Redox and Electrochemistry

12.1	·
What is meant by a "redox"	A reaction that involves the transfer of electron density from one
reaction?	atom to another (<u>REDOX</u> = <u>RED</u> uction/ <u>OX</u> idation reaction)
Define oxidation and reduction.	A loss of electrons is oxidation (leo). A gain of electrons is
What mnemonic is used for this?	<u>r</u> eduction (<u>ger</u>).
$2H_2 + O_2 \rightarrow 2H_2O$ is a redox	Think of electronegativity. H_2 and O_2 are non-polar (each H in H_2
reaction. Explain why this is so.	has the same electronegativity, thus electrons are shared equally).
	In H_2O , oxygen has a higher electronegativity, thus it has a greater
	share of the electrons. This change in electron concentration
	means electrons are being gained and lost – a redox reaction.
Can oxidation occur in the absence	No. Oxidation and reduction always occur together. If one
of reduction? Explain.	substance is losing electrons (oxidation) another substance must
	be gaining electrons (electrons cannot exist in isolation).
What is meant by oxidizing agent	An oxidizing agent is a substance that causes oxidation (by taking
and reducing agent?	electrons). Thus, an oxidizing agent is itself reduced. Similarly, a
	reducing agent is oxidized in a reaction.
Name a common redox reaction.	Respiration, batteries, burning/combustion, rusting, etc.
12.2, 12.3	
Define oxidation number.	The charge an atom in a compound would have if the electron
	pairs in the bond belonged entirely to more electronegative
	atoms".
Why are oxidation numbers used?	They allow us to keep track of the gain or loss of electrons (it's a
	kind of bookkeeping method). Also, it is helpful in balancing
TT 1 / 1	certain complex equations.
How can redox reactions be re-	"A redox reaction is a chemical reaction in which changes in
defined with respect to oxidation #.	Oxidation number occur .
How is an oxidation number of	+1 (not 1+). 1+ is now a <u>charge</u> of positive one is written.
positive one written? why?	Oxidation numbers are written differently than charges so that we
Cive the mules for essigning	can easily distinguish between the two.
ovidation numbers. Give examples	alement has an evidetion number of zero. (O in O, is zero)
of each	2 Any simple monatomic ion (one atom ion) has an oxidation
of each.	2. Any simple monatomic for (one-atom for) has an oxidation number equal to its charge (Na ⁺ is ± 1 , Ω^{2-} is 2)
	3 The sum of the oxidation numbers of all of the atoms in a
	formula must equal the charge written for the formula (if the
	oxidation number of Ω is -2 then in $\Omega \Omega^{2-}$ the oxidation
	number of C is ± 4)
	4 In compounds, the oxidation number of group IA metals is ± 1 .
	IIA is $+2$ and aluminum (in IIIA) is $+3$.
	5. In jonic compounds, the oxidation number of a nonmetal or
	polyatomic ion is equal to the charge of its associated ion.
	$(In CuCl_2, Cl is -1).$
	6. F is always -1 , O is always -2 (unless combined with F). H is
	usually +1.
Assign oxidation numbers in: HNO ₃ ,	+1+5-2 $+1+6-2$ $-2+1-2$ $+1-1$ $+1+5-2$
$K_2Cr_2O_7$, C_2H_6O , AgI, $H_2PO_4^-$ (the	HNO ₃ , $K_2Cr_2O_7$, C_2H_6O , AgI. $H_2PO_4^-$
last number to be calculated is	<i>3, 2-2-1, -2 0-,0^{-,}2</i> ⁻
highlighted)	