Subgroups

<u>Definition</u>: A subset H of a group G is a subgroup of G if H is itself a group under the operation in G.

<u>Note</u>: Every group G has at least two subgroups: G itself and the subgroup $\{e\}$, containing only the identity element. All other subgroups are said to be <u>proper</u> <u>subgroups</u>.

Examples

1. GL(*n*,R), the set of invertible $n \times n$ matrices with real entries is a group under matrix multiplication. We denote by SL(*n*,R) the set of $n \times n$ matrices with real entries whose determinant is equal to 1. SL(*n*,R) is a proper subgroup of GL(*n*,R). (GL(*n*,R), is called the general linear group and SL(*n*,R) the special linear group.)

2. In the group D_4 , the group of symmetries of the square, the subset $\{e, r, r^2, r^3\}$ forms a

proper subgroup, where r is the transformation defined by rotating $\frac{\pi}{2}$ units about the z-

axis.

3. In Z_9 under the operation +, the subset $\{0, 3, 6\}$ forms a proper subgroup.

<u>Problem 1</u>: Find two different proper subgroups of S_3 .

We will prove the following two theorems in class:

<u>Theorem</u>: Let H be a nonempty subset of a group G. H is a subgroup of G iff

- (i) H is closed under the operation in G and
- (*ii*) every element in *H* has an inverse in *H*.

For finite subsets, the situation is even simpler:

<u>Theorem</u>: Let H be a nonempty *finite* subset of a group G. H is a subgroup of G iff H is closed under the operation in G.

<u>Problem 2:</u> Let *H* and *K* be subgroups of a group *G*. (a) Prove that $H \cap K$ is a subgroup of *G*. (b) Show that $H \cup K$ need not be a subgroup

Example: Let Z be the group of integers under addition. Define H_n to be the set of all multiples of n. It is easy to check that H_n is a subgroup of Z. Can you identify the subgroup $H_n \cap H_m$? Try it for $H_6 \cap H_9$.

Note that the proof of part (a) of Problem 2 can be extended to prove that the intersection of any number of subgroups of G, finite or infinite, is again a subgroup.

Cyclic Groups and Subgroups

We can always construct a subset of a group G as follows: Choose any element a in G. Define $\langle a \rangle = \{a^n | n \in Z\}$, i.e. $\langle a \rangle$ is the set consisting of all powers of a.

<u>Problem 3:</u> Prove that $\langle a \rangle$ is a subgroup of G.

<u>Definition</u>: $\langle a \rangle$ is called the cyclic subgroup generated by *a*. If $\langle a \rangle = G$, then we say that *G* is a cyclic group. It is clear that cyclic groups are abelian.

For the next result, we need to recall that two integers *a* and *n* are relatively prime if and only if gcd(a, n)=1. We have proved that if gcd(a, n)=1, then there are integers *x* and *y* such that ax + by = 1. The converse of this statement is also true:

<u>Theorem</u>: Let *a* and *n* be integers. Then gcd(a, n)=1 if and only if there are integers *x* and *y* such that ax + by = 1.

<u>Problem 4:</u> (a) Let $U_n = \{a \in Z_n | gcd(a,n)=1\}$. Prove that U_n is a group under multiplication modulo *n*. $(U_n \text{ is called the group of units in } Z_n.)$ (b) Determine whether or not U_n is cyclic for n=7, 8, 9, 15.

We will prove the following in class.

<u>Theorem</u>: Let G be a group and $a \in G$.

(1) If *a* has infinite order, then $\langle a \rangle$ is an infinite subgroup consisting of the distinct elements a^k with $k \in \mathbb{Z}$.

(2) If *a* has finite order *n*, then $\langle a \rangle$ is a subgroup of order *n* and $\langle a \rangle = \{e = a^0, a^1, a^2, \dots a^{n-1}\}.$

<u>Theorem:</u> Every subgroup of a cyclic group is cyclic.

<u>Problem 5</u>: Find all subgroups of U_{18} .

Note: When the group operation is addition, we write the inverse of *a* by -a rather than a^{-1} , the identity by 0 rather than *e*, and a^k by *ka*. For example, in the group of integers under addition, the subgroup generated by 2 is $(2) = \{2k | k \in Z\}$.

<u>Problem 6</u>: Show that the additive group $Z_2 \times Z_3$ is cyclic, but $Z_2 \times Z_2$ is not.

<u>Problem 7:</u> Let G be a group of order n. Prove that G is cyclic if and only if G contains an element of order n.

The notion of cyclic group can be generalized as follows. : Let S be a nonempty subset of a group G. Let $\langle S \rangle$ be the set of all possible products, in every order, of elements of S and their inverses.

We will prove the following theorem in class.

<u>Theorem</u>: Let S be a nonempty subset of a group G.

- (1) $\langle S \rangle$ is a subgroup of G that contains S.
- (2) If *H* is a subgroup of *G* that contains *S*, then *H* contains $\langle S \rangle$.
- (3) $\langle S \rangle$ is the intersection of all subgroups of G that contain S.

The second part of this last theorem states that $\langle S \rangle$ is the smallest subgroup of *G* that contains $\langle S \rangle$. The group $\langle S \rangle$ is called the <u>subgroup of *G* generated by *S*</u>. Note that when $S = \{a\}, \langle S \rangle$ is just the cyclic subgroup generated by *a*. In the case when $\langle S \rangle = G$, we say that <u>*G* is generated by *S*</u>, and the elements of *S* are called <u>generators of *G*</u>.

Example: Recall that we showed that every element in D_4 could be represented by r^k or ar^k for k=0, 1, 2, 3, where r is the transformation defined by rotating $\frac{\pi}{2}$ units about the z-axis, and a is rotation π units about the line y=x in the x-y plane. Thus D_4 is generated by $S = \{a, r\}$.

<u>Problem 8</u>: Show that U_{15} is generated by $\{2, 13\}$.