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NOTCH1 and SF3B1 mutations can be added to the hierarchical
prognostic classification in chronic lymphocytic leukemia

Leukemia (2013) 27, 512–514; doi:10.1038/leu.2012.307

During recent years, a variety of novel molecular markers
have been proposed as prognostic factors in chronic lymphocytic
leukemia (CLL), which has significantly improved the subdivision
of the disease. One of the strongest markers is fluorescence
in situ hybridization detection of certain genomic aberrations, that
is, del(11q), trisomy 12, del(13q) and del(17p), which
is now included in routine diagnostics to guide decisions about
therapy.1 More specifically, CLL patients with the 13q deletion
(as a single aberration) have a more indolent disease course,
whereas patients with 11q or, in particular, 17p deletions

experience a more rapid disease progression with need of
early treatment, and a generally poor overall survival.1,2 Notably,
CLL patients with 17p deletions and/or TP53 mutations belong
to the category of patients with the worst outcome in CLL,
as they generally do not respond to the current state-of-
the-art treatment with fludarabine, cyclophosphamide and
rituximab.1,3

More recently, the advent of next-generation sequencing
has revealed a number of novel genes to be frequently mutated
in CLL, such as NOTCH1, SF3B1, BIRC3 and MYD88.4–10 In the
pivotal studies, NOTCH1 mutations were identified in up to 12% of
patients, and the mutations were strongly associated
with progressive disease, treatment resistance, increased risk

Table 1a. Overall survival and time to treatment in a population-based Scandinavian cohort of CLL patients according to NOTCH1/SF3B1 mutations
and established prognostic markers

Variable Overall survival Time to treatment

N Median P-value N Median P-value

Binet stage 310 o0.0001* 289 o0.0001*
A 238 N.R. 221 98.4
B 56 81.6 53 2.6
C 16 86.4 15 0.6

IGHV mutational status 329 o0.0001 272 o0.0001
Mutated 219 N.R. 183 118.8
Unmutated 110 76.8 89 10.2

Chromosomal aberration 356 o0.0001* 293 o0.0001*
del(13q) 170 N.R. 142 109.2
No aberrations 106 N.R. 82 NR
Trisomy 12 31 93.6 25 22.8
del(11q) 36 92.4 32 6.0
del(17p) 13 21.6 12 1.0

NOTCH1 359 o0.0001 296 0.001
Mutated 17 66.0 16 4.8
Wild type 342 N.R. 280 58.8

SF3B1 359 0.0001 296 0.004
Mutated 13 63.6 11 2.4
Wild type 346 N.R. 285 56.4

Abbreviations: CLL, chronic lymphocytic leukemia; SF3B1, splicing factor 3B subunit 1; N.R., not reached. *P-value represents a combined P-value for the
analysis and indicates that at least one group differs significantly from the rest. Median value is given in months.
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for Richter transformation and poor overall survival.4,5,10 Further-
more, it has also been observed that trisomy 12 patients have a
high frequency of NOTCH1 mutations (up to 50%), and that CLL
patients with concurrent trisomy 12 and NOTCH1 alterations
display a particularly poor prognosis.11–13 Interestingly, the
majority of cases with the NOTCH1 lesions show a recurrent
dinucleotide hotspot deletion within the NOTCH1 PEST domain
within exon 34. From in vitro studies, it appears that the mutated
protein leads to upregulation of the NOTCH1 signaling pathway,
resulting in an increased CLL cell survival and resistance to
apoptosis.5

Using exome sequencing, a high frequency of mutations within
the splicing factor 3B subunit 1 (SF3B1) gene was also reported in
CLL, observed in up to 15% of patients in the initial studies.6–8

These SF3B1 mutations may potentially lead to a defective
spliceosome complex and impaired splicing activity, although
the precise role of such mutations in CLL pathogenesis remains to
be further elucidated.7 Similar to TP53 and NOTCH1 mutations,
SF3B1 mutations appear to be an independent prognostic marker,

associated with very rapid disease progression and inferior
survival.6,8

Most of the recent studies on NOTCH1 and SF3B1 mutations
have been carried out on selected patient groups, which may
influence the frequencies reported for these mutations as we
recently observed for TP53 mutations.14 We here aimed to assess
the mutation status of NOTCH1 and SF3B1, by sequence analysis of
exons with known hotspot regions (NOTCH1, exon 34; SF3B1, exon
14–16), in a well-characterized population-based CLL material
from Scandinavia. As this material has already been analyzed for
many of the established and novel prognostic markers (Table 1a),
we also aimed to investigate the potential additive value of
NOTCH1 and SF3B1 mutations in multivariable analysis.
This study encompassed 360 CLL patients diagnosed in Sweden

and Denmark during a definite time period (1999–2002), who
were included in the Scandinavian population-based case–control
study called SCALE (Scandinavian Lymphoma Etiology).15 All CLL
samples were diagnosed according to established criteria,
showing a typical CLL immunophenotype. The mean age at

Table 1b. Multivariate Cox regression analysis of NOTCH1/SF3B1 mutations and recurrent chromosomal aberrations in CLL

Variablea Overall survival (n¼ 356) Time to treatment (n¼ 293)

HR 95% CI P-value HR 95% CI P-value

Trisomy 12 1.84 1.11–3.03 0.017 2.63 1.68–4.13 o0.0001
del(11q) 1.89 1.16–3.07 0.011 3.37 2.21–5.15 o0.0001
del17p)/TP53 mutation 2.66 1.48–4.80 0.001 2.45 1.35–4.45 0.003
NOTCH1 mutation 4.22 2.41–7.42 o0.0001 2.73 1.53–4.85 o0.001
SF3B1 mutation 3.47 1.86–6.48 o0.0001 3.18 1.65–6.14 o0.001

Abbreviations: CLL, chronic lymphocytic leukemia; SF3B1, splicing factor 3B subunit 1; HR, hazard ratio; CI, confidence interval. aOnly recurrent genomic
aberrations and NOTCH1/SF3B1 mutations were included in the model. For recurrent genomic aberrations, HR is given in comparison with cases with no
detected aberrations/del(13q).

Figure 1. Relationship between NOTCH1 and SF3B1 mutations and other genomic aberrations (a). Prognostic impact of NOTCH1 and SF3B1
mutations on overall survival and time to treatment (b and c) and in relation to 11q and 17p deletions (d). In the latter analysis, six CLL cases
with concurrent del(17p) and NOTCH1 mutation were included in the ‘del(17p)/TP53-mutated’ subgroup, whereas the three cases that carried
del(11q) and SF3B1 mutations were grouped as ‘SF3B1-mutated’.
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diagnosis was 64 years (range, 38–75 years) and, as expected,
there was a male to female predominance of 2:1. Survival data
were available for 359 patients, with a median follow-up time of
98 months, whereas data on time to treatment were available for
296 patients. Molecular and clinical data for all patients are
summarized in Table 1a. Informed consent was collected
according to the Helsinki Declaration, and ethical approval was
granted by local ethical review committees.
PCR amplification of exon 34 of the NOTCH1 gene

was performed, followed by Sanger sequencing to detect the
hotspot 2-bp deletion. Similarly, PCR amplification and sequencing
of exons 14–16 of the SF3B1 gene was carried out (protocols
and primers available on demand). Overall survival was measured
from the date of diagnosis until last follow-up or death.
Time to treatment was evaluated from the diagnostic date until
date of initial treatment. Survival curves were constructed
with the Kaplan–Meyer method, and the log-rank test was used to
determine differences between survival proportions. The Cox
proportional hazards model was applied to assess the prognostic
strength of each prognostic marker included. All statistical analyses
were performed by using Statistica Software 10.0 (Stat Soft Inc., Tulsa,
OK, USA).
Out of 360 investigated cases in this population-based cohort of

newly diagnosed CLL, 17 patients displayed a NOTCH1 mutation
(4.7%), whereas 13 patients had an SF3B1 mutation (3.6%). These
mutations were mutually exclusive (Figure 1a). Notably, these are
considerably lower frequencies than in previous reports,5,7,8,10

which most probably reflects the unselected nature of this cohort.
Hence, in parallel to our recent data on TP53 mutations in early
CLL,14 the frequencies of these mutations are indeed lower than at
later stages of the disease. In contrast to previous observations,11–13

we did not find an association between trisomy 12 and NOTCH1
mutations, as only 2 out of 31 trisomy 12 patients carried a
NOTCH1 mutation. That notwithstanding and in concordance with
previous studies, presence of NOTCH1 or SF3B1 mutations was
strongly associated with poor outcome, both in terms of shorter
time to treatment and decreased overall survival (Figure 1b c).
In addition, NOTCH1 or SF3B1 mutations had a similarly poor
impact on prognosis as TP53 aberrations (deletions/mutations;
Figure 1d).
To test the additive value of NOTCH1 and SF3B1 mutations in

this unselected cohort of CLL patients, we performed a multi-
variate analysis including genomic aberrations according to the
hierarchical classification by Döhner et al.,1 and NOTCH1 and SF3B1
mutations. As can be seen in Table 1b, 11q deletion, trisomy 12,
TP53 aberrations, NOTCH1 and SF3B1 mutations all remained as
strong, independent prognostic markers in multivariate analysis
for overall survival, as well as for time to treatment. In conclusion,
the legitimacy of NOTCH1 and SF3B1 as poor prognostic markers
has grown rapidly and we here propose to include NOTCH1 and
SF3B1 mutations in the hierarchical classification of genetic
aberrations, where these mutations will be added to the high-
risk group of patients with TP53 aberrations. Obviously, this
proposal has to be tested in other larger, independent CLL cohorts
as well as in prospective trials, before it can be transferred into
routine clinical practice.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
This research was supported by the Nordic Cancer Union, the Swedish Cancer Society,
the Swedish Research Council and the Lion’s Cancer Research Foundation, Uppsala.

L Mansouri1,6, N Cahill1,6, R Gunnarsson1, KE Smedby2,
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