Exploiting the Scheduling Algorithms
in SAS/OR" Software

Radhika Kulkarni, SAS Institute Inc., Cary, NC

Abstract

The scheduling algorithms that are part of the SAS/OR soft-
ware product, when combined with the flexible programming
and graphical tools available in the SASH System, provide
a rich environment for modeling problems that arise in pro-
duction and operations management. The main purpose of
this paper is to show that the use of the CPM procedure
is not limited to traditional project management situations.
Several heuristic algorithms used in job shop or flow shop
scheduling can be easily programmed using PROC CPM,
as shown in this paper. In addition, some of the new fea-
tures in PROC CPM that allow you to associate calendars
with resources and specify resource driven durations are
illustrated in a manpower scheduling example.

Introduction

The CPM procedure in SAS/OR software is designed to
schedule the activities in a project subject to precedence,
time, and resource constraints. The basic scheduling algo-
rithm accounts for time constraints and nonstandard prece-
dences, as well as holiday and calendar information. The
resource allocation algorithms use several heuristics to de-
termine feasible schedules subject to very general resource
availability profiles. All of these algorithms account for hol-
idays and work shifts and schedule the activities around
nonworking periods. The activity and resource calendar
specifications can accomodate very complicated work pat-
terns.

The main intent of this paper is to show that the use of the
CPM procedure need not be limited to activity or project
networks. The architecture of the procedure and its relation
to the other components of the SAS System enable you to
use it successfully to solve problems in several areas that
do not fit the typical project management scenario.

Job shop and flow shop scheduling is one area that lends
itself very naturally to solutions using the scheduling heuris-
tics embedded in the CPM procedure. This paper illustrates
how to compute some of the standard measures of perfor-
mance of a schedule using the SAS System and how to
implement some of the job shop and flow shop scheduling
algorithms using PROC CPM. Most algorithms just deter-
mine a sequence of the jobs that are to be performed on
each machine, without any reference to actual dates or
times. From a practical point of view, however, a foreman or
a supervisor needs to know the exact times when each job
is to be scheduled on each machine. Using the CPM pro-

cedure, you can compute the sequence directly in calendar
dates, or, given a desired sequence of jobs, you can com-
pute the corresponding calendar dates for a particular time
span. Once the schedule is computed, it can be displayed
graphically using the GANTT or NETDRAW procedures.

Finally, this paper uses a manpower scheduling example to
show some of the new features of the CPM procedure that
allow resource-driven durations and resource calendars.

Job Shop and Flow Shop Scheduling

Typical manufacturing systems produce a variety of prod-
ucts, each requiring a specified set of operations on specific
machines or workstations, in a predetermined order. If each
product requires the same machines in the same sequence,
the system is called a flow shop. On the other hand, each
product (or job) in a job shop may require a different order
of processing on the different machines. The problem is
to determine the order in which the various jobs are to be
processed on the different machines to optimize the per-
formance of the system. Several standard performance
measures for evaluating optimality are defined in the next
section. Scheduling is the allocation of the machines to the
different tasks required for the production of the different
products.

Scheduling problems can get very complex, even with a
small number of jobs and machines. For example, if n jobs
are to be processed on a single machine, there are n! ways
in which they can be ordered (or sequenced); this number
grows very rapidly. For single-machine or two-machine
problems, the optimal sequence of jobs is known for a
variety of performance measures. When there are more
than two machines, however, optimal solutions are nearly
impossible to determine in a reasonable amount of time,
and heuristic methods are used to obtain feasible solutions
that have desirable properties. For a detailed analysis of
the subject, refer to Baker (1974).

A common heuristic for most scheduling problems is to
use some type of a dispatching rule. A dispatching rule
examines the set of operations that are available for exe-
cution at any given time and chooses the next operation
using some specific priority rule. The resource allocation
algorithm in the CPM procedure can be used to implement
several heuristic dispatching rules. To use this, you need
to reconcile the two different sets of terminology, the one
used in scheduling literature and the other used in a project
management framework. Most of the quantities used in the

scheduling heuristics are saved in the Schedule data set
produced by PROC CPM or can be easily computed from
the information stored there.

The next section defines some standard scheduling terms
and the corresponding quantities in the project setting. Next,
some simple single machine and parallel machine problems
are used to illustrate how to determine the job schedule and
compute some measures of performance. A more general
job shop scheduling example is then followed by a yarn
production example that incorporates several production
constraints.

Definition of Terms

As a first step in establishing a correspondence between
the terminology used in the two disciplines, the basic com-
ponents of job shop or flow shop scheduling are identified
with the corresponding terms in project management. The
individual operation of a given job on a given machine is
identified with an activity, the fixed sequence of operations
for a given job determines the precedence constraints be-
tween the activities, and the machines are the resources.
Then the determination of a schedule for the operations of
each job on each machine is the same as solving a resource
allocation problem in project management using the CPM
procedure.

Next, for a general job shop where each job consists of
a sequence of operations on different machines, consider
the various input parameters, some performance measures,
and certain common dispatching rules (Baker 1974). Low-
ercase letters represent input parameters and uppercase
letters are used for quantities that are a function of the
scheduling rule used.

Processing time t;;: The amount of processing required by
operation i of job j. This is just the duration of an activity.

Due date d;: The time at which job j is required to be
completed. This can be specified using an alignment date
or a time constraint for the last operation required for the
job.

Completion time C;: The time at which job j is completed.
This is the job’s resource constrained finish time, saved
in the S_FINISH variable in the Schedule output data set
produced by PROC CPM. Note that the job’s resource
constrained finish time is the resource constrained finish
time of the last operation for the job.

Flowtime F;: The amount of time job jspends in the system;
this includes the waiting time and the processing time. This
is the difference between the job’s resource constrained
finish time (S_FINISH) and its early start time (E_START).

Lateness L;: The amount of time by which the completion
time of job j exceeds its due date, namely, C; — d;. Note
that if an operation is early, its lateness is negative.

Tardiness T;: The amount of time by which a late job jis
late; for operations that are early or on time, tardiness is
defined to be 0. Thus, T; = maxz (0, L;).

The quantities F;, L;, and T; are important measures

for evaluating schedules. From the definitions, you can see
that these measures are easily computed from the schedule
produced by the CPM procedure. Often, these measures
are aggregated over all the jobs in the system, and differ-
ent schedules are compared using a single performance
measure, such as average flowtime, mean tardiness, maxi-
mum flowtime, maximum tardiness, or number of tardy jobs.
Since all the required times are readily computed from the
Schedule output data set, the aggregate measures can also
be determined using the SAS System (PROC MEANS or
PROC SUMMARY).

One other important measure of overall performance of
a schedule is the makespan, which is denoted by M and
equals the length of time required to complete all jobs. Thus,
M = maz(Cy).

Several scheduling heuristics attempt to minimize at least
one of these measures of performance using dispatching
rules that depend on the state of the system at the given
time. Some standard dispatching rules are:

Shortest Processing Time (SPT): Select an operation with
the minimum processing time.

Longest Processing Time (LPT): Select an operation with
the maximum processing time.

Earliest Due Date (EDD): Select an operation associated
with the job that has the earliest due date.

Most Work Remaining (MWKR): Select the operation as-
sociated with the job having the most work remaining to be
processed.

Random (RANDOM): Select an operation at random.

Slack Rule (SLACK); Select an operation that has minimum
slack time.

The next sections provide examples of implementing some
of these rules.

Single-Machine Model

The basic single-machine problem consists of a set of n
independent single-operation jobs to be scheduled on a
single machine. Optimal sequencing rules are known for
several of the performance measures, and these sequences
can often be determined simply by sorting the jobs according
to the required criterion. However, this paper uses PROC
CPM to solve this simple example to illustrate how the same
method can be used for more general problems.

Table 1. Single-Machine Problem

Job | Processing Time | Due Date
A 3 16

B 4 11

C 5 17

D 6 12

Consider the set of jobs shown in Table 1 with the corre-
sponding processing times and due dates (Salvendy 1982).
Since each job has only one operation, the two terms are

used interchangeably for the single-machine case. The
problem is to determine the optimal sequence of these jobs.

To use PROC CPM, create an Activity data set and a
Resource data set (SAS Institute Inc. 1993b), as shown
in Output 1. Note that since there are no precedence
constraints in this problem, the SUCC variable is missing
for all the activities. The due dates are modeled with an
alignment value and an alignment type fl e (finish less
than or equal to). The single machine is treated as a
resource, MACHINE, required by each job. The Resource
data set indicates that only one machine is available from
the beginning (per =0).

Output 1. Input Data Sets for Single-Machine Problem

Activity Data Set FLSHOP1

oBS JoB succ DUR ALVALUE ALTYPE MACHI NE

1 A 3 16 fle 1
2 B 4 11 fle 1
3 (03 5 17 fle 1
4 D 6 12 fle 1

Resource Data Set SI NGVACH

oBS PER MACHI NE

1 0 1

Some of the scheduling rules can be implemented using
information in the input data set. For example, to use
the SPT rule, invoke PROC CPM using the SHORTDUR
scheduling rule. The SAS statements are shown below;
the resulting schedule is contained in the S_.START and
S_FINISH variables, printed in Output 2. Note that the jobs
are scheduled in the order A, B, C, and D; the Lateness L;
for the jobs are -13, -4, -5, and 6, respectively. This rule
minimizes the average lateness but may result in some jobs
being very late.

proc cpm dat a=fl shopl resi n=si ngmach
dat e=0 out =spt one;
act j ob;
succ succ;
dur dur;
res machi ne / per=per rul e=shortdur;
id alval ue;
run;

Output 2. Single Machine Flow Shop: SPT rule

JoB DUR ALVALUE S_START S_FI NI SH

16
11
17
12

3
7
12
18

o0Ow>
[3 BN)
i

NNwWOo

To sequence the jobs according to the EDD rule, use
the scheduling rule ACTPRTY with the alignment variable
ALVALUE specified as the activity priority variable. In
other words, invoke PROC CPM as above, but replace
rul e=shor t dur with the two options r ul e=act prty and
act prty=al val ue. The resulting schedule (not shown)
sequences the jobs in the order B, D, A, and C, with
corresponding lateness -7, -2, -3, and 1. The EDD rule
minimizes the maximum lateness but not necessarily the
average lateness.

Some of the other rules require measures that are not avail-
able in the input data set but are measures that depend on
the unconstrained schedule of the jobs. The unconstrained
schedule refers to the schedule of the jobs that assumes
an infinite number of machines; in other words, each job is
scheduled at its earliest possible time (in this case, at time
0). For example, the SLACK rule requires the computation
of the Total Float. First, invoke PROC CPM without resource
information, as shown below. The resulting Schedule data
set, FLSCHED1, is shown in Output 3.

proc cpm dat a=fl shopl date=0 fbdate=17
out =f | schedl xfervars;

act j ob;
dur dur;
succ succ;

al i gndat e al val ue;
al i gntype al type;
i d nmachi ne;

run;

Output 3. Unconstrained Schedule of Jobs

Schedul e Data Set FLSCHED1

E L

M A E _ L _ T F

A L A _ F _ F _ _

c VvV L s 1 s 1 F F

s H A T T N T N L L

o J U D I LY A 1 A o o
B O C UN U P R S R S A A
s B C R E E E T H T H T T
1 A 3 1 16 fle 0 3 13 16 13 14
2 B 4 1 11 fle 0 4 7 11 7 13
3 C 5 1 17 fle 0 5 12 17 12 12
4 D 6 1 12 fle 0 6 6 12 6 11

Next, invoke PROC CPM using the data set FLSCHED1
as input, with the variable T_-FLOAT (Total Float) specified
as the activity priority variable. The SAS statements follow;
the jobs are scheduled in the order D, B, C, and A (see
Output 4).

proc cpm dat a=fl schedl resi n=si ngmach
dat e=0 out =sl ackone;

act j ob;
succ Ssucc;
dur dur;

res machi ne / per=per rule=actprty
actprty=t_float;
run;

Output 4. Single Machine Flow Shop: SLACK rule

JoB DUR ALVALUE S_START S_FI NI SH

A 3 16 15 18
B 4 11 6 10
(03 5 17 10 15
D 6 12 0 6

Note that, since there are no precedence constraints and no
time constraints on the start time of the jobs, E_START=0
for all the jobs, and, hence, T_FLOAT=L_START. Conse-
quently, the SLACK rule could also have beenimplemented
using the original Activity data set, FLSHOP1, and the LST
scheduling rule (namely, RULE=LST). However, the exam-
ple illustrates the implementation of the SLACK rule in a

more general setting where E_START may not be the same
for all activities.

Finally, for the single-machine problem, three different mea-
sures of performance (WAITTIME, FLOWTIME, and LATE-
NESS) are computed for the three rules (SPT, EDD, and
SLACK) using the respective output data sets (and a sim-
ple invocation of PROC SUMMARY). The aggregated mea-
sures are shown in Output 5. Note that the SPT rule is
optimal for all three measures.

Output 5. Average Performance Measures

RULE VAI TTI ME FLOATI MVE LATENESS
SPT 5.50 10. 00 -4.00
EDD 6.75 11.25 -2.75
SLACK 7.75 12.25 -1.75

Parallel-Machine Model

The parallel-machine model is an extension of the single-
machine model where there are midentical machines avail-
able for processing. Each job can be scheduled on any
one of the available machines. To model this situation with
the CPM procedure, you use alternate resources. A simple
example illustrates a heuristic that attempts to minimize the
makespan using alternate (or substitutable) resources.

Consider a set of eight jobs with processing times {1, 2,

, 8}, and m=3 identical machines. A simple heuristic
uses LPT scheduling as a dispatching rule (Baker 1974,
Algorithm 5.2). The procedure consists of listing the jobs
in LPT order; at each possible time, assign the next job
in the list to the machine that has had the minimum total
processing time thus far.

Output 6. Input Data Sets for Parallel-Machine Problem

Activity Data Set FLSHOP2
oBS JoB succ DUR MACHI NE MACHL MACH2 MACH3 APRTY
1 1 1 1 -1
2 2 2 1 -2
3 3 3 1 -3
4 4 4 1 -4
5 5 5 1 -5
6 6 6 1 -6
7 7 7 1 -7
8 8 8 1 -8
Resource Data Set PARMACH
oBS PER OTYPE RESI D MACHI NE MACHL MACH2 MACH3
1 0 resl evel 0 1 1 1
2 . altrate machi ne . 1 1 1

The input data sets are printed in Output 6. Note that the
scheduling rule ACTPRTY in the CPM procedure orders the
activities in increasing order of the activity priority variable;
hence, to obtain the LPT ordering of the jobs, create a
variable, such as APRTY = (-DUR), in the Activity data set,
and the jobs will be scheduled in the right order by PROC
CPM. To model the parallel machine scenario, assume that
each job requires the single resource MACHINE, which has
three possible alternatives, MACH1, MACH2, and MACH3.

In the Resource data set, PARMACH (Output 6), the avail-
ability for MACHINE is set to 0, while it is set to 1 for the

other three resources. The second observation in the Re-
source data set indicates that the three resources, MACH1,
MACH2, and MACH3, are possible alternatives for the re-
source MACHINE.

The following statements invoke PROC CPM and save the
result in the data set LPTSCHED; the relevant information
from this data set is printed in Output 7. The variables
UMACH1, UMACH2, and UMACHS indicate which of the
three machines is actually used for each job. For example,
JOB 8 is scheduled at time 0 on machine 1.

proc cpm dat a=fl shop2 resi n=par mach
dat e=0 out =I pt sched;

act j ob;
succ Ssucc;
dur dur;

res nachi ne nachl
mach2 mach3 / per=per rul e=actprty
actprty=aprty
obst ype=ot ype
resi d=resid,

run;

Output 7. Schedule Produced by LPT Heuristic

JoB UVACHI NE ~ UMACHL UVACH2 UVACH3 S_START S_FIN SH

1 . 1 . 11 12
2 1 . . 11 13
3 1 . . 8 11
4 . 1 . 7 11
5 . . 1 6 11
6 . . 1 0 6
7 . 1 . 0 7
8 1 . 0 8

/* ldentify the Machi ne used for each job */
dat a machschd

set | ptsched

keep job resource s_start s_finish

if umachl=1 then resource="Machi ne 1";

if umach2=1 then resource="Machi ne 2";

if umach3=1 then resource="Machi ne 3";

proc sort;
by resource s_start;

data machgnt;
set machschd
retain segnmt_no; /* segnment information */
if resource = | ag(resource)
then segnt _no=segnt _no+1
el se segnmt _no=1
/* set x-coordinate for |abel */
xpos=(s_start+s_finish)/2.0
run;

The GANTT procedure can graphically present the schedule
of the jobs on each machine. It is customary to show
the schedules for all the jobs on a given machine on the
same horizontal bar. To draw such a Gantt chart, treat
the schedules corresponding to the different jobs on the
same machine as consecutive segments of a resource
constrained schedule. The simple SAS program, shown
above, creates the required data set, MACHGNT, from the
Schedule ouput data set, LPTSCHED.

The resulting data set is printed in Output 8, which also
contains a Label data set, LABDATA, which is used to
annotate the job number on each segment. The LABDATA=
option, a new feature in PROC GANTT, is used to annotate
text on the Gantt chart (SAS Institute Inc. 1994). The
x coordinate for the job number is set to XPOS, which is
computed as the midpoint of the bar corresponding to the
job’s schedule.

Output 8. Input Data Sets for PROC GANTT

Data Set MACHGNT
oBS JoB S_START S_FINI SH RESOURCE SEGMI_NO XPCS
1 8 0 8 Machine 1 1 4.0
2 3 8 11 Machine 1 2 9.5
3 2 11 13 Machine 1 3 12.0
4 7 0 7 Machi ne 2 1 3.5
5 4 7 11 Machi ne 2 2 9.0
6 1 11 12 Machi ne 2 3 11.5
7 6 0 6 Machine 3 1 3.0
8 5 6 11 Machine 3 2 8.5
Label Data Set LABDATA
o8BS % _XVAR _LVAR _YOFFSET _JLABEL
1 -1 Xpos job 0.8 center

general flow shop and job shop problems, the operations
required for each job have a specific order, necessitating
the use of precedence constraints.

This section uses a simple job shop example (Baker 1974)
to show how to model the various aspects of the problem.
Consider a set of four jobs, each requiring one operation on
each of three machines. The order in which the machines
are required is different for each job. Figure 2 shows
the operations for each job, in the required order. Each
node represents a single operation and shows the machine
required and the processing time on that machine.

The statements invoking PROC GANTT are shown below
and the resulting Gantt chart is shown in Figure 1.

patternl v=e r=8;
title h=1.5 ' Machi ne Schedul e: LPT Rule’;
proc gantt graphics
dat a=machgnt | abdat a=I abdat a;
idresource;
chart / nol egend noj obnum ski p=2
i ncrement =2,

run,

Sequence of Operations

Job 1 1 —a—2 —3—3 - 2
Job2 [2 - 11 - 43 - 4
Job3 [3-3 2 -21 -3
Joba |2 -3 3 -3 1 -1]

Machine Schedule: LPT Rule

RESOURCE 0 2 4 6 8 10 12 14
\

Machine 1 \ 8 [3 2]
Machine 2 \ 7 [4 1]
Machine 3 \ 6 \ 5 \

Figure 1. Gantt Chart for Parallel-Machine Model

General Job Shop Model

The previous sections illustrated various scheduling priori-
ties and alternate resources using the CPM procedure. The
single-machine and the parallel-machine models did not
require the use of any precedence constraints. For more

Legend: Machine — Time

Figure 2. Job Shop Example

Output 9. Input Data for Job Shop Model

Activity Data Set JOBSHOP

oBS JoB JOoBOP succ DUR MACH1 MACH2 MACH3
1 1 111 122 4 1 . .
2 1 122 133 3 . 1 .
3 1 133 . 2 . . 1
4 2 212 221 1 . 1 .
5 2 221 233 4 1 . .
6 2 233 . 4 . . 1
7 3 313 322 3 . . 1
8 3 322 331 2 . 1 .
9 3 331 . 3 1 . .
10 4 412 423 3 . 1 .
11 4 423 431 3 . . 1
12 4 431 . 1 1 .

Resource Data Set THREEMAC

oBS PER MACH1 MACH2 MACH3

1 0 1 1 1

The Activity and Resource data sets representing this model
in a project management setting are shown in Output 9. The
variable JOBOP identifies each operation using a triplet that
specifies the job number, operation number, and machine
required by that operation. Thus, 412 specifies that the
first operation of JOB 4 requires machine 2. The DUR
variable specifies the processing time for each operation.
The variables MACH1, MACH2, and MACH3 identify the
machine required for each operation, and the SUCC variable
is used to model the precedence constraints by specifying
the immediate successor for each operation.

Heuristics play an important role in schedule generation for
the job shop problem because of the highly combinatorial
nature of the set of possible schedules. One such heuristic
uses the MWKR dispatching rule and can be implemented
using the unconstrained schedule produced by PROC CPM
to generate the required priority variable. Note that the
unconstrained schedule refers to the early start schedule of
the operations, which assumes that there are no resource
limitations.

The work remaining (or WKR) for ajob is defined as the total
duration of all the operations that are still to be processed
for that job. Thus, for the three operations comprising
JOB 1, the WKR at the start of each operation is 9, 5,
and 2, respectively. Note that, for each operation, this is
simply the difference between the operation’s early start
time (E_.START) and the early finish time (E_FINISH) of the
last operation for the associated job.

The following program uses PROC CPM to find the uncon-
strained schedule of the operations and then computes the
WKR for each operation. The resulting data set, WKRJOBS,
is printed in Output 10. Once again, the activity priority vari-
able, APRTY, is set to (-WKR) because the dispatching rule
uses decreasing order of WKR.

To produce the schedule corresponding to the MWKR dis-
patching rule, invoke PROC CPM again, as shown below.
The scheduling rule is specified to be ACTPRTY, with vari-
able APRTY as the activity priority variable; a secondary
scheduling rule, RULE2 = SHORTDUR, is specified for
breaking ties. The resulting schedule is displayed on the
Gantt chart shown in Figure 3.

proc cpm dat a=wkrj obs resi n=t hreenac
out =mnkr schd;
act j obop;
succ succ;
dur dur;
res machl mach2 mach3 / per=per
actprty=aprty
rul e=actprty
rul e2=shortdur;
idjob resource;
run;

proc cpm dat a=j obshop out =j obsched;

act j obop;
succ succ;
dur dur;

idjob machl nach2 machs3;

/* order operations for each job */
/* fromthe last to the first */
proc sort data=jobsched;

by j ob descending e_finish;

dat a wkrj obs;
set jobsched; retain jobfin;
/* save finish tine of the last */
/* operation for each job */
if job ~= lag(job) then jobfin=e_finish;
wkr = jobfin - e_start ; aprty = -wkr;
if machl=1 then resource="Machine 1";
if mach2=1 then resource="Machi ne 2";
if mach3=1 then resource="Machi ne 3";
run;

Machine Schedule: MWKR Rule

RESOURCE 0 2 4 6 8 10 12 14
\

Machine 1 L 1 [2 [3]4]

Machine 2

Machine 3

Output 10. Activity Data Set for MWKR Rule

Activity Data Set WKRIOBS

E L R

E_L_TF E

_F_F__23 s

J MMMSI SI FFO A o

o s AAATNTNLLB P U

OB UDJCCCAI Al OOFW R R

B O C UOHHHRSRSAAI K T c

S P CRB123THTHTTNR Y E
11383 . 21..1797900892-2 Nchine 3
2122138331 . 1. 47470095 -5 Mchine 2
3111122411 . . 0404009 9 -9 Mchine 1
4233 . 42..15959009 4 -4 Machine 3
5221233421..1515009 8 -8 Mchine 1
6212 22112.1.0101009 9 -9 Machine 2
7331 .331..58691183-3Mchinel
832233123. 1.35461085-5NMchine 2
931332233..103141088-8 Mchine3
10431 . 141..67892271-1Mchine1
11 423 431 34 . . 13658207 4 -4 Machine 3
12 412 423 34 . 1. 0325207 7 -7 Machine 2

Figure 3. Gantt Chart for Job Shop Model

General Modeling Example

The previous examples illustrated the implementation of
several standard scheduling heuristics using the CPM pro-
cedure. In all these examples, the data specifying the
operations and their processing times and related informa-
tion were assumed to be readily available in data sets in
the required format. In typical manufacturing or production
environments, a large part of the problem involves setting
up the sequence of operations for the various jobs using
data that may be scattered in different tables and using
prior knowledge of the manufacturing process. Often, there
may be several technological constraints that need to be
included in the model. For example, in a dyeing plant, it
may be preferable to use the dyer for lighter colors before
using it for darker ones.

This section illustrates some of these modeling ideas in
a yarn manufacturing example. The problem consists of
scheduling the various operations required to manufacture
several types of yarns of different colors. All the yarn types
need to be dyed and dried. The processing times for these
operations depend on the size of the yarn package. After the

drying operation, the processing required depends on the
yarn type; warp yarns are shipped directly after processing
on a "warper" while the other yarns require a "winding"
operation followed by "packing" before "shipping."

Output 11. Yarn Requirements Data

Yarn Requirenents Data
P

S A N w w P

T [} (o] A | A

Y Y K P [} R N [}

L A S A (o] w P w D K
(o] E R | [} L A H | H H
B N D z K (o] R R N R R
S (o] S E S R P S D S S
1 1 2250 750 3 1234 1 5.1 .
2 2 300 100 3 4657 1 2.0 .
3 3 400 200 2 9483 3.2 .
4 4 1200 600 2 2941 . . 1 1.5 2
5 5 400 100 4 3810 . . 1 2.1 1

Sequence of Operations

Color Batch

9483 One \ dye H dry HwarpH ship\

Two \ dye H dry HwarpH ship\

2941 One | dye [dry -{wind|{pack|{ ship |

Two \ dye H dry H wind H packH ship

Colors: 9483, 2941

Output 11 shows the data for five yarn styles. Each ob-
servation specifies the style number, the total requirement,
the size of one package for that style, the number of packs,
and the color number. The observation also indicates if the
particular yarnis a warp yarn (WARP = 1) and the number of
hours required on the warper (WARPHRS), or, if it requires
winding (WIND = 1), the number of hours required on the
winder (WINDHRS) and for packing (PACKHRS) after that.

Note that each style may have more than one batch (de-
pending on the package size), and each batch generates a
sequence of operations that need to be performed. Further,
the shop floor has two different sizes of dyers: larger batches
need one of the bigger machines while smaller batches can
use any of the dyeing machines. The drying time required
by each batch depends on the size of the package. There
are two warpers and two winders. A simple DATA step (see
Appendix 1) can be used to create an Activity data set using
the data in Output 11. The activity data corresponding to the
first batch for the first style of yarn are shown in Output 12.
Unique activity names are assigned to each operation using
the style number, batch number, and operation number.

Output 12. Partial Activity Data Set

Style 1 : Batch 1

NAME ACT SUCC DUR COLOR PACKSI ZE BI G SMALL DRYER WARPER W NDER

dye alll all2 3.00 1234 750 1 . .

dry all2 all3 3.75 1234 750 . . 1 .
warp all3 all4 5.10 1234 750 . . . 1
ship all4 0.00 1234 750 .

PROC NETDRAW can be used to display the sequence of
operations for each yarn style. Figure 4 shows the activity
network corresponding to two of the colors. Such diagrams
can be used to display the generic flow of operations for
each job.

Figure 4. Operation Sequence for Two Styles

The next step is to create a resource availability data set.
This data set (printed in Output 13) specifies the availability
of the different machines. Note that the resources BIG,
SMALL, WINDER, and WARPER are used only to indicate
the possible alternate resources, using observations with
TYPE=al trate. Thus, there are two winders and two
warpers available, and the SMALL dyer can be substituted
by any of the big or small dyers; however, the observation
with TYPE=ALTPRTY and RES=snal | indicates that a big
dyer should be substituted only if a small one is unavailable.

Output 13. Machine Data

Resource Data Set MACHI NES
w W w W
P S S Wil | WA A
E S M MDI NNARR
T R M B B A ARNUDUDRPP
(o] Y I R B Al I L L YDETEUPEE
B P O E I L 6 G L L EERIRERTR
S E D S GL 1 21 2 RR1 2 R 1 2
1 reslevel 0 0011113 011011
2 altrate . big .11 .
3 altrate . small 1111
4 altprty . small .. 2 2 1 1 P
5 altrate . winder 11 .o
6 altrate . warper 11
Cal endar Data Set MACHCAL
oBS _CAL_ _SUN_ _SAT_
1 0 hol i day hol i day

Suppose that you wish to obtain the schedule for the shop
floor for the week of April 11, 1994, and that the standard
work day is from 8 a.m. to 6 p.m. on all five weekdays. The
calendar information can be specified using a calendar data
set, also printed in Output 13. PROC CPM is invoked with
the Activity, Resource, and Calendar data sets, as shown
in the following program. The resulting Schedule data set
is used to display the schedule (with calendar dates and
times) for the dyeing machines in Figure 5.

proc cpm dat a=yr nnodel cal edat a=machca
resi n=machi nes
dayl engt h="10: 00"t
i nt er val =dt hour
dat e=" 11apr 94: 08: 00: 00’ dt ;
activity act;
duration dur;
successor succ
resource big bigl big2
small small1l small2
dryer wi nder winderl wi nder2
war per warperl warper2 /
obst ype=t ype
peri od=peri od
resid=res
id styleno col or packsize nopacks
name yards batch
run,

Dye Machine Schedule

APR APR APR APR APR APR
1 1 1 1 1 1
Machine 08:00 10:00 12:00 14:.00 16:00 18:00

Big_1 i 1204 208
Big_z i 1234 ‘ 2941

Small_1 ‘9453 ‘3810 ‘3810 ‘4657 ‘4557 ‘
Small_2 (480 3610 3810 4657

Date: April 11, 1994

Figure 5. Dyeing Machine Schedule

The preceding yarn example illustrated some of the mod-
eling possibilities using the CPM procedure in conjunction
with the capabilities of the SAS language. The CPM proce-
dure provides several other options for resource allocation
that can be used effectively in other situations. For instance,
several heuristics in the scheduling literature include pre-
emptive dispatching rules; to implement such rules using
PROC CPM, you can use the appropriate activity splitting
options on the RESOURCE statement. For details regard-
ing the features available in the CPM procedure, refer to
SAS Institute Inc. (1993b).

Manpower Scheduling

The previous sections, earlier SUGI papers (Kulkarni 1991
and Kulkarni and Corea 1992), the user's guide (SAS Insti-
tute Inc. 1993b), and the Project Management Examples
book (SAS Institute Inc. 1993a) illustrated several aspects
of the resource scheduling features of the CPM procedure.
These included various scheduling priorities, activity split-
ting, alternate resources, and so forth. All the examples
assumed that the duration of an activity is fixed and that
all the resources require the same amount of time for the
activity. Further, calendars could be associated only with
activities.

In projects that use manpower as a resource, it is pos-
sible for the same activity to require different amounts of
work from different people. Also, the work schedules and
vacations may differ for each individual person.

The CPM procedure now supports resource-driven dura-
tions and resource calendars. With resource-driven dura-
tions, instead of specifying a fixed duration for all resources
used by an activity, you give the total amount of work re-
quired from each resource that the activity uses and the
rate of resource usage; the procedure calculates the cor-
responding duration for each resource used by the activity.
Resource calendars allow you to associate calendars with
individual resources. Some of these features are illustrated
in the following simple example.

Consider a software project requiring two resources: a
programmer and a tester. Some of the activities have
a fixed duration, requiring the same length of time from
both resources; others require a different number of days
from the programmer and the tester. Further, some activ-
ities require only a fraction of the resource; for example,
Document at i on requires only 20 percent of the program-
mer’s time for a total of 2 mandays. The activities in the
project, their duration (if fixed) in days, the total work re-
quired (if resource-driven) in days, precedence constraints,
and the resource requirements are printed in Output 14. A
network diagram (Figure 6) displays the activities and their
precedence relationships.

Output 14. Project Data

Sof t war e Devel opnent
Activity Data Set SOFTWARE
1D ACT S1 S2 DUR MANDAYS PROGRMR TESTER
Plans & Reqts 1 2 3 2 . 1.0 1.0
Product Design 2 4 5 . 3 1.0 .
Product Design 2 . . 1 . 1.0
Test Plan 3 7 3 . . 1.0
Docunent at i on 4 9 . 2 0.2 .
Docurnent at i on 4 . . 1 . 0.5
Code 5 8 10 0.8 .
Test Data 6 8 5 . 0.5
Test Routines 7 8 5 . 0.5
Test Product 8 9 6 0.5 1.0
Fini sh 9 . 0 . .
Software Development
Project Network
Product Design)—‘*{Gode F
Test Plan }-“{Test Routines F‘-{Test Product TFinish

Figure 6. Software Project Network

The following statements invoke PROC CPM with a WORK=
specification on the RESOURCE statement, which identifies
the amount of work required (in mandays, in this case) from
each resource used by an activity. If the WORK variable has
a missing value, the activity in that observation is assumed
to have a fixed duration. The project is scheduled to start
on April 11, 1994, and the activities are assumed to follow
a five-day work week. Unlike fixed duration scheduling,
each resource used by an activity could have a different
schedule; an activity is assumed to be finished only when
all of its resources have finished working on it.

proc cpm dat a=sof t war e
out =sftout resout=rout
ressched=r sftout
dat e=" 11apr 94’ d i nt er val =weekday;
act act;
succ sl s2
dur dur;
res progrnr tester / work=mandays
idid,
run;

The variable _DUR_ indicates the duration of the activity for
the resource identified in that observation. For resources
that are of the “driving” type, the variable WORK_ shows
the total amount of work (in units of the INTERVAL pa-
rameter) required by the resource for the activity in that
observation. The variable R_RATE shows the rate of usage
of the resource for the relevant activity. Note that for driving
resources, the variable _DUR_ is computed as (WORK /
R_RATE).

These schedules are plotted on a Gantt chart in Figure 7;
note that, for the activity Product Desi gn (ACT=2), the
resource PROGRMR is a critical resource while the resource
TESTER is not. This data set can also be used to print
individual Gantt charts for the different resources.

Output 15. Resource Schedule Data

Sof t war e Devel opnent
Early Schedul e for each Resource

R D E

E u E _

s R _ R _ F

o _ W s I

u T DO R T N

A R Y UR A A I

I c c P RK T R s
D T E E E T H

11APR94 12APR94
11APR94 12APR94
11APR94 12APR94
13APR94 15APR94

Pl ans & Reqts
Plans & Reqts
Plans & Reqts
Product Design

PROGRMR FI XED
TESTER FI XED

o o

Product Design PROGRMR RDRI VEN 0 13APR94 15APR94
Product Design TESTER RDRI VEN 1 1.0 13APR94 13APR94
Test Plan 13APR94 15APR94
Test Plan TESTER FI XED 1.0 13APR94 15APR94

[

OWWRF WWNNN

W
[

Docunent at i on 18APR94 29APR94

Docurnent at i on PROGRVR RDRI VEN 10 2 2 18APR94 29APR94
Docunent at i on TESTER RDRIVEN 2 1 5 18APR94 19APR94
Code 10 . . 18APR94 29APR94
Code PROGRWR FI XED 10 . 0.8 18APR94 29APR94
Test Data 5. . 18APR94 22APRO4
Test Data TESTER FI XED 5 . 0.5 18APR94 22APR94

. 18APR94 22APR94
. 0.5 18APR94 22APR94
02MAY94 09MAY94
02MAY94 09MAY94
02MAY94 09MAY94
10MAY94 10MAY94

Test Routines
Test Routines
Test Product
Test Product
Test Product
Fini sh

TESTER FI XED

PROGRMR FI XED
TESTER FI XED

©COOONNODODUUBRBEBDWWNNNRERRE
o v

comouwn
. POl

Software Project Schedule
Resource APR APR APR APR APR MAY MAY MAY MAY
ID Name n 15 19 23 27 01 5 09 13
Plans & Reqts —
PROGRVMR jmmm
TESTER —
Product Design —
PROGRMR —
TESTER -
Test Plan —
TESTER —
Documentation — — —
PROGRMR —— — —
TESTER — — — —
Code — —
PROGRMR — —
Test Data —
TESTER —
Test Routines —
TESTER —
Test Product —
PROGRMR —
TESTER —
Finish 3
LEGEND: wmm Duration of a Normal Job Slack Time for a Normal Job
=== Duration of a Critical Job == Break due to Holiday
+__Milestone

The individual resource schedules, as well as each activity's
combined schedule, are saved in a Resource Schedule data
set, RSFTOUT, requested by the RESSCHED= option on
the CPM statement. This output data set is very similar to
the Schedule data set and contains the activity variable and
all the relevant schedule variables (E_.START, E_FINISH,
L_START, and so forth). Some of these variables that
are of interest are printed in Output 15 (along with the
ID variable). For each activity in the project, this data
set contains the schedule for the entire activity as well as
the schedule for each resource used by the activity. The
variable RESOURCE identifies the name of the resource
that the observation refers to; the value of the RESOURCE
variable is missing for observations that refer to the entire
activity’s schedule. The variable DUR_TYPE indicates if the
resource is a driving resource or if it is of the fixed type.

Figure 7. Early and Late Schedules

The daily utilization of the resources is also saved in a data
set, ROUT, printed in Output 16. The resource usage data
set indicates that you need more than one tester on some
days, with both the early schedule (on the 13th, 18th and
19th of April) and the late schedule (on the 6th and 9th of
May).

Output 16. Resource Usage Data

Sof t war e Devel opnent
Resource Usage Data Set ROUT

a
n

TIMVE EPROGRVR LPROGRVR ETESTER LTESTER

11APR94
12APR94
13APR94
14APR94
15APR94
18APR94
19APR94
20APR94
21APR94
10 22APR94
11 25APR94
12 26APR94
13 27APR94
14 28APR94
15 29APR94
16 02MVAY94
17 03MAY94
18 04MAY94
19 05MAY94
20 06MAY94
21 09MAY94
22 10MAY94

©CO~NOUBWNRE

CUUTNUNNUIOOOOO0O0O0OO0OOOOOO
CLOELOORrRPRPRPOOOO00ORERER
ONNNNNNOOOODmM®P®O®P®®OO OO OO
C0O000O0O0O0O0O0O0O0O0OOUNUIOO OO O
eRPPrPPRERPPREPREPEPPRPOOROOR
OO0 OOO0OO0O0O0O0O0OO0OOOOOO

OoooooOrRrRrRrRERERRERRERERERRE
OPPPRPRRPOOOOORRERERERERERENEE

Suppose now that you have only one tester and one
programmer. You can determine a resource-constrained
schedule using PROC CPM (as in the fixed duration case)
by specifying a resource availability data set, RESIN (Out-
put 17).

Output 17. Resource Availability Data

Sof t war e Devel opnent
Resource Availability Data Set

oBS PER OTYPE PROGRMR TESTER

1 11APR94 resl evel 1 1

The following statements invoke PROC CPM and the result-
ing resource constrained schedule is printed in Output 18;
the early start schedule is also printed for comparison. Note
that the project still finishes on May 10, but some of the
activities (3, 4, 6, and 7) are delayed. The resource con-
strained schedule is plotted on a Gantt chart in Figure 8;
both resources follow the same weekday calendar.

proc cpm dat a=software resin=resin
out =sftoutl resout=routl
rsched=rsftoutl
dat e=" 11apr 94’ d i nt er val =weekday;
act act;
succ sl s2;
dur dur;
res progrnr tester / work=mandays
obst ype=ot ype
peri od=per;
idid,
run,

Output 18. Resource Constrained Schedule

Sof t war e Devel opnent
Resource Constrained Schedul e

R D s E
E u s _ E _
s R _ F _ F
o _ s | s I
U T T N T N
A R Y A | A |
| c c P R s R s
D T E E T H T H

11APR94 12APR94 11APR94 12APR94
11APR94 12APR94 11APR94 12APR94
11APR94 12APR94 11APR94 12APR94
13APR94 15APR94 13APR94 15APR94
PROGRMR RDRI VEN 13APR94 15APR94 13APR94 15APR94

Plans & Reqts
Plans & Reqts
Plans & Reqts
Product Design
Product Design

PROGRMR FI XED
TESTER FI XED

Product Design TESTER RDRI VEN 13APR94 13APR94 13APR94 13APR94
Test Plan 14APR94 18APR94 13APR94 15APR94
Test Plan TESTER FIXED 14APR94 18APR94 13APR94 15APR94

26APR94 09MAY94 18APR94 29APR94
PROGRMR RDRI VEN 26APR94 09MAY94 18APR94 29APR94

Docurnent at i on
Docurnent at i on

Docunent at i on TESTER RDRI VEN 26APR94 27APR94 18APR94 19APR94
Code 18APR94 29APR94 18APR94 29APR94
Code PROGRWR FI XED 18APR94 29APR94 18APR94 29APR94
Test Data 19APR94 25APR94 18APR94 22APR94
Test Data TESTER FIXED 19APR94 25APR94 18APR94 22APR94
Test Routines 19APR94 25APR94 18APR94 22APR94
Test Routines TESTER FIXED 19APR94 25APR94 18APR94 22APR94

02MAY94 09MAY94 02MAY94 09MAY94
02MAY94 09MAY94 02MAY94 09MAY94
02MAY94 09MAY94 02MAY94 09MAY94
10MAY94 10MAY94 10MAY94 10MAY94

Test Product
Test Product
Test Product
Fini sh

PROGRMR FI XED
TESTER FI XED

©COOONNOOODUUBRBEBDWWNNNRERRE

10

Software Project Schedule
Common Resource Calendar
Resource APR APR APR APR APR MAY MAY MAY MAY
ID Name 1 15 19 23 27 01 05 09 13
Plans & Reqts —
PROGRMR |mm
TESTER —
Product Design —
PROGRMR —
TESTER -
Test Plan —
TESTER —-_—
Documentation ——— —
PROGRMR —— —
TESTER —
Code —— —
PROGRMR ——— —
Test Data —
TESTER —
Test Routines ———
TESTER —
Test Product —
PROGRMR —
TESTER —
Finish *
Figure 8. Resource Constrained Schedule

Now, suppose that the tester switches to part-time em-
ployment, working only four days a week. Thus, the two
resources have different calendars. What effect will this
change have on the project schedule? To answer this
question, define a calendar data set identifying calendar 1
as having a holiday on Friday (see Output 19). In a new
resource availability data set (also printed in Output 19),
associate calendar 1 with the TESTER and calendar O with
the resource, PROGRMR. Note that O refers to the default
calendar, which is the weekday calendar for this project
(since INTERVAL = WEEKDAY).

Output 19. Resource and Calendar Data

Sof t war e Proj ect
Cal endar Data Set CALENDAR

oBS _CAL_ _FRI_
1 1 hol i day

Resource Data Set RESIN2

oBS PER OTYPE PROGRMR TESTER
1 11APR94 resl evel 1 1
2 . cal endar 0 1

Next, invoke PROC CPM, as shown below, with the Activity,
Resource, and Calendar data sets, to obtain the revised
schedule, plotted in Figure 9. Note that the project is
delayed by two days because of the TESTER’s shorter
work week which is illustrated by the longer holiday breaks
in the TESTER'’s schedule bars.

proc cpm dat a=sof tware resi n=resin2
cal edat a=cal endar
out =sftout2 rsched=rsftout2
resout =rout 2
dat e=" 11apr 94’ d i nt er val =weekday;
act act;
succ sl s2;
dur dur;
res progrnr tester / work=mandays
obst ype=ot ype
peri od=per;
idid,
run;

Software Project Schedule
Multiple Resource Calendars
Resource APR APR APR APR APR MAY MAY MAY MAY
ID Name 1 15 19 23 27 01 05 09 13
Plans & Reqts —
PROGRMR |mm
TESTER —
Product Design —
PROGRMR —
TESTER -
Test Plan ——
TESTER [—]
Documentation — e —
PROGRMR — — —
TESTER -_—
Code —— —
PROGRMR ——— —
Test Data ——
TESTER ——
Test Routines — —
TESTER — —
Test Product — —
PROGRMR —
TESTER —
Finish *
Figure 9. Resource Constrained Schedule

The preceding example illustrated some of the possible sce-
narios that can be modeled using resource-driven durations
and resource calendars. For further details, refer to SAS
Institute Inc. (1994).

Conclusion

Though the CPM procedure is primarily designed for deter-
mining project schedules subject to precedence, time, and
resource constraints, its architecture makes it a flexible and
powerful tool for solving problems that arise in a variety of
other settings. The output data sets produced by the CPM
procedure contain a wealth of information; the trick is to
use the data effectively to derive the measures required
in other applications. This paper illustrates several such
techniques for implementing standard scheduling heuristics
for job shop and flow shop problems.

The yarn manufacturing example illustrates the broader
modeling ability of the SAS language. Data are usually
available in different sources and in formats that are specific
to the application. It is easy to convert the available data
into the required project data sets and invoke PROC CPM
to determine the schedule. A significant advantage of using
the CPM procedure in a manufacturing environment is the
ability to produce schedules using calendar dates and to
account for holidays and complicated work patterns.

Finally, resource driven durations and resource calendars
are illustrated using a simple software project. These two
features enhance your ability to schedule people more
effectively.

References

Baker, K.R. (1974), Introduction to Sequencing and
Scheduling, New York: John Wiley & Sons, Inc.

Kulkarni, R. (1991), “Scheduling with the CPM Procedure,”
Proceedings of the Sixteenth Annual SAS Users Group
International Conference.

Kulkarni, R. and Corea, G. (1992), “Using the Project Man-

11

agement Tools in the SAS/OR™ System,” Proceedings of
the Seventeenth Annual SAS Users Group International
Conference.

Salvendy, G. (1982), Handbook of Industrial Engineering,
New York: John Wiley & Sons, Inc.

SAS Institute Inc. (1993a), SAS/OR" Software: Project
Management Examples, Version 6, First Edition, Cary, NC:
SAS Institute Inc.

SAS Institute Inc. (1993b), SAS/OR" User’s Guide: Project
Management, Version 6, First Edition, Cary, NC: SAS Insti-
tute Inc.

SAS Institute Inc. (1994), Update to Version 6 SAS/OR
User’s Guide: Project Management, Cary, NC: SAS Institute
Inc.

SAS and SAS/OR are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. U
indicates USA registration.

Appendix 1

/* Make an activity data set from*/
/* the yarn requirements table */

data yrnnodel ;
length act $ 8;
I ength succ $ 8;
I ength name $ 8;

keep act succ name dur styleno batch
big small dryer warper w nder
col or yards packsi ze nopacks
bigl big2 snalll small2
wi nder1 wi nder2 war perl war per2;

set yarnrqts;

bi gl=.; big2=.;

smal | 1=.; smal | 2=.;

wi nder 1=.; W nder2=.;
war per 1=.; war per2=. ;
warper = .; W nder = .;

/* Each styl e generates 'nopacks’
do i=1 to nopacks;

jobs */

bat ch=i ;

/* Each job visits a dyer and the dryer */

act="a'||left(put(styleno,1.))
[[Teft(put(i,1.))[|"1";

succ= "a' ||l eft(put(styleno,1.))
[ITeft(put(i,1.))[]"2";

/* set the dyer requirenment (small or big) */
/* and duration depending on batch size */
name=' dye’ ;
if 500 < packsize |l e 1000 then do;

bi g=1; dur=3;

end;

if packsize |l e 500 then do;
smal | =1; dur=1;
end;

out put ;

big=.; small=.;

act="a'||left(put(styleno,1.))
[ITeft(put(i,1.))[]"2";

succ= "a' ||l eft(put(styleno,1.))

[ITeft(put(i,1.))[]"3";

name='dry’ ;

dryer=1;

dur = packsi ze/ 200;

out put ;

dryer=.;

/* Warped jobs go directly to shipping */
if warp ne . then do;
act="a'||left(put(styleno,1.))
[[Teft(put(i,1.))[]"3";
succ= "a'||left(put(styleno,1.))
[ITeft(put(i,1.))[|"4";
name="warp’;
dur=war phrs; /* warping time */
war per =1;
out put ;
war per =. ;
act="a'||left(put(styleno,1.))
[ITeft(put(i,1.))[|"4";
succ=" ' ;
name='ship’;
dur =0;
out put ;
end;

/* Wbund jobs get packed before shipping */
el se do;

act="a'||left(put(styleno,1.))
[ITeft(put(i,1.))[|"3";
succ= "a'||left(put(styleno,1.))
[

left(put(i,1.))|| 4 ;
nanme="w nd’ ;
dur =wi ndhrs;
wi nder =1,
out put ;
w nder =. ;
act="a' ||l eft(put(styleno,1.))
[[Teft(put(i,1.))[|"4";
succ= "a' ||l eft(put(styleno,1.))
[[Teft(put(i,1.))[|"5";
nane=' pack’ ;
dur =packhrs;
out put ;
act="a' ||l eft(put(styleno,1.))
[ITeft(put(i,1.))[|"5";
succ=" ',
nane='ship’;
dur =0;
out put ;
end,
end,
run;

12

