
14
Using Native

Extensions and ADT

In this chapter, we will cover:

 f Compiling from the command line using Windows

 f Compiling from the command line using Mac OS X

 f Using a native extension

 f Packaging a native extension

 f Enabling Interpreter Mode

 f Running ADT outside your Flash Professional CS5 installation

Introduction
The Flash platform is constantly evolving. Adobe is particularly focused on AIR, with new
releases of the SDK being made on a regular basis. While this momentum is generally a good
thing, it can leave AIR's integration with Flash Professional, which sees lengthier development
cycles, out of sync. This is evident by the fact that Flash Professional CS5.5, by default,
uses the older AIR 2.6 SDK and has no direct support for more recent features of the AIR
Development Tool (ADT). Those using Flash Professional CS5 are restricted further—with AIR
2.0 being the only available option.

This chapter will cover how the command line can be used to compile .swf files into iOS
applications rather than using Flash Professional directly. For CS5.5 users, we will also see
how the command line can be used to provide support for ActionScript native extensions and
to create Interpreter Mode builds. The command line is equally important for CS5 users as it
will not only allow the creation of Interpreter Mode builds, but also enable applications to take
advantage of the improved rendering engine provided by AIR 2.6 and above.

Using Native Extensions and ADT

2

Compiling from the command line using
Windows

Throughout the course of this book, we have concentrated exclusively on the compilation
of .ipa files directly from the Flash IDE. However, it is also possible to compile from the
command line. Let us see how this is done.

The steps covered here are for Microsoft Windows. If you are using Mac OS X, then refer to the
Compiling from the command line using Mac OS X recipe.

Getting ready
The command line compiler is a Java application and requires the Java runtime environment
in order to run. If you don't already have Java installed on your system, then download it from
www.java.com/getjava.

While AIR 3.0 and above supports both the 32-bit and 64-bit versions of
the Java executable, older versions of AIR only support 32-bit Java. We will
stick to the 32-bit version throughout this chapter.

An FLA has been provided for this recipe and should be copied to your Documents folder. To
do this, navigate to your Documents folder using Windows Explorer and create the following
folder structure within it: packt\flash-ios-cookbook\chapter14\. Now from the
book's accompanying code bundle, copy chapter14\recipe1\ to <documents_folder>\
packt\flash-ios-cookbook\chapter14\.

Throughout this recipe, replace <documents_folder> with the path to
your Documents folder. Its location depends on the version of Windows
you are running. For Windows Vista and Windows 7, it can be found at C:\
Users\<username>\Documents\. If you are using Windows XP, then it is
at C:\Documents and Settings\<username>\My Documents\.

Incidentally, the FLA you will be working from is a version of the Bubbles app from Chapter 3.

How to do it...
A .swf file is required when compiling a native iOS app from the command line. Let us begin
by publishing a SWF from our FLA:

1. Launch Flash Professional and open chapter14\recipe1\bubbles.fla from
your Documents folder.

Chapter 14

3

2. Generate a SWF by selecting Control | Test Movie | in AIR Debug Launcher
(Mobile). The SWF will output to the same folder as the FLA and ADL will launch
allowing you to preview it. Close the preview window once you are satisfied that
publication was successful.

3. Open a command prompt window.

How you open a command prompt window depends on your version of
Microsoft Windows.
If you are a Windows 7 or Vista owner, then click on the Windows Start
button and type cmd into the search box, followed by Enter. If you are
using Windows XP, click on the Windows Start button and select Run.
Then from the Run dialog box, type cmd and press Enter.

4. Move to the folder where your .swf file is located by entering the following into the
command line:
cd <documents_folder>\packt\flash-ios-cookbook\chapter14\recipe1

In the line above, remember to replace <documents_folder>
with the path to your Documents folder. Its location depends on
the version of Windows you are running.

5. Okay, now we are ready to compile an IPA from the command line. Let us take a look
at the general format of the command you will be entering:
[JAVA_FILE] -jar

[ADT_FILE] -package

 -target [DEPLOYMENT_TYPE]

 -provisioning-profile [PROV_FILE]

 -storetype pkcs12 -keystore [CERT_FILE]

 -storepass [PASSWORD]

 [OUTPUT_IPA]

 [APP_DESC_FILE]

 [SRC_FILES]

Each of the capitalized blocks will need to be replaced with the appropriate file path
or option. Here is what each block represents:

 � [JAVA_FILE]: Your computer's 32-bit Java application launcher

 � [ADT_FILE]: Either the AIR Development Tool (ADT) or the Packager for
iPhone (PFI)

 � [DEPLOYMENT_TYPE]: The deployment type to be used

 � [PROV_FILE]: The provisioning profile associated with your app

Using Native Extensions and ADT

4

 � [CERT_FILE]: The P12 certificate file required to digitally sign your app

 � [PASSWORD]: The password you associated with your P12 certificate

 � [OUTPUT_IPA]: The name of the IPA file to be compiled

 � [APP_DESC_FILE]: Your FLA's application descriptor file

 � [SRC_FILES]: The SWF file published from your FLA followed by any other
assets to be included within the IPA

Let us work through each of them, one at a time.

Find the location of the 32-bit Java executable on your computer and replace [JAVA_
FILE] with it. Here is an example path to the file: "C:\Program Files (x86)\
Java\jre6\bin\java". Also notice the quotation marks placed around the file
path. These are required when working with paths that contain spaces.

The Program Files (x86) folder will simply be named Program
Files on 32-bit versions of Microsoft Windows.
Also, the path to the Java executable may differ slightly depending on the
current version of the Java runtime environment that you have installed.
This chapter will assume you are using Java 6.

Next you need to locate either the AIR Development Tool (ADT) or the Packager
for iPhone (PFI) depending on the version of AIR you're using. If you're using
Flash Professional CS5 then replace [ADT_FILE] with the file path to the PFI:
"C:\Program Files (x86)\Adobe\Adobe Flash CS5\PFI\lib\pfi.
jar". For CS5.5, replace [ADT_FILE] with ADT's file path: "C:\Program Files
(x86)\Adobe\Adobe Flash CS5.5\AIR2.6\lib\adt.jar".

The Program Files (x86) folder will simply be named Program
Files on 32-bit versions of Microsoft Windows.
If you are using the latest AIR SDK, then you might expect to change the AIR
version number listed in ADT's file path from "Adobe Flash CS5.5\
AIR2.6\" to, for example, "Adobe Flash CS5.5\AIR3.0\".
However, there is no need to do this as the overlay process for the AIR
SDK preserves the original folder locations. The latest version of the SDK
actually sits in the 2.6 SDK's original location.
For more detail, refer to the Installing the AIR SDK recipe from Chapter 2.

You will also need to select one of the following deployment types for your app:

 � ipa-test: Quick publication for device testing

 � ipa-debug: Quick publication for device debugging

 � ipa-ad-hoc: Ad hoc

 � ipa-app-store: Apple App Store deployment

Chapter 14

5

For this recipe, substitute [DEPLOYMENT_TYPE] with ipa-test.

The location of your provisioning profile and P12 certificate file are also required.
Replace [PROV_FILE] with "<documents_folder>\packt\flash-ios-
cookbook\developer-files\Flash_iOS_Cookbook.mobileprovision"
and [CERT_FILE] with "<documents_folder>\packt\flash-ios-cookbook\
developer-files\ios_dev.p12". Also substitute [PASSWORD] with the P12
certificate's password.

The name of the IPA you wish to compile is represented by [OUTPUT_IPA]. For this
recipe use bubbles.ipa.

Also, point the command line compiler to your application descriptor file, which is
represented by [APP_DESC_FILE]. This is an XML file that can either be hand-
written or generated by Flash Professional. Flash will generate an application
descriptor file when you set or edit an FLA's AIR for iOS settings. Therefore, one
named bubbles-app.xml will already be available for this recipe and can be found
within your FLA's root folder.

Finally, replace [SRC_FILES] with the name of the SWF you published at the start of
this recipe.

6. Okay, with each of the capitalized blocks replaced, your command line should look
something like this:
"C:\Program Files (x86)\Java\jre6\bin\java" -jar "C:\Program Files
(x86)\Adobe\Adobe Flash CS5.5\AIR2.6\lib\adt.jar" -package -target
ipa-test -provisioning-profile "<documents_folder>\packt\flash-
ios-cookbook\developer-files\Flash_iOS_Cookbook.mobileprovision"
-storetype pkcs12 -keystore "<documents_folder>\packt\flash-ios-
cookbook\developer-files\ios_dev.p12" -storepass <p12_password>
bubbles.ipa bubbles-app.xml bubbles.swf

Remember to replace <documents_folder> with the path to your
own personal Documents folder and also <p12_password> with the
password you associated with your P12 certificate.

7. Now press Enter to begin compilation. If successful, a file named bubbles.ipa will
be generated and written to your FLA's root folder. This file can be deployed to your
iOS device for testing. Compilation can take some time, particularly for large projects.

How it works...
The command line compiler is the same tool that Flash Professional uses to compile an .ipa
file. Flash Professional CS5.5 uses the ADT, which comes with AIR 2.6 and above, while Flash
Professional CS5 uses the PFI, which was made available as part of the AIR 2.0 SDK.

Using Native Extensions and ADT

6

Each compiles an IPA from the following files:

 f A P12 certificate file

 f A provisioning profile associated with your app

 f An application descriptor file

 f A SWF file published from your FLA

After opening a command prompt window, it is convenient to change to the FLA's root
directory. Doing so allows you to specify the SWF and application descriptor file without having
to type their full file paths.

There's more...
This recipe has covered the mandatory command line options. Let us now explore a few more.

Including other source files
In addition to your .swf file, when creating a build from the command line, you must specify
all other source files to be packaged with the resultant IPA. This includes application launch
images, icons, and any files that are to be loaded from the device's file system at runtime.

To do this, simply include the relative path to each file or folder immediately after your SWF.
Here is an example:

... bubbles.swf Default.png AppIconsForPublish\icon29.png
AppIconsForPublish\icon57.png AppIconsForPublish\icon512.png
resources\video resources\bitmaps

This snippet states that a single launch image (Default.png), three icons (icon29.png,
icon57.png, and icon512.png), a folder containing video (resources\video), and
a folder containing bitmaps (resources\bitmaps) are to be packaged along with the
application's SWF.

Debug options
When creating a debug build from the command line, it is possible to specify the IP address
of the development computer that is running the remote debugger. Simply include the
-connect option along with an IP address. For example:

-target ipa-debug -connect 192.168.0.4

When launched, your app will immediately attempt to connect to the specified IP address
rather than its default.

When using the -connect option, remember to create a debug build by first setting the
-target option to ipa-debug.

Chapter 14

7

Interpreter Mode
Since AIR 2.7, it has been possible to dramatically speed up compile times by creating an
Interpreter Mode build. Such builds can only be created from the command line and are
covered in the Enabling Interpreter Mode recipe in this chapter.

Creating a batch file
The ADT/PFI command is lengthy and ideally you won't want to repeatedly enter it into the
command line each time you need to make a build. Consider creating a batch file that stores
your compiler command.

Using a text editor such as Notepad, enter the following:

set JAVA="C:\Program Files (x86)\Java\jre6\bin\java"
set ADT="C:\Program Files (x86)\Adobe\Adobe Flash
CS5.5\AIR2.6\lib\adt.jar"
set TARGET=ipa-test
set PROV_FILE="<documents_folder>\packt\flash-ios-
cookbook\developer-files\Flash_iOS_Cookbook.mobileprovision"
set CERT_FILE="<documents_folder>\packt\flash-ios-
cookbook\developer-files\ios_dev.p12"
set PASSWORD=<p12_password>
set OUTPUT_IPA=bubbles.ipa
set APP_DESC_FILE=bubbles-app.xml
set SCR_FILES=bubbles.swf

%JAVA% -jar %ADT% -package -target %TARGET%
-provisioning-profile %PROV_FILE% -storetype pkcs12
-keystore %CERT_FILE%-storepass %PASSWORD%
%OUTPUT_IPA% %APP_DESC_FILE% %SRC_FILES%

Depending on the version of Flash Professional and Microsoft
Windows you use, you may need to adjust some of the file paths within
this batch file.
Also, remember to replace <documents_folder> with the path to
your own personal Documents folder and also <p12_password>
with the password you associated with your P12 certificate.

Save the file as build.bat to the FLA's root folder.

Now you can initiate a command line build by simply double-clicking on the .bat file from an
Explorer window.

You can re-use this batch file with your own projects by simply changing the value of the
appropriate variables declared at the top.

Using Native Extensions and ADT

8

See also
 f Creating a P12 certificate using Windows, Chapter 1

 f Creating a development provisioning profile, Chapter 1

 f Installing the AIR SDK, Chapter 2

 f Compiling from Flash Professional, Chapter 2

 f Editing the application descriptor file, Chapter 3

 f Enabling Interpreter Mode

 f Running ADT outside your Flash Professional CS5 installation

Compiling from the command line using
Mac OS X

Throughout the course of this book, we have concentrated exclusively on the compilation
of .ipa files directly from the Flash IDE. However, it is also possible to compile from the
command line. Let us see how this is done.

The steps covered here are for Mac OS X. If you are using Microsoft Windows, then refer to the
Compiling from the command line using Windows recipe.

Getting ready
The command line compiler is a Java application and requires the Java runtime environment
in order to run. With the release of Lion, Apple no longer automatically installs Java with
OS X. If you need to install the Java runtime or confirm that it is installed, then follow the
instructions on the following web page provided by Adobe: http://kb2.adobe.com/
cps/909/cpsid_90908.html.

An FLA has been provided for this recipe and should be copied to your Documents folder.
To do this, navigate to your Documents folder using Finder and create the following folder
structure within it: packt/flash-ios-cookbook/chapter14/. Now from the book's
accompanying code bundle, copy chapter14/recipe2/ to Documents/packt/flash-
ios-cookbook/chapter14/.

Incidentally, the FLA you will be working from is a version of the Bubbles app from Chapter 3.

Chapter 14

9

How to do it...
A .swf file is required when compiling a native iOS app from the command line. Let us begin
by publishing a SWF from our FLA:

1. Launch Flash Professional and open Documents/chapter14/recipe2/bubbles.
fla.

2. Generate a SWF by selecting Control | Test Movie | in AIR Debug Launcher
(Mobile). The SWF will output to the same folder as the FLA and ADL will launch
allowing you to preview it. Close the preview window once you are satisfied that
publication was successful.

3. Launch the Terminal application from the Applications/Utilities folder.

4. From the terminal window, move to the folder where your .swf file is located by
entering the following:
cd ~/Documents/packt/flash-ios-cookbook/chapter14/recipe2

5. Okay, now we are ready to compile an IPA from the command line. Let us take a look
at the general format of the command you will be entering:
[ADT_FILE] -package

 -target [DEPLOYMENT_TYPE]

 -provisioning-profile [PROV_FILE]

 -storetype pkcs12 -keystore [CERT_FILE]

 -storepass [PASSWORD]

 [OUTPUT_IPA]

 [APP_DESC_FILE]

 [SRC_FILES]

Each of the capitalized blocks will need to be replaced with the appropriate file path
or option. Here is what each block represents:

 � [ADT_FILE]: Either the AIR Development Tool (ADT) or the Packager for
iPhone (PFI)

 � [DEPLOYMENT_TYPE]: The deployment type to be used

 � [PROV_FILE]: The provisioning profile associated with your app

 � [CERT_FILE]: The P12 certificate file required to digitally sign your app

 � [PASSWORD]: The password you associated with your P12 certificate

 � [OUTPUT_IPA]: The name of the IPA file to be compiled

 � [APP_DESC_FILE]: Your FLA's application descriptor file

 � [SRC_FILES]: The SWF file published from your FLA followed by any other
assets to be included within the IPA.

Using Native Extensions and ADT

10

Let us work through each of them, one at a time.

Replace [ADT_FILE] with either the location of the AIR Development Tool
(ADT) or the Packager for iPhone (PFI) depending on the version of AIR you
are using. If you are using Flash Professional CS5, then the file path to the PFI is:
"/Applications/Adobe Flash CS5/PFI/bin/pfi". For CS5.5, the file path is:
"/Applications/Adobe Flash CS5.5/AIR2.6/bin/adt".

If you are using the latest AIR SDK, then you might expect to change the AIR
version number listed in ADT's file path from "Adobe Flash CS5.5/
AIR2.6/" to, for example, "Adobe Flash CS5.5/AIR3.0/".
However, there is no need to do this as the overlay process for the AIR SDK
preserves the original folder locations. The latest version of the SDK actually
sits in the 2.6 SDK's original location.
For more detail, refer to the Installing the AIR SDK recipe from Chapter 2.

You will also need to select one of the following deployment types for your app:

 � ipa-test: Quick publication for device testing

 � ipa-debug: Quick publication for device debugging

 � ipa-ad-hoc: Ad hoc

 � ipa-app-store: Apple App Store deployment

For this recipe, substitute [DEPLOYMENT_TYPE] with ipa-test.

The location of your provisioning profile and P12 certificate file are also required.
Replace [PROV_FILE] with ~/Documents/packt/flash-ios-cookbook/
developer-files/Flash_iOS_Cookbook.mobileprovision and [CERT_
FILE] with ~/Documents/packt/flash-ios-cookbook/developer-
files/<p12_filename>. Also substitute [PASSWORD] with the P12
certificate's password.

In the previous paragraph, and throughout this recipe, replace <p12_
filename> with the name of your own P12 certificate. This will be the file
name you saved your certificate as during the Creating a P12 certificate
using Mac OS X recipe from Chapter 1.

The name of the IPA you wish to compile is represented by [OUTPUT_IPA]. For this
recipe use bubbles.ipa.

Also, point the command line compiler to your application descriptor file, which is
represented by [APP_DESC_FILE]. This is an XML file that is generated by Flash
when you set or edit a FLA's AIR for iOS settings. One named bubbles-app.xml will
already be available for this recipe and can be found within your FLA's root folder.

Chapter 14

11

Finally, replace [SRC_FILES] with the name of the SWF you published at the start of
this recipe.

Okay, with each of the capitalized blocks replaced, your command line should look
something like this:
"/Applications/Adobe Flash CS5.5/AIR2.6/bin/adt" -package
-target ipa-test -provisioning-profile ~/Documents/packt/flash-
ios-cookbook/developer-files/Flash_iOS_Cookbook.mobileprovision
-storetype pkcs12 -keystore ~/Documents/packt/flash-ios-
cookbook/developer-files/<p12_filename> -storepass
 <p12_password> bubbles.ipa bubbles-app.xml bubbles.swf

In the line above, replace <p12_filename> with the name (including
.p12 file extension) of your P12 certificate and <p12_password> with
the password you associated with it.

6. Now press Enter to begin compilation. If successful, a file named bubbles.ipa will
be generated and written to your FLA's root folder. This file can be deployed to your
iOS device for testing. Compilation can take some time, particularly for large projects.

How it works...
The command line compiler is the same tool that Flash Professional uses to compile an .ipa
file. Flash Professional CS5.5 uses the ADT, which comes with AIR 2.6 and above, while Flash
Professional CS5 uses the PFI, which was made available as part of the AIR 2.0 SDK.

Each compiles an IPA from the following files:

 f A P12 certificate file

 f A provisioning profile associated with your app

 f An application descriptor file

 f A SWF file published from your FLA

After opening a terminal window, it is convenient to change to the FLA's root directory. Doing
so allows you to specify the SWF and application descriptor file without having to type their full
file paths.

Using Native Extensions and ADT

12

There's more...
This recipe has covered the mandatory command line options. Let us now explore a few more.

Including other source files
In addition to your .swf file, when creating a build from the command line, you must specify
all other source files to be packaged with the resultant IPA file. This includes application
launch images, icons, and any files that are to be loaded from the device's file system at
runtime.

To do this, simply include the relative path to each file or folder immediately after your SWF.
Here is an example:

... bubbles.swf Default.png AppIconsForPublish/icon29.png
AppIconsForPublish/icon57.png AppIconsForPublish/icon512.png
resources/video resources/bitmaps

This snippet states that a single launch image (Default.png), three icons (icon29.png,
icon57.png, and icon512.png), a folder containing video (resources/video), and
a folder containing bitmaps (resources/bitmaps) are to be packaged along with the
application's SWF.

Debug options
When creating a debug build from the command line, it is possible to specify the IP address
of the development computer that is running the remote debugger. Simply include the
-connect option along with an IP address. For example:

-target ipa-debug -connect 192.168.0.4

When launched, your app will immediately attempt to connect to the specified IP address
rather than its default.

When using the -connect option, remember to create a debug build by first setting the
-target option to ipa-debug.

Interpreter Mode
Since AIR 2.7, it has been possible to dramatically speed-up compile times by creating an
Interpreter Mode build. Such builds can only be created from the command line and are
covered in the Enabling Interpreter Mode recipe in this chapter.

Chapter 14

13

Creating a shell script
The ADT/PFI command is lengthy and ideally you won't want to repeatedly enter it into the
command line each time you need to make a build. Consider creating a shell script that you
can use to store and execute your compiler command.

Let us create a script named build.sh in your FLA's root folder. We will use the Nano
text editor.

Launch Nano from the command line with:

nano build.sh

Nano runs within the terminal window. Enter the following script:

#!/bin/sh
ADT="/Applications/Adobe Flash CS5.5/AIR2.6/bin/adt"
TARGET=ipa-test
PROV_FILE=~/Documents/packt/flash-ios-cookbook/
developer-files/Flash_iOS_Cookbook.mobileprovision
CERT_FILE=~/Documents/packt/flash-ios-cookbook/
developer-files/<p12_filename>
PASSWORD=<p12_password>
OUTPUT_IPA=bubbles.ipa
APP_DESC_FILE=bubbles-app.xml
SRC_FILES=bubbles.swf

"$ADT" -package -target $TARGET -provisioning-profile
$PROV_FILE -storetype pkcs12 -keystore $CERT_FILE -storepass
$PASSWORD $OUTPUT_IPA $APP_DESC_FILE $SCR_FILES

Remember to replace <p12_filename> with the name (including .p12
file extension) of your P12 certificate and <p12_password> with the
password you associated with it.
Also, if you are using Flash Professional CS5, then change the value of the
ADT variable to the Packager for iPhone's file path: "/Applications/
Adobe Flash CS5/PFI/bin/pfi".

Press Ctrl + X to exit Nano. Before Nano is closed, you will be asked if you would like to save
the modified buffer. Press the Y key then Enter to save the file using its default name. The
script will be saved and Nano will close.

Using Native Extensions and ADT

14

Finally, make the script executable by entering the following into the command line:

chmod +x build.sh

Now whenever you want to make a command line build, you can by typing:

./build.sh

This batch file can be re-used with your own projects by simply changing the value of the
appropriate variables declared at the top.

See also
 f Creating a P12 certificate using Mac OS X, Chapter 1
 f Creating a development provisioning profile, Chapter 1
 f Installing the AIR SDK, Chapter 2
 f Compiling from Flash Professional, Chapter 2
 f Editing the application descriptor file, Chapter 3
 f Enabling Interpreter Mode
 f Running ADT outside your Flash Professional CS5 installation

Using a native extension
In an attempt to ensure that AIR's reach extends as far as possible, Adobe is careful not to
introduce APIs that are specific to a single platform. Theoretically, any APIs you use for iOS
should also work on other platforms such as Windows, Mac OS X, and Android. Therefore,
a feature of iOS is, typically, only directly supported if it can be made available across all
platforms supported by the AIR SDK.

However, this doesn't necessarily mean that you can't take advantage of platform-specific
features within your applications. Since the release of AIR 3.0, developers have been able to
do just that through the use of custom ActionScript libraries that are implemented with native
code. These are known as native extensions and allow AIR for iOS apps to take advantage of
the same platform and device-specific capabilities and APIs available to native applications.

As an example, let us take a look at Adobe's Gyroscope native extension and see how you
would use its API within your project's ActionScript.

Chapter 14

15

Getting ready
Native extensions are only available from Adobe AIR 3.0 onwards. Ensure you have overlaid
the latest AIR SDK onto Flash Professional CS5.5. If you haven't, then follow the steps detailed
in the Installing the AIR SDK recipe from Chapter 2.

You will also need to download the Gyroscope native extension, but first we will create a folder
for it and this recipe's example code. Using either Windows Explorer or Finder, create the
following folder structure within your Documents folder: packt\flash-ios-cookbook\
chapter14\recipe3\.

Now within a web browser, visit the Adobe AIR Developer Center at: www.adobe.com/
devnet/air/native-extensions-for-air.html. Here you will find a list of native
extensions that are currently available. Select the Gyroscope extension and download
Gyroscope.zip to your recipe3 folder from the Gyroscope native extension sample page.
Extract the .zip file to the same folder.

Finally, an FLA has been provided as a starting point for this recipe. From the book's
accompanying code bundle, copy the contents of chapter14\recipe3 to packt\flash-
ios-cookbook\chapter14\recipe3\ within your Documents folder.

Sitting on the FLA's stage are three dynamic text fields named gyroXField, gyroYField,
and gyroZField. We will use them to display data coming from the device's gyroscope.

How to do it...
Every native extension comes with a .swc file, which defines the ActionScript classes that
the extension provides. Before we can use these classes, the .swc file needs to be linked to
our FLA:

Linking the SWC
Perform the following steps to link the extension's SWC file:

1. From your Documents folder, open chapter14\recipe3\recipe.fla into Flash
Professional CS5.5.

2. Select File | ActionScript Settings from Flash Professional's drop-down menu.

3. From the Advanced ActionScript 3.0 Settings panel, click on the Library path tab.

Using Native Extensions and ADT

16

4. Click on the Add New Path icon, which is represented by a + symbol, then click on
the Browse to SWC file icon as shown in the following screenshot:

5. From your FLA's root folder, browse to, and select Gyroscope\Binaries\
Gyroscope.swc. It will be added to a list of SWC files to be used by your app.

6. Expand the Gyroscope.swc entry by clicking on the icon to the left of its path.
Double-click on the Link Type entry and change it from Merged into code to External.

7. Close the Advanced ActionScript 3.0 Settings panel by clicking on the OK button at
the bottom.

8. Save your FLA.

Chapter 14

17

Using the extension's ActionScript API
Now let us write code that will access the device's gyroscope through the native extension's
ActionScript API.

1. Create a document class and name it Main.

2. Import the following classes belonging to the native extension:
import flash.display.MovieClip;
import com.adobe.nativeExtensions.Gyroscope;
import com.adobe.nativeExtensions.GyroscopeEvent;

3. Also add a member variable of type Gyroscope:
private var gyro:Gyroscope;

4. Within the constructor, create an instance of the extension's Gyroscope class and
listen for updates from it:
public function Main() {
 if(Gyroscope.isSupported)
 {
 gyro = new Gyroscope();
 gyro.setRequestedUpdateInterval(50);
 gyro.addEventListener(GyroscopeEvent.UPDATE, updated);
 }
}

5. Add a method that displays data from the gyroscope whenever it is updated:
private function updated(e:GyroscopeEvent):void {
 gyroXField.text = String(e.x);
 gyroYField.text = String(e.y);
 gyroZField.text = String(e.z);
}

6. Save the class as Main.as. Also save your FLA.

7. Generate a SWF by selecting Control | Test Movie | in AIR Debug Launcher (Mobile)
from Flash Professional's drop-down menu.

Don't create the SWF by selecting File | Publish (Alt + Shift + F12 |
Shift + Cmd + F12). Doing so will also attempt to compile the SWF into
an IPA, which we aren't ready to do just yet.

A SWF will be created but you will receive the following runtime error from ADL:

VerifyError: Error #1014: Class com.adobe.nativeExtensions::Gyroscope could not
be found.

Ignore this error for the time being.

Using Native Extensions and ADT

18

You now have your very first SWF that makes use of an ActionScript API provided by a native
extension. We are not quite in a position to create an .ipa file yet but we will address that in
the next recipe.

How it works...
A native extension is a combination of native code and one or more ActionScript classes. As
an AIR for iOS developer, you will only ever work with the extension's ActionScript API, which
calls the native code on your behalf.

Included with every native extension are the following two files:

 f A SWC file containing the extension's ActionScript API

 f An ANE file containing the native code and resources used by the extension

This recipe only made use of the SWC file, which was used to provide our FLA's document
class with access to the Gyroscope API.

While many SWC's are statically linked to an FLA, a native extension's SWC should be set as
an external library file. This allows its class definitions to be used during development while
preventing the SWC itself from being added to the app's SWF when published.

This may seem odd at first, but it is important to understand that a native extension's SWC
does not contain any implementation for its API. Instead that is taken care of by the native
code within the ANE file. The SWC is only required during the development of your ActionScript
whereas the ANE is required during compilation of the final .ipa file.

A native extension can support multiple platforms; however, this is not a requirement. This
has implications as it means there is no guarantee that you will be able to test your SWF using
ADL on your development computer. This is the case with the Gyroscope extension, which only
provides iOS and Android support. It is also the reason why an error was thrown at runtime
within ADL.

There's more...
Here is some additional information regarding ActionScript native extensions.

Conditional compilation
Consider using conditional compilation when working with native extensions that do not
provide an implementation for your development computer. This will prevent errors being
thrown from ADL and allow you to test your code to some degree without having to run it
on a device.

Chapter 14

19

Conditional compilation allows you to turn blocks of code on or off depending on the value of
configuration constants that you define within the ActionScript Settings panel. For example,
you could define constants to determine whether the code for the Gyroscope native extension
should be included with the published SWF or a mock version of the code for testing purposes
on desktop.

More information can be found by performing a search for conditional compilation
within Adobe Community Help.

Other available native extensions
The Adobe AIR Developer Center has many example extensions for download including
some written by the AIR community. There is also documentation and tutorials detailing how
to write your own extensions. Take a look at: www.adobe.com/devnet/air/native-
extensions-for-air.html.

There are many other places where you can download native extensions, such as the Native
Extensions for AIR website, which has an ever-increasing catalogue of iOS and Android
extensions: http://extensionsforair.com.

Native extensions for some of the more popular iOS APIs have also already been written. For
example, an In-App Purchasing extension can be downloaded from http://code.google.
com/p/in-app-purchase-air-ios and support for iAds has also been made available at
http://code.google.com/p/iad-air-ios.

While many of these extensions can be downloaded free of charge, some are available
for a small fee. For example, a Game Center native extension can be purchased from
www.milkmangames.com/blog/tools.

The list of native extensions will continue to grow over time.

See also
 f Packaging a native extension

Packaging a native extension
Flash Professional CS5.5 does not directly support the packaging of applications that use
native extensions. Instead, you will need to use the AIR Development Tool (ADT) from the
command line.

Let us walk through the steps required to package the previous recipe's Gyroscope example
into a native iOS app.

Using Native Extensions and ADT

20

Getting ready
Before attempting this recipe, you will need to have published a SWF file from the Using a
native extension recipe's example FLA. Familiarity with the command line and ADT is also a
prerequisite. If you haven't already done so, complete the following recipes:

 f Packaging from the command line (using Windows or Mac OS X)

 f Using a native extension

Continue to work from the code you wrote during the Using a native extension recipe.

How to do it...
To package a native extension with your app, we will split the recipe into the following
three tasks:

1. Obtaining the extension's unique ID.

2. Declaring the extension within your application descriptor file.

3. Compiling your app using ADT.

Obtaining the extension's unique ID
Every native extension you wish to use must be declared within your application descriptor file.
First you will need to obtain a unique ID associated with each extension. Perform these steps
to obtain the Gyroscope extension's ID:

1. Using Windows Explorer or Finder, browse to Gyroscope\Binaries\.

2. Inside this folder, you will find a file named extID.txt. It contains the Gyroscope
extension's unique ID. Open the file within a text editor and copy com.adobe.
gyroscope to the clipboard.

3. Close the file.

Declaring the extension within your application descriptor file
We will add an entry for the Gyroscope extension within your application descriptor file:

1. If you haven't already done so, open Flash Professional CS5.5.

2. Select File | Open (Ctrl + O | Cmd + O) from Flash Professional's drop-down menu.

3. When prompted for a file, select recipe-app.xml from the FLA's root folder and
click on Open.

Chapter 14

21

4. Near the end of the application descriptor file, add an <extensions> element.
Paste the Gyroscope extension's ID from the clipboard into an <extensionID> child
element:
 </iPhone>

 <extensions>
 <extensionID>com.adobe.gyroscope</extensionID>
 </extensions>

</application>

5. Save your application descriptor file and close it.

Compiling your app using ADT
With the extension declared, you can package it with your application:

If you haven't already done so, open recipe.fla and generate a
SWF by selecting Control | Test Movie | in AIR Debug Launcher
(mobile). The SWF will be output to the FLA's root folder.

1. Depending on your choice of operating system, open either a command prompt or
terminal window, and move to your FLA's root folder. For Windows, do this by entering
the following command:
cd <documents_folder>\packt\flash-ios-cookbook\chapter14\recipe3

Replace <documents_folder> with the path to your own
personal Documents folder.

If you are using Mac OS X, then enter the following into your terminal window instead:
cd ~/Documents/packt/flash-ios-cookbook/chapter14/recipe3

2. To package a native extension with your app, you will need to use the -extdir
command line option to specify the directory where your extension's ANE file resides.
Here is the general form of the ADT command with the -extdir option highlighted:
adt -package
 -target [DEPLOYMENT_TYPE]
 -provisioning-profile [PROV_FILE]
 -storetype pkcs12 -keystore [CERT_FILE]
 -storepass [PASSWORD]

Using Native Extensions and ADT

22

 [OUTPUT_IPA]
 [APP_DESC_FILE]
 [SRC_FILES]
 -extdir [EXTENSIONS_DIR]

Let us go ahead and create a native iOS application using the -extdir option. Here
is how the command line will look for Windows 7 and Vista:
"C:\Program Files (x86)\Java\jre6\bin\java" -jar "C:\Program
Files (x86)\Adobe\Adobe Flash CS5.5\AIR2.6\lib\adt.jar" -package
-target ipa-test -provisioning-profile "<documents_folder>\
packt\flash-ios-cookbook\developer-files\
Flash_iOS_Cookbook.mobileprovision" -storetype pkcs12
-keystore "<documents_folder>\packt\
flash-ios-cookbook\developer-files\ios_dev.p12"
-storepass <p12_password> c14-r3.ipa recipe-app.xml recipe.swf
-extdir "Gyroscope\Binaries"

Replace <documents_folder> with the path to your own personal
Documents folder and also <p12_password> with the password
you associated with your P12 certificate.

For Mac OS X you should type:
"/Applications/Adobe Flash CS5.5/AIR2.6/bin/adt" -package
-target ipa-test -provisioning-profile ~/Documents/
packt/flash-ios-cookbook/developer-files/
Flash_iOS_Cookbook.mobileprovision
-storetype pkcs12 -keystore ~/Documents/packt/
flash-ios-cookbook/developer-files/<p12_filename>
-storepass <p12_password> c14-r3.ipa recipe-app.xml recipe.swf
-extdir "Gyroscope\Binaries"

Replace <p12_filename> with the name (including .p12 file
extension) of your P12 certificate and <p12_password> with
the password you associated with it.

3. Now press Enter to begin compilation. If successful, a file named c14-r3.ipa will be
created that has native integration with the gyroscope found in many iOS devices.

4. Deploy the IPA. For testing, you will need a device featuring a gyroscope and iOS 4
or above.

When launched, you should see the data from your device's gyroscope being displayed within
the app's three dynamic text fields.

Chapter 14

23

How it works...
ADT is the same tool that Flash Professional CS5.5 uses to compile and package SWF files
into native iOS applications. However, at present, Flash Professional does not provide support
for ADT's -extdir option meaning you will need to package your app from the command line.

The -extdir option is used to point to the folder where the ANE files for any native
extensions required by your application live. Only the Gyroscope extension was used for
this recipe, which is why we opted to simply set -extdir to point to the extension's own
Binaries folder. However, if you are working with multiple extensions, then copy all the ANE
files into a single location.

Be careful not to use a trailing slash when specifying the path
for the -extdir option. Doing so will result in an error. For
example, Gyroscope\Binaries is valid, whereas Gyroscope\
Binaries\ is not.

It is also important that you declare each extension within your application descriptor file.
This is done by specifying the extension's unique ID. Typically, the ID is stored within a text
file in the same folder as the extension's .swc and .ane files. Simply copy and paste each
extension ID into an <extensions> block within your application descriptor file. This is
shown in the following example:

<extensions>
 <extensionID>com.adobe.gyroscope</extensionID>
 <extensionID>com.adobe.Vibration</extensionID>
 <extensionID>com.adobe.appPurchase</extensionID>
</extensions>

Once you have edited the application descriptor file and published a SWF from your FLA, you
will be able to call ADT from the command line to compile and package your app.

There's more...
Here is one final piece of information regarding native extensions.

Publishing from future versions of Flash Professional
Flash Professional CS5.5 was released before AIR 3.0 SDK, explaining why support for native
extension packaging isn't currently provided. However, it is likely that the next major release of
Flash Professional will include full support for native extensions.

Using Native Extensions and ADT

24

See also
 f Using a native extension

 f Compiling from the command line using Windows

 f Compiling from the command line using Mac OS X

Enabling Interpreter Mode
Compilation to a native iOS app can take several minutes depending on the complexity of your
Flash project and the hardware specification of your computer. Such lengthy times can affect
your workflow and impact productivity. In an attempt to streamline the iterative testing and
debugging workflow, AIR 2.7 introduced Interpreter Mode; a new build target which reduces
compile times to no more than a couple of seconds.

Flash Professional CS5.5 does not directly support the creation of Interpreter Mode builds.
Instead, you will need to use the AIR Development Tool (ADT) from the command line.

Let us see how this is done.

Getting ready
Interpreter Mode builds are only available from Adobe AIR 2.7 onwards. If you are using Flash
Professional CS5.5, then make sure you have overlaid the latest AIR SDK. If you haven't
already done so, follow the steps detailed in the Installing the AIR SDK recipe from Chapter 2.

Additionally, you will need to know how to compile your Flash projects from the command line.
If you are not familiar with command line compilation, then complete one of the following two
recipes from this chapter before continuing:

 f Compiling from the command line using Windows

 f Compiling from the command line using Mac OS X

If you are using Flash Professional CS5 and would like to make an Interpreter Mode build,
then first refer to the Running ADT outside your Flash Professional CS5 installation recipe at
the end of this chapter.

An FLA has been provided as a starting point for this recipe and should be copied to your
Documents folder. To do this, navigate to your Documents folder and create the following
folder structure within it: packt\flash-ios-cookbook\chapter14\. Now copy
chapter14\recipe5\ from the book's accompanying code bundle to packt\flash-ios-
cookbook\chapter14\ within your Documents folder.

Chapter 14

25

If you are using Microsoft Windows, then the location of your Documents
folder depends on the version of Windows you are running. For Windows
Vista and Windows 7, it can be found at C:\Users\<username>\
Documents\. If you are using Windows XP, then it is at C:\Documents
and Settings\<username>\My Documents\.

Incidentally, the FLA you will be working from is a version of the Bubbles app from Chapter 3.

How to do it...
A .swf file is required when compiling a native iOS app from the command line. We will begin
by publishing a SWF from our FLA:

1. Launch Flash Professional and open chapter14\recipe5\bubbles.fla from
your Documents folder.

2. Generate a SWF by selecting Control | Test Movie | in AIR Debug Launcher
(Mobile). The SWF will output to the same folder as the FLA and ADL will launch
allowing you to preview it. Close the preview window once you are satisfied that
publication was successful.

Don't create the SWF by selecting File | Publish (Alt + Shift +
F12 | Shift + Cmd + F12). Doing so will also attempt to compile
the SWF into an IPA from within Flash Professional, which we
are trying to avoid.

3. Depending on your choice of operating system, open either a command prompt or
terminal window, and move to the folder where the .swf file is located. For Windows,
do this by entering the following command:
cd <documents_folder>\packt\flash-ios-cookbook\chapter14\recipe5

Replace <documents_folder> with the path to your own
personal Documents folder.

If you are using Mac OS X, then enter the following into your terminal window instead:
cd ~/Documents/packt/flash-ios-cookbook/chapter14/recipe5

4. To initiate an Interpreter Mode build, a new deployment type needs to be specified on
the command line. You can select from one of the following:

 � ipa-test-interpreter: Interpreter Mode publication for testing

 � ipa-debug-interpreter: Interpreter Mode publication for device
debugging

Using Native Extensions and ADT

26

Here is the general form of the ADT command with both deployment types listed:
adt -package
 -target [ipa-test-intepreter|ipa-debug-intepreter]
 -provisioning-profile [PROV_FILE]
 -storetype pkcs12 -keystore [CERT_FILE]
 -storepass [PASSWORD]
 [OUTPUT_IPA]
 [APP_DESC_FILE]
 [SRC_FILES]

Let us go ahead and make an Interpreter Mode build using the ipa-test-
interpreter target option. Here is how the command line will look for Windows 7
and Vista:
"C:\Program Files (x86)\Java\jre6\bin\java" -jar "C:\Program
Files (x86)\Adobe\Adobe Flash CS5.5\AIR2.6\lib\adt.jar"
-package -target ipa-test-interpreter -provisioning-profile
"<documents_folder>\packt\flash-ios-cookbook\
developer-files\Flash_iOS_Cookbook.mobileprovision"
-storetype pkcs12 -keystore "<documents_folder>\packt\
flash-ios-cookbook\developer-files\ios_dev.p12" -storepass
<p12_password> bubbles.ipa bubbles-app.xml bubbles.swf

Replace <documents_folder> with the path to your own
personal Documents folder and also <p12_password> with the
password you associated with your P12 certificate.
If you are using Windows XP, then before executing the command,
refer to the Compiling from the command line using Windows
recipe for path changes that are required.

For Mac OS X, you should type:
"/Applications/Adobe Flash CS5.5/AIR2.6/bin/adt" -package
-target ipa-test-interpreter -provisioning-profile
~/Documents/packt/flash-ios-cookbook/developer-files
/Flash_iOS_Cookbook.mobileprovision-storetype pkcs12
-keystore ~/Documents/packt/
flash-ios-cookbook/developer-files/<p12_filename>
-storepass <p12_password> bubbles.ipa bubbles-app.xml
bubbles.swf

Replace <p12_filename> with the name (including .p12 file
extension) of your P12 certificate and <p12_password> with the
password you associated with it.

Chapter 14

27

5. Now press Enter to begin compilation. If successful, a file named bubbles.ipa will
be generated almost instantaneously! Deploy the IPA to your device for testing.

How it works...
As you witnessed, compiling with the Interpreter Mode build target is extremely fast, but why?
Rather than performing ahead-of-time compilation using LLVM, ADT simply creates a
special IPA that has both your .swf file and an AIR runtime interpreter packaged within it.
Generating such an IPA takes significantly less time than converting your .swf file to ARMv7
machine code.

Although this build target provides faster compilation, your application's code will execute
slower on the device as it has to be interpreted. Nevertheless, for many stretches of your
development cycle, Interpreter Mode builds will be extremely useful and save significant time.

However, when testing and debugging performance-critical areas of your application, you
should still use either the standard ipa-test or ipa-debug targets as they provide a true
reflection of your app's performance.

It should also be noted that Interpreter Mode builds should only be used during development.
They cannot be used for distribution.

See also
 f Installing the AIR SDK, Chapter 2
 f Compiling from the command line using Windows
 f Compiling from the command line using Mac OS X
 f Running ADT outside your Flash Professional CS5 installation

Running ADT outside your Flash
Professional CS5 installation

If you are publishing from Flash Professional CS5, then you will be limited to the AIR 2.0 SDK
and its Packager for iPhone (PFI) command line tool.

While you can't overlay the most recent version of the AIR SDK into Flash Professional CS5,
you can install it separately on your development computer. Doing so will allow you to package
your SWF into an IPA using the latest version of the AIR Development Tool (ADT) instead.
Although this won't grant you access to post AIR 2.0 APIs from Flash CS5, it will enable
improved rendering performance, faster runtime code execution, and allow you to create
Interpreter Mode builds.

In this recipe, we will use ADT to compile a SWF published from Flash Professional CS5
into an IPA.

Using Native Extensions and ADT

28

Getting ready
If you are not familiar with command line compilation, then complete one of the following two
recipes from this chapter before continuing:

 f Compiling from the command line using Windows

 f Compiling from the command line using Mac OS X

Additionally, an FLA and its application descriptor file have been provided and should be
copied to your Documents folder. Using either Windows Explorer or Finder, navigate to your
Documents folder and create the following sub-folders: packt\flash-ios-cookbook\
chapter14\. Now copy chapter14\recipe6\ from the book's accompanying code bundle
to packt\flash-ios-cookbook\chapter14\ within your Documents folder.

If you are using Microsoft Windows, then the location of your Documents
folder depends on the version of Windows you are running. For Windows
Vista and Windows 7, it can be found at C:\Users\<username>\
Documents\. If you are using Windows XP, then it is at C:\Documents
and Settings\<username>\My Documents\.

How to do it...
This recipe will be split into the following two parts:

1. Installing the latest AIR SDK.

2. Compiling from the command line.

We will begin by installing the latest version of the AIR SDK.

Installing the latest AIR SDK
ADT is provided with the AIR SDK and can be downloaded from Adobe's website. Follow these
steps to download and install it:

1. Launch your preferred web browser and visit the AIR SDK download page at
www.adobe.com/special/products/air/sdk.

2. From the page, click on the Download now link for either Windows or Mac OS X. An
archive file containing the AIR SDK will begin to download.

3. Once downloaded, extract the archive and copy it to a suitable location on your
computer. If you are using Windows, then copy it to C:\. For Mac OS X, copy it to
/Users/<username>/Applications/.

Chapter 14

29

Compiling from the command line
With the SDK installed, let us use ADT to compile a SWF into an IPA. We will start by publishing
the SWF file from Flash Professional CS5.

1. From your Documents folder, open chapter14\recipe6\render-test-gpu.
fla into Flash Professional CS5.

2. Generate a SWF by selecting Control | Test Movie | in AIR Debug Launcher
(Mobile). The SWF will output to the same folder as the FLA and ADL will launch
allowing you to preview it. Close the preview window once you are satisfied that
publication was successful.

Don't create the SWF by selecting File | Publish (Alt + Shift + F12 |
Shift + Cmd + F12). Doing so will also attempt to compile the SWF into
an IPA from within Flash Professional, which we are trying to avoid.

3. Depending on your choice of operating system, open either a command prompt or
terminal window, and move to the folder where the .swf file is located. For Windows,
do this by entering the following command:
cd <documents_folder>\packt\flash-ios-cookbook\chapter14\recipe6

Replace <documents_folder> with the path to your
own personal Documents folder.

If you are using Mac OS X, then enter the following into your terminal window instead:
cd ~/Documents/packt/flash-ios-cookbook/chapter14/recipe6

4. Now that you have a .swf file, use ADT to initiate a build from the command line.
Here is the general form of the ADT command:
adt -package
 -target [DEPLOYMENT_TYPE]
 -provisioning-profile [PROV_FILE]
 -storetype pkcs12 -keystore [CERT_FILE]
 -storepass [PASSWORD]
 [OUTPUT_IPA]
 [APP_DESC_FILE]
 [SRC_FILES]

Remember, for this recipe we will be running ADT from the AIR SDK
folder that lives outside your Flash Professional CS5 installation. If
you are using Windows, then you will be calling C:\AdobeAIRSDK\
lib\adt.jar. For Mac OS X, you will call /Users/<username>/
Applications/AdobeAIRSDK/bin/adt.

Using Native Extensions and ADT

30

Let us go ahead and make a build using the ipa-test target option. Here is how the
command line will look for Windows 7 and Vista:
"C:\Program Files (x86)\Java\jre6\bin\java"
-jar "C:\AdobeAIRSDK\lib\adt.jar" -package -target ipa-test
-provisioning-profile "<documents_folder>\packt\ flash-ios-
cookbook\developer-files\Flash_iOS_Cookbook.mobileprovision"
-storetype pkcs12 -keystore "<documents_folder>\packt\
flash-ios-cookbook\developer-files\ios_dev.p12" -storepass
<p12_password> render-test-gpu.ipa render-test-gpu-app.xml
render-test-gpu.swf

Replace <documents_folder> with the path to your own personal
Documents folder and also <p12_password> with the password
you associated with your P12 certificate.
If you are using Windows XP, then before executing the command, refer
to the Compiling from the command line using Windows recipe for path
changes that are required.

For Mac OS X, you should type:
"/Users/<username>/Applications/bin/adt" -package -target
ipa-test -provisioning-profile ~/Documents/packt/flash-ios-
cookbook/developer-files/Flash_iOS_Cookbook.mobileprovision
-storetype pkcs12 -keystore ~/Documents/packt/flash-ios-
cookbook/developer-files/<12_filename> -storepass <p12_password>
render-test-gpu.ipa render-test-gpu-app.xml render-test-gpu.swf

Replace <p12_filename> with the name (including .p12 file
extension) of your P12 certificate and <p12_password> with
the password you associated with it.

5. Now press Enter to begin compilation. If successful, a file named render-test-
gpu.ipa will be generated. Deploy the IPA to your device for testing.

The FLA used in this recipe was selected for a reason. It takes advantage of GPU rendering
and, therefore, shows one of the advantages of compiling using ADT from the latest AIR SDK.
Applications compiled using ADT will exhibit significantly improved rendering performance
compared to those compiled from Flash Professional CS5. To see the difference, compile a
version of the IPA from CS5 and install it to your device too.

Chapter 14

31

How it works...
ADT is the same tool that Flash Professional CS5.5 uses to compile an .ipa file. By
downloading and installing the latest version of the AIR SDK to your development computer,
you will be able to utilize ADT even if you don't have Flash Professional CS5.5 installed.

You will still need to use Flash Professional CS5 to generate an application descriptor file
and publish your .swf file. However, the actual packaging of these files into an .ipa will be
performed by ADT.

Perhaps the single biggest reason for using ADT above PFI is the improved rendering
performance of apps compiled using it. If you are restricted to Flash Professional CS5, then
you really should consider downloading and using ADT to create your .ipa files.

See also
 f Compiling from Flash Professional, Chapter 2

 f Editing the application descriptor file, Chapter 3

 f Understanding GPU-Blend mode, Chapter 6

 f Understanding GPU-Vector mode, Chapter 6

 f Compiling from the command line using Windows

 f Compiling from the command line using Mac OS X

 f Enabling Interpreter Mode

