
Subgroups

Definition:  A subset H of a group G is a subgroup of G if H is itself a group under the
operation in G.

Note:  Every group G has at least two subgroups: G itself and the subgroup {e},
containing only the identity element.  All other subgroups are said to be proper
subgroups.

Examples
1.  GL(n,R), the set of invertible 

† 

n ¥ n  matrices with real entries is a group under matrix
multiplication.  We denote by SL(n,R) the set of 

† 

n ¥ n  matrices with real entries whose
determinant is equal to 1. SL(n,R) is a proper subgroup of GL(n,R) .  (GL(n,R), is called
the general linear group and SL(n,R) the special linear group.)

2.  In the group 

† 

D4 , the group of symmetries of the square, the subset  

† 

{e,r,r2 ,r 3} forms a

proper subgroup, where r is the transformation defined by rotating 

† 

p
2

 units about the z-

axis.

3.  In 

† 

Z9 under the operation +, the subset {0, 3, 6} forms a proper subgroup.

Problem 1:  Find two different proper subgroups of 

† 

S3.

We will prove the following two theorems in class:
Theorem:  Let H be a nonempty subset of a group G.  H is a subgroup of G iff

(i)  H is closed under the operation in G  and
(ii) every element in H has an inverse in H.

For finite subsets, the situation is even simpler:

Theorem:  Let H be a nonempty finite subset of a group G.  H is a subgroup of G iff H is
closed under the operation in G .

Problem 2: Let H and K be subgroups of a group G.
(a) Prove that 

† 

H « K  is a subgroup of G.
(b) Show that 

† 

H » K  need not be a subgroup

Example:  Let Z be the group of integers under addition.  Define 

† 

Hn  to be the set of all
multiples of n.   It is easy to check that 

† 

Hn  is a subgroup of Z.   Can you identify the
subgroup 

† 

Hn « H m?  Try it for 

† 

H6 « H9 .



Note that the proof of part (a) of Problem 2 can be extended to prove that the intersection
of any number of subgroups of G, finite or infinite, is again a subgroup.

Cyclic Groups and Subgroups

We can always construct a subset of a group G as follows:
Choose any element a in G.  Define   

† 

a ={an | n Œ Z}, i.e. 

† 

a  is the set consisting of all
powers of a.

Problem 3:   Prove that 

† 

a  is a subgroup of G.

Definition: 

† 

a  is called the cyclic subgroup generated by a.  If 

† 

a  = G, then we say that
G is a cyclic group.  It is clear that cyclic groups are abelian.

For the next result, we need to recall that two integers a and n are relatively prime if and
only if gcd(a, n)=1.  We have proved that if gcd(a, n)=1, then there are integers x  and y
such that 

† 

ax + by =1.  The converse of this statement is also true:

Theorem:  Let a and n be integers.  Then gcd(a, n)=1 if and only if there are integers x
and y  such that 

† 

ax + by =1.

Problem 4:  (a) Let   

† 

Un ={a Œ Zn |  gcd(a,n)=1}.  Prove that 

† 

Un  is a group under
multiplication modulo n.  (

† 

Un  is called the group of units in 

† 

Zn .)
(b)  Determine whether or not 

† 

Un  is cyclic for n= 7, 8, 9, 15.

We will prove the following in class.
Theorem:  Let G be a group and 

† 

a Œ G .
(1)  If a has infinite order, then 

† 

a  is an infinite subgroup consisting of the
distinct elements 

† 

ak  with 

† 

k Œ Z .
(2) If a has finite order n, then 

† 

a  is a subgroup of order n and

  

† 

a ={e = a0,a1,a2 ,...,an-1}.

Theorem:  Every subgroup of a cyclic group is cyclic.

Problem 5:  Find all subgroups of 

† 

U18.

Note:  When the group operation is addition, we write the inverse of a by 

† 

-a  rather than

† 

a-1 , the identity by 0 rather than e, and 

† 

ak  by ka.  For example, in the group of integers
under addition, the subgroup generated by 2 is   

† 

2 ={2k| k Œ Z}.

Problem 6:  Show that the additive group 

† 

Z2 ¥ Z3  is cyclic, but 

† 

Z2 ¥ Z2  is not.



Problem 7:  Let G be a group of order n.  Prove that G is cyclic if and only if G contains
an element of order n.

The notion of cyclic group can be generalized as follows. :   Let S be a nonempty subset
of a group G. Let 

† 

S  be the set of all possible products, in every order, of elements of S
and their inverses.
We will prove the following theorem in class.
Theorem: Let S be a nonempty subset of a group G.

(1) 

† 

S  is a subgroup of G that contains S.
(2) If H is a subgroup of G that contains S, then H contains 

† 

S .
(3) 

† 

S  is the intersection of all subgroups of G that contain S.

The second part of this last theorem states that 

† 

S  is the smallest subgroup of G that
contains 

† 

S .  The group 

† 

S  is called the subgroup of G generated by S.
Note that when S = {a}, 

† 

S is just the cyclic subgroup generated by a.  In the case when

† 

S =G, we say that G is generated by S, and the elements of S are called generators of G.

Example:  Recall that we showed that every element in 

† 

D4  could be represented by 

† 

rk or

† 

ark  for k=0, 1, 2, 3, where r  is the transformation defined by rotating 

† 

p
2

 units about the

z-axis, and a is rotation 

† 

p  units about the line y=x in the x-y plane.  Thus 

† 

D4  is generated
by S ={a, r}.

Problem 8:  Show that 

† 

U15  is generated by {2, 13}.


