a misinterpretation of the facts. Firmware that is installed
during use is software; firmware that is delivered inside the device and can’t be
changed is software by nature, but we can treat it as if it were a circuit. As for
FPGAs, the FPGA itself is hardware, but the gate pattern that is loaded into
the FPGA is a kind of firmware.

Running free gate patterns on FPGAs could potentially be a useful method
for making digital devices that are free at the circuit level. However, to make
FPGASs usable in the free world, we need free development tools for them. The
obstacle is that the format of the gate pattern file that gets loaded into the
FPGA is secret. For many years there was no model of FPGA for which those
files could be produced without nonfree (proprietary) tools.

As of 2015, free software tools are available for programming the Lattice
iCE40,* a common model of FPGA, from input written in a hardware description
language (HDL). It is also possible to compile C programs and run them on the
Xilinx Spartan 6 LX9 FPGA with free tools,” but those do not support HDL
input. We recommend that you reject other FPGA models until they too are
supported by free tools.

As for the HDL code itself, it can act as software (when it is run on an
emulator or loaded into an FPGA) or as a hardware design (when it is realized
in immutable silicon or a circuit board).

The Ethical Question for 3D Printers

Ethically, software must be free;® a nonfree program is an injustice. Should we
take the same view for hardware designs?

We certainly should, in the fields that 3D printing (or, more generally, any
sort of personal fabrication) can handle. Printer patterns to make a useful,
practical object (i.e., functional rather than decorative) must be free because
they are works made for practical use. Users deserve control over these works,
just as they deserve control over the software they use. Distributing a nonfree
functional object design is as wrong as distributing a nonfree program.

Be careful to choose 3D printers that work with exclusively free software; the
Free Software Foundation endorses such printers.” Some 3D printers are made
from free hardware designs, but MakerBot’s hardware designs are nonfree.®

See http://clifford.at/icestorm/.

See https://github.com/Wolfgang-Spraul/fpgatools.

See “Free Software Is Even More Important Now” (p. 28).

See http://fsf.org/resources/hw/endorsement.

Rich Brown, “Pulling Back from Open Source Hardware, MakerBot Angers Some
Adherents,” 27 September 2012, http://cnet.com/news/pulling-back-from-
open-source-hardware-makerbot-angers-some-adherents/.

[N TN BN

http://clifford.at/icestorm/
https://github.com/Wolfgang-Spraul/fpgatools
http://fsf.org/resources/hw/endorsement
http://cnet.com/news/pulling-back-from-unskip hfil penalty -@M hbox {}ignorespaces open-source-hardware-makerbot-angers-some-adherents/
http://cnet.com/news/pulling-back-from-unskip hfil penalty -@M hbox {}ignorespaces open-source-hardware-makerbot-angers-some-adherents/

Chapter 9: Free Hardware and Free Hardware Designs 49

Must We Reject Nonfree Digital Hardware?

Is a nonfree digital® hardware design an injustice? Must we, for our freedom’s
sake, reject all digital hardware made from nonfree designs, as we must reject
nonfree software?

Due to the conceptual parallel between hardware designs and software source
code, many hardware hackers are quick to condemn nonfree hardware designs
just like nonfree software. I disagree because the circumstances for hardware
and software are different.

Present-day chip and board fabrication technology resembles the printing
press: it lends itself to mass production in a factory. It is more like copying
books in 1950 than like copying software today.

Freedom to copy and change software is an ethical imperative because those
activities are feasible for those who use software: the equipment that enables
you to use the software (a computer) is also sufficient to copy and change it.
Today’s mobile computers are too weak to be good for this, but anyone can find
a computer that’s powerful enough.

Moreover, a computer suffices to download and run a version changed by
someone else who knows how, even if you are not a programmer. Indeed, non-
programmers download software and run it every day. This is why free software
makes a real difference to nonprogrammers.

How much of this applies to hardware? Not everyone who can use digital
hardware knows how to change a circuit design, or a chip design, but anyone
who has a PC has the equipment needed to do so. Thus far, hardware is parallel
to software, but next comes the big difference.

You can’t build and run a circuit design or a chip design in your computer.
Constructing a big circuit is a lot of painstaking work, and that’s once you
have the circuit board. Fabricating a chip is not feasible for individuals today;
only mass production can make them cheap enough. With today’s hardware
technology, users can’t download and run John H Hacker’s modified version of a
digital hardware design, as they could run John S Hacker’s modified version of a
program. Thus, the four freedoms don’t give users today collective control over
a hardware design as they give users collective control over a program. That’s
where the reasoning showing that all software must be free fails to apply to
today’s hardware technology.

In 1983 there was no free operating system, but it was clear that if we had
one, we could immediately use it and get software freedom. All that was mis