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Abstract

Object recognition using the OpenCV Haar
cascade-classifier on the iOS platform

Staffan Reinius

Augmented reality (AR), the compiling of layered computer-generated
information to real-time stream data, has recently become a buzzword in the
mobile application communities, as real-time vision computing has become
more and more feasible. Hardware advances have allowed numerous such
utility and game applications to be deployed to mobile devices. This report
presents a high-level implementation of live object recognition of automobile
interiors, using Open Source Computer Vision Library (OpenCV) on the iOS
platform. Two mobile devices where used for image processing: an iPhone
3GS and an iPhone 4. A handful of key-feature matching technics and one
supervised learning classification approach were considered for this
implementation. Speeded Up Robust Features (SURF) detection (a key-feature
matching technique) and Haar classification (supervised learning approach)
were implemented, and Haar classification was used in the final AR prototype.
Although the object classifiers are not yet to satisfaction in terms of accuracy,
a problem that could be overcome by more extensive training, the
implementation performs sufficiently in terms of speed for the purpose of this
AR prototype.
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1 Abbreviations
e AR Augmented Reality
e FLANN  Fast Library for Approximate Nearest Neighbors
e FREAK  Fast Retina Keypoint (keypoint descriptor)
e GENIVI  Geneva In-Vehicle Infotainment Alliance
e IVI  In-Vehicle Infotainment
e OpenCV  Source Computer Vision Library
e ORB  oriented BRIEF (keypoint detector and descriptor extractor)
e QR Code  Quick Response Code
e SURF  Speeded Up Robust Features



2 Introduction

In-Vehicle Infotainment (IVI) systems is an expanding field in the automobile
industry. Cars from the BMW Group released in ECE/US have the feature of
letting the user connect a mobile device to the head unit of the car, interweaving
the mobile device with the vehicle. The BMW IVI system is soon to be released to
the Chinese market (summer 2012), supporting widely used Chinese mobile device
applications. Such mobile-to-car interweaving allows on the one hand the user
to interact with their mobile phone through the larger display of the IVI system,
accessing telephony, internet services, news, music, navigation, etc. and on the
other hand allows the mobile to access virtually any data from the car head unit
and system busses. This allows for infotainment applications in the other direc-
tion, providing information such as driving statistics, indicators, mileage and so
on. The development of the BMW IVI system is conducted under a Linux-based
open-source development platform delivered by the Geneva In-Vehicle Infotain-
ment (GENIVI) Alliance. [1]

A number of automobile manufacturers, including the BMW Group, MG,
Hyundai, Jaguar, Land Rover, Nissan, PSA Peugeot Citroen, Renault, SAIC Mo-
tor, use this Linux-based core service and middleware platform as an underlying
framework. [2]

The aim of this project was to develop an object recognition module to an
iPhone AR prototype application for the BMW Connected Drive Lab, located in
Shanghai China. The ambition was to implement this prototype so that it could be
used as a basis for an interactive diagnostics tool, handbook or similar, allowing
further information about the identified objects and graphics to be layered on
screen. The application, on prototype level, is a stand-alone tool not dependent
on connection or communication with the existing IVI-system. Future versions of
this application could be integrated with the IVI system and present diagnostic
data on the mobile device. Such an AR module could be useful in a number of
tools accompanying a car, e g. using the mobile device as a diagnostic tool (to
check oil, washer fluid, tire pressure etc.), as an interactive car handbook or as a
remote control towards the IVI system.

The project was divided into two parts, the first focused on object recognition
and the second focused on the user interface interaction and graphical overlay onto
the camera-provided images. The first part is presented in the current bachelor
thesis, and the second part is covered by the bachelor thesis of Gabriel Tholsgard
[3], with whom collaboration have been extensive. The current report describes
the work of implementing image processing and applying object recognition to
parts on the car dashboard provided in a video stream, and choosing an efficient
approach that takes the relevant invariance properties in to account.



Figure 1: These objects were chosen for object recognition and represents four
buttons for climate control on the car dashboard.

2.1 Objectives

The goal of this project was to build an AR application for an iOS mobile device,
using its built-in camera and project an OpenGL animation interface as an overlay
on the detected objects, more specifically:

I To construct a prototype module able to recognize four objects (fig. 1) on the
car dashboard using OpenCV on the iOS platform.

IT To present an augmented reality OpenGL animation overlay on the camera
image representing the detected object (approached in [3]). Those OpenGL
animations should also be allowed to interact with, they should work as but-
tons.

III To combine the implementation of the two previous goals, achieving a gener-
alized AR prototype.

2.2 Limitations

Within the scope of this thesis project it was not intended to construct a finished
application (ready for the market). The finished project is a prototype for object
recognition and displays animations as an overlay on the camera image. The
object recognition task was limited to identify four buttons on the cars climate
panel (fig. 1). This prototype is not integrated with the Linux-based core service
or middleware, but where intended to be a stand-alone iOS application, partly



because there are no wireless sensors between the car head unit and the phone
today, but more importantly to limit the work to fit the time frame of the project.



3 Background

3.1 Augmented Reality

AR is the idea of adding computer-generated data (e g. graphics, sound, GPS) to
real-time data; in contrast to Virtual reality where the real world is substituted
by a simulated. With object recognition such AR application, called vision based,
can become interactive by adding on a user interface to some detected objects
on the camera image. Another common way of knowing what to display is the
location-based approach, often using GPS [4].

In a early stage of this project the location-based approach was also consid-
ered, more precisely the possibility to get the local coordinates of the telephone
in respect to the cars head unit, and combine this info with the tilt of the phone
(accelerometer) and construct a 3D map of coordinates, tilt and corresponding
objects. Such a system would perform really well in terms of computational com-
plexity (constant), but would be exhausting to construct, and each car model
would need its own coordinate map. As earlier mentioned there is no wireless
communication between the phone and the head unit, and even if there would be,
the issue of getting the exact local 3D coordinates might be hard to solve, it would
probably require multiple positioning sensors.

The vision based approach was chosen, and the various aspects of AR is more
thoroughly described in [3]. It was specified that this iOS AR application was to
be made without using markers or AR-tags, but instead use object recognition
methods more commonly used in other areas — in augmented reality terms called
natural feature tracking [4].

3.1.1 Augmented Reality applications in cars

AR seems to be more and more explored in many areas: interactive commercial
apps (QR-tags), game set in the real world, GPS-based AR applications highlight-
ing landmarks and such, to mention a few. Within the auto industry ideas has been
proposed on combining data from outside sensors with projections of AR on the
windshield, highlighting traffic signs, pedestrians and other traffic hazards, or to
use the back seats windows as computer screens highlighting landmarks and enable
interaction. From the driving seat it would obviously not be safe to interact with
a touch screen windshield, it could instead be a user scenario for passengers, and
the same applies to interaction with a handheld device to control the infotainment
system. The issue is mainly how to project large images on a windshield.

BMW makes use of AR today by providing a smaller Head-Up-Display in the
front window (projected for the driver) with some essential information such as
speed and navigation information, which is an interesting feature mainly in terms
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of safety by keeping the driver’s eyes on the road.

Even though these AR application scenarios are interesting, they do not directly
touch the work of this thesis, which instead implies a scenario where the car
is parked or where it is the passengers using the application. During the work
process of this thesis, three scenarios for how this prototype could be used have
been discussed: that it might be incorporated in a diagnostic tool, a car handbook
or a remote-control-application.

The maybe most obvious application would be to use a handheld device as a
remote control, since such devices adds wireless communication to the interaction
with the car. A remote control could be useful from the back seat, and here AR
could be used. A diagnostic tool could preferably also be developed implementing
a traditional Ul, and such a feature is already implemented in the existing IVI-
system. AR may not be interesting primarily for its practical use here, but it might
add a feeling of “real” interaction which could be desirable in an application used
for showing features of the car from outside, or for car game applications.

Today the interaction with BMW infotainment system is done through a joy-
stick or via the steering wheel and it is also possible to interact with the [VI-system
via the telephone device connected by USB cable.

3.2  Object recognition

One of the main fields within image analysis is that of recognizing objects, and
there are a variety of such techniques coming from the field of computer vision
and machine learning, which are two fields that often seems to go hand in hand,
decision trees, cascade classifiers etc. can be trained based on features (distinct
subregions in the image) and so forth. The following paragraphs are aimed to
be a very brief introduction to two approaches: feature-based keypoint extraction
techniques and one supervised learning approach based on rejection cascades.

3.2.1 Local invariant feature detectors

An often used group of object recognition methods are the local feature-based
[5]. They are built on the notion of trying to limit the set of data for processing
and also provide invariance to different transformations. Instead of considering
global features, the local feature detection approach finds anchor points in the
image whose local region are defined by some differences in intensity or texture.
These intensity or texture changes are found by running a kernel over the target
image; a kernel is a region of pixel computations computing the amount of gradient
change (the derivative) within this region. These features or interest points can,
depending on the detector, be corners, blobs, T-junctions etc., and these should
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in the ideal case be identifiable after the image has transformed in different ways.
[5]

Let’s look at the Harris corner detector as an example. Intuitively a perpen-
dicular corner would be found when the horizontal and vertical gradients (within
a sub-window of pixels) sums up to a large value, since in that case there is con-
trast in both horizontal and vertical directions — but a rotation of the image would
hide this feature if the measurement was done perpendicular. The Harris Corner
detector (in this example) compensate for such a rotation by applying eigenvalue
decomposition to the second moment matrix:

[ P@ L
M [fxfm) Ij(w)]

I, and I, are the respective sum of pixel intensity change in the x and y
direction at point z. If M has two large eigenvalues it is centered a round a corner.
[5]

In contrast to many typical Template-based methods, local feature-based can
exhibit many types invariance, even to partial occlusion [5].

Object recognition techniques are often applied on gradient images for several
reasons: gray scale images are generally more robust to variation in illumination,
and matrixes of singular brightness values are more efficient in terms of memory
consumption and less demanding in terms of processing speed [5].

After extracting local features from two imaged, those set of feature are com-
pared to find out what feature in one image correspond to feature in the other,
and if a threshold (number of features) is exceeded a match is found. [5]

3.2.2 Speeded Up Robust Features

The first choice of recognition method was SURF [6] — a scale-invariant feature-
based technique. It is an approach designed for efficiency that at the same time
have a high level of invariance to the transformations and conditions expected in
the setting given [5].

SURF uses box-type filters using integral images to approximate the second-
order Gaussian derivatives of the Hessian-matrix [5]. That is, SURF exploits the
same principle of looking for two eigenvalues with the same sign (as described
above for the Harris Corner detector), only it is based on approximations for each
entry of the Hessian matrix using one of three filters, fig. 2(proposed in [6]) :
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If we let D,,, D,, and D,, be approximations for L,,, L, and L,, respectively,
the determinant of the Hessian matrix can be approximated as

det(Happroz) = DuzDyy — (0.6 Dyy)? (2)

for a Gaussian with 0 = 1.2 (finest scale) and a filter (fig. 2) of 9 x 9 pixels. Here,
0.6 represent a balancing of the relative weights with scale, computed as:

| Ly (1.2) | p| Doy (9) | 7
| Ly (1:2) [ 7| Doy (9) | 2

Were |z|pis the Frobenius norm.

For scale invariance these filers are applied to different scales over the image.
The processing time over different scales over some point is size invariant due to
the use of integral images [7]. To get rotation invariance each interest point is
given an orientation vector and this vector is the maximum of response (gradient
change computed with Haar wavelets) around the point. When the extraction of
the descriptor is done some matching technique is applied to find correspondence
between the descriptors (feature vectors); when using OpenCV the FLANN library
(Fast Library for Approximate Nearest Neighbors) can be used, applying nearest
neighbor search.

=06  (3)

Figure 2: These filters (kernels) approximate the Laplacian of Gaussians (L, Ly,
and L,,) by applying the weights of -1 to the white areas, 2 to the black and 0 to
the gray areas.

3.2.3 Haar classification

Many approaches based on machine-learning have the advantageous of being com-
putationally more efficient in object detecting, although generic detectors (feature
matching) often performs better in terms of localization, scale and shape [8]. Haar
classification is a tree-based technique where in the training phase, a statistical
boosted rejection cascade is created. Boosted means that one strong classifier is
created from weak classifiers (see fig. 3), and a weak classifier is one that correctly
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gets the classification right in at least above fifty percent of the cases. This buildup
to a better classifier from many weak is done by increasing the weight (penalty) on
misclassified samples so that in the next iteration of training a hypothesis that gets
those falsely classified samples right is selected. Finally the convex combination
of all hypotheses is computed. (fig. 3)).
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Figure 3: Ezample illustrating boosting. (a) A hypothesis (line) is selected, mis-
classifying object 1, the weight of object 1 is increased which will affect the choice
for picking the next hypothesis (a cheap hypothesis will be selected). (b) The next
hypothesis misclassifies object 2, and the weight is then divided between 1 and
2. (c) The next hypothesis misclassifies object 3, and the weight is now divided
between 1, 2 and 3. (d) After picking a last hypothesis the convex combination of
all hypotheses is computed. This example is based on [9)].

There are four boosting methods available for Haar training in OpenCV: Real
Adaboost, Discrete Adaboost, Logitboost and Gentle Adaboost.

That Haar classification uses a rejection cascade means that the final classifier
consists of a cascade of (many) simple classifiers, and a region of interest must pass
all stages of this cascade to pass. The order of the nodes is often arranged after
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Figure 4: These Haar-wavelet-like features are computed by adding the light re-
gions and subtracting the dark regions [8]. The image is originally from [10].

complexity, so that many feature candidates are ruled out early, saving substantial
computation time [8].

As input to these basic classifiers, that builds up the cascade, comes Haar-like
features that are calculated according to the figures in fig. 4.
When the application is running a pane of different sizes is swept over the image,
computing sums of pixel values based on these features, using integral images, and
applies the trained rejection cascade (see next chapter).
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4 Methods

OpenCV is a computer vision library written in C' and C++, and contains over
500 functions associated with vision, and also contains a general-purpose machine-
learning library. OpenCV was chosen since it is open-source and free for academic
and commercial use, and it is widely used and well documented. [8] Most impor-
tantly OpenCV compiles on the iOS platform, along with the additional frame-
works AVFoundation, ImagelO, libz, CoreVideo and CoreMedia.

Initially many different approaches to object recognition where considered since
the OpenCV interface makes it easy to switch between methods. Developing for
mobile devices increases the demand for efficiency and the key criterion were of
course to choose a well performing technique in terms of efficiency and level of
invariance, with more emphasis on efficiency as live video would be processed and
furthermore CPU and RAM is comparatively limited on the intended devices.

SURF and Haar-feature classification became the main candidates for recogni-
tion; SURF because it is designed for efficiency and meets all intended invariance
requirements [5], and the Haar classifier since it is very efficient, but then rota-
tional invariance is slightly compromised [8] depending on what features are used
under training. As described in more detail in chapter four the Haar classifier was
finally chosen. Both make use of integral images, e g. sum of pixel values in a
rectangular region of an image.

4.1 Choosing recognition method based on performance and invariance
properties

The buttons to be recognized (fig. 1) are by themselves unchanging, although
there may be ambient light and background light, these objects do not deform.
From the drivers and passenger seat there is essentially only one vantage point,
you can obviously not go around a car dashboard or turn it. As the application
where to be deployed on a hand held device, which can be twisted, a method that
was not too sensitive to rotation had to be chosen. And it was also considered that
the iPhone screen is displayed in two modes landscape mode and upright portrait
mode. Another property needed to be considered due to that the device is hand
held was scale. The mobile phone could be brought close to the panel or be held
from a distance. The car dashboard is mainly illuminated by natural light from
outside, or by night from lights in the vehicle, so the method of choice needed to
have a high level of illumination invariance.

With this in mind our first choice, as earlier mentioned, was SURF (Speeded
Up Robust Features detection). But some time into the project, the SURF im-
plementation was perceived not to meet the requirements in terms of speed. It
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performed well on a laptop but not on the iPhone 3GS, hence the OpenCV Haar
classification technique became the choice of approach.

4.2 Data collection and sample creation for Haar training

With OpenCV comes a utility for creating traning samples from one image, which
can automatically apply alteration in background, lightning and rotation for the
output images. This approach is suiting for cases where the object does not vary in
appearance, e g. training on logos, labels and such. The documentation for using
the createsamples utility could be found in the OpenCV install directory under
OpenCV /apps/Haar Training/doc, though the information given where sparse, e g.
all parameters where not explained.

First, one high-resolution image where captured on the climate panel with
a Canon EOS 30D, from which smaller images of the individual buttons where
cropped. The fact that another camera was used to collect the samples (than of
the handheld device’s) did likely not impact the performance of classification, since
the output samples are very minimized to make the training phase feasible. This
would probably have been an issue with a key-point matcher recognition method.

Random negative sets where chosen so that they varied in gradients. How the
samples should vary could be controlled by a number of command line parameters:

e Name of the output vector containing the positive samples for training
e Source image (image of button)

e A path to the directory with negative background samples

e How many positive samples the output vector should contain

e A number of parameters on how the object image and background should be
illuminated

e Maximum rotation angles for the object image on the background image in
radians

e Output sample width and height

The vector created, in our case only contained 500 samples but where relatively
big: width 50 pixels and height 40, since we could see that the white text and logos
on the buttons almost disappeared when we trained with more typical values [8]
(like 20 by 20 pixels).
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4.3 Haar training

The OpenCV createsamples-utility outputs a vector with samples, this vector is
used as input to the OpenCV haartraining utility. Some of the important command
line parameters for this utility are the following:

e File name of vector with positive samples

e File name with background image names (not containing objects)
e Number of positive samples in the sample vector

e Number of negative samples desired

e Number of training stages

e Minimal desired hit rate for each stage

e Maximal desired false alarm rate for each stage

e Number of splits, the number of levels in each nod of the cascade
e The size of dedicated memory in MB

e Whether the object contains symmetry or exhibit non-symmetry

e Mode, what set of haar features (see fig. 4) to use (Basic [only upright|, Core
or All) to bee used

e Sample width and height

The background images are used to create negative samples, from panes of
these images, and here one hundred images were chosen from a private photo
library which showed variance in gray scale gradients. The number of training
stages combined with minimal desired hit rate and maximal desired false alarm
rate will determine the total hit and false alarm rate; for instance using a false
alarm rate of 50% and a hit rate of 99.9% would yields a total false alarm rate
of 0.5%° = 9.6e — 07 and a hit rate of 0.999 = 0.98 though the cascade. [8] The
number of splits is the number of levels in each nod of the cascade, this is typically
one (a “decision stump”), but can be two or three for more complex objects.
More dedicated memory and object symmetry — if the object exhibits symmetry
properties — can be used to speed up training. Sample width and height should be
the same as from when the samples where created. Mode can be used to explore
more advanced features, but this is also a trade-off against slower training — for
this project only the basic upright features where used (the upper three in fig. 4]).
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4.4 Work diary

In the middle of February a first meting was held at the BMW office, where a
handful of topics was discussed, this recognition task being one of them. This task
demanded some insight and knowledge of Objective-C, C++ and Computer Vision;
most research were done on the latter as this was an area where the experience was
limited, where as the IDE Xcode, Objective-C and C++ where familiar topics.

After a phase of project planning and writing and handing in a proposal, differ-
ent AR libraries was considered, such as the computer tracking library ARToolKit,
however the decision was made to use OpenCV for recognition (as discussed ear-
lier) and OpenGL ES for animating the UI [3]. The complete task was divided in to
two thesis projects, including the respective subtasks of recognition and graphical
overlay and interaction.

The first weeks after planning, middle of march, where a learning period for
basic OpenCV, reading [8] and experimenting in OpenCV compiling on a laptop.
The structure of OpenCV lets one easy switch between different detectors (feature
extractors) and feature correspondence methods, making it easy to test different
approaches. The decision to use SURF for the iOS implementation was made based
on correspondence with our topic reviewer and a performance chart in [5] stating
that SURF is rotation and scale invariant, very efficient but slightly compromised
regarding repeatability, location accuracy and robustness.

Figure 5: This image is a screenshot from a running application on the PC imple-
menting SURF, detecting a writing block.

When porting to the iOS platform a preexisting open source iOS project was used
developed by the developer group Aptogo [7] integrating OpenCV with iOS, in-
cluding a precompiled OpenCV framework. On the iOS platform there are several
aspects regarding OpenCV that differ from a PC environment, especially in us-
ing the highgui module, which normally handles interaction with the operating
system: accessing cameras, handle user events, displaying images and graphics in
images etc. On the iOS no video preview is supported, and frames have to be
pulled and display manually from the hihgui VideoCapture class. This preexisting
project was designed to be re-useable by sub-classing its integration feature and
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allowed to directly use the only slightly modified OpenCV code from developing
on the laptop.

Through April and May, weekly meetings were held, where the working progress
was reported to the thesis project supervisor and deliverables for the coming week
where set.

In the middle of April a SURF implementation was running on the device. At
this point the object in the car to be recognized had not been specified, and in
the meantime a tablet/writing pad was used for testing, which differed a lot from
the final objects that where chosen. This implementation was performing well on
the laptop but did not work well on the handheld device: it only measured to be
able to process 0.5 frames per second. This was a major concern since the aim
was to recognize four objects. Then an effort could have been put to optimize
the implementation, but instead other approaches was looked into, using a better
performer (in terms of processing) based on a learned boosted rejection cascade,
and crucial for this decision being made was knowledge of the automatic sample
generator for the Haar Classifier. (See 4.2)

The training (see 4.3) of the final classifiers took about three days to complete
on two computers, running two parallel training jobs on each (one for each clas-
sifier). Before this the sample-creating- and training -utility was tested on the
(just mentioned) writing pad (fig. 5) with fairly good results. But the objects
that finally was picked for recognition (fig. 1), turned out to be harder to produce
good classifiers from, probably because they were to small and lacked ”blocky”
features [8]. So finally the set of classifiers were too tolerant. In retrospect a larger
and easier targets than the small buttons, e g. the entire climate control panel or
similar, should have been chosen for the recognition task.

The last week was dedicated to merging the UI code with the object recognition
code.
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5 Results

This chapter focuses on implementation and the final outcome of the project, which

is discussed further in the next chapter.

5.1 Performance and accuracy

The application performance were measured in fps, but the level of accuracy were

only visually inspected by simply looking at the running application:

Method fps | Object Acurracy

Haar Classification | 0.6 | 4 Buttons (fig. 1) | Poor, finding lots of false
positives outside the in-
tended environment.

Haar Classification | 1.8 | Tablet (fig. 5) Ok from a straight for-
ward angle, to sensitive
to changes in rotation and
change in angle.

SURF 0.5 | Tablet (fig. 5) Good, insensitive  to

changes in rotation and
change in angle but unre-
sponsive.

This table is not intended as a measurement of how the methods perform in gen-
eral, but rather only presenting the result, which is implementation and platform
specific. It would probably not be meaningful to compare such distinctive methods

on a general basis (since the environment differ from task to task).
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Figure 6: System overview.

5.2 Implementation and system design

Developing for iOS application using OpenCV differs from a PC environment in
that the iOS frameworks are used for Ul and accessing hardware through dele-
gates, instead of directly using the OpenCV highui module for interaction with
the operative system. In the OpenCV highui, video capture is supported by the
class VideoCapture from where video frames can be grabbed as cv::Mat objects
(data structure containing an image).

In this implementation the view-controller VideoCapture ViewController is an
AVFoundation delegate (audio and visual media framework) and previews a video
layer and draws on the main thread, as the diagram below indicates, but dispatches
the classification OpenCV processing work to its method
processFrame:videoRect:video Orientation on a different thread. The reason is that
if processing, camera overlay and UI all would have been handled on the main
queue the frame rate would have been low. Also touch events are handled on its
own queue to achieve interaction responsiveness.

Video Capture ViewController also handles images instantiation and conversion
to gray scale.

Even though the processFrame:videoRect:video Orientation method searches for
all four objects for each frame that is pulled — e g. it applies the cv::cascadeClassifier
method detectMultiScale on the image for all trained classifiers — it performs quite
well, between one and two frames per second. Here, some effort could have been
put to implement a cache for what objects should be prioritized based on what
objects recently was found if time had been sufficient. But as of now the Pro-
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Figure 7: A screenshot of the running application (with some texture error, see
discussion in next chapter).
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cess ViewController instantiate four Cascade Classifier objects, one for each xml-
cascade-classifier file that was trained. The method detectMultiScale is run on
the cascade object with the following parameters: image object (a cv::Mat), scale
factor (how much the search pane size is reduced for each iteration), vector of
rectangles who are updated as a side effect if there is a match, minimum neighbors
(collections with fewer features are treated as noise) [11].

The vital part of the Haar classification is the following:

//Create a path to the classifier
NSString xcascadePath = [[NSBundle mainBundle] pathForResource:

cascadeFilename ofType:@’ xml” |;

// Instantiate a vector to hold the coordinates of the matches
std :: vector<cv::Rect> objects;

// Apply detection.
cascade.detectMultiScale (mat, objects, 1.1,3,

CV_HAAR FIND BIGGEST-OBJECT, cv:: Size (10, 10));
// When the processFrame:videoRect:videoOrientation have

//processed the image it dispatches back to the main thread
//a wvector of rectangles for where to draw the animations:

When the processFrame:videoRect:videoOrientation have processed the image it
dispatches back to the main thread a vector of rectangles for where to draw the
animations:

// Draw on main queue
dispatch_sync (dispatch_get_main_queue (), “{
[self displayObjects: objects
forVideoRect: rect
videoOrientation: videOrientation |;

1)
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6 Discussion

The result in table 5.1 shows that the Haar Classification implementation in the
top row performed well in terms of speed, four images with a frame rate of 0.6
s which accounts for 2.4 cascades each second. This can be compared with the
SURF implementation with a frame rate of 0.5 per second, which implies it would
take about two seconds to process one image and around eight seconds to process
four. One reason for the good performance in terms of processing speed for the
Haar Classifier (trained on the buttons) might be that the cascades were simple,
but this is also the reason for the poor performance in regards to accuracy.

The first Haar Classification implementation, trained on a tablet (second row),
showed good performance in speed (1.8 fps) and acceptable performance in ac-
curacy, and the cascade was more complex, probably due to that the object (the
tablet) had more distinct features. This was what was wanted when the last classi-
fiers (on the buttons, top row) were trained, but they underperformed, which was
expressed in that they where oversensitive: the different objects where sometimes
confused and false positives (objects not trained on) could easily be found outside
the control panel.

The Haar Classifier is often used for detecting pedestrians, body parts or faces (the
Haar Classifier is some times called the Face detector [11]) and such classifiers are
included within OpenCV. But it is also said to work well on logos and such with
a typical viewing point [11]. And it was partly this that was noted for choosing
the method. Furthermore cascade classification for Haar-like features is said to
work well for “blocky” features with characteristic views [8]. This could easily be
misinterpreted — it could mean ”blocky” as in sharp edges, or larger blocks with
similar gray scale. The number of training samples could have been increased if
the object would have been more distinct, since then the samples could have been
reduce in size. Furthermore, the classifiers would probably have been stronger if
they would have been trained with more advanced features.

When the decision to use Haar Classification for the finale version of the prototype
was made, it was based on the result of the test made on the test object (the
writing pad, entry two in the table), and the decision to use the final weeks of the
project to train Haar classifiers was made before it was specified what object to
be processed in the final version of the prototype. The buttons on the dashboard
lacked sufficiently distinct features and it turned out not to be a good (but hasty)
choice of set of objects (this is discussed more in the next chapter).

But considering the overall result, the outcome of the use of a Haar classifier
was in the end closest to the project specification.
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As for the screenshot in the previous chapter depicting the running application,
there are two possible reasons why there are texture errors in the animation of the
dashboard buttons, one might be that the data of the texture file is incorrectly
read in; the other is that the settings of the view rendering are incorrect. This is
more thoroughly discussed in [3], and these issues should be relatively easy to fix.
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7 Conclusions

The finale object recognition module with xml cascades trained on the buttons
(fig. 1) is performing below expectations. The over all experience is that even if
the module finds the objects and often distinguish the different keys, it often finds
false positives outside the climate control panel, e g. objects with white marks on
black background, like on a computer Keyboard.

It was wanted for the final classifiers (top row in 5.1) to performed equally well
as the test classifier (second row in 5.1), but this was not achieved since the target
object turned out to be difficult to train. For the purpose of this prototype it would
have been better to choose some larger objects in the car for the recognition, for
instance the whole climate panel or the head unit.

7.1 Assessment of the work process

Object recognition is not a trivial task even when using high level libraries since
each setting has it’s own requirements and there is no best overall method. It is
probably preferable to have a more pragmatic and practical approach, based on
testing, rather than a strictly theoretical. In retrospect there are some things that
could have been handled differently in order to achieve a better result in the end.

A more thorough planning and research phase could have lead to a better approach.
As experience was slight in the field of computer vision, a great deal of effort went in
reading up on OpenCV while studying computer vision theory and to test various
methods on different object with “quick hacks”. Although writing code is a great
way to learn, one often gets sidetracked, and it is time-consuming to work on code
that will never be used.

From the start it was only decided that the focus would be direct towards
the dashboard. And that was clearly a mistake not to early decide exactly what
objects to process. The approach was instead to think of what invariant properties
should be considered for some object on the dashboard, and then to choose some
method that meet the requirements and was fast (above robustness). If it had
been specified early what objects would be processed, it would have been easier to
tackle the task from a more practical approach.

It would have been good to conduct an own performance evaluation of the dif-
ferent methods (e g. Keypoint matchers) that took into account the circumstances
specific to this task.

Another thing that could have been handled differently was the planning of the

overall system. Rather than divide UI and interaction and object recognition
into two subtasks, each expressed in separate programs, the entire system design
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should have been outdrawn from start, and allow for smaller changes as the work
proceeded. When merging the two projects a lot where done in an ad-hoc fashion,
which resulted in that the final project was not very modular and generic.

7.2 Future work

If more work were to be done on this project the main priority would be to de-
velop better classifiers, choosing a larger object, have more samples and use more
advanced feature (not only up right ones). This could be done with a little effort.

An alternative approach to improve the recognition robustness of the cascade clas-
sifier, is to look into optimizing a implementation of a local keypoint extraction-
based technique. The FAST and SUSAN detectors would then be two main candi-
dates, based on a performance chart in [5] (page 257). Recently, in the 2.4.2 release
of OpenCV (released in july 2012), a new keypoint descriptor called FREAK has
been added to the library and is clamed to be very fast and “ superior to ORB
and SURF descriptors”[13]. The main issue for such approach would be to scale
it up and make it able to identify a big set of objects.

On the other hand natural feature tracking (marker-less AR) is more difficult
than marker-based tracking (using QR/AR-tags) in most, if not all cases where
marker-based techniques are applicable, since such tags are created for recognition
(containing clear features).

Maybe it was not realistic to think that a local feature based approach would
be a good base for a system able to identify many objects. The issue of what object
recognition systems are buildable is very specific to situation and environment. It
would be achievable to construct a real time object recognition system based on
local features for a small set of objects, but for a virtually unlimited set (e g. all
components of a car) it would be more realistic to use a code based method or a
machine learning approach.

So in hindsight, another approach would be to try some well performing libraries
designed for AR-tags, like ARToolKit; or to use some feature based OpenCV
technique for marker recognition. A way of placing out markers in a car without
cluttering it with barcodes could be to paint them with near-infrared color and have
some near-infrared light source in the car (in whatever wavelength that would suit
the devices camera). Furthermore, with very robust markers, it may be possible
to place out a reduced number of markers, and based on their position in the
camera view coordinate system figure out what object is referred to, and then also
make use of the information from the accelerometer (the tilt of the device). Those
markers could also be used by different applications, for different purposes, specific
AR-~car-games, AR UI’s and so on.
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