
SANDIA REPORT

SAND2004-1592
Unlimited Release
Printed April 2004

MOAB: A MESH-ORIENTED DATABASE

Timothy J. Tautges
Ray Meyers
Karl Merkley
Clint Stimpson
Corey Ernst

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represent that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728

E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900

E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

3

Table of Contents

1. Introduction... 5
2. Getting Started .. 5

2.1. Basic Access: Loading a Mesh and Iterating Over Elements................................... 5
2.2. Tags and Sets: Querying Boundary Conditions in a Mesh....................................... 6
2.3. Hierarchies of Sets: Traversing Geometric Topology in a Mesh 6

3. MOAB Data Model .. 8
3.1. MOAB Interface .. 8
3.2. Mesh Entities, Handles .. 8
3.3. MBRange ... 9
3.4. Entity Sets .. 9
3.5. Tags .. 9

4. MOAB API Design Philosophy and Summary.. 10
5. Reader/Writer Interface and Other Tools... 15

5.1. Reader/Writer Interface ... 15
5.2. Mesh Readers/Writers ... 16
5.3. Skinner ... 16

6. TSTT Mesh Interface Implementation in MOAB ... 17
7. Conclusions and Future Plans .. 17
8. References... 17

List of Figures
Figure 1: Loading a mesh and iterating over all 3d elements. ... 6
Figure 2: Get the dirichlet sets, their ids, and the entities in each set.................................. 7
Figure 3: Traverse geometric topology mesh sets using mesh set parent/child links. 8

4

 List of Tables
Table 1: Values defined for the MOABCN_EntityType enumerated type. 9
Table 2: Basic data types and enums defined in MOAB. ..11
Table 3: Conventional tag names and semantics defined by MOAB. Tags must be

defined by application, but names in 1st column are available as preprocessor-
defined strings with values shown in the 2nd column. ... 11

Table 4: Constructors, destructors, and other methods for creating and destroying
interface instances... 12

Table 5: Type and id utility functions. ... 12
Table 6: Mesh input/output functions. ... 12
Table 7: Geometric dimension functions. The geometric dimension controls how many

coordinates are written or read for a mesh when maximum topological dimension of
the mesh is less than three. ... 12

Table 8: Vertex coordinate functions. .. 12
Table 9: Individual element connectivity functions... 13
Table 10: Functions for finding/adding/removing adjacencies between entities. These

functions use enumerated values of MBInterface::UNION and
MBInterface::INTERSECT for specifying operation types. 13

Table 11: Functions for getting entities in the interface or in meshsets. 13
Table 12: Create, destroy or merge vertices or elements... 13
Table 13: Print information about the mesh or specific entities in the mesh. 14
Table 14: Functions for working with higher-order elements. .. 14
Table 15: Tag functions. .. 14
Table 16: Meshset functions... 14

5

1. Introduction
A finite element mesh is a used to decompose a continuous domain into a discretized
representation. The finite element method solves PDEs on this mesh by modeling complex
functions as a set of simple basis functions with coefficients at mesh vertices and prescribed
continuity between elements. The mesh is one of the fundamental types of data linking the
various tools in the FEA process (mesh generation, analysis, visualization, etc.). Thus, the
representation of mesh data and operations on those data play a very important role in FEA-based
simulations.

MOAB is a component for representing and evaluating mesh data. MOAB can store structured
and unstructured mesh, consisting of elements in the finite element “zoo”. The functional
interface to MOAB is simple yet powerful, allowing the representation of many types of metadata
commonly found on the mesh. MOAB is optimized for efficiency in space and time, based on
access to mesh in chunks rather than through individual entities, while also versatile enough to
support individual entity access.

The MOAB data model consists of a mesh interface instance, mesh entities (vertices and
elements), sets, and tags. Entities are addressed through handles rather than pointers, to allow the
underlying representation of an entity to change without changing the handle to that entity. Sets
are arbitrary groupings of mesh entities and other sets. Sets also support parent/child
relationships as a relation distinct from sets containing other sets. The directed-graph provided
by set parent/child relationships is useful for modeling topological relations from a geometric
model or other metadata. Tags are named data which can be assigned to the mesh as a whole,
individual entities, or sets. Tags are a mechanism for attaching data to individual entities and sets
are a mechanism for describing relations between entities; the combination of these two
mechanisms is a powerful yet simple interface for representing metadata or application-specific
data.

For example, sets and tags can be used together to describe geometric topology, boundary
condition, and inter-processor interface groupings in a mesh.

MOAB is used in several ways in various applications. MOAB serves as the underlying mesh
data representation in the VERDE mesh verification code [6]. MOAB can also be used as a mesh
input mechanism, using mesh readers included with MOAB, or as a translator between mesh
formats, using readers and writers included with MOAB.

The remainder of this report is organized as follows. Section 2, “Getting Started”, provides a few
simple examples of using MOAB to perform simple tasks on a mesh. Section 3 discusses the
MOAB data model in more detail, including some aspects of the implementation. Section 4
summarizes the MOAB function API. Section 5 describes some of the tools included with
MOAB, and the implementation of mesh readers/writers for MOAB. Section 6 contains a brief
description of MOAB’s relation to the TSTT mesh interface. Section 7 gives a conclusion and
future plans for MOAB development. Section 8 gives references cited in this report. A reference
description of the full MOAB API is contained in Section 9.

2. Getting Started
This chapter contains several examples of using MOAB for specific tasks. These examples are
described in pseudo-C++, with some details left out for brevity. For a more complete set of
examples of using MOAB, see the MBTest.cpp file included in the MOAB distribution.

2.1. Basic Access: Loading a Mesh and Iterating Over Elements
In the example shown in Figure 1, an instance of MOAB is created and used to load and iterate
over the 3d elements in a mesh. MOAB uses handles to reference entities in the mesh, rather than

6

pointers to C++ class instances. Lists of handles can be stored efficiently using MOAB’s
MBRange class, which also provides C++ STL-like functions and type definitions for iterating
over the lists. MOAB contains functions for returning elements by dimension
(get_entities_by_dimension) as well as by entity type (TRI, QUAD, etc.) and other
characteristics. See Chapter 4 for a complete list of these functions.

Figure 1: Loading a mesh and iterating over all 3d elements.

2.2. Tags and Sets: Querying Boundary Conditions in a Mesh
A mesh usually contains information about not only vertices and elements, but also groupings of
those entities to represent material types and boundary conditions. There are also many other
kinds of “metadata”, or data about the mesh data, found in a typical mesh. In MOAB, sets and
tags are used to represent groups of entities and application-assigned data on those entities,
respectively. Sets and tags provide a versatile mechanism for storing and retrieving metadata to
or from a mesh.

Figure 2 shows how to retrieve Dirichlet boundary condition groups, and the mesh entities in each
of the groups, from a MOAB mesh. First, the tag handle corresponding to the pre-defined name
DIRICHLET_SET_TAG_NAME is found1 using the tag_get_handle function. The sets
containing that tag, and any value for that tag, are retrieved using get_entities_by_type_and_tag.
The entities contained in each set are retrieved using get_entities_by_handle, with the “true”
argument indicating that any contained sets should be traversed recursively to include non-set
entities in the results.

2.3. Hierarchies of Sets: Traversing Geometric Topology in a Mesh
Data hierarchies appear in many forms in mesh data. One of the most common of these is the
topology of the geometric model used to generate a mesh. This topology can be represented by
sets of mesh, each corresponding to an entity in the geometric model, and parent/child relations
between these sets, representing the topology graph of the geometric model. This example shows
how to use MOAB sets and parent/child relationships between them to traverse geometric
topology stored with a mesh. The code for this example is shown in Figure 3. This code assumes

1 Other pre-defined tag names in MOAB include NEUMANN_SET_TAG_NAME and
MATERIAL_SET_TAG_NAME. For a discussion of tag name conventions and pre-defined names in
MAOB, see Chapter 4.

// load a mesh from a file
gMB = new MBCore();
MBErrorCode result = gMB->load_mesh(“test.g”);

MBRange elems;

// get the 3d elements and iterate over them
result = gMB->get_entities_by_dimension(0, 3, elems);
for (MBRange::iterator it = elems.begin(); it != el ems.end(); it++)
{
 MBEntityHandle elem = *it;
 …
}

7

that the sets and parent/child relationships representing geometric topology are already defined in
a MOAB instance2.

MOAB assigns a tag with the name GEOM_DIMENSION_TAG_NAME to sets representing
geometric topology, with the tag value indicating topological dimension of the corresponding
geometric entity. In Figure 3, after retrieving the tag handle and assigning it to geom_tag, the
code iterates over dimensions three to zero. For each dimension d, all sets with geom_tag and a
value equal to d are retrieved using get_entities_by_type_and_tag; for each of those sets (each
representing an entity in a geometric model), the child sets are retrieved using
get_child_meshsets, and some_operation is performed on them. The child sets of a given set
represent the bounding entities in the geometric model.

Figure 2: Get the dirichlet sets, their ids, and the entities in each set.

The function get_entities_by_type_and_tag is a versatile function which not only returns entities
with given tags and values, but can also perform set booleans on the result (controlled by the
MBInterface::UNION argument) and traverse recursively down through contained sets
(controlled by the “false” argument). See Chapter 4 for a complete description of this function.

Note that this example shows how geometric topology can be queried through sets of mesh,
without the use of a geometric modeling engine. It also shows that the semantic meaning of
classifying entities in the mesh to a piece of geometric topology can be accomplished using mesh
sets and tags provided by MOAB3.

2 One way to retrieve mesh data with these definitions is to use MOAB’s CUB file reader, which is
described in Section 5.2.
3 The final step in associating a mesh set of a specific topological dimension in MOAB with an actual entity
in a geometric modeling engine, if desired, can be done using another tag, e.g. one containing a unique
integer id or a character name corresponding to that entity. This is the method used to do this association
between entities in MOAB and CGM, for example.

// get the material set tag handle
MBTag mtag;
MBErrorCode result = gMB->tag_get_handle(DIRICHLET_ SET_TAG_NAME, mtag);

// get all the material sets in the mesh
MBRange msets, set_ents;
result = gMB->get_entities_by_type_and_tag(0, MBENT ITYSET, &mtag,
 NULL, 1, false, msets);

// iterate over each set, getting entities and doin g something with them
MBRange::iterator set_it;
for (set_it = msets.begin(); set_it != msets.end(); set_it++)
{
 MBEntityHandle this_set = *set_it;

 // get the id for this set
 result = gMB->tag_get_data(mtag, &this_set, 1, &s et_id);

 // get the entities in the set, recursively
 result = gMB->get_entities_by_handle(this_set, se t_ents, true);
 …
}

8

Figure 3: Traverse geometric topology mesh sets using mesh set parent/child links.

3. MOAB Data Model
The MOAB data model is an important part of understanding how best to use MOAB in
applications. This chapter describes that data model, along with some of the reasons for some of
the design choices in MOAB.

3.1. MOAB Interface
A mesh is accessed in MOAB through functions defined on the MOAB interface instance.
Handles to mesh entities are guaranteed to be unique within an interface instance. The MOAB
implementation allows an application to gain access to the instance by using C++ instantiation,
using a component interface called SIDL, or through a shared library. Instantiation is shown in
the examples in Chapter 2. Accessing MOAB through SIDL is discussed briefly in Chapter 6,
and is demonstrated in test code distributed with MOAB. Access through shared libraries is
demonstrated in the MBTest.cpp example, distributed with MOAB.

3.2. Mesh Entities, Handles
The type of a mesh entity in MOAB is represented by the MBEntityType enumerated type. The
mesh entity types defined in MOAB are listed in Table 1. Note that the types begin with vertex,
entity types are grouped by topological dimension, and the definition includes an entity type for
sets. MBMAXTYPE is included for convenience, to indicate the maximum value of this
enumeration. In addition to the defined values of the MBEntityType enumeration, an increment
operator (++) is defined such that variables of type MBEntityType can be used as iterators in
loops.

// get the geometric topology tag handle
MBTag geom_tag;
MBErrorCode result;
result = gMB->tag_get_handle(GEOM_DIMENSION_TAG_NAM E, geom_tag);

// traverse the model, from dimension 3 downward
MBRange psets, chsets;
int dim;
int *dim_ptr = &dim;
for (dim = 3; dim >= 0; dim--)
{
 // get parents at this dimension
 psets.clear();
 result = gMB->get_entities_by_type_and_tag(0, MBE NTITYSET,
 &geom_tag, dim_ptr, 1, false, psets, MBInterfac e::UNION, false);

 // for each parent, get children and do something with them
 MBRange::iterator par_it;
 for (par_it = psets.begin(); par_it != psets.end(); par_it++)
 {
 // get the children and put in child set list
 chsets.clear();
 result = gMB->get_child_meshsets(*par_it, chset s);
 // do something with them
 some_operation(chsets);
 }
} // for (int dim = …)

9

MOAB uses handles to mesh entities, rather than pointers. Handles are implemented as integer
data types, with the four highest-order bits used to store the entity type (mesh vertex, edge, tri,
etc.) and the remaining bits storing the entity id. Because the entity types are defined in the
MBEntityType enum by topological dimension and the type is stored in the higher order bits of a
handle, handles naturally sort by type and dimension. This can be useful for grouping and
iterating over entities by type. This characteristic of the handle implementation is exposed to
applications intentionally, because of optimizations that it enables in application code. This is
used extensively in the implementation of MOAB, and is therefore unlikely to change in future
modifications to MOAB.

Table 1: Values defined for the MOABCN_EntityType enumerated type.

MBVERTEX = 0 MBPRISM
MBEDGE MBKNIFE
MBTRI MBHEX
MBQUAD MBPOLYHEDRON
MBPOLYGON MBENTITYSET
MBTET MBMAXTYPE
MBPYRAMID

3.3. MBRange
MOAB defines the MBRange class to represent sets of contiguous ranges of handles. This allows
the representation of an arbitrary number of handles in a near-constant-size class. Iterators are
defined for MBRange such that they can be used much the same as C++ STL container classes.
Putting entities in a range automatically sorts them by type and dimension, because of the
ordering characteristic of entity handles. MBRange should be used whenever possible, to avoid
creating large lists of entity handles; ranges are also more computationally efficient for many list-
type operations.

3.4. Entity Sets
Entity sets are used to represent arbitrary groupings of entities in MOAB4. Entity sets can be
defined with several options:

• Ordered: entity order is preserved in this set
• Set: entities can only appear once in this set
• Tracking: membership in this set is tracked on entities

Entity sets can also be related together using parent/child relationships (these relationships are
distinct from sets containing other sets). Tags can be assigned to entity sets as well. Using sets in
conjunction with parent/child relationships and tags is a powerful mechanism for representing
metadata on a mesh. This mechanism has been used to represent geometric model topology,
inter-processor interfaces, and boundary condition groupings on a mesh, for example.

3.5. Tags
A tag is an application-specific piece of data assigned to an entity, an entity set, or the mesh
interface itself. Tags are uniquely identified by a name, but are referenced using a handle for
efficiency. Currently, MOAB treats the value of a tag as raw data; that is, MOAB understands

4 The term “mesh sets” is also used to refer to entity sets in various places.

10

nothing about the semantic type of tag data, e.g. whether it is an integer, a C structure, etc. Each
MOAB tag has the following characteristics, which can be queried through the MOAB interface:

• Name
• Size (in bytes)
• Type (mesh, dense, sparse, bit)
• Handle

The type of the tag determines how tags are stored on entities.

• Mesh: Mesh tags are assigned to the mesh interface as a whole.
• Dense: Dense tags are stored like arrays of entities, with each entity having a

separate value for a given dense tag. Dense tags are more efficient in both storage
and memory if large numbers of entities are assigned the same tag type.

• Sparse: Sparse tags are stored in list fashion, where (entity handle, tag value) pairs
are stored in a list for a given tag.

• Bit: Bit tags are handled distinctly from sparse tags because the size is measured
in bits rather than bytes; bit tags can be used to minimize storage costs for
boolean-valued data.

The meaning of a given tag is left to applications to determine, in order to avoid having to change
the MOAB API every time a new tag is required. However, there are a number of tag names
reserved by MOAB which are intended to be used by convention. At this time, MOAB defines
the tags in Table 3 as having conventional semantics. Mesh readers and writers in MOAB use
these tag conventions, and applications can use them as well to access the same data.

4. MOAB API Design Philosophy and Summary
This section summarizes the API functions provided by MOAB, and some of the data types and
enumerated variables referenced by those functions. A complete description of the MOAB API is
listed in Chapter 9, and is available in online documentation in the MOAB distribution.

The MOAB API was designed to both minimize the number of functions for simplicity and
maximize the efficiency of both the implementation and use of the API functions, without making
the individual functions too complex. Since these objectives are at odds with each other,
tradeoffs had to be made between them. Some specific issues that came up are:

• Using ranges: Where possible, entities can be referenced using either ranges
(which allow efficient storage of long lists) or vectors (which allow list order to
be preserved), in both input and output arguments.

• Entities in sets: Accessing the entities in a set is done using the same functions
which access entities in the entire mesh. The whole mesh is referenced by
specifying a set handle of zero (e.g. see code in the first example of Chapter 2).

• Entity vectors on input: Functions which could normally take a single entity as
input are specified to take a vector of handles instead. Single entities are
specified by taking the address of that entity handle and specifying a list length of
one (for example, see Figure 2 in Chapter 2). This minimizes the number of
functions, while preserving the ability to input single entities.5

5 Note that STL vectors of entity handles can be input in this manner by using &vector[0] and vector.size()
for the 1d vector address and size, respectively.

11

Table 2 lists basic data types and enumerated variables defined and used by MOAB. Values of
the MBErrorCode enumeration are returned from most MOAB functions, and can be compared to
those listed in the online documentation for MOAB[8].

Table 3 shows conventional tag names and semantics for several tags. As described in Section
3.5, these tag names are understood by convention, but are not explicitly bound to the MOAB
interface.

The remaining tables in this chapter, Table 4 through Table 16, enumerate the other functions in
the MOAB interface, grouped by types of functionality. See Chapter 2 for several simple
examples of using the MOAB interface for various simple operations on a mesh. Online
documentation for MOAB should be consulted for complete and latest documentation of these
functions [8].

Table 2: Basic data types and enums defined in MOAB.

Enum / Type Description
MBErrorCode Specific error codes returned from MOAB
MBEntityHandle Type used to represent entity handles
MBTagType Type used to represent tag type
MBTag Type used to represent tag handles

Table 3: Conventional tag names and semantics defined by MOAB. Tags must be defined by
application, but names in 1st column are available as preprocessor-defined strings with values shown
in the 2nd column.

#define name String name Description (type)
MATERIAL_SET_TAG_NAME “MATERIAL_SET” Material identifier

(int)
DIRICHLET_SET_TAG_NAME “DIRICHLET_SET” Dirichlet-type BC

identifier, normally
composed of vertices
only (int)

NEUMANN_SET_TAG_NAME “NEUMANN_SET” Neumann-type BC
identifier, normally
composed of “sides”
of higher-
dimensional
elements (int)

HAS_MID_NODES_TAG_NAME “HAS_MID_NODES” Flag denoting
elements having
mid-nodes on edges,
faces, and regions
(int[3])

GEOM_DIMENSION_TAG_NAME “GEOM_DIMENSION” Presence of tag
indicates this set
represents an entity
of geometric
topology; value

12

#define name String name Description (type)
indicates topological
dimension (int)

MESH_TRANSFORM_TAG_NAME “MESH_TRANSFORM” Transform applied to
mesh, specified in
4x4 homogeneous
transform
(double[16])

GLOBAL_ID_TAG_NAME “GLOBAL_ID” Global id (int)

Table 4: Constructors, destructors, and other methods for creating and destroying interface
instances.

Function Description
MBInterface, MBCore Constructors
~MBInterface, ~MBCore Destructors
query_interface Find an interface with the specified name.
release_interface Release the interface with the specified name.

Table 5: Type and id utility functions.

Function Description
type_from_handle Return the MBEntityType of a given entity
id_from_handle Return the entity id of a given entity
dimension_from_handle Return the topological dimension of a given entity
handle_from_id Return the entity corresponding to the given type and id, if

any

Table 6: Mesh input/output functions.

Function Description
load_mesh Load the mesh from the specified file.
write_mesh Write the mesh to the specified file, for specified material sets or for the

whole mesh.

Table 7: Geometric dimension functions. The geometric dimension controls how many coordinates
are written or read for a mesh when maximum topological dimension of the mesh is less than three.

Function Description
get_dimension Gets the geometric dimension set on the mesh
set_dimension Sets the geometric dimension on the mesh

Table 8: Vertex coordinate functions.

Function Description
get_vertex_coordinates Get the coordinates of all vertices in the mesh

13

get_coords♦ Get the coordinates of entities specified in the input range
set_coords Set the coordinates of vertices specified in the input vector

Table 9: Individual element connectivity functions.

Function Description
get_connectivity_by_type Get the connectivity for all entities of the specified type
get_connectivity♦ Get the connectivity for a list of elements
set_connectivity Set the connectivity for the input entity

Table 10: Functions for finding/adding/removing adjacencies between entities. These functions use
enumerated values of MBInterface::UNION and MBInterface::INTERSECT for specifying
operation types.

Function Description
get_adjacencies♦ Get the adjacencies associated with a list of entities to entities

of a specfied dimension.
add_adjacencies Add adjacencies between "from" and "to" entities
remove_adjacencies Remove adjacencies between handles

Table 11: Functions for getting entities in the interface or in meshsets.

Function Description
get_entities_by_dimension Retrieves all entities of a given topological

dimension in the database or meshset
get_entities_by_type Retrieve all entities of a given type in the

database or meshset
get_entities_by_type_and_tag Retrieve entities in the database or meshset

which have any or all of the tag(s) and
(optionally)
 //! value(s) specified

get_entities_by_handle♦ Returns all entities in the data base or meshset
get_number_entities_by_dimension Return the number of entities of given

dimension in the database or meshset
get_number_entities_by_type_and_tag Retrieve number of entities in the database or

meshset which have any or all of the
 //! tag(s) and (optionally) value(s) specified

get_number_entities_by_handle Returns number of entities in the data base or
meshset

Table 12: Create, destroy or merge vertices or elements.

Function Description

♦ Multiple versions of this function are available, and differ according to how arguments are specified or
returned (by range, STL vector, etc.). See online documentation [8] for full documentation.

14

create_element Create an element based on the type and connectivity
create_vertex Creates a vertex with the specified coordinates
merge_entities Merge two entities into a single entity
delete_entities♦ Remove entities from the data base
delete_mesh Deletes all mesh entities from this MB instance

Table 13: Print information about the mesh or specific entities in the mesh.

Function Description
list_entities♦ List specified entities to standard output
get_last_error Get a string describing the last error in MOAB

Table 14: Functions for working with higher-order elements.

Function Description
HONodeAddedRemoved Function object to communicate higher order node

added/removed events from MOAB to applications
convert_entities Convert entities to higher-order elements by adding or

removing mid nodes
side_number Returns the side number, in canonical ordering, of child

entity with respect to parent entity
high_order_node Find the higher-order node on a sub-facet of an entity
side_element Return the handle of the side element of a given dimension

and index

Table 15: Tag functions.

Function Description
tag_create Create a tag with the specified name, type and length
tag_get_name Get the name of a tag corresponding to a handle
tag_get_handle Get the tag handle corresponding to a name
tag_get_size Get the size of the specified tag
tag_get_type Get the type of the specified tag
tag_get_tags Get handles for all tags defined in the mesh instance
tag_get_data♦ Get the value of the indicated tag on the specified entities
tag_set_data♦ Set the value of the indicated tag on the specified entities
tag_delete_data♦ Delete the data of a sparse tag from the specified entities
tag_delete Remove a tag from the database and delete all of its associated

data

Table 16: Meshset functions.

Function Description
create_meshset Create a set
clear_meshset♦ Clean out specified sets
get_meshset_options Get the options of a set

15

subtract_meshset Subtract meshset2 from meshset1 - modifies meshset1
intersect_meshset Intersect meshset2 with meshset1 - modifies meshset1
unite_meshset Unite meshset2 with meshset1 - modifies meshset1
add_entities♦ Add entities to a set
remove_entities♦ Remove entities from a set
get_parent_meshsets Get parent sets
get_child_meshsets Get child sets
num_parent_meshsets Get the number of parent sets
num_child_meshsets Get number of child sets
add_parent_meshset Add a parent set
add_child_meshset Add a child set
add_parent_child Add 'parent' to child's parent list and adds 'child' to parent's

child list
remove_parent_child Remove 'parent' to child's parent list and remove 'child' to

parent's child list
remove_parent_meshset Remove parent set
remove_child_meshset Remove child set

5. Reader/Writer Interface and Other Tools
MOAB is a library and API for representing mesh data. However, in the course of developing
MOAB, several other tools and capabilities have been developed, either to facilitate getting data
into MOAB, or for other reasons. These tools are described in this chapter.

5.1. Reader/Writer Interface
Mesh readers and writers communicate mesh into/out of MOAB from/to disk files. Reading a
mesh often involves importing large sets of data, for example coordinates of all the nodes in the
mesh. Normally, this process would involve reading data from the file into a temporary data
buffer, then copying data from there into its destination in MOAB. To avoid the expense of
copying data, MOAB has implemented a reader/writer interface that provides direct access to
blocks of memory used to represent mesh. This interface is abstracted similar to the MOAB
interface, to allow any mesh reader/writer to use it.

The reader interface, declared in MBReadUtilIface, is used to request blocks of memory for
storing coordinate positions and element connectivity. The pointers returned from these functions
point to the actual memory used to represent those data in MOAB. Once data is written to that
memory, no further copying is done. This not only saves time, but it also eliminates the need to
allocate a large memory buffer for intermediate storage of these data. The reader interface
consists of the following functions:

• get_node_arrays: Given the number of vertices requested, the number of
geometric dimensions, and a requested start id, allocates a block of vertex handles
and returns pointers to coordinate arrays in memory, along with the actual start id
for that block of vertices.

• get_element_array: Given the number of elements requested, the number of
vertices per element, the element type and the requested start id, allocates the
block of elements, and returns a pointer to the connectivity array for those
elements and the actual start handle for that block. The number of vertices per

16

element is necessary because those elements may include higher-order nodes, and
MOAB stores these as part of the normal connectivity array.

• update_adjacencies: This function takes the start handle for a block of elements
and the connectivity of those elements, and updates adjacencies for those
elements. Which adjacencies are updated depends on the options set in
AEntityFactory.

The writer interface, declared in MBWriteUtilIface, takes pointers to storage locations for node
and element data and assembles and writes those data to that memory. Assembling these data is a
common task for writing mesh, and can be non-trivial when exporting only subsets of a mesh.
The writer interface declares the following functions:

• get_node_arrays: Given already-allocated memory and the number of vertices
and dimensions, and a range of vertices, this function writes vertex coordinates to
that memory. If a tag is input, that tag is also written with integer vertex ids,
starting with 1, corresponding to the order the vertices appear in that sequence
(these ids are used to write the connectivity array).

• get_element_array: Given a range of elements and the tag holding vertex ids,
and a pointer to memory, the connectivity of the specified elements are written to
that memory, in terms of the ids referenced by the specified tag. Again, the
number of vertices per element is input, to allow the direct output of higher-order
vertices.

• gather_nodes_from_elements: Given a range of elements, this function returns
the range of vertices used by those elements. If a bit-type tag is input, vertices
returned are also marked with 0x1 using that tag. The implementation of this
function uses its own bit tag for marking, to avoid using an n2 algorithm for
gathering vertices.

5.2. Mesh Readers/Writers
MOAB has been designed to efficiently represent data and metadata commonly found in finite
element mesh files. Readers and writers are included with MOAB which import/export specific
types of metadata in terms of MOAB sets and tags, as described earlier in this document. Current
readers (R) and writers (W) in MOAB include:

• ExodusII: Common simulation data format used at Sandia [1]. (R, W)
• Cub: The file used to save Cubit session data; includes mesh and solid model

data. Mesh data imported directly; solid model data used to construct geometric
topology groupings in MOAB. (R)

• Vtk: Open-source graphics package which also defines a data format. (R)
Because of its generic support for readers and writers, described in the previous section, MOAB
is also a good environment for constructing new mesh readers and writers. Additional readers
and writers will be added to MOAB in the future; see online documentation for MOAB for
details.

5.3. Skinner
An operation commonly applied to mesh is to compute the outermost “skin” bounding a
contiguous block of elements. This skin consists of elements of one fewer topological dimension,
arranged in one or more topological spheres on the boundary of the elements. MOAB provides a
tool, MBSkinner, to compute the skin of a mesh in a memory-efficient manner. MBSkinner uses

17

special MOAB functionality to minimize the vertex-face adjacencies required to compute the
skin. This process also reduces the searching time required to find faces on the skin.

MBSkinner can also skin a mesh based on geometric topology groupings imported with the mesh.
The geometric topology groupings contain information about the mesh “owned” by each of the
entities in the geometric model, e.g. the model vertices, edges, etc. Links between the mesh sets
corresponding to those entities can be inferred directly from the mesh. Skinning a mesh this way
will typically be much faster than doing so on the actual mesh elements, because there is no need
to create and destroy interior faces on the mesh.

6. TSTT Mesh Interface Implementation in MOAB
The DOE Scientific Discovery for Advanced Computing (SciDAC) program has funded the
Terascale Simulation Tools and Technologies (TSTT) center to develop interoperable interfaces
and tools applied to meshing and other enabling technologies [2]. Applications which operate on
mesh through the TSTT mesh interface specification can use a number of packages for
representing that mesh. Applications providing an implementation of the TSTT mesh interface
can use tools which communicate with mesh through that interface, including the FRONTIER
interface modeling library [3] and the MESQUITE mesh improvement toolkit [4].

The TSTT mesh interface specification uses the SIDL/Babel tools [5] to provide inter-language
interoperability. Applications linked to a framework through SIDL/Babel can use run-time
binding to gain access to components that, for example, implement the TSTT mesh interface.

Studies are underway to examine the run-time cost of accessing MOAB and other mesh interface
implementations through SIDL/Babel. Early predications are that the cost should be similar to
several normal function calls in the native programming language.

Further details of accessing MOAB and other implementations of the TSTT mesh interface
through SIDL/Babel will be described as they become available.

7. Conclusions and Future Plans
MOAB, a Mesh-Oriented datABase, provides a simple but powerful data abstraction to structured
and unstructured mesh, and makes that abstraction available through a function API. MOAB
provides the mesh representation for the VERDE mesh verification tool, which demonstrates
some of the powerful mesh metadata representation capabilities in MOAB. MOAB includes
modules that import mesh in the ExodusII, CUBIT .cub and Vtk file formats, as well as the
capability to write mesh to ExodusII, all without licensing restrictions normally found in
ExodusII-based applications. MOAB also has the capability to represent and query structured
mesh in a way that optimizes storage space using the parametric space of a structured mesh; see
Ref. [7] for details.

Initial results have demonstrated that the data abstraction provided by MOAB is powerful enough
to represent many different kinds of mesh data found in real applications, including geometric
topology groupings and relations, boundary condition groupings, and inter-processor interface
representation. Our future plans are to further explore how these abstractions can be used in the
design through analysis process.

8. References
[1] Larry A. Schoof, Victor R. Yarberry, “EXODUS II: A Finite Element Data Model”,

SAND92-2137, Sandia National Laboratories, Albuquerque, NM, September 1994,
http://endo.sandia.gov/SEACAS/Documentation/exodusII.pdf.

[2] The Terascale Simulation Tools and Technology (TSTT) Center, http://www.tstt-scidac.org/.

18

[3] Frontier front tracking code, http://galaxy.ams.sunysb.edu/frontiercalc2/tstt/.
[4] M. Brewer, L. Diachin, P. Knupp, T. Leurent, D. Melander, “The Mesquite Mesh Quality

Improvement Toolkit”, Proceedings, 12th International Meshing Roundtable, Sandia National
Laboratories report SAND 2003-3030P, Sept. 2003.

[5] Babel, http://www.llnl.gov/CASC/components/babel.html.
[6] The Verde (Verification of Discrete Elements) tool,

http://endo.sandia.gov/cubit/verde_release_2.5b.txt.

[7] Timothy J. Tautges, “MOAB-SD: Integrated Structured and Unstructured Mesh
Representation”, Engineering With Computers, to appear.

[8] MOAB Online documentation, http://cubit.sandia.gov/MOAB.html.

