Write the chart that will help		$H_2(g)$	$I_2(g)$	HI(g)
determine equilibrium []s for the	Mole ratio	1	1	2
reaction $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$,	[Initial] (M)	0	0	7.5
given an initial [HI] of 7.5 mol/L.	[Change] (M)	+ x	+ x	- 2x
	[Equilibrium] (M)	Х	Х	7.5 - 2x
What simplification is often helpful	When Kc is very small we can often assume that changes in			
when solving Kc problems?	concentrations are negligible.			
In the equation $x(1-x)$, if x is very	Only the x in the brackets is considered negligible.			
small, can we assume that x is	General Rule: A small x can be ignored when adding or subtract-			
negligible? Give the general rule.	ing. A small x cannot be ignored when multiplying or dividing.			
Demonstrate that a small x can be	Let's use $x = 0.00001$ as an example of a value for x that is small			
ignored in addition and subtraction	relative to 0.3. Solving for what's inside the brackets we get			
but not in multiplication or division.	0.3 + 2x = 0.30002 (which is very close to 0.3). However,			
Use $x(0.3+2x)$ as an example.	x(0.3) = 0.00003 (which is very different than 0.3).			
You should be able to solve problems similar to examples 14.7 - 14.10				
11.3				
Distinguish between molecular,	Molecular: the typical way to write a reaction with compounds			
ionic and net ionic equations.	and their states. Ion	ic: similar to a n	nolecular equati	on except that
	aqueous compounds	are written as i	ons. Net ionic:	similar to ionic
	except that unreacted	d chemicals are	removed from the	he equation.
What conditions must be met in all	Materials balance (equal numbers of all atoms on left and right),			
types of chemical equations?	Electrical balance (equal numbers of charges on left and right).			
Write ionic and net ionic equations	Ionic:			
for $Cd(NO_3)_2(aq) + Na_2S(aq) \rightarrow$	$\operatorname{Cd}^{2+}(aq) + 2\operatorname{NO}_{3}(aq) + 2\operatorname{Na}^{+}(aq) + \operatorname{S}^{2-}(aq) \to \operatorname{CdS}(s) + 2\operatorname{Na}^{+}(aq) + 2\operatorname{NO}_{3}(aq)$			
	Nationia			

$CdS(s) + 2NaNO_3(aq)$	<u>Net ionic:</u>
	$\operatorname{Cd}^{2+}(aq) + \operatorname{S}^{2-}(aq) \to \operatorname{CdS}(s)$
How can the charge on an ion be	The charge is equal to the valence of the ion. For ions that consist
determined?	of one atom, the position on the periodic table is often instructive
	(e.g. Na is in group IA; it loses one electron to become 1+).
	Valences of polyatomic ions can be referenced on pg. 71.
	Also, if you know the charge on one ion you can figure out the
	charge on the other. For example, since $Na_2S(aq)$ is neutral and
	Na_2 becomes $2Na^+$, S must have a 2- charge.

Pg. 692-3

16.072.5	
Write the balanced equation for the	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) + heat$
production of ammonia gas.	Or
Indicate if it is endo- or exothermic.	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \Delta H^\circ = -90 \text{ kJ}$
Name the process used today to	The Haber process or the Haber-Bosch process.
manufacture ammonia?	
Under what conditions of	High pressure (200 atm) and moderate temperature (400°C). High
temperature and pressure is this	pressure shifts the equilibrium to the right. A high temperature
process carried out? Why?	actually favors the shift away from NH ₃ formation. However a
	high temperature is needed to increase the reaction rate.
What other factors ensure a high	The presence of catalysts and the removal of NH ₃ via
yield of ammonia?	condensation. (Removing NH ₃ continuously shifts the equilibrium
	to the right, favoring the production of ammonia).
What principle does the Haber	Le Chatelier's principle.
process demonstrate?	