
A guide for teachers – Years 11 and 12
1

2

3

4

5

6

7
 8 9 10

11
12

Maths delivers!

Google PageRank

For teachers of Secondary Mathematics

© The University of Melbourne on behalf of the
Australian Mathematical Sciences Institute (AMSI),
2013 (except where otherwise indicated). This
work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported
License. 2011.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Australian Mathematical Sciences Institute
Building 161
The University of Melbourne
VIC 3010
Email: enquiries@amsi.org.au
Website: www.amsi.org.au

Editor: Dr Jane Pitkethly, La Trobe University

Illustrations and web design: Catherine Tan, Michael Shaw

Maths delivers!
Google PageRank

Professor Brian A. Davey, La Trobe University

Introduction . 4

The basic idea . 5

The hyperlink graph of a set of web pages . 5

The hyperlink matrix . 6

The PageRank equations . 6

The PageRank equations via matrices . 8

Solving the PageRank equations iteratively . 9

Solving the dangling-node problem . 9

Guaranteeing that the limiting vector exists . 12

Postscript . 17

Appendix: PageRank calculations in Excel . 19

References . 23

maths
delivers!

Google PageRank

Introduction

What happens when you submit a search query to Google?

1 A list of relevant web pages is produced, based on the words in your query.

2 This list of web pages is ordered, so that (hopefully) the pages most useful to you will

be at the top of the list.

Google’s success at performing this second step has played a major role in making it the

world’s favourite search engine.

The program that produces the list of relevant web pages, based on your query, is called

the query module. The list is passed to the ranking module. This program gives each

web page in the list an overall score, which is obtained by combining together:

• a content score, which is a measure of how relevant the page is to your query

• a popularity score, which is completely independent of your query.

The list of web pages is displayed in the order determined by their overall scores.

A web page’s popularity score is also called its Google PageRank. In these notes, which

accompany the maths delivers! video of the same name, we explain how the PageRank

of a web page is calculated, and we discuss some of the mathematics which guarantees

that the calculation actually works.

The PageRank formula was presented to the

world in Brisbane at the Seventh World Wide

Web Conference (WWW98) by Sergey Brin and

Larry Page, the founders of Google, in 1998.

That year, Larry Page filed a patent for their pro-

cess to calculate the PageRank of web pages,

and the patent was granted in 2001. The rest is

history! Figure 1: Larry Page and Sergey Brin.

Google PageRank ■ 5

The basic idea

We would like to attach a number to each web page that represents its importance.

Google’s founders Brin and Page suggested the idea of an imaginary web surfer, whom

we shall call Webster, who surfs the web randomly. Webster starts at a random web page.

Whenever he visits a web page, he randomly chooses a hyperlink on that page and fol-

lows it. Webster continues this indefinitely. In the limit, the proportion of the time, r (Pi),

that Webster spends at a particular page Pi is a measure of the importance of the page Pi .

Converting this idea into a formula that can be calculated for each of the more than

14 billion web pages is the achievement that led Google to become the top web search

engine in existence.

The hyperlink graph of a set of web pages

A system of web pages with hyperlinks between them is viewed as a directed graph W ,

called the hyperlink graph of the system. The nodes (or vertices) of the graph W are the

pages, and there is an edge from page Pi to page P j if there is a hyperlink that points from

page Pi to page P j ; this is an outlink from page Pi and an inlink to page P j . (Multiple

links from Pi to P j are treated as a single edge of the graph, and self links from a page to

itself are ignored. Thus W is a simple, loopless directed graph.)

The graph W in figure 2 is the hyperlink graph of a system of six web pages. We can see,

for example, that there are outlinks from page P3 to pages P1, P2 and P4, and that P2 has

inlinks from pages P1 and P3 but has no outlinks at all.

P1

P2

P3 P4

P5

P6

Figure 2: The hyperlink graph W .

We will pretend that this graph W represents a miniature ‘World Wide Web’, and see how

to calculate the PageRank for each of the six web pages.

6 ■ maths delivers!

The hyperlink matrix

The graph W shown in figure 2 is encoded in the 6×6 table on the left in figure 3: the cell

in row Pi , column P j contains a 1 if there is a link from page Pi to page P j , and contains

a 0 otherwise.

P1 P2 P3 P4 P5 P6

P1 0 1 1 0 0 0

P2 0 0 0 0 0 0

P3 1 1 0 1 0 0

P4 0 0 0 0 0 1

P5 0 0 0 1 0 1

P6 0 0 0 1 1 0

 A =



0 1 1 0 0 0

0 0 0 0 0 0

1 1 0 1 0 0

0 0 0 0 0 1

0 0 0 1 0 1

0 0 0 1 1 0


Figure 3: The hyperlink matrix A of W .

Removing the row and column labels of the table leaves us with the hyperlink matrix A

(also known as the adjacency matrix) of the graph W . The matrix A is shown on the right

in figure 3.

The PageRank equations

How do we measure the importance of a page? A link from your page to my page is

an endorsement of my page. The more inlinks my page has, the more important it is.

However, some links are more valuable than others.

• A link to my page from a very important page is more valuable. The more important a

page is, the more it should contribute to the importance of the pages to which it links.

• A link to my page from a page with a large number of outlinks is not so valuable. The

more outlinks a page has, the less valuable is the recommendation provided by each

of its individual outlinks.

In order to formalise these two ideas, we first introduce some notation:

• Let the PageRank of page Pi be denoted by r (Pi). This will be a number that measures

the importance of page Pi .

• Let the number of outlinks from page Pi be denoted by |Pi |. Note that |Pi | is equal to

the sum of the entries in the i th row of the hyperlink matrix A.

Google PageRank ■ 7

Each page P j that links to page Pi contributes some of its importance r (P j) to the im-

portance of page Pi . The more outlinks such a page has, the less it should contribute to

the importance of page Pi . Consequently, if page Pi has an inlink from page P j , we will

say that P j contributes

r (P j)

|P j |

to the PageRank r (Pi) of page Pi . Adding up all of these contributions from pages with a

link to Pi yields the PageRank of Pi .

For our six-page ‘mini web’, this leads to the following PageRank equations:

P1

P2

P3 P4

P5

P6

r (P1) = r (P3)

3
,

r (P2) = r (P1)

2
+ r (P3)

3
,

r (P3) = r (P1)

2
,

r (P4) = r (P3)

3
+ r (P5)

2
+ r (P6)

2
,

r (P5) = r (P6)

2
,

r (P6) = r (P4)

1
+ r (P5)

2
.

We are searching for a PageRank row vector

v = (
r (P1), r (P2), r (P3), r (P4), r (P5), r (P6)

)
that satisfies these six PageRank equations. Moreover, since r (Pi) should give the propor-

tion of time that our random web surfer Webster spends at page Pi , the vector v should

be a probability vector. That is, we should have r (Pi) ≥ 0, for each page Pi , and

r (P1)+ r (P2)+ r (P3)+ r (P4)+ r (P5)+ r (P6) = 1.

If we denote the set of pages with a hyperlink to Pi by LPi , then each PageRank equation

can be written in summation notation as

r (Pi) = ∑
P j∈LPi

r (P j)

|P j |
.

8 ■ maths delivers!

The PageRank equations via matrices

The six PageRank equations given in the previous section can be conveniently sum-

marised as a single matrix equation.

To do this, we first normalise each row of the hyperlink matrix A, that is, we divide each

entry in the matrix A by the sum of its row. Now each non-zero row will sum to 1. The

resulting matrix H is called the row-normalised hyperlink matrix of the graph W , and

is shown on the right in figure 4.

A =



0 1 1 0 0 0

0 0 0 0 0 0

1 1 0 1 0 0

0 0 0 0 0 1

0 0 0 1 0 1

0 0 0 1 1 0


 H =



0 1
2

1
2 0 0 0

0 0 0 0 0 0

1
3

1
3 0 1

3 0 0

0 0 0 0 0 1

0 0 0 1
2 0 1

2

0 0 0 1
2

1
2 0


Figure 4: The row-normalised hyperlink matrix H of W .

Our six PageRank equations are now equivalent to the following matrix equation:

(
r (P1) r (P2) r (P3) r (P4) r (P5) r (P6)

)
=

(
r (P1) r (P2) r (P3) r (P4) r (P5) r (P6)

)



0 1
2

1
2 0 0 0

0 0 0 0 0 0

1
3

1
3 0 1

3 0 0

0 0 0 0 0 1

0 0 0 1
2 0 1

2

0 0 0 1
2

1
2 0


.

This equation can be written somewhat more briefly as

v = v H .

It would be easy to solve our six PageRank equations by hand. There is also a systematic

method for solving such a system of simultaneous equations (the Gaussian algorithm)

which can be carried out by a computer.

However, finding PageRanks for the entire World Wide Web involves a system of more

than 14 billion PageRank equations, and it is not feasible to try to solve these PageRank

equations directly, even by computer.

Google PageRank ■ 9

Solving the PageRank equations iteratively

Brin and Page suggested that the matrix equation v = v H given in the previous section

should be solved iteratively, that is, by calculating a sequence of approximations to the

solution vector v .

For the initial approximation v (0), they take all pages to have the same PageRank. For our

‘mini web’ example, we have

v (0) =
(1

6
,

1

6
,

1

6
,

1

6
,

1

6
,

1

6

)
.

This is the 0th approximation to the PageRank row vector v . Successive approximations

are obtained by multiplying on the right by the matrix H :

v (1) = v (0)H

v (2) = v (1)H

v (3) = v (2)H

...

In general, we have v (k+1) = v (k)H . We hope that the sequence v (0), v (1), v (2), v (3), . . . will

converge to a probability vector v with v = v H .

There are two important questions:

A Is there a theorem that guarantees the sequence v (0), v (1), v (2), v (3), . . . will converge

to a vector v?

B If the sequence v (0), v (1), v (2), v (3), . . . converges to a vector v , will v necessarily be a

probability vector?

Solving the dangling-node problem

We shall address question B first. In the case of our six-page ‘mini web’ W , we have

v (0) =
(1

6
,

1

6
,

1

6
,

1

6
,

1

6
,

1

6

)
.

Using an Excel spreadsheet, we can easily apply the iterative formula v (k+1) = v (k)H to

calculate v (1), v (2), v (3), The results are given in figure 5. See the Appendix section of

these notes for instructions on how to set up such a spreadsheet.

10 ■ maths delivers!

P_1 P_2 P_3 P_4 P_5 P_6
v^(0) 0.16666667 0.16666667 0.16666667 0.16666667 0.16666667 0.16666667
v^(1) 0.05555556 0.13888889 0.08333333 0.22222222 0.08333333 0.25000000
v^(2) 0.02777778 0.05555556 0.02777778 0.19444444 0.12500000 0.26388889
v^(3) 0.00925926 0.02314815 0.01388889 0.20370370 0.13194444 0.25694444
v^(4) 0.00462963 0.00925926 0.00462963 0.19907407 0.12847222 0.26967593
v^(5) 0.00154321 0.00385802 0.00231481 0.20061728 0.13483796 0.26331019
v^(6) 0.00077160 0.00154321 0.00077160 0.19984568 0.13165509 0.26803627
v^(7) 0.00025720 0.00064300 0.00038580 0.20010288 0.13401813 0.26567323
v^(8) 0.00012860 0.00025720 0.00012860 0.19997428 0.13283661 0.26711195
v^(9) 0.00004287 0.00010717 0.00006430 0.20001715 0.13355597 0.26639259
v^(10) 0.00002143 0.00004287 0.00002143 0.19999571 0.13319629 0.26679513
v^(11) 0.00000714 0.00001786 0.00001072 0.20000286 0.13339757 0.26659386
v^(12) 0.00000357 0.00000714 0.00000357 0.19999929 0.13329693 0.26670164
v^(13) 0.00000119 0.00000298 0.00000179 0.20000048 0.13335082 0.26664775
v^(14) 0.00000060 0.00000119 0.00000060 0.19999988 0.13332388 0.26667589
v^(15) 0.00000020 0.00000050 0.00000030 0.20000008 0.13333794 0.26666182
v^(16) 0.00000010 0.00000020 0.00000010 0.19999998 0.13333091 0.26666905
v^(17) 0.00000003 0.00000008 0.00000005 0.20000001 0.13333453 0.26666543
v^(18) 0.00000002 0.00000003 0.00000002 0.20000000 0.13333272 0.26666728
v^(19) 0.00000001 0.00000001 0.00000001 0.20000000 0.13333364 0.26666636
v^(20) 0.00000000 0.00000001 0.00000000 0.20000000 0.13333318 0.26666682
v^(21) 0.00000000 0.00000000 0.00000000 0.20000000 0.13333341 0.26666659
v^(22) 0.00000000 0.00000000 0.00000000 0.20000000 0.13333329 0.26666671
v^(23) 0.00000000 0.00000000 0.00000000 0.20000000 0.13333335 0.26666665
v^(24) 0.00000000 0.00000000 0.00000000 0.20000000 0.13333332 0.26666668
v^(25) 0.00000000 0.00000000 0.00000000 0.20000000 0.13333334 0.26666666

v 0 0 0 1/5 2/15 4/15

Figure 5: The Excel spreadsheet using H .

While this is not a proof, we see that the limit vector v seems to be

v =
(
0, 0, 0,

1

5
,

2

15
,

4

15

)
.

Indeed, it is easy to check that this choice of v satisfies the matrix equation v = v H .

Unfortunately, since the sum of the coordinates is 3
5 rather than 1, this is not a probability

vector.

The problem is caused by the row of zeros in the matrix H . This row of zeros corresponds

to the fact that P2 is a dangling node, that is, it has no outlinks. Dangling nodes are very

common in the World Wide Web (for example: image files, PDF documents, etc.), and

they cause a problem for our random web surfer. When Webster enters a dangling node,

he has nowhere to go and is stuck.

To overcome this problem, Brin and Page declare that, when Webster enters a dangling

page, he may then jump to any page at random. This corresponds to replacing each row

of 0’s in the matrix H by a row of 1
n ’s, where n is the total number of nodes in our graph.

This new matrix S is called the stochastic matrix of the graph W , as each row sums to 1.

Google PageRank ■ 11

For our ‘mini web’ example, this transformation is shown in figure 6.

H =



0 1
2

1
2 0 0 0

0 0 0 0 0 0

1
3

1
3 0 1

3 0 0

0 0 0 0 0 1

0 0 0 1
2 0 1

2

0 0 0 1
2

1
2 0


 S =



0 1
2

1
2 0 0 0

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3 0 1

3 0 0

0 0 0 0 0 1

0 0 0 1
2 0 1

2

0 0 0 1
2

1
2 0


Figure 6: The stochastic matrix S of W .

We can now repeat the iteration using the stochastic matrix S instead of H . That is, we

now use the formula

v (k+1) = v (k)S

to calculate v (1), v (2), v (3), Using Excel, we obtain the results shown in figure 7.

P_1 P_2 P_3 P_4 P_5 P_6
v^(0) 0.16666667 0.16666667 0.16666667 0.16666667 0.16666667 0.16666667
v^(1) 0.08333333 0.16666667 0.11111111 0.25000000 0.11111111 0.27777778
v^(2) 0.06481481 0.10648148 0.06944444 0.25925926 0.16666667 0.33333333
v^(3) 0.04089506 0.07330247 0.05015432 0.29089506 0.18441358 0.36033951
v^(4) 0.02893519 0.04938272 0.03266461 0.30131173 0.19238683 0.39531893
v^(5) 0.01911866 0.03358625 0.02269805 0.31297154 0.20588992 0.40573560
v^(6) 0.01316372 0.02272305 0.01515704 0.31897648 0.20846551 0.42151420
v^(7) 0.00883952 0.01542138 0.01036904 0.32382938 0.21454428 0.42699641
v^(8) 0.00602658 0.01044634 0.00698999 0.32679692 0.21606843 0.43367174
v^(9) 0.00407105 0.00708434 0.00475434 0.32894114 0.21857693 0.43657219
v^(10) 0.00276550 0.00480103 0.00321625 0.33034006 0.21946682 0.43941033
v^(11) 0.00187226 0.00325501 0.00218292 0.33131083 0.22050534 0.44087365
v^(12) 0.00127014 0.00220627 0.00147863 0.33195963 0.22097932 0.44210600
v^(13) 0.00086059 0.00149566 0.00100278 0.33240325 0.22142071 0.44281701
v^(14) 0.00058354 0.00101383 0.00067957 0.33270240 0.22165778 0.44336288
v^(15) 0.00039550 0.00068726 0.00046074 0.33290583 0.22185041 0.44370026
v^(16) 0.00026812 0.00046587 0.00031229 0.33304346 0.22196467 0.44394558
v^(17) 0.00018174 0.00031580 0.00021171 0.33313687 0.22205043 0.44410344
v^(18) 0.00012320 0.00021407 0.00014351 0.33320014 0.22210436 0.44421472
v^(19) 0.00008351 0.00014512 0.00009728 0.33324305 0.22214304 0.44428800
v^(20) 0.00005661 0.00009837 0.00006594 0.33327213 0.22216819 0.44433876
v^(21) 0.00003838 0.00006668 0.00004470 0.33329185 0.22218577 0.44437262
v^(22) 0.00002601 0.00004520 0.00003030 0.33330521 0.22219742 0.44439585
v^(23) 0.00001763 0.00003064 0.00002054 0.33331427 0.22220546 0.44441146
v^(24) 0.00001195 0.00002077 0.00001392 0.33332041 0.22221083 0.44442211
v^(25) 0.00000810 0.00001408 0.00000944 0.33332457 0.22221451 0.44442929

v 0 0 0 1/3 2/9 4/9

Figure 7: The Excel spreadsheet using S.

12 ■ maths delivers!

The limit of the sequence v (0), v (1), v (2), v (3), . . . of row vectors is now

v =
(
0, 0, 0,

1

3
,

2

9
,

4

9

)
,

which is a probability vector since

1

3
+ 2

9
+ 4

9
= 1.

So replacing the rows of zeros has solved the problem caused by dangling nodes: If we

use the stochastic matrix S instead of the row-normalised hyperlink matrix H , then the

limiting vector v , when it exists, will be a probability vector.

Even when the limiting vector v exists, however, our example illustrates another prob-

lem. We wish to use the PageRanks of our six web pages to produce an ordering of the

pages. Unfortunately, the PageRanks calculated above do not allow us to distinguish be-

tween the pages P1, P2 and P3, as they all have PageRank equal to 0. The best we could

do is to rank the pages (4,4,4,2,3,1).

In order to eliminate the problem of multiple pages with a PageRank of 0, we add a third

question to our list:

C If the sequence v (0), v (1), v (2), v (3), . . . converges to a vector v , how can we guarantee

that v is a positive vector, that is, each entry in v is positive?

Guaranteeing that the limiting vector exists

There is a simple modification to the matrix S that will simultaneously answer ques-

tions A and C: We will be guaranteed that the sequence of vectors v (0), v (1), v (2), v (3), . . .

converges to a positive vector v .

This modification can be justified in terms of the behaviour of our random web surfer.

Brin and Page suggest that, from time to time, the web surfer Webster will become bored

with following hyperlinks, and he will request a completely random web page. Once

there, he will continue following hyperlinks until he becomes bored again.

If the proportion of the time that Webster continues to follow hyperlinks is d , then the

proportion of the time that he changes to another randomly chosen page is 1−d . The

number d , called the damping factor, is chosen so that 0 < d < 1.

Google PageRank ■ 13

To represent this new surfing behaviour for our six-page example W , we must replace

each row r of the matrix S by

dr + (1−d)
(1

6
,

1

6
,

1

6
,

1

6
,

1

6
,

1

6

)
.

This yields a new matrix G , called the Google matrix of the graph W :

G = d



0 1
2

1
2 0 0 0

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3 0 1

3 0 0

0 0 0 0 0 1

0 0 0 1
2 0 1

2

0 0 0 1
2

1
2 0


+ (1−d)



1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6


.

In their original 1998 paper, Brin and Page state that they usually set d = 0.85. With this

choice, the Google matrix of our graph W is

G =



1
40

9
20

9
20

1
40

1
40

1
40

1
6

1
6

1
6

1
6

1
6

1
6

37
120

37
120

1
40

37
120

1
40

1
40

1
40

1
40

1
40

1
40

1
40

7
8

1
40

1
40

1
40

9
20

1
40

9
20

1
40

1
40

1
40

9
20

9
20

1
40


.

Once again we can repeat the iteration, this time using the Google matrix G (with damp-

ing factor d = 0.85). That is, we now use the formula

v (k+1) = v (k)G

to calculate v (1), v (2), v (3), Using Excel, we obtain the results shown in figure 8.

14 ■ maths delivers!

P_1 P_2 P_3 P_4 P_5 P_6
v^(0) 0.16666667 0.16666667 0.16666667 0.16666667 0.16666667 0.16666667
v^(1) 0.09583333 0.16666667 0.11944444 0.23750000 0.11944444 0.26111111
v^(2) 0.08245370 0.12318287 0.08934028 0.24418981 0.15958333 0.30125000
v^(3) 0.06776399 0.10280681 0.07749373 0.26361815 0.17048216 0.31783517
v^(4) 0.06152086 0.09032055 0.06836399 0.26905572 0.17464424 0.33609464
v^(5) 0.05716521 0.08331157 0.06394177 0.27422924 0.18063563 0.34071657
v^(6) 0.05491931 0.07921452 0.06109769 0.27649400 0.18160702 0.34666747
v^(7) 0.05353307 0.07687377 0.05956276 0.27804972 0.18355573 0.34842494
v^(8) 0.05276657 0.07551812 0.05864201 0.27885835 0.18397105 0.35024390
v^(9) 0.05231364 0.07473943 0.05812419 0.27935499 0.18455206 0.35091570
v^(10) 0.05205661 0.07428990 0.05782138 0.27963040 0.18472726 0.35147445
v^(11) 0.05190713 0.07403118 0.05764846 0.27979285 0.18490105 0.35171933
v^(12) 0.05182148 0.07388201 0.05754828 0.27988514 0.18496847 0.35189462
v^(13) 0.05177196 0.07379609 0.05749075 0.27993878 0.18502183 0.35198059
v^(14) 0.05174349 0.07374658 0.05745753 0.27996952 0.18504620 0.35203668
v^(15) 0.05172707 0.07371805 0.05743842 0.27998729 0.18506302 0.35206616
v^(16) 0.05171761 0.07370161 0.05742739 0.27999751 0.18507151 0.35208437
v^(17) 0.05171216 0.07369214 0.05742105 0.28000340 0.18507692 0.35209433
v^(18) 0.05170902 0.07368668 0.05741739 0.28000680 0.18507981 0.35210030
v^(19) 0.05170721 0.07368354 0.05741528 0.28000876 0.18508158 0.35210365
v^(20) 0.05170616 0.07368173 0.05741406 0.28000988 0.18508255 0.35210561
v^(21) 0.05170556 0.07368068 0.05741336 0.28001053 0.18508313 0.35210673
v^(22) 0.05170522 0.07368008 0.05741296 0.28001091 0.18508346 0.35210738
v^(23) 0.05170502 0.07367973 0.05741273 0.28001112 0.18508365 0.35210775
v^(24) 0.05170490 0.07367953 0.05741259 0.28001125 0.18508376 0.35210797
v^(25) 0.05170484 0.07367942 0.05741252 0.28001132 0.18508382 0.35210809

v 0.0517 0.0737 0.0574 0.2800 0.1851 0.3521

Figure 8: The Excel spreadsheet using G.

To four-decimal places, the PageRank row vector for our example is

v = (0.0517, 0.0737, 0.0574, 0.2800, 0.1851, 0.3521).

This allows us to rank our six web pages in order from most important to least important

as P6, P4, P5, P2, P3, P1.

6th

4th

5th 2nd

3rd

1st

Figure 9: Ranking of web pages for our example.

Google PageRank ■ 15

The calculation of PageRanks for our example involves a 6×6 matrix. However, the cal-

culation by Google of PageRanks for the entire World Wide Web involves a matrix that is

more than 14 billion by 14 billion! The reason that this calculation is even possible is that

the Google matrix G is based on the original hyperlink matrix A, which is sparse (mean-

ing that most of its entries are zeros). If there are n web pages, then the matrix A has n2

entries. On average, a web page has only 10 outlinks, and so there are approximately 10n

non-zero entries in the matrix A. As the number of web pages n is extremely large, the

number 10n is very much smaller than n2.

The calculation of PageRanks from the Google matrix relies on several deep theorems of

mathematics:

1 Since G is a positive stochastic matrix (that is, every entry is positive and each row

sums to 1), an important theorem of linear algebra, proved by Oskar Perron in 1907,

guarantees that there is a unique positive probability vector v that satisfies v = v G .

2 The theory of Markov chains guarantees:

a the sequence of iterates v (0), v (1), v (2), v (3), . . . converges to v , regardless of the

choice for the starting vector v (0)

b to produce PageRank scores with approximately m digits of accuracy, the number

of iterations should be around
m

log10(1
d)

.

Using the formula in 2b above, we obtain the following table.

Calculation of PageRank scores

Digits of accuracy Iterations required

1 15

2 29

3 43

4 57

5 71

6 86

7 100

Apparently, Google uses somewhere between 50 and 100 iterations, meaning that they

are guaranteed an accuracy of between 3 and 7 digits.

16 ■ maths delivers!

To illustrate the independence of the limiting vector v from the starting vector, we can

simply change the value of v (0) in our spreadsheet. If we choose

v (0) = (
1, 0, 0, 0, 0, 0

)
,

then the sequence of iterates is as given in figure 10. As the theory predicts, this produces

the same final PageRank vector v as before.

P_1 P_2 P_3 P_4 P_5 P_6
v^(0) 1.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
v^(1) 0.02500000 0.45000000 0.45000000 0.02500000 0.02500000 0.02500000
v^(2) 0.21625000 0.22687500 0.09937500 0.23750000 0.09937500 0.12062500
v^(3) 0.08529688 0.17720313 0.14904688 0.17879688 0.10840625 0.30125000
v^(4) 0.09233372 0.12858490 0.08635495 0.26643763 0.17813503 0.24815378
v^(5) 0.06768343 0.10692526 0.08245803 0.24885617 0.14868155 0.34539557
v^(6) 0.06351085 0.09227631 0.06891320 0.27349363 0.18694086 0.31486515
v^(7) 0.05759788 0.08459000 0.06506459 0.27086544 0.17189017 0.34999193
v^(8) 0.05541855 0.07989765 0.06146268 0.27721844 0.18573015 0.34027253
v^(9) 0.05373326 0.07728614 0.05987172 0.27728440 0.18093466 0.35088982
v^(10) 0.05291252 0.07574916 0.05878551 0.27893793 0.18507704 0.34853784
v^(11) 0.05238702 0.07487485 0.05821895 0.27917335 0.18385971 0.35148611
v^(12) 0.05210264 0.07436713 0.05787176 0.27962462 0.18498887 0.35104500
v^(13) 0.05193234 0.07407596 0.05767896 0.27974673 0.18472947 0.35183654
v^(14) 0.05183647 0.07390771 0.05756534 0.27987702 0.18502462 0.35178884
v^(15) 0.05178044 0.07381094 0.05750076 0.27992616 0.18498052 0.35200119
v^(16) 0.05174843 0.07375512 0.05746324 0.27996566 0.18505705 0.35201050
v^(17) 0.05172989 0.07372297 0.05744172 0.27998360 0.18505311 0.35206870
v^(18) 0.05171924 0.07370445 0.05742929 0.27999601 0.18507328 0.35207772
v^(19) 0.05171310 0.07369377 0.05742214 0.28000227 0.18507450 0.35209422
v^(20) 0.05170956 0.07368762 0.05741802 0.28000626 0.18507999 0.35209854
v^(21) 0.05170752 0.07368408 0.05741564 0.28000840 0.18508096 0.35210340
v^(22) 0.05170634 0.07368204 0.05741427 0.28000970 0.18508252 0.35210512
v^(23) 0.05170567 0.07368086 0.05741348 0.28001042 0.18508297 0.35210660
v^(24) 0.05170528 0.07368018 0.05741303 0.28001084 0.18508343 0.35210724
v^(25) 0.05170505 0.07367979 0.05741277 0.28001108 0.18508360 0.35210770

v 0.0517 0.0737 0.0574 0.2800 0.1851 0.3521

Figure 10: The Excel spreadsheet using G: new v (0).

Google PageRank ■ 17

Postscript

Given the importance of mathematics to Google, it is not surprising that they actively

seek out talented mathematicians to join their team. In 2004, Google tried an ingenious

way to do this. They wrote

{
first 10-digit prime found in consecutive digits of e

}
.com

on a banner at the Harvard Square subway stop in Cambridge, Massachusetts, and on a

billboard on Highway 101 in California’s Silicon Valley — see figure 11.

Figure 11: The Google advertisement.

Those who worked out that this was code for 7427466391.com and surfed to the URL

were greeted with a message and an even more challenging puzzle:

Congratulations. You’ve made it to level 2. Go to www.Linux.org and enter

Bobsyouruncle as the login and the answer to this equation as the password.

f (1) = 7182818284, f (2) = 8182845904, f (3) = 8747135266,

f (4) = 7427466391, f (5) = .

If you found the password and logged in, you landed on the Google recruiting page

shown in figure 12, and you had an invitation to apply for a job with Google.

18 ■ maths delivers!

Figure 12: The Google recruiting page.

What was the password? If you guess that this also has something to do with the digits

of e, you could go to the website apod.nasa.gov/htmltest/gifcity/e.2mil, which

gives the first two million digits of e, and search for each of the numbers f (1), . . . , f (4) as

consecutive digits. Indeed, you will find them. But what should f (5) be? Surely it must

be ten consecutive digits of e, but which ten? I leave you to solve this final puzzle, with a

big hint: add up the digits of each of the numbers f (1), . . . , f (4).

You’ll probably need to write a program to do the search for f (5). I guess that was part of

Google’s intention.

Google PageRank ■ 19

Appendix: PageRank calculations in Excel

In this section, we give instructions for setting up an Excel spreadsheet to calculate Page-

Ranks for the following system of three web pages.

P1 P2

P3

Figure 13: Baby web example.

Step 1: The hyperlink matrix. In an Excel spreadsheet, enter the hyperlink matrix

A that corresponds to the graph, as shown in the following screenshot. The row sums

have been calculated by entering the formula =SUM(B3:D3) in cell E3 and then dragging

down to cell E5.

Figure 14: Setting up the hyperlink matrix.

Step 2: The stochastic matrix. Now set up the spreadsheet to automatically calculate

the stochastic matrix S from the matrix A: Enter the formula =IF($E3=0, 1/3, B3/$E3)
in cell B9, and then drag across and down to create the 3×3 matrix. (Note the important

use of dollar signs in this formula, which prevents the column name ‘E’ from changing

as the formula is dragged.)

Figure 15: Setting up the stochastic matrix.

20 ■ maths delivers!

Step 3: The Google matrix. Enter the value 0.85 into cell B14; this will be the damping

factor. Now create the Google matrix: Enter the formula

=B14*B9 + (1-B14)/3

in cell B18, and then drag across and down.

Figure 16: Setting up the Google matrix.

Google PageRank ■ 21

Step 4: First iteration. We’re nearly ready to perform the iteration to solve the Page-

Rank equation v = v G . The following screenshot shows the preparation for the iteration.

The initial vector v (0) = (1
3 , 1

3 , 1
3

)
has been added by entering =1/3 in cells H4, I4, J4.

In order to perform the matrix multiplications needed to calculate v (1), v (2), v (3), . . . , we

will use an Excel array formula.

We first want to calculate the vector v (1) = v (0)G . As shown in the following screenshot,

highlight the range H5:J5, which is where we want the result of the matrix multiplication.

While these cells are still highlighted, type the formula

=MMULT(H4:J4, B18:D20)

and press Control-Shift-Enter. You should obtain v (1) = (0.475,0.333333,0.191667).

Figure 17: Preparation for the iteration.

22 ■ maths delivers!

Step 5: More iterations. Highlight the range H5:J5 again, and drag down to obtain

an appropriate number of iterations. Your spreadsheet should now match the one in the

following screenshot. We have found that the PageRanks of P1, P2 and P3 are 0.397, 0.388

and 0.215, respectively.

Figure 18: Final spreadsheet.

Now that the spreadsheet is set up, you can experiment by

• changing the initial probability vector v 0

• changing the value of the damping factor d

• changing the hyperlink matrix A to correspond to a different three-node graph W .

Using a similar process, you can also set up a spreadsheet to check the calculations for

the six-page ‘mini web’ example used throughout these notes.

Google PageRank ■ 23

References

General reference

• Amy N. Langville and Carl D. Meyer, Google’s PageRank and Beyond: The Science of

Search Engine Rankings, Princeton University Press, 2006.

Technical references

• S. Brin and L. Page, ‘The anatomy of a large-scale hypertextual Web search engine’,

Computer Networks and ISDN Systems 33 (1998), 107–117.

• O. Perron, ‘Zur Theorie der Matrices’, Mathematische Annalen 64 (1907), 248–263.

0 1 2 3 4 5 6 7 8 9 10 11 12

