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Abstract—We encounter network flows in day to
day life. They are the backbone of logistics, city
planning, processes etc. In order to study these net-
works, domain specific connectivity graphs along with
their historical observations are used. Traditionally,
birth & death process, Little’s law, Burke’s theorem,
etc. have been applied to analyze various network
flow scenarios. In this paper, we approach similar
problems using Monte Carlo simulations, Markov
Chain and Queuing Theory, which provide an edge
over traditional methods in case of high dimensionality
of multiple nodes. The methodologies described in
paper can be applied to various situations of business
formulations: Load/traffic balancing, Queue reduction,
Network Anomaly detection, etc. This paper provides
an effective tool for designing, diagnosing, monitoring
& predictions of process of networks. Networks flows
are the backbone of logistics, city planning, processes,
etc.

Index Terms—Networks, Monte Carlo, Birth &
Death, SLAs, Queuing Theory, Little’s Law, Markov
Process, Transition Matrix.

I. INTRODUCTION

Scenarios involve a set of processes, jumping
from one node to another. Some industrial
situations may have deterministic paths while others
probabilistic. Arrival of a ‘work items’ and their
service at various nodes is common phenomenon
in many scenarios. Designing, assessing scenarios,
etc. are of paramount importance. Sample business
examples are visitors (malls, cities), bank counters,
production lineups, network security, road traffic
(site) management, load balancing, etc.

While in some industry, reduction of customer
wait time along with costs is the prime objective,
in other situations, increasing customer life span
within the network is important.

As indicated earlier, solving this ’algebraically’ is
computationally very expensive as it is an NP-hard
problem due to high dimensionality. This paper

proposes usage of Monte Carlo simulations [1]
to make computational complexity independent of
dimensions. The paper integrates Graph Theory
[2], Markov Theory [3] & Queuing Theory [4] to
effectively provide an ability to design, optimize
and review scenarios.

The primary input parameters of network flows
are arrival rates, service times at nodes and
feasible paths. Rate: Inflow (arrival) rate or
its distribution; Service Time: Service rate at
each station (node). This in turn depends on
‘resources’ loaded, its productivity & costs; Graph
Connectivity: Activities/Nodes connectivities, may
be a probabilistic transition matrix.

To arrive at the optimized tangible parameters,
i.e. waiting time, transition population size,
resource utilization etc. Markov Chain Monte Carlo
Simulation [5] has been laid out. It effectively
combines theories described above and utilizes
them for a multi-node system. The parameters
described above can be changed to analyze any
scenario.

Following is the layout of the paper with respect to
the sections: Effective Resource Loading at node
level (Little Law [6]); Convergence rate & effective
number of simulations; Simulation Algorithm;
Empirical Studies & Demo. A few examples of
above mentioned businesses follow.
• Delivery/Customer Services
• Traffic Management
• Anomaly Detection & Alerts

II. MODEL FORMULATION

A network flow is parameterized by: arrival rate
(λ), service rates at different nodes (µi’s), and
transition matrix (Tm).
Without loss of generality & for sake of simplicity,
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assume the network is deterministic (fixed no. of
nodes, say k), let λ be given arrival rate per time
interval, let T be the transition matrix, indicating
probabilities of transition between nodes, let r1,
r2, . . . , rk be the k resources with respective
productivity p1,p2, . . . , pk. Here pi1 is time taken
by ith resource at ith node to process the work item.

Using the above parameters, the system proposed
in this paper provides distribution of waiting time
(W ), sojourn time (S), resource utilization &
transition load

Assumptions in this paper: Service Time
distribution is provided by user (eg: Exponential,
with parameter µ); Service type: is taken to be first
come first serve; also the network is deterministic,
i.e. the no. of nodes and productivities remain fixed
throughout the simulation.

A. Proposed Solution: Theoretical foundation

The subsections below elaborate various related
theories and their integration to achieve the objec-
tives described.

1) Node Level Load Estimation: A single node
represents a work station for any network flow. Let
us consider the different counters in a restaurant
- bill counter, water dispenser etc. Essentially,
each node in graph represents a M/M/c queue.
Per unit arrival to the system, realized arrival at
a particular node can be fraction of it or more
based on transition matrix, T . For example, billing
counter has same arrivals as in the system, water
counter may have more actual arrivals and coffee
counter may have a fraction. These actual arrivals
are needed to be derived.

This paper provides you with a method to find
arrival rates at every node. Estimation of workload
will help us to optimise our resources, get a cost
estimate for effective system. Also, It is possible
to deploy different kinds of resources at different
nodes, Thus gives us insight on most critical
resources in our system. Moreover,at individual
level, it helps us find anomalous behaviour in real
life system monitoring. Following is transition
graph that are being used to demonstrate the
intuition.

1For sake of simplicity, it is assumed that pi are continuous
variables, whereas in real-life scenarios, pi would be integers.
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Now, the respective transition matrices of above
figures, excluding ”exit / death” node are following.

1 2 3[ ]1 0 0.25 0.75
2 0 0 0.5
3 0 0.5 0

For this flow, the possible load per unit of an arrival
at node 2 is a12 and at node3 is a13 where A =
(I−T )−1. Expected arrival at a node is same as sum
total of arrivals in each transition of the element in
the network. 1 0.83 1.167

0 1.33 0.67
0 0.67 1.33


Hence in general, if T is the transition matrix of

a network, Tij provides probability of transitioning
from i to j in 1 step. Similarly element of T 2, say
T 2
ij , provides similar probabilities in 2 steps and so

forth. This can be extended to infinite number of
steps.

Hence, the effective arrivals to jth node from
a birth node i, is aj =

∑
k T

k
ij . The load on jth

node can be derived as sum of similar entities for
respective birth nodes. Keeping this concept in
mind following has been derived.

Let A = (I − T )−1, and λi be arrival at
node i, then total or effective load or arrivals on
node j, say Lj would be

Lj =
∑
i

λiaij

Hence, if L = (L1, L2, . . . ) and λ = (λ1, λ2, . . . )
then, it is very clear that

L = λA

= λ(I − T )−1
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Above discussion might be summarized into the
following theorems.

Theorem II.1. The node level load, represented by
vector L is provided by arrival vector λ as

L = λ(I − T )−1

where T is transition matrix from where the
death/exit node is removed.

The above theorem provides a starting point
towards minimal resources required that would
prevent blowing up of queues. Of course, arrival
vector λ and transition matrix T is assumed to be
known. A similar version of this theorem has been
discussed in Jacksonian Networks [7].

When does the system blow?

It is known from earlier research on queuing
models that a node with arrival rate λ, processing
rate µ and allotted resource r will blow up if the
ratio λ

r∗µ > 1. This subsection extends this idea to
a multi-node system as a theorem.

Theorem II.2. Any markovian system does not blow
up iff for all intermediate nodes, the ratio of arrival
rate λ to service rate µ is less than 1.

Proof: Following is a proof by induction on the
number of nodes in the system.
• Base case: if k = 1, the above argument holds

and the theorem trivially holds
• IH: let the system hold for k nodes (k ≤ n)
• IS: for the (k+1) node system, pick any sub-

system of k nodes. By IH, this subsystem has
for each node i, λi

ri∗µi
and hence doesn’t blow

up. As long as the (k + 1)th node satisfies
λk+1

rk+1∗µk+1
< 1, it node does not blow, and

hence the (k+1) node system does not blow.
Customers who enter the process flow often have
different key characteristics. For example age, in-
come, marital status, etc. are features that are
considered for approval of a credit card. Given
these features, the customers can be classified into
multiple types where each customer type follows
the corresponding transitions. However, in practical
scenarios the number of customer groups formed
can be huge which can lead to further complexities.
The lemma mentioned below addresses this prob-
lem combining the transition matrices of different
customer types into single matrix.

Lemma II.1. A markovian model M with finite
customer types can be simulated with customer type
dependent transition matrices using 1-step marko-
vian model.

Proof: Let C1, C2, C3...Cn be the n types of
customers, let T1, T2, T3...Tn be corresponding tran-
sition matrices, and let M1,M2,M3...Mn be the
process flow models corresponding to these transi-
tion matrices. Each model Mi is a markovian model.
Let pi be the probability of arrival of customer Ci
in given model M . The following claim & its proof
complete our theorem.

λ
S D

M1

Mi

Mn

Figure: Constructed Model

Claim: The above constructed model with S & D
as birth and death nodes, is a markovian system.
Proof: As each Si is a markovian system, the above
model can be converted to a markovian system.

Following is another theorem towards Little’s
Law applicability at the node level.

Theorem II.3. Let λk be the arrival rate at node
k, Wk be the average waiting time at node k, then
average length of the queue at node k (Lk) using
Little’s law is

Lk = λk ∗Wk

2) Multi-Skilled Resource Loading &
Optimization: Organizational resource acquisition
is often multi-skilled. These multi-skilled resources
may have different salary bands. Having multi-
skilled resources is useful as one can have flexibility
to change between different tasks (nodes).

The discussions in subsection 3.1 provide minimum
resource requirement per node. Let us consider a
process flow of n nodes. The load on ith node



Draft

is Li, let µi is mean service rate at node i and
R = (r1, r2, . . . , rk) be a column vector of k
resource groups, where rj is resource count at jth

group . Let S be a k×n resource allocation matrix
where sji denotes the allocation ratio of rj at node
i. Therefore,

0 ≤ sji ≤ 1

and for each group ri,∑n
i=1 sji = 1

Using the condition for node equilibrium in
Theorem 2,∑k

j=1 sjirj ≥ ρi, where ρi = λi

µi

In order to reduce the resource cost optimal
resource loading is the key aspect. Assuming
C = (c1, c2, . . . , ck) represent the cost of each
resource in the group. Therefore, the total resource
cost for the process flow becomes

ψ =
∑k
j=1 cjrj

STR ≥ ρ and R ≥ 0, gives a set of equations.
The optimum resource loading at each node is
obtained by solving these equations using Linear
Programming [8] to minimize cost (ψ).

B. Proposed solution: Through Simulation

In practical process flows, the number nodes
and their interconnectivity can be huge. Moreover,
the arrival rate and service rate may follow non-
exponential distributions. The resource availability
criteria and seasonality in the arrival and the
service pattern increases the complexity of a
process flow. Given the theoretical foundations
described in Section 2.1, arriving to the optimum
solution algebraically, if not impossible, is definitely
highly complex and computationally expensive.
The distributions of key parameters of interest
i.e. waiting time, sojourn time, queue length,etc.
which may not be obtained theoretically for every
scenario, are needed to be derived to extract deeper
insights of the process flow.

Considering the above problems in using the
algebraic equations directly for extracting vital
information from the process flow, the Monte Carlo

simulation methodology provides effective solution.
Convergence of outcomes of what-if scenarios run
for a given process is linear and highly efficient
using Monte Carlo simulations.

The process flow is simulated with customers
generated as per arrival distribution and randomly
generated service time for every node the customers
visit according to the service rate distribution. In
general, the customer arrivals follow Poisson
Process and service rate follows Exponential
Distribution. Since the transitions are probabilistic
in nature, Gibbs Sampling technique [9] through a
uniform random generator(URG) is used to decide
which node should a customer move to next.

Moreover, the simulation is discrete event-based
[10], instead of continuous time-based. Following
are the events that cause the system state to change:

1) Arrival of a customer.
2) Any node finishes servicing its customer.

As stated earlier, our simulation methodology can
be used for designing, diagnosing, monitoring and
prediction of process flow networks.
• Design: Users get to provide all the specifica-

tions of the system, ranging from the number
of nodes to parameter values. The results of
simulations then help the user in redesigning
the process flow.

• Diagnose: A model diagnosis process is a
powerful consciousness raising activity in its
own right, its main usefulness lies in the action
that it induces. Diagnosis might suggest the
possible problems in a model, and why they
were not identified during monitoring. Users
may run various simulations - keeping their
design fixed - in search for anomalies.

• Monitor: Given a system of n-nodes, the sim-
ulator can predict the loads at individual nodes
and monitor traffic at micro level(at each node).
This may help an operations manager to iden-
tify critical nodes, either in terms of waiting
time explosion or cost of resources deployed.
Following earlier work on selecting top seeds
to have maximum ‘combined’ value [11], one
can select certain top nodes in a model that
would be most probable causes for a glitch in
the system design. Thus, (s)he would be able to
monitor most critical k-nodes where k depends
on the convenience of manager.

• Prediction: Once the design is specified, the
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Fig. 1. State Diagram of our model

engine runs accordingly to predict plots of
quantities of interest, like the waiting time
of customers, utilization of the resources, the
busyness of this system, etc. The simulator can
also predict the time a customer has to wait in
the queue or additional time that a customer’s
service will take among other things.

III. EMPIRICAL STUDY & RESULTS

A. Experimentation Summary

In order to capture modeling for the process flows
using Monte-Carlo simulations, we did an empirical
study on essentially three different contention levels
in system. Following characteristics of a system will
be studied to draw inference about system.
• Waiting/Processing /Sojourn Time Distribu-

tions - These are frequency plots of no. of
customers vs time, i.e waiting time distribution
suggests how many customers had to wait how
long to enter the system.

• Resource Utilization - This tells us about us-
ability of resources by showing for what frac-
tion of time, a particular resource(or Node) was
active in simulation.

• Customer Count plots - This tell us for what
fraction of time, how many customers were
waiting/inside the system.

The transition probabilities can be fetched from
figure 1.

B. Observations

Figure 2 & 3 show a low contention system. As
expected, 2(a) shows that the average waiting time
for most customers stays around 0 units, but as λ
increases, number of such customers decreases. 2(b)
tells that processing time per customer increases
as λ increases. Moving on to figure 2(d), we see
that utilization of every resource increases with the
number of people in the system, i.e., with increase
in λ. We also observe that node 0 (N1) and node
7 (N8) are the busiest one. Since node 7 is the

only node where a backward transition is possible
(apart from node 6, which is the third most busiest
node), it seems that customers are keeping it busy
by bouncing back to it multiple times. Figures 2(e)
and 2(f) tell us with some exceptions that number of
people in a system and people waiting to enter at any
point of time the system increases as we increase λ.

Fig. 2. Low Contention System(Distributions)

Fig. 3. Low Contention System(Resource Utilization)

Figure 4 & 5 is a normal contention system. Note
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that we have not provided results for a λ = 1
as the system explodes for this (λ,µ) combination.
3(a)-(f) have explanations similar to their figure 2
counterparts. Figure 6 & 7 has high contention in the
queues. Note that we have not provided results even
for λ = 0.75 as the system explodes for this (λ,µ)
combination, let alone a λ value of 1. Explanation
of all figures remains in line with previous figures.

Fig. 4. Normal Contention System(Distributions)

Fig. 5. Normal Contention System(Resource Utilization)

Fig. 6. High Contention System(Distributions)

Fig. 7. High Contention System(Resource Utilization)

One interesting observation is that utilization of
nodes follows a pattern similar to that of figure 2,
and not figure 3. From these observations and our
experimentation, it may be concluded that resource
utilization, except for a few cases like in figure
3, usually remains consistent irrespective of the µ
vectors that we use. Another important observation
that we make is that the waiting time distribution
remains similar between figures 3 and 4, which
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suggests that it only depends on the µ value for
node 0.

C. Validation

1) Condition for Queue Blowing: We can relate
that the queue which is overflowing doesn’t satisfy
per node condition for arrival rate at that node and
its service rate.

2) Measurement of closeness: Let us take a very
loose bound on error compared to actual distribution
considering the observations which are binary in
nature(less than/more than some value). Thus, de-
viation (variance) from original value is maximum
in binary observation. Let w′i is a binary valued
random variable corresponding to observation of
waiting time for ith customer. Let W corresponds
to random variable for summed and down scaled
waiting time.

W =
1

N
∗

n∑
i=1

[w′i]

Now, given w′is, if W corresponds to a binomial
distribution, and thus, deviation from actual value is

V ar(W ) = pqN/N2

Thus standard deviation of W is

sd(W ) =
√
pq/N ≤ 1/2 ∗

√
1/N

as standard deviation is maximum if p=q=1/2. Thus,
this gives us an idea on how to generate an apparent
distribution with bounded standard deviation. For
ex., if one wishes to generate distribution which is
less than 1% deviated from actual distribution, i.e

1/2 ∗
√
1/N ≤ 0.01, N ≥ 2500

then error in observed distribution is bounded to 1%.

IV. ONGOING RESEARCH

Though our simulations are very close to real life
systems, there may be cases when a service token
(customer) is sent to multiple nodes by a split node,
served at different nodes in parallel and then assem-
bled in the joining node. After that the service token
takes the succeeding path according to the transition
probability. For example, a car manufacturing com-
pany gets orders for some cars. The engine parts and
body parts are build simultaneously. The assembling
of the cars is done in a particular station and after
joining the cars go for painting, sale and so on.
Although the load analysis of different nodes can be
obtained by Theorem 1 with scaling vector at each

node, complex simulation is needed for the waiting
time and sojourn time analysis. Moreover, there can
be nested split-join pairs in a very complex process
flow.
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