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Google PageRank

Introduction

What happens when you submit a search query to Google?

1 Alist of relevant web pages is produced, based on the words in your query.

2 This list of web pages is ordered, so that (hopefully) the pages most useful to you will
be at the top of the list.

Google’s success at performing this second step has played a major role in making it the

world’s favourite search engine.

The program that produces the list of relevant web pages, based on your query, is called
the query module. The list is passed to the ranking module. This program gives each

web page in the list an overall score, which is obtained by combining together:

e acontent score, which is a measure of how relevant the page is to your query

e apopularity score, which is completely independent of your query.
The list of web pages is displayed in the order determined by their overall scores.

A web page’s popularity score is also called its Google PageRank. In these notes, which
accompany the maths delivers! video of the same name, we explain how the PageRank
of a web page is calculated, and we discuss some of the mathematics which guarantees

that the calculation actually works.

The PageRank formula was presented to the
world in Brisbane at the Seventh World Wide
Web Conference (WWW98) by Sergey Brin and
Larry Page, the founders of Google, in 1998.
That year, Larry Page filed a patent for their pro-
cess to calculate the PageRank of web pages,

and the patent was granted in 2001. The rest is
history! Figure 1: Larry Page and Sergey Brin.
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The basic idea

We would like to attach a number to each web page that represents its importance.

Google’s founders Brin and Page suggested the idea of an imaginary web surfer, whom
we shall call Webster, who surfs the web randomly. Webster starts at a random web page.
Whenever he visits a web page, he randomly chooses a hyperlink on that page and fol-
lows it. Webster continues this indefinitely. In the limit, the proportion of the time, r (P;),

that Webster spends at a particular page P; is a measure of the importance of the page P;.

Converting this idea into a formula that can be calculated for each of the more than
14 billion web pages is the achievement that led Google to become the top web search

engine in existence.

The hyperlink graph of a set of web pages

A system of web pages with hyperlinks between them is viewed as a directed graph W,
called the hyperlink graph of the system. The nodes (or vertices) of the graph W are the
pages, and there is an edge from page P; to page P; if there is a hyperlink that points from
page P; to page P;; this is an outlink from page P; and an inlink to page P;. (Multiple
links from P; to P; are treated as a single edge of the graph, and self links from a page to

itself are ignored. Thus W is a simple, loopless directed graph.)

The graph W in figure 2 is the hyperlink graph of a system of six web pages. We can see,
for example, that there are outlinks from page Ps to pages P;, P» and P4, and that P, has
inlinks from pages P, and P3 but has no outlinks at all.

Q /
Figure 2: The hyperlink graph W.

We will pretend that this graph W represents a miniature ‘World Wide Web’, and see how

to calculate the PageRank for each of the six web pages.
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The hyperlink matrix

The graph W shown in figure 2 is encoded in the 6 x 6 table on the left in figure 3: the cell
in row P;, column P; contains a 1 if there is a link from page P; to page P;, and contains

a 0 otherwise.

P1 P2 Pg P4 PS PG

P 0 1 1 0 0 0 011 0O0O0

P, | 0 0 0 0 0 0 0 0 00 0O

P 1 1 0 1 0 0 1 10100
AN A =

Py 0 0 0 0 0 1 0 000 01

Ps | 0 0 0 1 0 1 0 001 01

Pg | O 0 0 1 1 0 0 00110

Figure 3: The hyperlink matrix A of W.

Removing the row and column labels of the table leaves us with the hyperlink matrix A
(also known as the adjacency matrix) of the graph W. The matrix A is shown on the right

in figure 3.

The PageRank equations

How do we measure the importance of a page? A link from your page to my page is
an endorsement of my page. The more inlinks my page has, the more important it is.

However, some links are more valuable than others.
e Alink to my page from a very important page is more valuable. The more important a
page is, the more it should contribute to the importance of the pages to which it links.

e Alink to my page from a page with a large number of outlinks is not so valuable. The
more outlinks a page has, the less valuable is the recommendation provided by each

of its individual outlinks.
In order to formalise these two ideas, we first introduce some notation:

e Letthe PageRank of page P; be denoted by r(P;). This will be a number that measures

the importance of page P;.

e Let the number of outlinks from page P; be denoted by | P;|. Note that | P;| is equal to
the sum of the entries in the ith row of the hyperlink matrix A.
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Each page P; that links to page P; contributes some of its importance r(P;) to the im-
portance of page P;. The more outlinks such a page has, the less it should contribute to
the importance of page P;. Consequently, if page P; has an inlink from page P;, we will

say that P; contributes

r(P]-)

|Pjl

to the PageRank r(P;) of page P;. Adding up all of these contributions from pages with a
link to P; yields the PageRank of P;.

For our six-page ‘mini web), this leads to the following PageRank equations:

r(P3)
r(Py) = 33 :
F(Py) = r(Py) N F(Ps)’

2 3

F(Py) = r(P1) \ /

)

2 AN,
| ~O—E]
o) = r(gg) M) - N\

P
r(Ps) = r(zﬁ),
r(pg) = 121 | T(P5).

1 2
We are searching for a PageRank row vector
v =(r(P), r(Pa), r(P3), r(Py), r(Ps), r(Pe))

that satisfies these six PageRank equations. Moreover, since r (P;) should give the propor-
tion of time that our random web surfer Webster spends at page P;, the vector v should
be a probability vector. That is, we should have r(P;) = 0, for each page P;, and

r(P1) +r(P2) +1r(P3)+r(Psg) +1r(Ps)+1(Pg) =1.

If we denote the set of pages with a hyperlink to P; by Lp,, then each PageRank equation

can be written in summation notation as

r(P;)
=Y

PjELpi
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The PageRank equations via matrices

The six PageRank equations given in the previous section can be conveniently sum-

marised as a single matrix equation.

To do this, we first normalise each row of the hyperlink matrix A, that is, we divide each
entry in the matrix A by the sum of its row. Now each non-zero row will sum to 1. The
resulting matrix H is called the row-normalised hyperlink matrix of the graph W, and

is shown on the right in figure 4.

011000 0 3 3000
000000 000000
4|t 10100 WH:%%O%OO
000001 000001
0007101 000 3 0 3
000110 000 3 3 0

Figure 4: The row-normalised hyperlink matrix H of W.

Our six PageRank equations are now equivalent to the following matrix equation:

03 3 000

(rey ry) 1Py rPa) rPs) r(Po) 00000 0
_ 1303500

=(re)) ry) ry ry res) r(ey) :

0 0 0 0 01

000 3 0 3

000110

This equation can be written somewhat more briefly as
v=vH.

It would be easy to solve our six PageRank equations by hand. There is also a systematic
method for solving such a system of simultaneous equations (the Gaussian algorithm)

which can be carried out by a computer.

However, finding PageRanks for the entire World Wide Web involves a system of more
than 14 billion PageRank equations, and it is not feasible to try to solve these PageRank
equations directly, even by computer.
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Solving the PageRank equations iteratively

Brin and Page suggested that the matrix equation v = v H given in the previous section
should be solved iteratively, that is, by calculating a sequence of approximations to the

solution vector v.

For the initial approximation v?, they take all pages to have the same PageRank. For our

‘mini web’ example, we have

This is the Oth approximation to the PageRank row vector v. Successive approximations

are obtained by multiplying on the right by the matrix H:

v(l) — V(O)H
v(z) — V(I)H
@ = ,@p

In general, we have p &+ = () 1 We hope that the sequence v @ pD p@ B will

converge to a probability vector v with v = v H.
There are two important questions:
A Is there a theorem that guarantees the sequence v©, v, v@ v® will converge

to a vector v?

B If the sequence v9, v, »@ v . converges to a vector v, will v necessarily be a

probability vector?

Solving the dangling-node problem

We shall address question B first. In the case of our six-page ‘mini web’ W, we have

(0)_(1 1111 1).
6666 66

vV =
Using an Excel spreadsheet, we can easily apply the iterative formula v**V = »® H to
calculate vV, v® v ... The results are given in figure 5. See the Appendix section of

these notes for instructions on how to set up such a spreadsheet.
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P_1 P2 P_3 P4 PS5 P_6
vA(0)  0.16666667  0.16666667  0.16666667 = 0.16666667  0.16666667  0.16666667
vA(1) = 0.05555556 = 0.13888889  0.08333333 = 0.22222222  0.08333333  0.25000000
vA2)  0.02777778  0.05555556 = 0.02777778 = 0.19444444  0.12500000  0.26388889
vA(3)  0.00925926 = 0.02314815  0.01388889 = 0.20370370 = 0.13194444  0.25694444
vA(4)  0.00462963 = 0.00925926 = 0.00462963 = 0.19907407 = 0.12847222 = 0.26967593
vA(5)  0.00154321  0.00385802  0.00231481 = 0.20061728  0.13483796  0.26331019
vA(6)  0.00077160 = 0.00154321  0.00077160 = 0.19984568 = 0.13165509  0.26803627
vA(7)  0.00025720 = 0.00064300 = 0.00038580 = 0.20010288 = 0.13401813 = 0.26567323
vA(8)  0.00012860 = 0.00025720 = 0.00012860 = 0.19997428 = 0.13283661 = 0.26711195
vA(9)  0.00004287 = 0.00010717 = 0.00006430 = 0.20001715  0.13355597  0.26639259
vA(10)  0.00002143  0.00004287 = 0.00002143  0.19999571 = 0.13319629  0.26679513
vA(11) = 0.00000714 = 0.00001786 = 0.00001072 = 0.20000286  0.13339757 = 0.26659386
vA(12) = 0.00000357 = 0.00000714 = 0.00000357 = 0.19999929  0.13329693 = 0.26670164
vA(13)  0.00000119 = 0.00000298 = 0.00000179 = 0.20000048 = 0.13335082 = 0.26664775
vA(14) = 0.00000060 = 0.00000119 = 0.00000060 = 0.19999988  0.13332388 = 0.26667589
vA(15)  0.00000020 = 0.00000050 = 0.00000030 = 0.20000008  0.13333794 = 0.26666182
vA(16) = 0.00000010 = 0.00000020 = 0.00000010 = 0.19999998 = 0.13333091 = 0.26666905
vA(17) = 0.00000003  0.00000008 = 0.00000005 = 0.20000001 = 0.13333453 = 0.26666543
vA(18)  0.00000002 = 0.00000003 = 0.00000002 = 0.20000000  0.13333272 = 0.26666728
vA(19) = 0.00000001 = 0.00000001 = 0.00000001 = 0.20000000  0.13333364  0.26666636
vA(20)  0.00000000 = 0.00000001 = 0.00000000 = 0.20000000  0.13333318 = 0.26666682
vA(21) = 0.00000000 = 0.00000000 = 0.00000000 = 0.20000000  0.13333341 = 0.26666659
vA(22) = 0.00000000  0.00000000 = 0.00000000 = 0.20000000 = 0.13333329 = 0.26666671
vA(23)  0.00000000  0.00000000 =~ 0.00000000 = 0.20000000 = 0.13333335 = 0.26666665
vA(24)  0.00000000  0.00000000 = 0.00000000 = 0.20000000  0.13333332 = 0.26666668
vA(25)  0.00000000 = 0.00000000 =~ 0.00000000 = 0.20000000 = 0.13333334 = 0.26666666
v 0 0 0 1/5 2/15 4/15

Figure 5: The Excel spreadsheet using H.

While this is not a proof, we see that the limit vector v seems to be
2 4 )
" 15" 15)°

Indeed, it is easy to check that this choice of v satisfies the matrix equation v = v H.

v=(0, 0, 0,

[N

Unfortunately, since the sum of the coordinates is % rather than 1, this is not a probability

vector.

The problem is caused by the row of zeros in the matrix H. This row of zeros corresponds
to the fact that P, is a dangling node, that is, it has no outlinks. Dangling nodes are very
common in the World Wide Web (for example: image files, PDF documents, etc.), and
they cause a problem for our random web surfer. When Webster enters a dangling node,

he has nowhere to go and is stuck.

To overcome this problem, Brin and Page declare that, when Webster enters a dangling
page, he may then jump to any page at random. This corresponds to replacing each row
of 0’s in the matrix H by a row of %’s, where 7 is the total number of nodes in our graph.

This new matrix S is called the stochastic matrix of the graph W, as each row sums to 1.
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For our ‘mini web’ example, this transformation is shown in figure 6.

1 1 1 1
o 21 oo0o0 o 21 o0 o0
000 0 00 I
1 1 1 1 1 1
L1 9 1 oo L1 9 1 990
H=|3 3 3 A~ og=|3 3 3
000 0 0 1 000 0 0 1
1 1 1 1
000101} 000101
1 1 1 1
000110 oo0oo0 1 lo

Figure 6: The stochastic matrix S of W.

We can now repeat the iteration using the stochastic matrix S instead of H. That is, we

now use the formula

P+ — o g

to calculate vV, v@ @ ... Using Excel, we obtain the results shown in figure 7.

P_1 P2 P_3 P4 PS5 P_6
vM0) | 0.16666667 = 0.16666667  0.16666667 = 0.16666667  0.16666667 = 0.16666667
vA(1)  0.08333333  0.16666667  0.11111111 = 0.25000000 = 0.11111111 = 0.27777778
vA(2) | 0.06481481 @ 0.10648148 = 0.06944444  0.25925926  0.16666667 = 0.33333333
vA(3)  0.04089506  0.07330247  0.05015432 = 0.29089506  0.18441358  0.36033951
vA(4)  0.02893519 = 0.04938272  0.03266461 = 0.30131173 = 0.19238683 = 0.39531893
vA(5) = 0.01911866 @ 0.03358625  0.02269805 = 0.31297154 = 0.20588992  0.40573560
vA(6)  0.01316372 = 0.02272305  0.01515704 = 0.31897648 = 0.20846551  0.42151420
vA(7)  0.00883952 = 0.01542138 = 0.01036904 = 0.32382938 = 0.21454428  0.42699641
vA(8)  0.00602658  0.01044634  0.00698999 = 0.32679692  0.21606843  0.43367174
vA(9)  0.00407105 = 0.00708434 = 0.00475434  0.32894114  0.21857693  0.43657219
VA(10) = 0.00276550 @ 0.00480103 = 0.00321625 = 0.33034006  0.21946682 = 0.43941033
vA(11) = 0.00187226 = 0.00325501 = 0.00218292 = 0.33131083 = 0.22050534  0.44087365
vA(12) = 0.00127014 = 0.00220627 = 0.00147863 = 0.33195963  0.22097932 = 0.44210600
vA(13)  0.00086059  0.00149566  0.00100278 = 0.33240325 = 0.22142071  0.44281701
vA(14) = 0.00058354 = 0.00101383 = 0.00067957 = 0.33270240  0.22165778  0.44336288
vA(15) = 0.00039550 = 0.00068726 = 0.00046074 = 0.33290583  0.22185041  0.44370026
vA(16) = 0.00026812 = 0.00046587 = 0.00031229 = 0.33304346  0.22196467 = 0.44394558
vA(17) = 0.00018174 = 0.00031580 = 0.00021171 = 0.33313687 = 0.22205043 = 0.44410344
vA(18) = 0.00012320 = 0.00021407 = 0.00014351 = 0.33320014 = 0.22210436  0.44421472
vA(19) = 0.00008351 = 0.00014512 = 0.00009728 = 0.33324305  0.22214304  0.44428800
vA(20) = 0.00005661 = 0.00009837 = 0.00006594 = 0.33327213  0.22216819 = 0.44433876
vA(21) = 0.00003838 = 0.00006668 = 0.00004470 = 0.33329185 = 0.22218577 = 0.44437262
vA(22) = 0.00002601 = 0.00004520 = 0.00003030 = 0.33330521 = 0.22219742 = 0.44439585
vA(23)  0.00001763  0.00003064  0.00002054 = 0.33331427 = 0.22220546  0.44441146
vA(24)  0.00001195 = 0.00002077 = 0.00001392 = 0.33332041 = 0.22221083 = 0.44442211
vA(25) = 0.00000810 = 0.00001408 = 0.00000944 = 0.33332457  0.22221451  0.44442929
v 0 0 0 1/3 2/9 4/9

Figure 7: The Excel spreadsheet using S.
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The limit of the sequence v'@, vV, @ v® . of row vectors is now

1 2 4
V= (O» Oy 0) e _)$
399

which is a probability vector since

=1.

O |

2
+=+
9

W~

So replacing the rows of zeros has solved the problem caused by dangling nodes: If we
use the stochastic matrix S instead of the row-normalised hyperlink matrix H, then the

limiting vector v, when it exists, will be a probability vector.

Even when the limiting vector v exists, however, our example illustrates another prob-
lem. We wish to use the PageRanks of our six web pages to produce an ordering of the
pages. Unfortunately, the PageRanks calculated above do not allow us to distinguish be-
tween the pages P;, P, and Ps, as they all have PageRank equal to 0. The best we could
do is to rank the pages (4,4,4,2,3,1).

In order to eliminate the problem of multiple pages with a PageRank of 0, we add a third
question to our list:

C Ifthe sequence v@,v™ v@ v . converges to a vector v, how can we guarantee

that v is a positive vector, that is, each entry in v is positive?

Guaranteeing that the limiting vector exists

There is a simple modification to the matrix S that will simultaneously answer ques-
tions A and C: We will be guaranteed that the sequence of vectors v, p®,p@ p®

converges to a positive vector v.

This modification can be justified in terms of the behaviour of our random web surfer.
Brin and Page suggest that, from time to time, the web surfer Webster will become bored
with following hyperlinks, and he will request a completely random web page. Once

there, he will continue following hyperlinks until he becomes bored again.

If the proportion of the time that Webster continues to follow hyperlinks is d, then the
proportion of the time that he changes to another randomly chosen page is 1 —d. The

number d, called the damping factor, is chosen so that0 < d < 1.
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To represent this new surfing behaviour for our six-page example W, we must replace

each row r of the matrix S by

This yields a new matrix G, called the Google matrix of the graph W:

1 1 1 1 1 1 1 1
0 3 37 000 5 6 6 65 65 6
11 1 1 1 1 11 1 1 1 1
6 6 6 6 6 ©6 6 6 6 6 6 ©6
11 91 9 o 10101 1 1 1

G:d33 3 +(1_d)666666
1 1 1 1 1 1

1 1 1 1 1 1 1 1

000 3 0 3 5 6 6 6 65 6
11 1011 1 1 1
000220 6 6 6 6 6 6

In their original 1998 paper, Brin and Page state that they usually set d = 0.85. With this
choice, the Google matrix of our graph W is

1 9 9 1 1 1
40 20 20 40 40 40
11 1 1 1 1
6 6 6 6 6 6
37 37 1 37 1 1

G= 120 120 40 120 40 40
1 1 1 1 1 71
40 40 40 40 40 8
1 1 1 9 1 9
40 40 40 20 40 20
1 1 1 9 9 1
40 40 40 20 20 40

Once again we can repeat the iteration, this time using the Google matrix G (with damp-
ing factor d = 0.85). That is, we now use the formula

P+ — g

to calculate vV, v@ p® ... Using Excel, we obtain the results shown in figure 8.
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P_1 P2 P_3 P4 PS5 P_6
vA(0)  0.16666667  0.16666667  0.16666667 = 0.16666667  0.16666667  0.16666667
vA(1)  0.09583333  0.16666667 = 0.11944444 023750000  0.11944444 = 0.26111111
vA(2)  0.08245370 = 0.12318287  0.08934028 = 0.24418981  0.15958333  0.30125000
vA(3)  0.06776399 = 0.10280681  0.07749373 = 0.26361815  0.17048216  0.31783517
vA(4)  0.06152086 = 0.09032055  0.06836399 = 0.26905572 = 0.17464424 = 0.33609464
vA(5)  0.05716521  0.08331157  0.06394177 = 0.27422924  0.18063563  0.34071657
vA(6)  0.05491931 = 0.07921452  0.06109769 = 0.27649400  0.18160702  0.34666747
vA(7)  0.05353307 0.07687377  0.05956276 = 0.27804972 = 0.18355573  0.34842494
vA(8)  0.05276657 = 0.07551812  0.05864201 = 0.27885835  0.18397105  0.35024390
vA(9)  0.05231364  0.07473943  0.05812419 = 0.27935499 = 0.18455206  0.35091570
vA(10)  0.05205661  0.07428990 = 0.05782138 = 0.27963040 = 0.18472726  0.35147445
vA(11) = 0.05190713  0.07403118 = 0.05764846 = 0.27979285  0.18490105 = 0.35171933
vA(12)  0.05182148  0.07388201  0.05754828 = 0.27988514  0.18496847 = 0.35189462
vA(13)  0.05177196  0.07379609 = 0.05749075 = 0.27993878  0.18502183 = 0.35198059
vA(14)  0.05174349 = 0.07374658 = 0.05745753 = 0.27996952  0.18504620  0.35203668
vA(15)  0.05172707 0.07371805 = 0.05743842 = 0.27998729  0.18506302  0.35206616
vA(16) = 0.05171761 = 0.07370161 = 0.05742739 = 0.27999751  0.18507151 = 0.35208437
vA(17)  0.05171216 = 0.07369214  0.05742105 = 0.28000340 = 0.18507692 = 0.35209433
vA(18) = 0.05170902  0.07368668 = 0.05741739 = 0.28000680  0.18507981 = 0.35210030
vA(19)  0.05170721 = 0.07368354 = 0.05741528 = 0.28000876 = 0.18508158 = 0.35210365
vA(20) 005170616  0.07368173  0.05741406  0.28000988  0.18508255  0.35210561
vA(21) = 0.05170556  0.07368068 = 0.05741336 = 0.28001053 = 0.18508313 = 0.35210673
vA(22) = 0.05170522 = 0.07368008 = 0.05741296 = 0.28001091  0.18508346 = 0.35210738
vA(23)  0.05170502 = 0.07367973 = 0.05741273 = 0.28001112 = 0.18508365 = 0.35210775
vA(24) = 0.05170490 = 0.07367953 = 0.05741259 = 0.28001125  0.18508376 = 0.35210797
vA(25)  0.05170484  0.07367942  0.05741252 = 0.28001132  0.18508382  0.35210809
v 0.0517 0.0737 0.0574 0.2800 0.1851 0.3521

Figure 8: The Excel spreadsheet using G.

To four-decimal places, the PageRank row vector for our example is
v =(0.0517, 0.0737, 0.0574, 0.2800, 0.1851, 0.3521).

This allows us to rank our six web pages in order from most important to least important

as Pg, P4, Ps, Py, P3, Py.
Q /
Do

Figure 9: Ranking of web pages for our example.
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The calculation of PageRanks for our example involves a 6 x 6 matrix. However, the cal-
culation by Google of PageRanks for the entire World Wide Web involves a matrix that is
more than 14 billion by 14 billion! The reason that this calculation is even possible is that
the Google matrix G is based on the original hyperlink matrix A, which is sparse (mean-
ing that most of its entries are zeros). If there are n web pages, then the matrix A has n?
entries. On average, a web page has only 10 outlinks, and so there are approximately 10n
non-zero entries in the matrix A. As the number of web pages n is extremely large, the
number 107 is very much smaller than n?.

The calculation of PageRanks from the Google matrix relies on several deep theorems of

mathematics:

1 Since G is a positive stochastic matrix (that is, every entry is positive and each row
sums to 1), an important theorem of linear algebra, proved by Oskar Perron in 1907,

guarantees that there is a unique positive probability vector v that satisfies v =v G.
2 The theory of Markov chains guarantees:

a the sequence of iterates v@, v, v® p®  converges to v, regardless of the
choice for the starting vector v®
b toproduce PageRank scores with approximately m digits of accuracy, the number

of iterations should be around —
10810(2)

Using the formula in 2b above, we obtain the following table.

Calculation of PageRank scores

Digits of accuracy Iterations required

1 15
29
43
57
71
86

N g W N

100

Apparently, Google uses somewhere between 50 and 100 iterations, meaning that they

are guaranteed an accuracy of between 3 and 7 digits.
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To illustrate the independence of the limiting vector v from the starting vector, we can
simply change the value of v” in our spreadsheet. If we choose

v¥=(1,0,0,0,0,0),

then the sequence of iterates is as given in figure 10. As the theory predicts, this produces

the same final PageRank vector v as before.

P_1 P2 P_3 P_4 P_5 P_6
vA(0)  1.00000000 = 0.00000000  0.00000000  0.00000000  0.00000000  0.00000000
vA(1)  0.02500000 = 0.45000000  0.45000000 = 0.02500000  0.02500000  0.02500000
vA(2)  0.21625000 = 0.22687500 = 0.09937500 = 0.23750000 = 0.09937500 = 0.12062500
vA(3)  0.08529688 = 0.17720313 = 0.14904688 = 0.17879688 = 0.10840625 = 0.30125000
vA(4)  0.09233372  0.12858490  0.08635495 = 0.26643763 = 0.17813503 = 0.24815378
vA(5)  0.06768343 = 0.10692526  0.08245803 = 0.24885617 = 0.14868155 = 0.34539557
vA(6)  0.06351085 = 0.09227631 = 0.06891320 = 0.27349363 = 0.18694086 = 0.31486515
vA(7)  0.05759788 = 0.08459000 = 0.06506459 = 0.27086544  0.17189017 = 0.34999193
vA(8)  0.05541855 = 0.07989765 = 0.06146268  0.27721844  0.18573015 = 0.34027253
vA(9)  0.05373326  0.07728614 = 0.05987172 = 0.27728440  0.18093466  0.35088982
vA(10)  0.05291252 = 0.07574916 = 0.05878551 = 0.27893793  0.18507704 = 0.34853784
vA(11) = 0.05238702  0.07487485  0.05821895 = 0.27917335 = 0.18385971 = 0.35148611
vA(12) = 0.05210264 = 0.07436713 = 0.05787176 = 0.27962462  0.18498887 = 0.35104500
vA(13)  0.05193234  0.07407596 = 0.05767896 = 0.27974673  0.18472947 = 0.35183654
vA(14) = 0.05183647  0.07390771 = 0.05756534 = 0.27987702  0.18502462 = 0.35178884
vA(15) = 0.05178044 = 0.07381094 = 0.05750076 = 0.27992616  0.18498052 = 0.35200119
vA(16) = 0.05174843 = 0.07375512  0.05746324 = 0.27996566  0.18505705 = 0.35201050
vA(17) = 0.05172989 = 0.07372297 = 0.05744172 = 0.27998360  0.18505311 = 0.35206870
vA(18)  0.05171924 = 0.07370445 = 0.05742929 = 0.27999601 = 0.18507328 = 0.35207772
vA(19)  0.05171310 0.07369377 = 0.05742214 = 0.28000227 = 0.18507450 = 0.35209422
vA(20)  0.05170956 = 0.07368762 = 0.05741802 = 0.28000626 = 0.18507999 = 0.35209854
vA(21) = 0.05170752 = 0.07368408 = 0.05741564 = 0.28000840  0.18508096 = 0.35210340
vA(22)  0.05170634 = 0.07368204 = 0.05741427 = 0.28000970 = 0.18508252 = 0.35210512
vA(23)  0.05170567 = 0.07368086 = 0.05741348 = 0.28001042  0.18508297 = 0.35210660
vA(24)  0.05170528 = 0.07368018 = 0.05741303 = 0.28001084  0.18508343 = 0.35210724
vA(25) = 0.05170505 = 0.07367979 = 0.05741277 = 0.28001108 = 0.18508360 = 0.35210770

v 0.0517 0.0737 0.0574 0.2800 0.1851 0.3521

Figure 10: The Excel spreadsheet using G: new v(©®.
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Postscript

Given the importance of mathematics to Google, it is not surprising that they actively
seek out talented mathematicians to join their team. In 2004, Google tried an ingenious

way to do this. They wrote
{ first 10-digit prime found in consecutive digits of e }.com

on a banner at the Harvard Square subway stop in Cambridge, Massachusetts, and on a
billboard on Highway 101 in California’s Silicon Valley — see figure 11.

e
W e

first 10 » o
irst 10-digt primee found .com

in conseculive digits of «

Figure 11: The Google advertisement.

Those who worked out that this was code for 7427466391 . com and surfed to the URL
were greeted with a message and an even more challenging puzzle:

Congratulations. You've made it to level 2. Go to www.Linux.org and enter
Bobsyouruncle as the login and the answer to this equation as the password.

f(1)=7182818284, f(2)=8182845904, f(3)=28747135266,

f(4) =7427466391, f(5) =

If you found the password and logged in, you landed on the Google recruiting page

shown in figure 12, and you had an invitation to apply for a job with Google.
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(Lags)

Google

Congratulations.

Nice work. Well done. Mazel tov. You've made it to Google Labs and we're glad you're here.

One thing we learned while building Google is that it's easier to find what you're looking for if it comes looking for you. What
we're looking for are the best engineers in the world. And here you are.

As you can imagine, we get many, many resumes every day, so we developed this little process to increase the signal to
noise ratio. We apologize for taking so much of your time just to ask you to consider working with us. We hope you'll feel it
was worthwhile when you look at some of the interesting projects we're developing right now. You'll find links to more
information about our efforts below, but before you get immersed in machine learning and genetic algorithms, please send your
resume to us at problem-solver le.com.

We're tackling a lot of engineering challenges that may not actually be solvable. If they are, they'll change a lot of things. If
they're not, well, it will be fun to try anyway. We could use your big, magnificent brain to help us find out.

Some information about our current projects:

o Why vou should work at Google
e | ooking for interesting work that matters to millions of people?

e http://labs.google.com

oogle

Figure 12: The Google recruiting page.

What was the password? If you guess that this also has something to do with the digits
of e, you could go to the website apod.nasa.gov/htmltest/gifcity/e.2mil, which
gives the first two million digits of e, and search for each of the numbers f(1),..., f(4) as
consecutive digits. Indeed, you will find them. But what should f(5) be? Surely it must
be ten consecutive digits of e, but which ten? I leave you to solve this final puzzle, with a
big hint: add up the digits of each of the numbers f(1),..., f(4).

You'll probably need to write a program to do the search for f(5). I guess that was part of
Google’s intention.
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Appendix: PageRank calculations in Excel

In this section, we give instructions for setting up an Excel spreadsheet to calculate Page-

Ranks for the following system of three web pages.

/\
Q=0

Figure 13: Baby web example.

Step 1: The hyperlink matrix. In an Excel spreadsheet, enter the hyperlink matrix
A that corresponds to the graph, as shown in the following screenshot. The row sums
have been calculated by entering the formula=SUM(B3:D3) in cell E3 and then dragging

down to cell E5.

A B = D E F
1 |Hyperlink matrix A
2 P1 P2 P3 row sum
3 P1 0 1 0 1
4 P2 1 1 2
3 P3 1 0 0 1
6

Figure 14: Setting up the hyperlink matrix.

Step 2: The stochastic matrix. Now set up the spreadsheet to automatically calculate
the stochastic matrix S from the matrix A: Enter the formula =IF($E3=0, 1/3, B3/$E3)
in cell B9, and then drag across and down to create the 3 x 3 matrix. (Note the important
use of dollar signs in this formula, which prevents the column name ‘E’ from changing

as the formula is dragged.)

A B c D E F
1 |Hyperlink matrix A
2 P1 p2 P3 row sum
3 P1 ] 1 1] 1
4 P2 1 1 2
5 P3 1 0 1] 1
+]
7 | Stochastic matrix S

P1 P2 P3

9 P1 o 1 o
10 F2 0.5 0 0.5
11 P3 1 ] 1]

12

Figure 15: Setting up the stochastic matrix.
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Step 3: The Google matrix. Enter the value 0.85 into cell B14; this will be the damping
factor. Now create the Google matrix: Enter the formula

=$B$14*B9 + (1-5B$14)/3

in cell B18, and then drag across and down.

A B C D E F

1 Hyperlink matrix A
2 P1 P2 P3 row sum
3 P1 0 1 0 1
4 P2 1 1 2
5 P3 1 0 0 1
i
7 Stochastic matrix §
3 P1 P2 P3

P1 1] 1 0
10 P2 0.5 0 0.5
11 P3 1 1] 1]
12
13 | Damping factor
14 d= 0.85
15
16 | Google matrix G
17 P1 P2 P3
18 P1 0.05 0.9 0.05
19 P2 0.475 0.05 0.475
20 P3 0.9 0.05 0.05
21

Figure 16: Setting up the Google matrix.
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Step 4: First iteration. We're nearly ready to perform the iteration to solve the Page-
Rank equation v = v G. The following screenshot shows the preparation for the iteration.

The initial vector v© = (%, %, %) has been added by entering =1/3 in cells H4, 14, J4.

In order to perform the matrix multiplications needed to calculate vV, v®,v® ... we

will use an Excel array formula.

We first want to calculate the vector vV = @ G. As shown in the following screenshot,
highlight the range H5:J5, which is where we want the result of the matrix multiplication.
While these cells are still highlighted, type the formula

=MMULT(H4:J4, $B$18:35D%20)

and press Control-Shift-Enter. You should obtain v = (0.475,0.333333,0.191667).

A B - D E F G H | 1
1 Hyperlink matrix A PageRank calculation
2 P1 p2 P3 row sum
3 P1 0 1 0 1 iteration P1 P2 P3
= p2 1 0 1 2 0 0.333333 0.333333 0.333333
5 P3 1 0 0 1 1| |
6 2
7 |Stochastic matrix S 3
8 Pl P2 P3 4
9 P1 0 1 0 5
10 P2 0.5 0 0.5 6
11 P3 1 0 ] 7
12 8
13 |Damping factor 9
14 d= 0.85 10
15 11
16 Google matrix G 12
17 Pl P2 P3 13
18 P1 0.05 0.9 0.05 14
19 P2 0.475 0.05 0.475 15
20 P3 0.9 0.05 0.05 16
21 17
22 18
23 19
24 20

Figure 17: Preparation for the iteration.



22 maths delivers!

Step 5: More iterations. Highlight the range H5:J5 again, and drag down to obtain
an appropriate number of iterations. Your spreadsheet should now match the one in the
following screenshot. We have found that the PageRanks of Py, P, and P5 are 0.397, 0.388
and 0.215, respectively.

A B C D E F G H 1 J
1 Hyperlink matrix A PageRank calculation
2 Pl P2 P3 row sum
3 Pl 0 1 0 1 iteration P1 P2 P3
4 p2 1 0 1 2 0 0.333333 0.333333 0.333333
5 P3 1 0 0 1 1 0.475 0.333333 0.191667
6 2 0.354583 0.45375 0.191667
7 Stochastic matrix § 3 0.40576 0.351396 0.242844
8 P1 P2 P3 4  0.40576 0.394896 0.193343
9 P1 1] 1 1] 5 0.387273 0.394896 0.217831
10 p2 0.5 0 0.5 6 0.402987 0.379182 0.217831
11 P3 1 0 1] 7 0.396309 0.392539 0.211152
12 8 0.396309 0.386862 0.216829
13 Damping factor 9 0.398721 0.386862 0.214416
14 d= 0.85 10 0.39667 0.388913 0.214416
15 11 0.397542 0.38717 0.215288

=
Pa

16 | Google matrix G 0.397542 0.387911 0.214547

17 Pl p2 P3 13 0.397227 0.387911 0.214862
13 P1 0.05 0.9 0.05 14 0.397495 0.387643 0.214862
13 P2 0.475 0.03 0.475 15 0.397381 0.387871 0.214743
20 P3 0.9 0.05 0.05 16 0.397381 0.387774 0.214845
21 17 0.397422 0.387774 0.214804
22 18 0.297387 0.387809 0.214804
23 19 0.397402 0.387779 0.214819
24 20 0.397402 0.387792 0.214806

Figure 18: Final spreadsheet.

Now that the spreadsheet is set up, you can experiment by

e changing the initial probability vector v°
e changing the value of the damping factor d
e changing the hyperlink matrix A to correspond to a different three-node graph W.

Using a similar process, you can also set up a spreadsheet to check the calculations for

the six-page ‘mini web’ example used throughout these notes.



Google PageRank 23

References

General reference

e Amy N. Langyville and Carl D. Meyer, Google’s PageRank and Beyond: The Science of
Search Engine Rankings, Princeton University Press, 2006.

Technical references

e S. Brin and L. Page, ‘The anatomy of a large-scale hypertextual Web search engine),
Computer Networks and ISDN Systems 33 (1998), 107-117.

e O.Perron, ‘Zur Theorie der Matrices’, Mathematische Annalen 64 (1907), 248-263.








