

OpenGIS Web Feature Services
for editing cadastral data

Analysis and practical experiences

Master of Science thesis
T.J. Brentjens
Section GIS Technology
Geodetic Engineering
Faculty of Civil Engineering and Geosciences
Delft University of Technology

 i

OpenGIS Web Feature Services
for editing cadastral data

Analysis and practical experiences

Master of Science thesis Thijs Brentjens

Professor: prof. dr. ir. P.J.M. van Oosterom (Delft University of Technology)
Supervisors: drs. M.E. de Vries (Delft University of Technology)
 drs. C.W. Quak (Delft University of Technology)
 drs. C. Vijlbrief (Kadaster)

Delft, April 2004

Section GIS Technology
Geodetic Engineering
Faculty of Civil Engineering and Geosciences
Delft University of Technology
The Netherlands

Het Kadaster
Apeldoorn
The Netherlands

 ii

Preface

 iii

Preface

This thesis is the result of the efforts I have put in my graduation research project
between March 2003 and April 2004. I have performed this research part-time at the
section GIS Technology of TU Delft in cooperation with the Kadaster (the Dutch
Cadastre), in order to get the Master of Science degree in Geodetic Engineering.

Typing the last words for this thesis, I have been realizing more than ever that
this thesis marks the end of my time as a student at the TU Delft. However, I also realize
that I have been working to this point with joy. Many people are “responsible” for this,
but I’d like to mention the people who have contributed most.

First of all, there are of course people who were directly involved in the research
project. Peter van Oosterom had many critical notes and - maybe even more important -
the ideas born out of his enthusiasm improved the entire research. Many thanks go to
Tom Vijlbrief, representing the Kadaster, for his helpful comments (on all topics) and for
showing the way when it concerned Kadaster issues. Wilko Quak always was available
to give technical support. But I’d like to thank especially Marian de Vries. As my direct
supervisor, she helped solving technical problems, reviewing new pieces I wrote for this
thesis and developing parts of the software. Especially their expertise and pleasant way
of working, created the right atmosphere to perform the research in.

Besides the scientific interest of people, two people have contributed to the
project without any direct interest (I think at least). Here, I have to mention Marco Baars,
a good friend and fellow MSc student. He also reviewed my thesis, but more
importantly he always has been available for a cup of coffee, lunch or a short walk
outside. I’m grateful to my mother, Dorrit Brentjens, who also helped with reviewing
my thesis and gave the necessary mental support to me, even during very difficult times
for her.

For the upcoming years, I hope to work in the same friendly yet professional
atmosphere as I’ve experienced during this MSc thesis project.

Delft, 28 April 2004

Thijs Brentjens

Preface

 iv

Contents

 v

Contents

Preface ... iii

Summary.. ix

Samenvatting ... xiii

1 Introduction ... 1

2 Geographic data in distributed environments 3
2.1 Sharing geographic data sets ... 3

2.1.1 Geographic features.. 3
2.1.2 Sharing geographic data .. 4
2.1.3 Some cases ... 5

2.2 Distributed systems.. 7
2.2.1 Basics of distributed (geo) database systems........................ 7
2.2.2 The client-server architecture ... 8
2.2.3 Advantages and disadvantages of distributed systems and

client-server computing ... 9
2.3 Interoperable geoprocessing.. 11

2.3.1 Interoperability and interoperable geoprocessing..................11
2.3.2 Problems with interoperability ...12
2.3.3 Open systems and GIS Web Services..................................13

2.4 Final remarks ... 15

3 Geometric transactions... 17
3.1 Database transactions .. 17

3.1.1 Concurrency control and transactions17
3.1.2 Processing transactions ..18

3.2 Why geometric transactions are complicated 18
3.2.1 Geometry in transactions ..19
3.2.2 Topologically structured data...20
3.2.3 Spatial constraints ...21

3.3 Conclusion .. 22

4 OpenGIS Web Feature Services .. 23
4.1 OpenGIS Service Framework .. 23
4.2 Relevant technologies for GIS web services 25

4.2.1 HTTP..25
4.2.2 XML...26
4.2.3 Geography Markup Language ..28
4.2.4 Filter encoding ..30

Contents

 vi

4.2.5 OpenGIS Web Services: the WMS, WCS and WFS interfaces ..31
4.3 WFS in more detail ... 36

4.3.1 Basics on WFS...36
4.3.2 Read-only service: Basic WFS..38
4.3.3 Modifying features: Transactional WFS................................40

4.4 Conclusion .. 42

5 Case study: Notary sketches new parcel................................. 43
5.1 Case study: the starting point... 43

5.1.1 The role of a notary in cadastral transactions.......................43
5.1.2 Scenario for splitting parcels using a Web Feature Service44
5.1.3 Data model...45

5.2 The service to draft parcels .. 46
5.2.1 Service architecture ...46
5.2.2 Application logic ..47
5.2.3 Requirements for the server ..49
5.2.4 Requirements for the client ...49

5.3 Web Feature Servers .. 50
5.3.1 XSQL ...50
5.3.2 GeoServer: an open source web feature server51

5.4 WFS clients... 53
5.4.1 Existing transactional clients ...53
5.4.2 Developed client in the case study53

5.5 Conclusion .. 56

6 Suitability of WFS for transactions: analysis........................... 59
6.1 Interoperability testing .. 59

6.1.1 Server..59
6.1.2 Clients ...60

6.2 Handling transactions... 63
6.3 Validation of features ... 64

6.3.1 Validation of single features ..64
6.3.2 Validation of features in their environments.........................66

6.4 Application logic ... 67
6.5 Conclusion .. 69

7 Conclusions and recommendations... 71
7.1 Conclusions .. 71
7.2 Recommendations .. 72

References .. 75

Appendix A: Glossary... 79

Appendix B: Table definitions case study .. 83

Contents

 vii

Appendix C: Client in detail.. 85

Appendix D: Example Transactional WFS... 91

Appendix E: Open source development GeoServer 99

Appendix F: Validation of web feature server responses 101

Contents

 viii

Summary

 ix

Summary

The need for sharing already available, but distributed geographic data and the need for
facilitating the integration of Geographic Information Systems (GIS) with other
information systems has been growing. In such a distributed environment, the ability to
edit geographic data (i.e. besides querying, also deleting, updating and creating
geographic features) is essential.

GIS web services are services using the Internet, for example to retrieve maps or
query geodata. In this context, the OpenGIS Consortium (OGC) recently has developed
several web service specifications that should support interoperability between services
and clients of different vendors. One of these is the Web Feature Services specification.
This specification is a unique open standard in the sense that it is the only specification
that provides a standardized interface not only for querying (Basic WFS) but also for
editing geographic data (Transactional WFS) over the Internet.

The OpenGIS Service Framework provides the framework for OpenGIS Web Services.
These open, interoperable services use general web technologies like HTTP and XML
and can be used to build applications dynamically. Web Feature Services are one of
these services.

Web Feature Services are either Basic, which means that data can only be
retrieved, or Transactional, which means that the server supports create, update and
delete operations on some or all of its features. The WFS specification also defines
operations for locking features, which can be used to maintain consistency.

The Geography Markup Language (GML) is an XML encoding for the modeling,
transport and storage of geographic information including both the spatial and non-
spatial properties of geographic features. In WFS, GML 2.1.2 is used as output format
and to encode new geographic features.

The term geometric transaction is used for transactions consisting of operations to modify
geographic features in a geo-database. Because of the geometric properties, geometric
transactions are usually complicated to process. Not only common difficulties with geo-
databases like encoding and computations with spatial operators play a role. In
particular the relations of geographic features with features in the surroundings (either
explicitly stored in some topological structure or spatial constraints, or implicitly from
the geometric properties) make transactions complicated to process.

Since Web Feature Services can be used to edit geographic data over Internet, Web
Feature Services should be able to process geometric transactions. Therefore for this MSc
research project, the following research question has been answered:

How should geometric transactions be processed in a distributed GIS using OpenGIS
Web Feature Services?

Summary

 x

To answer this question literature has been studied and a case study has been done to
develop a Web Feature Service. With this service, the abilities of WFS to process
geometric transactions have been analyzed.
For editing the cadastral data, one could think of a notary who drafts a new boundary,
because a parcel has to be split. This principle has been used in the case study. Both a
web feature server and a client have been implemented.

The web feature server is composed of an Oracle Spatial 9i database, with
GeoServer (an Open Source WFS) configured on top of it as web feature server.
GeoServer has been installed in Tomcat (a Java servlet container) to provide Internet
access, as illustrated in figure 1.

Figure 1 Developed web feature server

Because the tested existing WFS-clients were either not fully compliant with the
specification, nor transactional or it would have cost too much time to adapt them for
the case study service, a client needed to be developed in this research. The developed
client uses Scalable Vector Graphics (SVG) in a standard web-browser for visualization
and editing of features graphically. Java Server Pages (JSP) have been used to implement
functionality to compose and send the transaction request. This way, functionality of the
client is divided between a browser and Java web server, as illustrated in figure 2.

Summary

 xi

Figure 2 Functionality of the developed WFS client is divided between a browser and web server

Interoperability tests with other than the developed client showed that not all currently
available clients that claim to be WFS-compliant, work correctly. However, the tests also
showed the power of interoperable services, since a generic client - not having any
knowledge of the data source – could retrieve features from the data source, because a
web feature server was configured on top of it.

The case study showed that, in general, the WFS-specification provides sufficient
operations to make sure that geometric transactions can be sent from client to server and
can be processed successfully. Using general web technologies as HTTP, XML and GML,
geographic features can be retrieved, created, modified and deleted. However, WFS
misses operations to deal well with constraints and other application logic and misses
some useful operations to deal with complicated data sets and transactions.
 The main conclusion is that, although WFS is not advanced enough to strongly
support transactions on complicated (e.g. with topology or other spatial constraints)
data sets in a generic way, Web Feature Services are suitable and powerful interoperable
GIS web services to edit geographic data over large networks as the Internet.

Summary

 xii

Samenvatting

 xiii

Samenvatting

De noodzaak om reeds beschikbare, maar verspreid opgeslagen geografische data te
kunnen delen en hergebruiken en de noodzaak om Geografische Informatie Systemen te
integreren met andere informatie systemen is sterk gegroeid. Het is essentieel om ook in
zo’n gedistribueerde omgeving geografische data te kunnen bewerken. Dit houdt in dat
de data niet alleen bevraagd moet kunnen worden, maar ook dat geografische objecten
gewijzigd, verwijderd en gecreëerd moeten kunnen worden.

GIS Web Services zijn services die gebruik maken van internet, bijvoorbeeld om
(digitale) kaarten op te vragen of geografische data te bevragen. Het OpenGIS
Consortium (OGC) heeft in dit kader onlangs een aantal standaarden opgesteld die voor
interoperabiliteit tussen services en clients van verschillende leveranciers moeten
zorgen. Eén daarvan is de Web Feature Service (WFS) specificatie. Deze specificatie is
een unieke, open standaard, omdat het de enige standaard is die een interface beschrijft
die niet alleen het bevragen van geodata (een zogenaamde Basic WFS), maar ook het
bewerken van geodata (Transactional WFS) via internet ondersteunt.

Het OpenGIS Service Framework verschaft het kader voor OpenGIS Web Services.
Dergelijke open, interoperabele services gebruiken standaard internet technologiën,
bijvoorbeeld HTTP en XML. Met deze services kunnen applicaties dynamisch worden
samengesteld. Web Feature Services behoren tot OpenGIS Web Services.

Web Feature Services worden Basic WFS genoemd als data alleen kan worden
opgevraagd. Men spreekt van Transactional WFS als de service ook operaties voor het
creëeren, verwijderen en wijzigen van objecten ondersteunt op alle of op een deel van de
objecten in de database. In de WFS specificatie worden ook zogenaamde locking
operaties gedefinieerd, die gebruikt kunnen worden om de consistentie van een dataset
te behouden bij transacties.

Geography Markup Language (GML) is een op XML gebaseerde codering om
geografische informatie te modelleren, transporteren en op te slaan. Met GML kunnen
zowel de ruimtelijke als de niet-ruimtelijke eigenschappen van geografische objecten
beschreven worden. WFS maakt gebruik van GML versie 2.1.2 als output formaat en
om nieuwe geografische objecten te beschrijven.

De term geometrische transactie wordt in deze scriptie gebruikt om transcaties aan te
duiden die bestaan uit operaties om geografische objecten, opgeslagen in een geo-
database, te bewerken. Juist vanwege de geometrische eigenschappen is het moeilijk om
geometrische transacties te verwerken. Hierbij spelen niet alleen reguliere problemen
voor geo-databases een rol, zoals het beschrijven van de objecten of berekeningen met
ruimtelijke operatoren. Met name de relaties van geografische objecten met objecten in
de directe omgeving maken het moeilijk transacties te verwerken. Het betreft hier
relaties die ofwel expliciet opgeslagen zijn in een topologische structuur of andere
ruimtelijke voorwaarden, ofwel impliciet volgen uit de geometrische eigenschappen
zelf.

Samenvatting

 xiv

Aangezien Web Feature Services gebruikt kunnen worden om geografische data via
internet te bewerken, moet het mogelijk zijn om met WFS geometrische transacties te
verwerken. In de hoofdonderzoeksvraag van dit afstudeeronderzoek is dit als volgt
geformuleerd:

Hoe moeten met OpenGIS Web Feature Services geometrische transacties verwerkt
worden in een gedistribueerd GIS?

Om deze vraag te beantwoorden is literatuuronderzoek verricht en is een case studie
gedaan waarbij een Web Feature Service is ontwikkeld. Met deze service zijn de
mogelijkheden om met WFS geometrische transacties te verwerken geanalyseerd.

Het principe waarbij een notaris kadastrale geodata bewerkt is gebruikt in de case
studie. Een notaris zal bijvoorbeeld nieuwe perceelsgrenzen schetsen bij de splitsing van
een perceel. Voor deze case zijn zowel een web feature server als een cient ontwikkeld.

De server bestaat uit een Oracle Spatial 9i database. Hierop is GeoServer (een
Open Source web feature server) geconfigureerd. GeoServer is geïnstalleerd in Tomcat,
een Java servlet container. Via Tomcat wordt de server ontsloten naar internet, zie figuur
1.

Figuur 1 De ontwikkelde web feature server

Aangezien reeds bestaande WFS-clients niet volledig voldeden aan de specificatie, niet
Transactional waren of omdat het te veel tijd zou kosten de clients aan te passen (indien
mogelijk), is er besloten zelf een client te ontwikkelen tijdens het afstudeeronderzoek.
Deze client gebruikt een standaard browser en Scalable Vector Graphics (SVG) om de
data te visualiseren en objecten toe te voegen. Met Java Server Pages (JSP) is
functionaliteit toegevoegd om transactie-requests op te stellen en te versturen. De

Samenvatting

 xv

functionaliteit van de client is dus verdeeld over een browser en een Java web server,
zoals weergegeven in figuur 2.

Figuur 2 De functionaliteit van de client is verdeeld over een browser en een Java web server

Het testen op interoperabiliteit van de server met andere clients, heeft laten zien dat niet
alle huidige clients, die wel claimen te voldoen aan de WFS-specificatie, correct werken.
Echter, in de tests is ook de kracht van interoperabele services bewezen. Immers, een
generieke client, die geen enkele kennis had van de dataset, kon wel verbinding maken
met de database en ook data ophalen via WFS.

De case studie heeft ook laten zien dat in het algemeen de WFS-specificatie voldoende
operaties bevat om een geometrische transactie in zijn geheel te versturen van de client
naar de server en dat die transactie op de server verwerkt kan worden. Met reguliere
internet technologiën als HTTP, XML en GML kunnen geografische objecten bevraagd,
gewijzigd, gecreëerd en verwijderd worden. Echter, WFS mist operaties om goed om te
gaan met voorwaarden en andere applicatie-specifieke zaken. Daarnaast missen er
enkele operaties om op gecompliceerde data sets transacties te kunnen afhandelen.
 De slotconclusie moet zijn dat, ondanks dat WFS niet geavanceerd genoeg is om
transacties op gecompliceerde datasets (bijvoorbeeld met een topologische structuur of
andere ruimtelijke voorwaarden) te ondersteunen, Web Feature Services toch krachtige,
interoperabele GIS web services zijn om geografische data te bewerken via Internet.

Samenvatting

 xvi

Chapter 1: Introduction

 1

1 Introduction

Over the last decade the need for sharing already available, but distributed geographic
data and the need for facilitating the integration of Geographic Information Systems
(GIS) with other information systems has been growing [2]. In such a distributed
environment, the ability to edit geographic data (i.e. besides querying, also creating,
updating and deleting geographic features) is essential.

The need for integration and interoperable geoprocessing between various
(components of) GISs is also recognized by the OpenGIS Consortium (OGC) in its vision
[8]. Interoperable geoprocessing refers to the ability of digital systems to 1) freely
exchange all kinds of spatial information about the Earth and about objects and
phenomena on, above, and below the Earth's surface; and 2) cooperatively, over
networks, run software capable of manipulating1 such information [8].

In this context, the OpenGIS Consortium recently has developed several GIS web
services. GIS web services are interoperable services running over the Internet, for
example to retrieve maps or query geodata. Web Feature Services (WFS) are developed
by the OGC and can be used for operations such as [23]:
1) Getting or querying features based on spatial and non-spatial constraints
2) Creating a new feature instance
3) Deleting a feature instance
4) Updating a feature instance.
The WFS specification thus provides a standardized interface not only for querying
(operation 1) but also for manipulating geographic data (operations 2, 3 and 4). This is a
unique open standard, since no other open standard supports editing of geodata over
the Internet.

Geography Markup Language (GML) is an eXtensible Markup Language (XML)
grammar written in XML-Schema for the modeling, transport, and storage of geographic
information [27] and is developed by the OGC. Geographic data can easily be exchanged
between systems since GML must be used to express features within the WFS interface
[23] and GML is also the preferred format in which data should be send to the client.

Research problem
Transactions can be used to make sure that modifications of several users do not
interfere. Geometric transactions consist of one or more operations that edit geographic
data. All operations in the transaction have to succeed to make the transaction succeed
otherwise the transaction fails. With a Web Feature Service it should be possible to
process geometric transactions. This research project focuses on 1) how geometric
transactions should be processed in a distributed GIS and 2) how WFS deals with this
kind of transactions. This is expressed in the main question:

How should geometric transactions be processed in a distributed GIS using OpenGIS
Web Feature Services?

1 Where ‘manipulating’ also refers to ‘editing’

Chapter 1: Introduction

 2

This problem is subdivided in 4 questions:
a) What are the main characteristics of a distributed GIS and GIS web services?
b) How should geometric transactions be processed in a distributed GIS environment?
c) What are OpenGIS Web Feature Services?
d) To what extent are Web Feature Services suitable for processing geometric

transactions?
Questions a), b) and c) have been answered by studying literature. In a case study a Web
Feature Service that is able to support simple cadastral transactions has been developed
and tested to answer question d). With that service a notary should be able to sketch a
provisional boundary and parcels, e.g. in order to support the process of splitting a
parcel into tow or more parcels.

As far as known at this moment, no transactional web feature service has been
realized and used to analyze WFS’s transactional abilities. Therefore the developed
service in the case study can be used to get some first practical experiences with
transactional WFS.

Constraints
Developing an extensive graphical user-interface does not have a high priority in this
research project. More specific, this means that, although a WFS client is needed and has
been developed, the focus is on developing a working web feature service able of
processing transactions in a distributed (and possibly heterogeneous) environment.
Security issues are important, especially in cadastral transactions, but not much
attention will be paid to them either. Existing methods for securing the data are assumed
to be sufficient.

Structure of the thesis
This thesis starts with a theoretical basis in chapters 2, 3 and 4. Chapter 2 is an
introduction on distributed systems and more specifically distributed GIS. It also deals
with interoperable geoprocessing. A key-issue in interoperable geoprocessing is editing
data. As stated before, geometric transactions consist of operations to edit geographic
data, which is the subject of Chapter 3. That chapter describes issues that should be
accounted for when dealing with geometric transactions. In Chapter 4, technologies
developed by the OGC that aim to support interoperable geoprocessing (in the context
of web services) are discussed. Special attention is paid to Web Feature Services and the
transactional characteristics.

In Chapter 5 the case study that has been performed is described. In addition to
scenarios for a notary to split a parcel, it also provides a description of both client and
server that have been developed in this research. In chapter 6 the results from the case
study will be analyzed and will be compared to the theoretical basis from the first
chapters. Chapter 7 summarizes the most important conclusions and gives some
recommendations for future research and development.

Chapter 2: Geographic data in distributed environments

 3

2 Geographic data in distributed environments

In general, in distributed (database) environments data are shared over some kind of
network. This chapter deals with issues of distributed environments and sharing
geographic data sets in particular. It first defines geographic features. The need for
sharing this geo-data is then illustrated in some examples. Basics on distributed systems
and especially the client-server architecture are provided in section 2.2. To share the data
over these networks, system components have to work together – interoperate - in some
way. Open Systems (and GIS Web Services as a special case of Open Systems) use
standards that support this interoperability. These topics, interoperability, Open
Systems and GIS Web Services, are dealt with in section 2.3 on Interoperable
geoprocessing. Section 2.4 gives some final remarks on these subjects.

2.1 Sharing geographic data sets

2.1.1 Geographic features

Data are at the heart of a Geographic Information System [36]. In order to provide
spatial data for the system, the real world has to be modeled and captured. Two
principal approaches for modeling exist: the field-approach and the object-approach [18,
31], which is represented in figure 2.1.

According to Molenaar [18], in the field model the earth’s surface is considered as
a spatio (-temporal) continuum. Terrain aspects are represented in the form of attributes,
which are position dependant. In the data set, such a field is most often represented in a
grid or raster.

The object model assumes that terrain features (i.e. the real world) can be defined
as objects having geometric characteristics (a location or position and shape and/or
topology) and several non-geometric characteristics. An object consists of thematic data
and geometric data and can be identified by a unique identifier. Temporal data are
considered an inherent aspect of geographic information as well [36].

Figure 2.1 Geographic object (from [18])

This thesis almost exclusively deals with datasets containing objects. Here in most cases
geographic objects are referred to as geographic features, which corresponds to the

Chapter 2: Geographic data in distributed environments

 4

vocabulary of the OpenGIS Consortium (OGC). In the Geography Markup Language
specification [27] the OGC defines a geographic feature as:

A geographic feature is an abstraction of a real world phenomenon; it is a geographic
feature if it is associated with a location relative to the Earth.

This does not correspond with the object view very clear, but the link between
geographic features and geographic objects is made in the explanation of this. In the
GML 3.0 specification [27] is stated that a digital representation (e.g. in some geo-
dataset) of the real world can be thought of as a set of features. The state of a feature is
defined by a set of properties, where each property can be thought of as a {name, type,
value} triple. The number of properties a feature may have, together with their names
and types, are determined by its type definition.

2.1.2 Sharing geographic data

One can imagine that, in the course of time, a large set of heterogeneous, isolated
geographic information systems and geographic datasets have grown [6]. On the other
hand there is the necessity of sharing information from different databases [6, 15]. This is
not only to avoid duplicating existing data (and therefore to avoid making extra costs
[32]), but to benefit from the latest updates located in other databases as well [6, 15, 31].
The best quality can be found at the source.

This brings us to the issue of data integration. Based on [32]2 and [6], data
integration can be defined as:

Data integration is bringing together spatial data that are stored in different forms and
managed by different systems from a number of sources in order to allow users and
applications to combine information from multiple sources correctly.

There are however several problems concerning data integration. These difficulties can
be divided in three categories [12, 26]:
1) Bringing together diverse information from a variety of sources.
2) Matching of supposedly similar entities in these sources (semantic integration).
3) Resolving inconsistencies across the source datasets.

This thesis deals with the first problem domain and especially in the context of
distributed and possibly heterogeneous environments (Chapter 2) and GIS Web Services
(Chapter 4). Uitermark [31] has developed a methodology to integrate spatial data
semantically. That research thus focuses on the second problem.

2 Vckovski [32] says on the various meanings of ‘data integration’: “The term ‘data integration’ has
been used with various meanings ranging from technical issues such as inter-conversion of raster and
vector models, cartographic notions to general definitions such as bringing together of spatial data from a
number of sources and disciplines, from different subsystems "each employing a different technique of data
input from different media [3]"’.

Chapter 2: Geographic data in distributed environments

 5

2.1.3 Some cases

As stated before, the need for dynamically combining data from several sources and
editing (parts of) that data has grown. Sharing data in this context not only applies to
retrieving the data and combining it, but sharing data can also include editing data. The
following fictitious, but realistic examples illustrate this.

Update propagation
Top10NL contains topographic data on a scale of 1:10,000 for the Netherlands. GBKN is
the Large Scale Base Map of the Netherlands (in Dutch: Grootschalige BasisKaart
Nederland) and contains data on a scale of 1:500 or 1:1000 for urban areas and 1:2000 for
rural areas. Now let’s say that it is desired to maintain Top10NL partially based on
GBKN-mutations3. If GBKN could propagate its mutations to Top10NL (i.e. send the
mutations in some format to Top10NL or Top10NL could request all mutations in a
certain time interval from GBKN), mutations to Top10NL could easily be made as well4.
At least for Top10NL is signalled that objects in the real world have changed and steps
could be taken to update the dataset.

When this simple network is extended with other datasets, let’s say the national
buildings database, an address database, etc., a large network of all kinds of geographic
reference/base data could exist. See figure 2.2. In this network mutations in one dataset
could (easily) be communicated to other datasets and thus create benefits, like lower
maintenance costs and more up-to-date data, for all maintainers of the datasets.

Figure 2.2 Network of geo-databases for mutation propagation

3 The GBKN dataset is maintained by several institutions. In a way this dataset is distributed
amongst its maintainers/producers as well.
4 Note that semantics are not considered here, while these are critical for mutation propagation.
Integrating the mutation-data thus will not be accomplished just by sending/receiving the
mutations.

Chapter 2: Geographic data in distributed environments

 6

Reporting errors for car navigation
The use of car navigation has become more and more widespread in the last few years.
But for data/map producers it is almost impossible to provide completely up-to-date
data – i.e. geographic data of all roads in some area - without any errors on the media
they use (e.g. CD-ROM’s). However, keeping the data up-to-date and free of errors is
essential for both producers and users. One could imagine that a producer wants to be
notified of errors as soon as possible. If users could report where (the location of) errors
exist in the database, data producers could quickly improve their dataset. In addition
users wish to have the most recent data in their navigation systems. Users and data
producers could form a huge network in which users report (the location of) errors to
the central geo-database containing the road data and in return could download the
most recent data to their navigation system. Figure 2.3 is a schematic representation of
an example of such a network.

Figure 2.3 Network of car navigation users and geo-database for car navigation to report errors and get
latest updates

GPS-tracks
Similar to car navigation, handheld GPS receivers are getting more and more popular as
well. These handheld receivers are often used in outdoor sports and recreation, e.g.
hiking, sailing or cycling tours. Lots of people like to exchange these tracks. As a result,
in the last few years numerous websites have emerged that want to be a platform for the
exchange of these GPS tracks. On such websites, people can upload and download their
tracks. At the moment, this is most often a file-based system: text-files are uploaded and
downloaded. But geo-databases could be useful to run underneath such a website, e.g.
for searching or combining tracks.

Chapter 2: Geographic data in distributed environments

 7

Notary splits parcels
In the MSc thesis research project a case study has been performed. This case study
investigated how the process of splitting a parcel could be supported by letting the
notary sketch the new (preliminary) boundary and adding some information on new
parcels. The notary could do this from his own office via an Internet connection. This is
stored in a database from which for instance the surveyors can extract the areas where
they need to measure new boundaries. Chapter 5 describes this case study in more
detail.

2.2 Distributed systems

Out of the need to access and change information resources of other computer systems,
distributed computing has arisen [36]. Section 2.2.1 gives an introduction on distributed
(geo)database systems and deals with some definitions and other issues of distributed
systems. The client-server architecture is often used in distributed systems and therefore
discussed in section 2.2.2. Section 2.2.3 gives the main advantages and disadvantages of
distributed computing.

Definitions given in this section are listed in the Glossary (Appendix A) as well.
For databases in general, most of the definitions are taken from Sheth and Larson [30].
For issues related to geographical databases most definitions are based on the
definitions of Buehler and McKee [8].

2.2.1 Basics of distributed (geo) database systems

In general, a distributed system allows its components (e.g. users, pc’s, databases) to
cooperate in some way. Sharing and managing data, applications and operations are
examples of this. Several more formal definitions of a distributed system exist. The
following definition describes best what is meant with distributed systems in this thesis:

A distributed system is a collection of autonomous computers linked in a network,
together with software that will support integration [36].

In such a distributed system the components can for instance share data or operations.
For other definitions, especially on types of distributed databases, see [30] and [16].

An important characteristic of a distributed system is whether it is homogeneous
or heterogeneous. A distributed (geo-)database system is called homogeneous if the
component (geo-)databases are managed by the same type of software and heterogeneous
otherwise [30]. When the database is heterogeneous it is more complex for the system as
a whole to share data, because barriers to communicate and exchange information have
to be overcome.

Data may be distributed among multiple databases in different ways [30]. Three types of
distributed databases are discussed here in a little more detail: replicated databases,
federated databases and independent data servers.

If multiple copies of some or all of the data are stored at multiple sites, the
database is called a replicated database [5]. The main reason for using replicated data is to
increase database availability. By storing critical data at multiple sites, the database can

Chapter 2: Geographic data in distributed environments

 8

operate even though some sites have failed. Another goal is improved performance. But,
since there are many copies of each data item, a transaction (manipulation of the data) is
more likely to find the data it needs close by, as compared to a single copy database.
This benefit is mitigated by the need to update all copies of each data item. In addition,
keeping the copies consistent is also an issue. Thus, retrieving data is faster, editing data
is slower [5].

Another type of distributed database is the federated database system. Sheth and
Larson [30] treat federated databases extensively. Buehler and McKee [8] give the
following description: federated databases are separate databases that are structured,
perhaps with middleware or special database access software, in such a way that they
can be queried as a single database. Federated databases are used when already existing
databases, spread amongst different organisations, must co-operate or interoperate [16].
Therefore there must be agreement on the overall database schema and on which
different locations manage which different parts of the data.
 Influenced by the growth of the Internet, databases are more and more accessible
over the Internet. These databases often are independent of each other, but still can serve
a similar purpose or in the same domain. In other words, these databases act as
independent data servers that can be accessed by end-users to combine data [4]. In such an
infrastructure end-users should be able to search for the appropriate data by searching
the meta-data data providers publish for their databases in catalogues. [4] describe such
a model in the context of Internet GIS. An important advantage of this model is that data
are managed at the source. There is no need anymore to manage copies of the data,
which reduces the risk of inconsistencies in the database(s).

2.2.2 The client-server architecture

In the context of architectures for distributed database management systems (distributed
DBMS), the client-server architecture is natural and widespread [36]. This holds also for
Internet-based systems - as a special case of distributed systems, i.e. in a very large
network. Because of this and because Web Feature Services are based on a client-server
model, client-server computing is considered in this thesis.

The client-server architecture is a simple model of computing, in which system
functionality is divided among the components that make requests (the clients) and the
components that respond to them (the servers) [6]. Clients are elements that require
services from the server. Mostly the server holds data and services available for
transmission to the clients in the network [36]. Thus, servers can be defined as entities
that own the resource [6]. The servers are usually powerful machines, capable of
running complex system software. Clients typically may be PCs or workstations [36].

Buehler and McKee [8] give a less strict, but understandable description of the
client-server principle:

“The network computing revolution (which includes the distributed geoprocessing
revolution) is based on software entities (clients) that tell other software entities (servers)
to do things for them. Software clients say, “Send me this specific data from your
database!” or “Tell me what Internet address contains this information!” or “Take this
data and do a correlation operation on it!” In a simple sense, your word processor is a
client when you click on “Save” and the word processor instructs the operating system

Chapter 2: Geographic data in distributed environments

 9

(acting as a server) to save your file to disk. Interoperability interfaces make it possible for
diverse computers to request things of each other over networks and get predictable
responses.”

Note that Buehler and McKee link client-server computing and interoperability directly.
Interoperability is discussed in section 2.3 in more detail.

An important concept in client-server computing is mediation. Wiederhold [35]
discusses mediation elaborately, for this thesis it is sufficient to discuss some definitions
and a few characteristics. Client-server applications mostly apply a 2-tier model [6]. The
2-tier model consists of an application front-end, which includes the graphic user
interface and the application code, and a database at the back end, or a client and a
server, respectively. A 3-tier model consists of an application, a layer called mediator,
and a database [6, 30] as shown in Figure 2.4.

Wiederhold [35] defines a mediator as software that exploits encoded knowledge
(application logic) about some sets or subsets of data to create information for another
layer (e.g. to do some translation or for a higher layer) of application. Such a user
application could be geographic data set integration [31].

Many mediators will access multiple databases to combine disjointed sets of data
prior to analysis and reduction [35]. When accessing multiple databases the mediator
needs to deal with semantic conflicts, because a mediator needs to ‘understand’ all these
databases and these databases might have different (semantic) models [6]. This explains
why, according to Wiederhold [35], the term mediation includes not only the interfaces
between the user application and database servers but also the knowledge structures
needed to transform data and any intermediate storage in order to deal with the
abstraction and representational issues.

Figure 2.4 The concept of client-server computing in a 2-tier (left) architecture and 3-tier architecture
using a mediator (right)

2.2.3 Advantages and disadvantages of distributed systems and client-
server computing

For GIS applications, client-server computing holds many possibilities and GIS
applications are often thought of naturally in a distributed context [36]. For example,

Chapter 2: Geographic data in distributed environments

 10

every municipality maintains its own data, but that data could be used in nationwide
systems as well. But the advantages must be weighed against the increased complexity
of the distributed DBMS and client-server architecture [36]. Some important advantages
and disadvantages of distributed systems and client-server computing are briefly
discussed below.

A big advantage of distributed databases is that they allow the data to be shared
globally while keeping control over locally kept data, for example on database
modification, with the local sites. According to Worboys [36], distributed databases
therefore are appropriate in cases where the data are themselves naturally distributed
(regional environmental data, for example). He gives several other advantages of a
distributed environment:
• In a distributed environment commonly occurring accesses to the local site from

local users will be more efficient. This assumes that redundant copies of the data
are used.

• Reliability of the system may be improved by distribution, because if a system
goes down at one site, usage can still continue for the rest of the database. Here
also is assumed that copies exist of the data.

Laurini [15] adds that, using a client-server architecture:
• There is the possibility to optimize each module and each of the modules can

evolve separately.
• The volume of transferred data can be reduced.
If copies are avoided, a big advantage is that the data are managed at the source [4]. As
stated before, this reduces the risk of inconsistencies in the data.

A disadvantage is that distributed databases have a more complicated structure to
support, for example, handling queries where the data are fragmented across sites, or
maintaining consistency of commonly accessed data items that are replicated across sites
[36]. The distributed DBMS is correspondingly complex. Worboys [36] gives some
examples of additional functionality that is required. The most important for this
research is that remote access and transmission of queries and data using a
communications network have to be supported. For this research these disadvantages
are less relevant, since only one database is used, as in the model with independent data
servers.

A difficult technical problem is how to connect heterogeneous databases to each
other [15]. If there are n databases and if each of them is connected to all the others, n(n-
1) connections have to be established. That implies that n(n-1) data converting or
transforming systems need to be defined, otherwise the systems can not interoperate. It
may be clear that this can be an enormous task, when the system consists of a large
number of heterogeneous databases. This is where standards can play an important role.
Standardization, interoperability and open systems will be discussed in the next section,
2.3.

Chapter 2: Geographic data in distributed environments

 11

2.3 Interoperable geoprocessing

2.3.1 Interoperability and interoperable geoprocessing

From the sections above it may be clear that there is a need to share and integrate
(geographical) data from multiple, heterogeneous database systems. In order to do so,
the systems need to interoperate in some way. Uitermark [31] distinguishes two
different levels of interoperability, also see the first two points at page 4 of section 2.1.2.
There is a technical level — or, the systems perspective — with an understanding of
information processing issues, like network protocols and standards for data set files. And
there is a semantics level — or, the data modeling perspective — with an understanding
of the semantics of information processing.

In this thesis the technical level is considered. Interoperability refers to this
definition of interoperability [8]:

Interoperability is the ability for a system or components of a system to provide
information portability and interapplication, cooperative process control. Interoperability,
in the context of the OpenGIS Specification, is software components operating
reciprocally (working with each other) to overcome tedious batch conversion tasks,
import/export obstacles, and distributed resource access barriers imposed by
heterogeneous processing environments and heterogeneous data.

Interoperability refers to the capability for applications running on dissimilar computers
to exchange information and operate cooperatively using this information [6]. Bishr e.a.
[6] also define application interoperability. With application interoperability they mean
that two, or more, spatial information systems can exchange data seamlessly and users
can query remote databases without any knowledge of their underlying data models.
This makes chaining of services from different sources possible. This concept is
discussed in section 2.3.3.

Portability refers to the ability to move from one system to another, without
having to make (major) changes. Buehler and McKee [8] define, for example, user
portability as “the ability of a user to move from one system to another without having
to learn everything again”. Simultaneously, information portability could be described
as the ability of a system to exchange information or data with another system. Bishr e.a.
[6] relate portability to soft- and hardware only: according to them portability refers to
the capability for software to run on different types of hardware.

As said before, the ability to edit geographic data (i.e. besides retrieving, also
creating, updating and deleting geographic features) is essential. Buehler and McKee’s
[8] definition of interoperable geoprocessing makes clear what interoperable systems in
the context of GIS should be able to do:

“Interoperable geoprocessing” refers to the ability of digital systems to 1) freely exchange
all kinds of spatial information about the Earth and about objects and phenomena on,
above, and below the Earth's surface; and 2) cooperatively, over networks, run software
capable of manipulating such information.

Chapter 2: Geographic data in distributed environments

 12

Thus, interoperable geoprocessing is concerned with retrieving and editing geodata.
Note that ‘freely’ here refers to ‘free of troubles’ and that fees may be asked to use a
service.

Because of the complexity of current computing systems and because of systems
being heterogeneous, standardization is required to realize interoperable systems [16,
32]. An important characteristic of a standard is that a standard provides - among other
things - a break-down of the complexity, and more importantly, an agreed break-down
[32]. Vckovski [32] argues that these standards are not just for external use. It can be
necessary to provide "internal" standards when designing complex systems, creating
syntactically and semantically well-defined interfaces between systems, problem
domains, development groups and enterprises. These internal standards could for
instance be useful in the cases mentioned in section 2.1.3: for example for mutation
propagation between many large datasets or the network in which notaries sketch new
boundaries in a cadastral database.

2.3.2 Problems with interoperability

The problems in sharing information in Geo-Information Infrastructures (GII) and
interoperability 5 can be subsumed under two main categories [6]:
• Political, Institutional and Economic problems: The provision of information for the

public requires legal considerations (e.g., copyright), proper institutional
organization and data access rules, as well as pricing schemes.

• Technical problems: These include devising techniques for the provision of up-to-
date inventory of the available data, mechanisms for seamlessly sharing
information, update and consistency constraints and semantics.

The technical problems are the most relevant for this thesis. Bishr e.a. [6] divide the
technical problems in two categories:
• Data modelling (which includes data migration and integration).
• System architecture.

According to Vckovski [32], the heterogeneities between the component datasets in a
distributed system lead to problems that are common both in data migration and
integration. These problems need to be tackled, to make the component systems
interoperable. The heterogeneities that cause the problems exist on various levels, such
as [32]:
• Different computer hardware and operating systems.
• Different DBMS software.
• Different concepts for data modelling, e.g. relational models, object-oriented

models.
• Semantic heterogeneities.
The first three types are syntactical in nature. They occur at the software and hardware
level, while the semantic heterogeneities usually occur at the application level [6]. For
problems concerning data modelling, this subdivision in syntactical and semantical

5 Because of the close relation between sharing information in a GII and interoperability [6], this
categorisation can be applied to problems with interoperability as well.

Chapter 2: Geographic data in distributed environments

 13

problems is common (see [6, 32] and to a certain extent [15] as well). However,
differences exist in classifying problems as syntactical or semantical.

Syntax concerns the format (the language, so to speak) in which information is
represented. In the context of geographic information Bishr e.a. [6] discuss syntactic
constructs. Syntactic constructs include spatial primitives to represent the geometry
(e.g., nodes, arcs and surfaces) and topological relationships (e.g., interior, exterior or
neighbourhood) of real world features. It also includes constructs to represent the
thematic properties and relationships of the real world features (e.g., classes, subclasses,
aggregation, associations, generalization or attributes).

Syntactic problems arise when differences exist in encoding the data [32], i.e.
when the syntactic constructs of different systems are dissimilar. For example, the
geometry may be limited to a few basic types such as points and line strings. Or
alternatively, it may include much more sophisticated types such as grids, fields, curved
primitives or polyhedrons - in case of 3D models. As with the geometry, spatial (and
temporal) referencing may be accomplished in a variety of ways [6].

Differences in syntax are still a major problem area within the exchange of
geodata. These issues however, are addressed by many format standardization efforts
[32]. The XML-based data transfer standard developed by OGC, GML, should tackle this
problem. GML will be discussed in section 4.2.3.

Semantic differences between geospatial databases occur when there is a disagreement
about the meaning, interpretation, or intended use of the related objects [6]. For
example, a building in system A can be defined differently in system B. When data from
both systems need to be combined, the syntax might be the same, but the meaning of
“building” (i.e. the semantics) is not. In addition, the enormous variety of encodings of
geospatial semantics makes it particularly challenging to process requests for geospatial
information [10].

The semantic diversity of spatial representations causes problems, which can
become more complex than the syntactical problems [14, 32]. Solutions for these
problems could for instance be found using ontologies, object classes and/or mediation.
Uitermark [31] treats these issues in the context of data set integration. Because this
thesis focuses on the technical level of interoperability, these issues will not be discussed
further.

When information needs to be shared, several problems with respect to the system
architecture may arise [6]:
• Each database management system has its own functionality and interfaces.
• The databases may be installed on different platforms, which support different

network protocols.
• The application protocol, which defines the way two or more components (e.g.

clients or servers) communicate, may present a problem.

2.3.3 Open systems and GIS Web Services

According to Bishr e.a. [6], software systems that are built on standards for portability
and interoperability are called open systems. Buehler and McKee [8] demand more than
portability and interoperability to call a system an open system:

Chapter 2: Geographic data in distributed environments

 14

An open system is a system that implements open interface specifications and standards
that promote application portability, scalability, interoperability, diversity,
manageability, extensibility, compatibility with legacy components, and user portability.

An open system standard is an interface specification - a specification that describes
services provided by a software product - to which any vendor can build products [6].
There are two important points for open system standards. First, the specification is
available to any vendor and evolves through a consensus process that is open to the
entire industry. Second, the specification defines only an interface; so different vendors
can provide the standard interface on their proprietary systems. In addition, the
specification must be detailed enough such that two independently developed
components can work together based on the specified interface.

GIS Web services
GIS Web services can be considered a special type of open systems. Web services are
self-contained, self-describing, modular applications that can be published, located, and
dynamically invoked across the web [14]. Web services use the Internet as
communications network.

Web services provide access to sets of operations accessible through one or more
standardized interfaces. In the process, services may use other external services and
operations. GIS Web Services can be grouped into three basic categories [1]:
• Data services (such as the OGC Web Mapping, Web Coverage and Web Feature

Services) offer customized data to users [22]. These services are tightly coupled
with specific data sets.

• Processing services are not associated with specific datasets. Instead they provide
operations for processing or transforming data in a manner determined by user-
specified parameters [2]. Such services can provide generic processing functions
such as projection/coordinate conversion, rasterization / vectorization, map
overlay, imagery manipulation, or feature detection and imagery classification.

• Registry / catalogue services are used to classify, register, describe, search, maintain
and access information about Web services [22]. Types of registries are
differentiated by their role such as registries for cataloguing data types, online
data instances, service types and online service instances. The contents of registry
/ catalogue services are metadata describing other services.

In order for a sustainable and extensible GIS Web Services architecture to exist, the basic
services should be accessed via standardized interfaces.

Alameh [1] argues that, once GIS Web Services are deployed, client applications
can be built more flexibly by mixing and matching available services. Each client
application is created by using multiple GIS and non-GIS Web Services like a service to
pay for GIS services.

This service-based model is rapidly materializing as a result of the advancements
in general web service technologies and the focused efforts of the Open GIS Consortium
(OGC) in the areas of service categorization and interoperability of service interfaces [1,
8]. One of these technologies - Web Feature Services (WFS) – and other components -
like GML to exchange the data and a spatial DBMS (in the case Oracle has been used) -

Chapter 2: Geographic data in distributed environments

 15

are subject of this thesis. WFS and other relevant standards developed by the OGC are
discussed in chapter 4.

2.4 Final remarks

This chapter has dealt with geographic data in distributed environments. More
specifically, it showed the need for sharing geographic data from heterogeneous
databases and gave some basics on distributed systems. Interoperable geoprocessing
and GIS Web Services are important subjects in this context. One of these types of
services, Web Feature Services, should make editing of geographic data in a distributed,
heterogeneous environment possible over the Internet. In order to edit data in a multi-
user environment, transactions can be used to make sure that modifications of several
users do not interfere. Transactional Web Feature Services are the subject of Chapter 4.
But first in Chapter 3 geometric transactions will be discussed.

Chapter 2: Geographic data in distributed environments

 16

Chapter 3: Geometric transactions

 17

3 Geometric transactions

Chapter 2 has made clear that there is a need to share geographic data in a distributed
environment, but there are a lot of problems to overcome. This chapter deals with
geometric transactions, which is the subject of the research question ‘How should
geometric transactions be processed in a distributed GIS environment?’. Transactions are
often used to deal with problems with edits on a dataset in a multi-user environment. In
this chapter regular database transactions will be discussed first in section 3.1.
Transactions on geographic features (geometric transactions) are more complicated.
Why geometric transactions are more complicated than regular database transactions is
explained in section 3.2. Section 3.3 summarizes the most important conclusions of this
chapter.

3.1 Database transactions

This section (3.1) is a summary of [5]. Relevant parts of [5] for this thesis have been adapted.

3.1.1 Concurrency control and transactions

Commands that access the database are called database operations6. In SQL-terms (SQL
stands for Structure Query Language, also see Appendix A: Glossary) these commands
are constructed with SELECT, INSERT, UPDATE and DELETE-statements. In a multi-
user environment, it is possible that these database operations apply to the same data in
a database. The changes one user likes to make might interfere with changes that
another user is making, which can result in inconsistencies in the data if no care is taken.
 Concurrency control can avoid this kind of problems with interfering operations.
Concurrency control is the activity of coordinating the actions of processes that operate
in parallel, access shared data, and therefore potentially interfere with each other. The
goal of concurrency control and recovery is to ensure that transactions execute
atomically, meaning that
1) each transaction accesses shared data without interfering with other transactions,

and
2) if a transaction terminates normally, then all of its effects are made permanent

(the transaction is committed); otherwise it has no effect at all (the transaction is
aborted and the database has to recover to the state it was in before the start of
the transaction).

Transactions can consist of several database operations. It can be important that all
operations in a transaction are processed together. This is why the database should be
able to recover to the old situation in case a transaction fails. Otherwise, inconsistencies
might occur in the database.

6 These operations form a Data Manipulation Language (DML). Operations to define and change
tables, databases, indexes, etc. are included in a Data Definition Language (DDL).

Chapter 3: Geometric transactions

 18

3.1.2 Processing transactions

For processing transactions, the database management system (DBMS) should support
operations to start, commit and abort transactions. A program tells the database that it is
about to start executing a new transaction. When all operations of the transaction -
which is a series of update, delete and insert statements that belong together - have
terminated normally, the transaction is committed to make all effects permanently. Until
the transaction is committed, the changes are not visible for other users. Otherwise, the
transaction is aborted and all effects of the transaction must be made undone.

When two or more transactions execute concurrently, their database operations
execute in an interleaved fashion. That is, operations from one program may execute in
between two operations from another program. This interleaving can cause programs to
behave incorrectly, or interfere, thereby leading to an inconsistent database. The goal of
concurrency control is to avoid interference and thereby avoid errors.
 One way to avoid interference problems is not to allow transactions to be
interleaved at all. An execution in which no two transactions are interleaved is called
serial. From a user’s perspective, in a serial execution it looks as though transactions are
operations that the database processes atomically. Serial executions are correct because
each transaction individually is correct and transactions that execute serially cannot
interfere with each other.
 For performance reasons, it might be necessary to allow for non-serial (that is
concurrent) executions. Such executions are called serializable. More precisely, an
execution is serializable if it produces the same output and has the same effect on the
database as some serial execution of the same transactions. Serializable transactions are
correct transactions in the sense that they do not interfere, e.g. updates are performed on
different tables or on different records in one table.

In a database system, a scheduler controls the order in which database and transaction
operations are executed. A scheduler is thus responsible for ensuring transaction
serializability. To achieve this, locking can be used.

Locking is a mechanism commonly used to solve the problem of synchronizing
access to shared data. The idea behind locking is simple. Each data item has a lock
associated with it. Before a transaction T1 may access a data item, the scheduler first
examines the associated lock. If no transaction holds the lock, then the scheduler obtains
the lock on behalf of T1. If another transaction T2 does hold the lock, then T1 has to wait
until T2 gives up the lock. The scheduler thereby ensures that only one transaction can
hold the lock at a time, so only one transaction can access the data item at a time. It goes
beyond the scope of this thesis to treat locking more extensively.

3.2 Why geometric transactions are complicated

In this thesis the term geometric transaction is used for (database) transactions that are
performed on geographic datasets. Geographic datasets contain geometry of objects and
in particular operations on geometry make geometric transactions complicated. Some of
the complicating issues are discussed in this section.

Chapter 3: Geometric transactions

 19

3.2.1 Geometry in transactions

The database should be able to deal with geometry. This includes encoding the
geometry (for instance as some special data type, as a nested object or in some kind of
table-structure) and being able to do computations with the geometric properties of
geographic features. Especially when performing update or delete-operations in
transactions, this is relevant, because one might use certain spatial operators to indicate
which features are involved. One can imagine that selecting features that are intersected
by a line needs more processing to find them than selecting features that have a certain
value for one of its attributes. Spatial operators thus should be present in the database to
support transactions on geographic features. Furthermore, the database could deal with
spatial indexing and spatial clustering. These issues are not related to geometric
transactions only, but are general issues that make geo-datasets complicated to deal
with.

For geometric transactions that migrate geographic features from one dataset to
another, geometric discrepancies (figure 3.1) might occur, for example due to surveying
errors in both datasets. Laurini [15] proposes some sort of rubber-sheeting technique to
solve geometric discrepancies. It could be necessary to deal with these discrepancies
before transactions are committed to the database.

Figure 3.1 Geometric discrepancy between two datasets, based on Laurini 1994.The semi-transparent
buildings are new versions of the underlying buildings, but the geometry of the objects is not exact the

same.

Besides the problems mentioned above, geometric transactions are especially
complicated because of the (spatial) relations of geographic features with their
surroundings. To maintain consistency in a database, it is important that features can be
identified that are somehow involved in a transaction, for instance because these
features have to be locked. Sometimes the spatial relations between geographic features
are explicitly stored in a topologic structure; sometimes relations follow from
geometric/spatial constraints (for instance the coordinates of a point object lie within
some polygon). Because of these relations, it is more difficult to identify all geographic
features that are involved in a transaction. Sections 3.2.2 and 3.2.3 give some more
explanation on this.

Chapter 3: Geometric transactions

 20

3.2.2 Topologically structured data

The GML 3.0 specification [27] describes topology as the branch of mathematics
describing the properties of objects that are invariant under continuous deformation. For
example, a circle is topologically equivalent to an ellipse because one can be transformed
into the other by stretching. The constructs of topology allow characterization of the
spatial relationships between objects using simple combinatorial or algebraic algorithms.

In geographic modeling, the foremost use of topology is in accelerating
computational geometry and effective structuring for consistent modeling (e.g.
partitions where no gaps or overlap may exist). Topology, realized by the appropriate
geometry, also allows a compact and unambiguous mechanism for expressing shared
geometry among geographic features to avoid redundant storage [27].

A GIS is different from many other database applications, because the topological
edit operations can be complicated and related to many old and new objects [28]. This
can be illustrated by following example. Assume that some dataset on soil types, with
three objects, of figure 3.2 is topologically structured. For example, in the database the
neighbours of all objects are stored explicitly.

Figure 3.2 Example of topologically structured data.

Figure 3.3 Inserting a new object by splitting object 3 into 4 and 5 involves other objects (object 1) as well.

Chapter 3: Geometric transactions

 21

Now assume that new objects are created in a transaction, by splitting Object 3 into
object 4 and 5, as illustrated in figure 3.2. Now the neighbours of Object 1 and Object 2
have changed as well. To maintain consistency, the topological relationships of these
objects therefore have to be updated.
 The example shows that when data are topologically structured, processing the
transaction holds more than just inserting the new object, because the dataset can get
inconsistent. Time has not been taken into account, but time and maintaining history of
features makes processing the transactions even more complicated. Oosterom [28]
discusses how to maintain consistency in topologically structured, historical data.

3.2.3 Spatial constraints

In topologically structured data, features can get involved in a transaction, because the
features’ relationships with the subject(s) of a transaction are explicitly stored. But even
when data are not topologically structured, it can be difficult to perform all operations of
a transaction because of the relations of features with their surroundings or with other
features.

To ensure consistency of a geographic dataset, integrity tests can be performed
before a feature is modified (i.e. created, updated or deleted) [13]. These integrity tests
might be necessary for spatial constraints like two geographic feature types that are not
allowed to intersect or features that are not allowed to be in the vicinity of each other.
Figure 3.4 gives an example of a small dataset where a new road has to be inserted.
Assume that there are several spatial constraints for the dataset. For example, that roads
have to be disjoint with buildings or that a new road has to connect to an existing road.
In figure 3.5 the new road is tested on these conditions and is not accepted as being valid
for the dataset, since the road intersects a building. The transaction thus will not be
committed.

Figure 3.4 Small dataset of 2 buildings and a road segment, where another road is to be inserted.

Chapter 3: Geometric transactions

 22

Figure 3.5 Integrity test before inserting the new road (slightly transparent) definitely. The road is not

accepted, since it intersects a building.

All kinds of spatial constraints could be relevant for modifications on geo-datasets and
thus for geometric transactions. These constraints can be specified in the Object
Constraint Language. These constraints could be implemented in the database with SQL
as assertions or could be handled at some other place, e.g. a mediating service or
middleware that has to be used.

Before committing a geometric transaction, the operations have to be tested
against these spatial constraints. This could be done in the database or before the
database is accessed. In this context Garnett and Owens [13] describe Validating Web
Feature Services, in which integrity and validation tests on the relevant geographic
features are performed before committing the transaction.

3.3 Conclusion

From this chapter follows that transactions are executions of a program that edits the
database by read or write operations. Transactions consist of a Start and an End-
operation – that is, a transaction is either ended by Commit to make all effects of the
operations permanent or Abort to undo all effects. Locking features (‘freezing’ the
features for all other modifications than the modification of the transaction itself) can be
used to avoid inconsistencies in the database, because transactions otherwise could
interfere with other transactions. The term geometric transaction is used for (database)
transactions that are performed on geographic datasets.

Because of the geometric properties, geometric transactions are usually
complicated to process. In this context, not only common difficulties with geo-databases
like encoding and computations with spatial operators play a role. In particular the
relations of geographic features with features in the surroundings (either explicitly
stored in some topological structure or spatial constraints, or implicitly from the
geometric properties) make transactions complicated to process. If no care is taken, this
will result in an inconsistent dataset, because the features in the surroundings could be
affected by the transaction as well.

Chapter 4: OpenGIS Web Feature Services

 23

4 OpenGIS Web Feature Services

This chapter deals with research question c), what are OpenGIS Web Feature Services?
First, in section 4.1, the OpenGIS Service Framework is described. Web Feature Services
are developed with this framework in mind. Section 4.2 deals with relevant technologies
for GIS Web services (HTTP and XML) and especially with technologies developed by
the OpenGIS Consortium. It discusses Web Map Services (WMS), Web Coverage
Services (WCS) and Web Feature Services (WFS). Since Web Feature Services are subject
of this thesis, section 4.3 deals with them in more detail. That section summarizes
relevant parts of the WFS specification on Basic WFS and Transactional WFS. Finally, in
section 4.4 some conclusions are drawn.

4.1 OpenGIS Service Framework

The Open GIS Consortium, Inc. (OGC), a not-for-profit trade association dedicated to
promoting new technical and commercial approaches to interoperable geoprocessing,
was founded in 1994 in response to widespread recognition of the problem of non-
interoperability and its many negative ramifications for industry, government, and
academia [8]. OGC envisions the full integration of geospatial data and geoprocessing
resources into mainstream computing and the widespread use of interoperable,
commercial geoprocessing software throughout the global information infrastructure
[8].

The OpenGIS Reference Model7 (ORM) provides an architecture framework for
the ongoing work of the OGC [25]. Further, the ORM provides a framework for the OGC
Technical Baseline. The OGC Technical Baseline consists of the currently approved
OpenGIS Specifications as well as for a number of candidate specifications that are
currently in progress.

The OpenGIS Service Framework (OSF) identifies services, interfaces and exchange
protocols that can be utilized by any application [25], as illustrated in figure 4.1.
OpenGIS Services are implementations of services that conform to OpenGIS
Implementation Specifications. Compliant applications, called OpenGIS Applications,
can then "plug into" the framework to join the operational environment.

The OSF is designed to meet the following purposes [25]:
• Provide a framework for coordinated development of new and extended services
• Enable interoperable services through standard interfaces and encodings
• Support publishing, discovery and binding of services through service metadata
• Allow separation of data instances from service instances
• Enable use of a provider’s service on another provider’s data
• Define a framework that can be implemented in multiple ways

7 Note that the OpenGIS Reference Model [25] is not a fixed standard, but a living document.

Chapter 4: OpenGIS Web Feature Services

 24

Figure 4.1 The OWS Service Framework (OSF) [25]

In the OpenGIS Reference Model some definitions are provided concerning the Service
Framework. These key definitions for the Service Framework are:

• A service is a distinct part of the functionality that is provided by an entity through

interfaces.
• An interface is a named set of operations that characterize the behaviour of an entity.
• An operation is a specification of a transformation or query that an object may be called

to execute. Each operation has a name and a list of parameters.

An instance of a service may be associated with a specific instance of a dataset, or

it may be a service that can be used to operate on multiple, unspecified datasets. The
first case is referred to as a tightly coupled service, the second as a loosely coupled service.
Service operations can be associated with data classes (data type) or with instances (data
set).

The architecture is based on the publish/find/bind pattern in figure 4.2 and supports
the dynamic binding between service providers and requestors since sites and
applications are frequently changing in a distributed environment. Three essential roles
are distinguished [25]:
• Service provider: publishes services to a broker (registry) and delivers services to

service requestors
• Service requestor: performs service discovery operations on the service broker to

find the service providers it needs and then accesses service providers for
provision of the desired service.

Chapter 4: OpenGIS Web Feature Services

 25

• Service broker: helps service providers and service requestors to find each other by
acting as a registry or clearinghouse of services.

Figure 4.2 Publish-find-bind pattern from ORM [25].

By building applications to common interfaces, each application can be built without a-
priori or run-time dependencies on other applications or services. Applications and
services can be added, modified, or replaced without impacting other applications. In
addition, operational workflows can be changed on-the-fly, allowing rapid response to
time-critical situations. This loosely coupled, standards-based approach to development
results in very agile systems - systems that can be flexibly adapted to changing
requirements and technologies [25].

OSF services are accessible from Application Services operating on user terminals
(e.g., desktop, notebook, handset, etc.) or servers that have network connectivity [25].
Users may use Application Services to access Registry, Portrayal, Processing and Data
Services (see Section 2.3.3), depending upon the requirements and designed
implementation of the application. Application Services commonly, but not necessarily,
provide user-oriented displays of geospatial content and support user interaction at the
user terminal. These services can be considered mediating services for users (clients) at
one side and primary OSF services (like data services) on the other side.

4.2 Relevant technologies for GIS web services

In this section, two general web technologies (HTTP and XML) that are defined by the
World Wide Web Consortium (W3C) are discussed first. GML (Geography Markup
Language) and the OGC Filter Encoding make use of XML and are described next. The
last part of this section deals with technologies, which can be used to retrieve and/or
edit geographic data through the Internet. These technologies - Web Map Services
(WMS), Web Coverage Services (WCS) and Web Feature Services (WFS) – will be
compared.

4.2.1 HTTP8

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed,
collaborative, hypermedia information systems. The HTTP protocol is a

8 Summary of [11].

Chapter 4: OpenGIS Web Feature Services

 26

request/response protocol. Most HTTP communication is initiated by a user agent and
consists of a request to be applied to a resource on some origin server. The HTTP
protocol uses URL to identify resources. The following scheme is used to locate network
resources via the HTTP protocol:

http_URL = "http:" "//" host [":" port] [abs_path ["?" query]]

The question mark ("?") is used to delimit the boundary between the URL of a queryable
object, and a set of words used to express a query on that object. For example:
http://www.someserver.com/someapp.cgi?theparameter=somevalue locates
the server and passes a value to a resource called “someapp.cgi” on that server.

For this thesis two HTTP methods (GET and POST) for communication between client
and server are relevant. The GET method means: retrieve whatever information (in the
form of an entity, for example an HTML-document or an XML-document) is identified
by the Request-URL. The Request-URL is the URL that is invoked by the client. If the
Request-URL refers to a data-producing process, the produced data shall be returned as
the entity in the response and not the source text of the process (unless that text happens
to be the output of the process).

POST is designed to allow a uniform method to cover the following functions:
• Annotation of existing resources;
• Posting a message to a bulletin board, newsgroup, mailing list, or similar group

of articles;
• Providing a block of data, such as the result of submitting a form, to a data-

handling process;
• Extending a database through an append operation.
The actual function performed by the POST method is determined by the server and is
usually dependent on the Request-URL.

4.2.2 XML

Bos [7] describes XML as:

“XML is a set of rules for designing text formats that let you structure your data. XML
is not a programming language, and you don't have to be a programmer to use it or learn
it. XML makes it easy for a computer to generate data, read data, and ensure that the data
structure is unambiguous. XML avoids common pitfalls in language design: it is
extensible, platform-independent, and it supports internationalization and localization.”

XML is a meta language that allows for creation and formatting of specific document
markups [9]. XML can be considered a family of technologies [7]:

“XML 1.0 is the specification that defines what "tags" and "attributes" are. Beyond
XML 1.0, "the XML family" is a growing set of modules that offer useful services to
accomplish important and frequently demanded tasks. XLink describes a standard way to
add hyperlinks to an XML file. XPointer is a syntax for pointing to parts of an XML
document. An XPointer is a bit like a URL, but instead of pointing to documents on the

Chapter 4: OpenGIS Web Feature Services

 27

Web, it points to pieces of data inside an XML file. CSS, the style sheet language, is
applicable to XML as it is to HTML. XSL is the advanced language for expressing style
sheets. It is based on XSLT, a transformation language used for rearranging, adding and
deleting tags and attributes. XML Schemas help developers to precisely define the
structures of their own XML-based formats.“

Figure 4.3 gives an example of XML-encoded data. Some XML-technologies (XML
Schema, XSL/XSLT and XSQL) are discussed below.

<university name=”Delft University of Technology”>
 <country>Netherlands</country>

<city>Delft</city>
<faculty name=”Civil Engineering and Geosciences“>

 <bachelorstudents>608</bachelorstudents>
 <masterstudents>367</masterstudents>
 </faculty>

<faculty name=”Information Technology and Systems”>
 <bachelorstudents>298</bachelorstudents>
 <masterstudents>179</masterstudents>
 </faculty>
 ...
</university>

Figure 4.3 Example of XML-encoded (fictitious) data, using tags and attributes.

<xs:complexType name="DRAFT_BOUNDARY_Type">
 <xs:complexContent>
 <xs:extension base="gml:AbstractFeatureType">
 <xs:sequence>
 <xs:element name="FID" nillable="FALSE" minOccurs="1"
maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:maxLength value="11"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="SHAPE" type="gml:LineStringPropertyType"
minOccurs="1" maxOccurs="1"/>
 <xs:element name="OBJECT_ID" nillable="FALSE" minOccurs="1"
maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:maxLength value="11"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 …
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

Figure 4.4 Part of an XML-schema

An XML-schema is a document that describes the valid format of an XML dataset. The
specification of XML Schema can be found at [53]. Definitions in XML Schema include

Chapter 4: OpenGIS Web Feature Services

 28

what elements are (and are not) allowed at any point; what the attributes for any
element may be; the number of occurrences of elements; etc. [54]. Figure 4.4 gives a piece
of an XML-Schema to define a geographic feature. An XML-document can be validated
against its XML Schema. If the document adheres to all rules in the XML-schema, the
document is called valid.

XSL allows developers to describe transformations using XSL Transformations (XSLT).
XSL Transformations can convert XML documents into HTML, another XML-document
or other textual output [9].

For this thesis, XSQL is a relevant technology as well. XSQL Pages are templates that
allow anyone familiar with SQL to [43]:
• Assemble dynamic XML "datapages" based on one or more parameterized SQL

queries, and
• Transform the "datapage" to produce a final result in any desired XML, HTML,

or Text-based format using an associated XSLT Transformation.
Using XSQL, one can retrieve XML-encoded data from a relational database by using
SQL-statements. The XSQL page in figure 4.5 retrieves one feature from an Oracle
database (table CL_BOUNDARY), encapsulates it in XML-tags and transforms it to
another text-based format using an XSLT-stylesheet (boundaryOracle2GML.xsl), in this
case to an XML-document.

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="xslt/boundaryOracle2GML.xsl"?>
<xsql:query connection="conn" xmlns:xsql="urn:oracle-xsql" max-
rows="1">

SELECT FID, OBJECT_ID, SHAPE, BBOX, OBJECT_DT, TMIN, TMAX FROM
CL_BOUNDARY

</xsql:query>

Figure 4.5 XSQL to retrieve data from an Oracle database and transform that using an XSLT-stylesheet

4.2.3 Geography Markup Language9

The Geography Markup Language (GML) is an XML encoding for the modelling,
transport and storage of geographic information including both the spatial and non-
spatial properties of geographic features. Figure 4.6 gives a simple example of a GML-
encoded feature, in this case a road. GML uses XML-related technologies as well, like
XLink or XPointer.

The GML specification [27] defines the XML Schema syntax, mechanisms, and
conventions that:
• Provide an open, vendor-neutral framework for the definition of geospatial

application schemas and objects;
• Allow profiles that support proper subsets of GML framework descriptive

capabilities;

9 This section is a summary of the GML specification [27].

Chapter 4: OpenGIS Web Feature Services

 29

• Support the description of geospatial application schemas for specialized
domains and information communities;

• Enable the creation and maintenance of linked geographic application schemas
and datasets;

• Support the storage and transport of application schemas and data sets;
• Increase the ability of organizations to share geographic application schemas and

the information they describe.
Implementers may decide to store geographic information in GML, or they may decide
to convert from some other storage format on demand and use GML only for schema
and data transport.

A GML application schema is an XML Schema written according to the GML
rules for application schemas (see [27]) and which defines a vocabulary of geographic
objects for a particular domain. For example topographic data, cadastral data or road
transport data. In such a definition, objects and their application specific properties are
defined and references are given to other XML Schemas that define standardized types
and elements of GML (see Appendix D for an example of an application schema for
GML 2.1.2). For instance features.xsd is referred to for the definition of geographic
features, topology.xsd if topologic relations are modeled or geomteryBasic0d1d.xsd and
geomteryBasic2d.xsd for basic geometric primitives10. An example of a GML application
schema for the topographic domain is the recent GML prototype for the Dutch
Topographic Service [34].

At the time of writing, the most recent version of GML is GML 3.0. According to the
OGC, GML 3.0 provides a variety of kinds of objects for describing geography including
features, coordinate reference systems, geometry, topology, time, units of measure and
generalized values. Some of these will be discussed shortly. For more details on GML 3.0
see the specification [27].

<featureMember>
 <ex:Road gml:id="r2">
 <curveProperty>
 <LineString srsName="somelistofcrs.xml#1234">
 <coordinates>1,6 2,5 3,4 5,3 11,2 15,1</coordinates>
 </LineString>
 </curveProperty>
 </ex:Road>
</featureMember>

10 GML 3.0 has several schemas that define the geometry model. GML 2 has one (geometry.xsd).

Chapter 4: OpenGIS Web Feature Services

 30

Figure 4.6 Example of a GML-encoded geographic feature, adapted from [27]. De geometry of the road is
encoded in GML. The attribute srsName specifies the spatial reference system.

A geographic feature is an abstraction of a real world phenomenon; it is a geographic
feature if it is associated with a location relative to the Earth [27]. This follows the
general definition of a feature given in ISO 19109 [48] and the OGC Abstract
Specification Topic 5 [19]. The feature XML schema (schemas can be found at
http://schemas.opengis.net/gml/) provides a framework for the creation of GML
features and feature collections.
 Associations between features can be defined in GML. One of these associations
is ‘features being a member of feature collections’. A GML Feature Collection is a
collection of GML feature instances that can behave as a GML feature. GML Feature
Collections are themselves valid GML features and can have gml:location and other
properties as defined in their GML Application Schema.
 With GML 3.0 topology can be encoded. The conceptual model underlying the
representation of topology in GML is that of Topic 1 of the OGC Abstract Specification
(ISO DIS 19107). The model describes the correspondence of topological and geometric
relationships up to three dimensions.
 One of the requirements in developing of GML 3.0 (and previous versions) is
strict separation of data and presentation. Therefore none of the GML data description
constructs have built-in capability to describe the styling information. In GML 3.0 there
is a possibility to describe default styles. The default styling mechanism was created as a
separate model that can be “plugged-in” to a GML data set. The term “default” signifies
very relaxed relation to other parts of the GML model. The style information that is
assigned to a data set may be used for styling but may also be completely ignored.

At the moment of writing, the specification of Web Feature Services uses GML 2.1.2 [21]
instead of GML 3.0. GML 3.0 is far more comprehensive in describing geography than
GML 2.1.2. In a nutshell, GML 2.1.2 only provides encodings for geographic features,
feature collections, geometry and coordinate reference systems. Topology, temporal
aspects and default styling thus are not part of the GML 2.1.2 specification.

4.2.4 Filter encoding11

A filter expression is a construct used to constraint the property values of an object type
for the purpose of identifying a subset of object instances to be operated upon in some
manner. In the Filter Encoding Implementation Specification an XML encoding for filters
is described. Using the numerous XML tools available today, such an XML
representation can be easily validated, parsed and then transformed into whatever
target language is required to retrieve or modify object instances stored in some object
store. For example, an XML encoded filter could be transformed into a WHERE clause
for a SQL SELECT statement to fetch data stored in an SQL-based relational database.
Similarly, an XML encoded filter expression could be transformed into an XPath or
XPointer expression for fetching data from XML documents.

11 This section is a summary of the Filter Encoding Implementation Specification [20], of which
relevant parts have been adapted.

Chapter 4: OpenGIS Web Feature Services

 31

The OGC filter encoding is a common component that can be used by a number
of OGC web services. Any service that requires the ability to query objects from a web-
accessible repository can make use of the XML filter encoding. For example, a Web
Feature Service may use the XML filter encoding in a GetFeature operation to define
query constraints. Other services based on the Web Feature Service could also make use
of the OGC filter encoding.

The OGC filter encoding defines several operators and other predicates that can
be used to construct a filter. For example spatial operators (e.g. a boundingbox),
comparison operators (e.g. a property is between value A and B), feature identifiers and
literals. A literal is any part that is to be used exactly as it is specified. Figure 4.7 gives
two examples of OGC filter encodings.

(a)
<Filter>
 <PropertyIsLessThan>
 <PropertyName>DEPTH</PropertyName>
 <Literal>30</Literal>
 </PropertyIsLessThan>
</Filter>

(b)
<Filter>
 <And>
 <Within>
 <PropertyName>WKB_GEOM</PropertyName>
 <Polygon name="1" srsName="EPSG:4326">
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>
 -98.5485,24.2633...
 </coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </Within>
 <PropertyIsBetween>
 <PropertyName>DEPTH</PropertyName>
 <LowerBoundary>400</LowerBoundary>
 <UpperBoundary>800</UpperBoundary>
 </PropertyIsBetween>
 </And>
</Filter>
Figure 4.7 Two examples of OGC filter encodings, from [20]. Filter (a) checks whether the DEPTH is lower

than 30, filter (b) combines spatial and non-spatial predicates to check for the geometric property
WKB_GEOM to lie within a region defined by a polygon and to check for the DEPTH to be between 400

and 800.

4.2.5 OpenGIS Web Services: the WMS, WCS and WFS interfaces

This section discusses three GIS web services the OpenGIS Consortium has defined.
First, Web Mapping Services (WMS) - to retrieve digital maps over the Internet - are
briefly discussed. This is followed by services to retrieve coverages, Web Coverage

Chapter 4: OpenGIS Web Feature Services

 32

Services (WCS). Web Feature Services (WFS), which are services to retrieve and edit
geographic data, are discussed after WCS. This section concludes with a short
comparison of these services.

WMS12
A Web Map Service (WMS) produces maps of georeferenced data. The WMS
specification [24] defines a "map" as a visual representation 13 of geodata; a map is not
the data itself. The maps are generally rendered in a pictorial format such as PNG, GIF
or JPEG, or occasionally as vector-based graphical elements in Scalable Vector Graphics
(SVG) or in Web Computer Graphics Metafile (WebCGM) formats. Although GML is
raw data and not a visual representation, GML could be used as output format as well.
The WMS-specification standardizes the way in which maps are requested by clients
and the way that servers describe their data holdings.

The WMS specification defines three WMS operations: GetCapabilities returns
service-level metadata, which is a description of the service's information content and
acceptable request parameters in XML; GetMap returns a map image whose geospatial
and dimensional parameters are well-defined; GetFeatureInfo returns information about
particular features shown on a map, by adding to the map URL additional parameters
specifying a location (as an X, Y offset from the upper left corner), the format in which
the information should be returned (e.g. as GML, but without the schema) and the
number of nearby features about which to return information. This way extra
information on geographic features can be requested, but the data cannot be edited.

A standard web browser can ask a Web Map Service to perform these operations
simply by submitting requests in the form of Uniform Resource Locators (URLs). WCS
and WFS use this technique as well. Figure 4.8 gives an example of a WMS-request to
get a map from a server.

http://mapserver.somewhere.nl/servlet/wms?
?WMTVER=1.0
& REQUEST=map
& SRS=EPSG:28992
& LAYERS=BUILDINGS,ROADS,RIVERS
& STYLES=default,default,default
& BBOX=160000.0,440000.0,170000.0,450000.0
& WIDTH=600
& HEIGHT=600
& FORMAT=GIF
& TRANSPARENT=TRUE
& SERVICENAME=someservice

Figure 4.8 Example WMS-request for retrieval of map image

A basic WMS classifies its georeferenced information holdings into "Layers" and offers a
finite number of predefined "Styles" in which to display those layers. The behaviour of a
Web Map Service can be extended to allow user-defined symbolization of feature data
instead of named Layers and Styles. Furthermore, individual map Layers can be

12 Summary of [24]
13 Digital representations are meant here.

Chapter 4: OpenGIS Web Feature Services

 33

requested from different Servers. The WMS specification thus enables the creation of a
network of distributed Map Servers from which Clients can build customized maps.

A "Cascading Map Server" is a WMS that behaves like a client of other WMSes
and behaves like a WMS to other clients. For example, a Cascading Map Server can
aggregate the contents of several distinct map servers into one service. Furthermore, a
Cascading Map Server can perform additional functions such as output format
conversion or coordinate transformation on behalf of other servers. In terms of the
client-server architecture, a Cascading Map Server is a mediator for Web Map Services.

WCS14
The Web Coverage Service (WCS) supports electronic interchange of geospatial data as
"coverages" - that is, digital geospatial information representing space-varying
phenomena. This corresponds with the field model, as described in section 2.1.1 on page
3. The Web Coverage Service provides available data together with their detailed
descriptions; allows complex queries against these data; and returns data with its
original semantics (instead of pictures), which can be interpreted, extrapolated, etc. - and
not just portrayed. Unlike WFS, which returns discrete geospatial features, the Web
Coverage Service returns representations of space-varying phenomena that relate a
spatio-temporal domain to a (possibly multidimensional) range of properties.

The Web Coverage Service consists of three operations: GetCapabilities,
GetCoverage, and DescribeCoverageType. The GetCapabilities operation returns an XML
document describing the service and the data collections from which clients may request
coverages. The GetCoverage operation of a Web Coverage Service is normally run after
GetCapabilities has determined what queries are allowed and what data are available.
The GetCoverage operation returns (for example as in figure 4.9) values or properties of
geographic locations, bundled in a well-known coverage format. In fact, any format is
allowed, but the specification provides five formats (GeoTIFF [38], HDF-EOS [39], DTED
[37], NITF [42] and GML [27]) of which the server should at least support one. The
GetCoverage syntax and semantics bear some resemblance to the WMS GetMap and WFS
GetFeature requests, but several extensions support the retrieval of coverages rather than
static maps or discrete features.

http://wcs.somewhere.nl/servlet/wcs?
?SERVICE=WCS
& VERSION=1.0.0
& REQUEST=GetCoverage
& COVERAGE=coverageName
& CRS=EPSG:28992
& BBOX=160000.0,440000.0,170000.0,450000.0
& WIDTH=10000
& HEIGHT=10000
& FORMAT=image format

Figure 4.9 Example WCS-request for retrieval of coverage data

14 This is a summary of [26].

Chapter 4: OpenGIS Web Feature Services

 34

WFS15
The OGC Web Map Service allows a client to overlay map images for display served
from multiple Web Map Services on the Internet. In a similar fashion, the OGC Web
Feature Service allows a client to retrieve geospatial (vector-)data encoded in Geography
Markup Language (GML) from multiple Web Feature Services. A drawback of this is
that the client has to do the rendering itself.

But besides operations to retrieve data, WFS describes operations to edit (insert,
update, delete) data on the level of a feature. With WFS (requests for) transactions on
geographic features can directly be sent to a single database. This makes WFS the only
open, interoperable standard with which data can be edited over the Internet.

Because of the operations defined in the WFS specification, (i.e. ‘select’, insert,
delete, update, lock) a WFS is close to a Data Manipulation Language (DML). This raises
the question whether WFS should not also provide a Data Definition Language (DDL),
similar to SQL. Such a DDL could for instance be used to define new feature types.
Discussing WFS as a DDL is out of the scope of this thesis, but could be a very
interesting future development.

Figure 4.10 Web Feature Service

In the specification [23] the Web Feature Service interface is described, as illustrated in
figure 4.10. The specification describes the WFS operations. WFS supports INSERT,
UPDATE, DELETE (in a Transaction-request) and QUERY (GetFeature) operations on
geographic features using HTTP as the distributed computing platform. It also provides
operations to describe the service and the contents of the service, such as GetCapabilities
and DescribeFeatureType.

The specification defines a transaction as a logical unit of work that is composed
of one or more data manipulation operations [23]. Transactions can be encoded in XML.
It is the function of a Web Feature Service, in its interaction with the data storage system
used to persistently store features, to ensure that changes to data are consistent.
However, the document also acknowledges the fact that many systems do support
standard concurrent transaction semantics and so proposes optional operations that will
allow a Web Feature Service to take advantage of such systems (e.g. relational database

15 This is a summary of [23].

Chapter 4: OpenGIS Web Feature Services

 35

systems based on SQL). For example, Web Feature Services could support a WFS-
operation for locking (LockFeature).

Why WFS could also be useful for internal work processes
For all kinds of organisations that use GIS or geographic data, a big advantage of Web
Feature Services (and the service-based model in general) is that using open standards
allows for the separation of different components of the working environment. That is,
organisations don’t have to change the entire working environment when one of the
components (e.g. client or server) needs to change.

Take for example a client-server application for editing geographic data. In a closed
system, the server and client can only be used in cooperation with each other, i.e. they
are dependant. But if the server is WFS compliant, any client that is WFS compliant can
easily be used since it communicates with the server via an open standard. If the client
needs to change (for what reason), an organisation can choose in fact any (generic) client
that is WFS compliant. Note that generic WFS-clients probably need to be adapted to
perform (application) specific tasks, but these changes are most often very small
compared to changing the entire environment.

In addition, changing the software demands much less new (technical) knowledge and
skills, since the protocols and technologies that are used are still the same. Using
systems and services based on open standards therefore could allow for more flexibility
in the choice of software compared to closed systems, where client and server cannot be
separated since they use specific product protocols and technologies.

Comparison
To a certain extent Web Map Services, Web Coverage Services and Web Feature Services
work similarly. All are interfaces for handling geographical data in web services.
However, each of them serves a different purpose. Table 1 compares the most important
operations/requests.

Operation/request WMS WCS WFS
Describe capabilities

Retrieval of graphics

-

Retrieval of unrendered / raw geodata

Information on a specific feature

-

Selection of data is possible by: Bounding
Box, Time,
Elevation

Bounding
Box, Time,
values of
attributes

Spatial and
non spatial
filters, as in

the Filter
Encoding

Editing geodata - -

Table 1. Comparison of the most important operations of WMS, WCS and WFS.

Chapter 4: OpenGIS Web Feature Services

 36

Because WFS is the only OGC technology that supports modifications on geographic
features, WFS has been chosen for this research. Therefore WFS will be described in
more detail in the next section.

4.3 WFS in more detail16

4.3.1 Basics on WFS

With WFS data can be handled on the feature level. In the WFS specification [23]
operations for both retrieval and manipulation of features are defined, as well as the
supporting operations.

Processing requests would proceed as follows (figure 4.11):
1) A client application would request a capabilities document from the web feature

server. Such a document contains a description of all the operations that the
server supports and a list of all feature types that it can service. The operation
that enables this is GetCapabilities.

2) A client application (optionally) makes a request to a Web Feature Service for the
definition of one or more of the feature types that the WFS can service. Clients
can do this by sending a DescribeFeatureType request.

3) Based on the definition of the feature type(s), the client application generates a
request as specified in the specification. This can either be a GetFeature request to
retrieve features or a Transaction request to modify features.

4) The request is sent to a web server using either HTTP GET or HTTP POST.
5) The WFS is invoked to read and service the request.
6) When the WFS has completed processing the request, it will generate a status

report and hand it back to the client. In the event that an error has occurred, the
status report will indicate that fact.

Figure 4.11 UML sequence diagram for processing requests in general.

16 Summary of [23]. For the technical details see [23].

Chapter 4: OpenGIS Web Feature Services

 37

Two classes of Web Feature Services are defined:
• Basic WFS. A basic WFS would implement the GetCapabilities, DescribeFeatureType

and GetFeature operations. This would be considered a READ-ONLY Web
Feature Service.

• Transaction WFS. A transaction Web Feature Service would support all the
operations of a basic Web Feature Service and in addition it would implement
the Transaction operation. This kind of WFS can be considered a READ-WRITE
Web Feature Service. Optionally, a Transaction WFS could implement the
LockFeature operation.

Section 4.3.2 discusses Basic WFS, section 4.3.3 discusses Transaction WFS. This section
deals with issues that concern all WFS. This includes the way requests are encoded and
sent and some practical issues like identifying features and error reporting.

Versions of WFS
Servers and clients can support more than one version of a WFS specification. In the first
step, the version of the web feature server and client can be determined. To get to a
mutually understood version, a procedure for version negotiation is described in the
specification.

HTTP as distributed computing platform
WFS requests are sent between client and server using the HTTP protocol. HTTP
supports two request methods: GET and POST, both have been discussed in section
4.2.1. Depending on the type of request, GET or POST is used.

Encoding of requests
There are two methods of encoding WFS requests. The first uses XML as the encoding
language, the second uses keyword-value pairs to encode the various parameters of a
request. An example of a keyword value pair (KVP) is
“REQUEST=GetCapabilities”, where “REQUEST” is the keyword and
“GetCapabilites” is the value. Figure 4.12 gives examples of both a KVP and an XML
encoding of a GetFeature request.

In general KVP requests are shorter, but using KVP for transaction requests is
limited. KVP-requests are sent using HTTP GET, while XML-requests have to be sent
with HTTP POST. In both cases (XML and KVP), the response to a request or the
exception report must be identical.
 Within the interface, features should be encoded in GML, version 2.1.2. This
means that when features are sent to a web feature server, they must be encoded in
GML 2.1.2. However, web feature servers are allowed to support other output formats as
well. Filters, as described in the Filter Encoding Implementation Specification [20], are to
be used for defining a set of feature instances to operate upon. Filters can be used in both
KVP and XML encoded requests. Figure 4.12 illustrates the use of a filter in an XML-
request as well.

(a)
http://www.someserver.com/servlet/wfs
?request=GetFeature

Chapter 4: OpenGIS Web Feature Services

 38

&FEATUREID=TEST_BOUNDARY.1000

(b)
<?xml version="1.0"?>
<GetFeature
 version="1.0.0"
 service="WFS"
 xmlns="http://www.opengis.net/wfs"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:cad="http://www.someserver.com/cad"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance"
 xsi:schemaLocation="http://www.opengis.net/wfs
 ../wfs/1.0.0/WFS-basic.xsd">
 <Query typeName="TEST_BOUNDARY">
 <ogc:Filter>
 <ogc:FeatureId fid="TEST_BOUNDARY.1000"/>
 </ogc:Filter>
 </Query>
</GetFeature>

Figure 4.12 KVP (a) and XML (b) request to retrieve the feature of type TEST_BOUNDARY with
FeatureId 1000. (a) is sent using HTTP GET, (b) using HTTP POST.

Identifying features
The WFS-specification [23] assumes that “every feature instance that a particular WFS
implementation can operate upon is uniquely identifiable. That is to say, when a WFS
implementation reports a feature identifier for a feature instance, that feature identifier
is unique to the server and can be used to repeatedly reference the same feature
instance”.

It seems to be that the OpenGIS specifications only allow one attribute of a
feature to be the unique identifier. This seems to be the case in both the WFS-
specification and the OpenGIS Filter encoding specification [3] (that also deals with
feature identifiers), where nothing is said on having a key composed of multiple
attributes and all examples use one (numeric) value as the identifier.

Exception reporting
In the event that a Web Feature Service encounters an error while processing a request
or receives an unrecognized request, it shall generate an XML document indicating that
an error has occurred. The format of the XML error response is specified in the WFS-
specification.

A ServiceExceptionReport element can contain one or more WFS processing
exceptions. Individual exception messages are contained within the ServiceException
element. The contents of this ServiceException element can be in any format the server
“wishes”. The optional code attribute may be used to associate an exception code with
the accompanying message. A client can use these codes to provide the correct (error)
message, if the client knows what code means what. However, these codes are not
specified, but should be defined by the service provider (at the server side).

Chapter 4: OpenGIS Web Feature Services

 39

4.3.2 Read-only service: Basic WFS

A Basic WFS implements the GetCapabilities, DescribeFeatureType and GetFeature
operations. These will be described here shortly. Appendix D contains examples of the
requests and responses for GetCapabilities and DescribeFeatureType operations.

A Web Feature Service must be able to describe its capabilities. Specifically, it must
indicate which feature types it can service and what operations are supported on each
feature type. A client can request for such a capabilities document by sending the
GetCapabilities request to a web feature server. The server should respond to this with an
XML-document, describing following issues:
• General information on the service itself (Service section): the name of the service,

the title, an abstract on the server, keywords for catalogue searching, the top-
level HTTP URL (OnlineResource) and information on fees and access
constraints.

• The capabilities section specifies the list of requests that the WFS can handle and
what resources (URL’s) should be called for the requests. E.g. whether the WFS
supports transaction requests or not.

• The featuretypelist section provides a list of feature types with their spatial
reference system and bounding box. The list could also specify which operations
are allowed per feature.

• The filter capabilities section is optional. It lists the filters (of the Filter Encoding
Implementation Specification) that the web feature server supports.

The standard capabilities of a Web Feature Service can be extended if a service provider
wishes so. The specification defines VendorSpecificCapabilities, which can be added to the
regular capabilities. In this element extensions of a vendor can be included.

The function of the DescribeFeatureType operation is to generate an XML-schema
description of feature types serviced by a WFS implementation. The schema descriptions
define how a WFS implementation expects feature instances to be encoded on input and
how feature instances will be generated on output. The feature geometry must be
expressed using GML geometry description.

A Web Feature Service must be able to service a request to retrieve feature instances. In
addition, the client should be able to specify which feature attributes to fetch and should
be able to constrain the query spatially and non-spatially, similar to SQL where clauses.
The GetFeature operation allows for the retrieval and uses filters from the Filter Encoding
[20] to constrain the data to retrieve.
 The server processes the GetFeature request and returns an XML document,
containing the result set, to the client. With a GetFeature request one or more feature
types can be queried. A client can constrain the feature set by using filters from the filter
encoding specification. For instance, one feature (identified by a <FeatureId>) needs
to be fetched from a Web Feature Service. Figure 4.12 (b) in section 4.3.1 gives the XML-
encoded request.

In the GetFeature request the output format can be specified. The default value is
GML 2, but if a web feature server offers other output formats, a client can request for
one of these in the request. A web feature server may offer any other output format, as

Chapter 4: OpenGIS Web Feature Services

 40

long as it is advertised in the capabilities document. Requesting certain versions of
features (if a server supports feature versioning of course) is accommodated for as well
in the WFS-specification.

4.3.3 Modifying features: Transactional WFS

In addition to a Basic WFS, a Transactional WFS supports operations to modify
geographic features as well; that is create, update, and delete operations on geographic
features. In order to do so, a Transactional WFS implements the Transaction operation
and could optionally implement the LockFeature operation.
 The only operation that can be encoded as a KVP-request, is the Delete operation.
If other operations are desired, then the request has to be encoded in XML. A Transaction
element may contain zero or more Insert, Update, or Delete elements that describe
operations to create, modify or destroy feature instances:
• For Insert statements, the state of a feature must be expressed in GML and must

validate to the schema the corresponding DescribeFeatureType operation
generates.

• The Update element describes one update operation that is to be applied to a
feature or a set of features. Filters (as specified in the filter encoding – described
in 4.2.3) can be used to define such a set. The operation contains one or more
properties and their associated new values.

• The Delete element is used to indicate that one or more feature instances should
be deleted. The scope of a delete operation is constrained using the Filter element
as described in the filter encoding.

When the transaction has been completed, a Web Feature Service will generate an XML
response document indicating the completion status of the transaction. This status
report states whether the transaction has been completed successful, partial successful or
failed. When a web feature server handles a transaction atomically (as one entity), it is
not possible that a transaction is partial successful. The status of partial successful has
been defined, to allow for web feature servers that don’t support atomic transactions to
give reports which operations succeeded and which operations failed. Note that the web
feature server cannot advertise whether transactions are dealt with as atomic transaction
(thus as one entity) or not.

In response to an Insert operation, a Web Feature Service shall also generate a list
of newly generated feature identifiers assigned to the new feature instances in the same
order as in the Transaction request. In Appendix D examples are given for Transaction
requests and responses.

Besides the three modifying operations, a Transaction may contain a Native
element. This element is intended to allow access to vendor specific capabilities of any
particular Web Feature Service. It contains the vendor specific command or operation.

Figure 4.13 is a simplified sequence diagram17 illustrating the messages that
might be passed back and forth between a client application and a Web Feature Service
in order to process a typical transaction request.

17 Sequence diagrams are a type of UML (Unified Modelling Language) diagram.

Chapter 4: OpenGIS Web Feature Services

 41

Figure 4.13 Sequence diagram for processing a transaction request.

The purpose of the LockFeature operation is to expose a long-term feature locking
mechanism to ensure consistency. The lock is considered long term in order to lock
features longer than the duration of a single transaction. The LockFeature operation is
optional and does not need to be implemented for a WFS implementation to conform to
the WFS specification. If a WFS implements the LockFeature operation, this must be
advertised in the capabilities document.
 The LockFeature element contains one or more Lock elements that define a locking
operation on feature instances of one feature type. The expiry attribute is used to set a
limit on how long a Web Feature Service should hold a lock on feature instances in the
event that a transaction is never issued that will release the lock. Once the specified
number of minutes has elapsed, a Web Feature Service may release the lock if it exists
and abort any related transaction. Any further transactions issued against that lock
using a lock identifier generated by the service will fail. A Lock element uses a filter to
specify what feature instances should be locked.
 In response to a LockFeature request, a Web Feature Service generates an XML
document. This document will contain a lock identifier that a client application can use
in subsequent WFS operations (like a Transaction) to operate upon the set of locked
feature instances.
 A WFS can also support the GetFeatureWithLock operation. By using this
operation instead of the GetFeature operation, a client requests for features to be
retrieved and lock them at the same time.
 Assuming that a WFS implementation supports the optional LockFeature and/or
GetFeatureWithLock operations, the releaseAction attribute is used to control how locked
features are treated when a transaction request is completed. With this attribute locks
can be ended.

Chapter 4: OpenGIS Web Feature Services

 42

4.4 Conclusion

The OpenGIS Service Framework provides the framework for OpenGIS Web Services.
These open, interoperable services use general web technologies like HTTP and XML
and can be used to build applications dynamically. The only services that allow for
retrieval of geographic data on the feature level and allow modification of features are
services that comply with the Web Feature Services specification.
 Web Feature Services are either Basic, which means that data can only be
retrieved, or Transactional, which means that the server supports create, update and
delete operations on some or all of its features. Transactions may be composed of several
of these operations of any type. Transactions can thus be composed very flexible, but
still can be handled as atomic transactions by the server. The WFS specification also
defines operations for locking features, which can be used to maintain consistency.
 WFS requests can be encoded in the URL, using keyword-value-pairs, or in XML.
XML requests are more expressive and transactional requests using Insert and Update
operations, XML requests are the only requests allowed. Web Feature Services make use
of the Filter Encoding to specify sets of features to operate upon. Within the interface,
GML 2.1.2 is used to describe the features. This means that the server must support
GML 2.1.2 as output format. Servers are allowed to provide any other output format as
well. However, in transactions features have to be expressed in GML 2.1.2.

However, GML 2.1.2 is not the most recent version of GML. GML 3 is the latest,
which provides encodings for topologically structured data, temporal aspects and
default styling as well.

Chapter 5: Case study: Notary drafts parcel

 43

5 Case study: Notary sketches new parcel

The case study to sketch new parcels and their boundaries in a Web Feature Service
plays an important role in the research. The case study has been used to test the abilities
of Web Feature Services to process geometric transactions. Therefore both a web feature
server and a client have been implemented. In addition, other WFS clients have been
tested on the server to test interoperability. This chapter describes the case study itself
and the service that has been developed. This comprises the role of the notary in
cadastral transactions of parcels (section 5.1.1), a scenario to split parcels (section 5.1.2),
the data model (section 5.1.3), the architecture of the service (section 5.2) and the
implementations of the web feature server (section 5.3) and client (section 5.4). The last
section summarizes the main conclusions and remarks on this case study.

5.1 Case study: the starting point

This section gives some background information on the case study. First, the role of the
notary in cadastral transactions is briefly discussed in section 5.1.1. Section 5.1.2 gives
scenarios how splitting a parcel could be done using a Web Feature Service. The data
model that is needed for implementation of the scenario is discussed in section 5.1.3.

5.1.1 The role of a notary in cadastral transactions

In the Dutch cadastral system, when two or more parties have made an agreement on
changing ownership of a cadastral parcel, they have to contact a notary to make a deed
in which this agreement is formalized [29]. The notary sends this deed to the Kadaster
(the Dutch cadastre). In order to change the ownership juridically, this deed has to be
registered by the Kadaster. Changing ownership’s rights includes regular transition of
the ownership of a single parcel, merging two parcels, or splitting a parcel into two or
more parcels (figure 5.1).

In case of a regular transition of rights (e.g. somebody buys a parcel from
somebody else), no changes are made in the geometric properties of a parcel. In this case
the notary can give a map of the parcel as confirmation which parcel is involved.

When two parcels are merged to one new parcel (in most cases someone buys a
neighbouring parcel), the notary could indicate this geometrically as well. However, it
would be sufficient if in the administrative system ownership were changed.

Splitting a parcel is the most interesting action (geometrically speaking), since
this always involves changes in the geometry of parcels. New boundaries of parcels
have to be determined. This involves surveying the new boundaries as well. The process
of splitting up a parcel (for example two parties decide that part of one existing parcel
will change from the current owner to the other party) is used in the case study and will
be described in more detail.

Chapter 5: Case study: Notary drafts parcel

 44

Figure 5.1 Three basic types of cadastral transaction: (a) regular – where C buys the parcel of A-, (b)
merging two parcels – where A buys the parcel of B and creates one new parcel - and (c) splitting one

parcel – where B buys a part of the parcel of A.

5.1.2 Scenario for splitting parcels using a Web Feature Service

In the current Dutch cadastral system, the process of changing a parcel geometrically -
e.g. splitting up a parcel - could be described as follows [29]:
1) When a parcel needs to be changed in a cadastral transaction, a notary initiates

the administrative process by sending a deed describing the transfer to the
Kadaster. The Kadaster then changes the owner’s rights in the cadastral
registration (AKR). An annotation is made in the system that surveying has to be
done.

2) A cadastral surveyor contacts the parties involved to point out the changes of the
parcel’s boundaries. Because of efficiency reasons the changes need not be
surveyed directly, but this could be done at another time.

3) As soon as the surveying has been done, the surveyor makes the necessary
changes (for instance, creating the new parcels and deleting the old one) in LKI,
the database with the geometric properties of the parcels. After these changes
have been checked and approved, the transaction is completed

At this moment only a sketch of the notary on the cadastral map is provided (in the first
step) to indicate where the new boundary should be. This sketch is added as an
illustration to the deed the notary sends to the Kadaster. Since the actual surveying of
the new boundary could be done a few weeks after sending in the deed [29], there is a
(short) period in which the fact that the parcel is involved in a cadastral transaction is
known in the cadastral system, but for others this future change is not visible in the LKI-
database.

Chapter 5: Case study: Notary drafts parcel

 45

WFS and other new technologies that have been developed in the field of ICT
(e.g. XML and XSQL) and interoperable GIS (e.g. GML) might offer new possibilities to
the Dutch Cadastre and notaries. When creating the deed the notary could, for instance,
also sketch a provisional parcel boundary via WFS at the same time. This way, future
changes to the LKI-database are known faster and others (notaries, individuals,
municipalities, etc.) could benefit from this as well. In addition, the sketch can be
enhanced with extra topographical data or orthophotos. The concept of editing cadastral
data in a Web Feature Service will be tested in this case study.

For editing the cadastral data, one could think of a notary who drafts a new boundary,
because a parcel has to be split up. This way, changes in the geometry of parcels caused
by a cadastral transaction, are geometrically represented in the cadastral database. These
drafts are made before the actual surveying is done.

This scenario for splitting a parcel could be used for testing WFS ability to edit
geographic data:
1) The notary logs on to the system
2) The notary gives the parcel number of the parcel involved.
3) To draw a map, the server returns18:

a. Lines/boundaries from LKI
b. Labels/parcels from LKI
c. Lines/boundaries from DRAFT_BOUNDARY if available
d. Labels/parcels from DRAFT_PARCEL if any

4) The notary drafts the boundaries to be added and annotates with points and
labels (e.g. A, B, C, etc.) as in the deed which part of the old parcel should belong
to whom.

5) The request is being sent to the server where it is processed as one transaction.
The data are checked and validated, for instance whether the labels are still
unique and the features are in the correct area19. If this kind of validating tests is
passed successfully, the features are inserted.

6) The server returns the result of the transaction.
The data from LKI serve as the background for drawing. With the bounding box other
data (like orthophotos or topographic data from other WFS or WMS services) can be
added in the client as additional background information.

5.1.3 Data model

For the case study, a selection has been made from the original LKI-dataset. An area of 1
square kilometre near the city of Gouda has been selected for developing the WFS. This
area is chosen, because besides cadastral data, other topographic data (Top10NL) is
available for this area in another database. This topographic data could be used as
additional background data by accessing another web service, e.g. a WMS or WFS,
whatever is installed on the database.

18 On the current cadastral maps street names, numbers of houses and (cadastral) buildings are
shown as well. These have been left away for the case study, to make the service less complex.
19 To perform these operations, it is desired to lock an area. However, WFS does not have an
operation to lock an area. See section 6.2.

Chapter 5: Case study: Notary drafts parcel

 46

The cadastral data are stored in millimetres in the database. The data are stored
in the RD-coordinate system, which officially uses coordinates in meters. As soon as
other data should be combined with this cadastral data, the coordinates of the cadastral
data would be 1000 times too large. Therefore the coordinates should be either
converted from millimetres to meters in the database or in a view. Since GeoServer 1.1.0
(see section 5.3.2) is not able to retrieve features from views, it is decided to convert the
data to meters in the database.

In the case study no attention is paid to topology, because this would be too complex for
the proof of concept. Also the table in LKI containing references to “enclaves” in parcels
– parcelover - is left aside. In addition, it is not necessary to store ownerships data,
because these data could be accessed through a reference to the AKR-database20.

All this leaves two tables that will be used from the current database of LKI:
parcel and boundary. For both of them a selection for the city of Gouda has been made,
resulting in the tables cl_boundary and cl_parcel2. Because cl_boundary contained
some unnecessary columns for the case study, the table test_boundary has been
created from cl_boundary.

Because the official boundary still has to be surveyed by a cadastral surveyor to
be legally binding, the boundary and/or parcel drafted by the notary should not be
stored in the original tables with the legally binding boundaries and/or parcels directly.
Consequently, the tables draft_boundary and draft_parcel have been created to store
the drafts of boundaries and parcels respectively. Figure 5.2 shows the four relevant
tables, Appendix B gives more details on the tables. The notary thus performs
transactions on respectively draft_boundary and draft_parcel.

Figure 5.2 Cadastral database containing the 4 relevant tables for the case study

5.2 The service to draft parcels

5.2.1 Service architecture

The service should make it possible for notaries to access the LKI-database over the
network, as illustrated in figure 5.3. In addition, topographic data from another Web

20 The relation between LKI and AKR is made by X_AKR_OBJECTNUMMER in the LKI-
database.

Chapter 5: Case study: Notary drafts parcel

 47

Feature Service could be retrieved via internet. The server on LKI and the client should
support transactions on draft_parcel and draft_boundary. Since the notaries do not
need advanced GIS-tools for complex analyses of data, a simple front-end (e.g. a
browser to view and edit geodata) that can “talk” WFS would be sufficient. This makes
the client as light as possible.

Figure 5.3 Web Feature Service for notaries to draft new parcels and boundaries in cadastral database,

optionally using topographic data as background.

The client should consist of a viewer/editor and some part that “talks” WFS, i.e.
translates events in the viewer/editor into valid WFS-requests and handles
communication of requests and responses with the web feature server. The client should
also translate GML data into some graphic representation to display the cadastral data.

The server has a data layer (consisting of an Oracle database with LKI-data),
which is accessed by a WFS-layer to “talk” WFS. It will be sufficient if the server
provides the data in GML only. Other output formats are not necessary.

5.2.2 Application logic

Shortly, application logic consists of some intelligence (some rules) that concerns the
application. For this case study the following issues, of very different kind, can be
considered application logic:
• Authorization and rights of users. One can imagine that not every user is

allowed to perform every (type of) transaction at a server. It is not said that WFS
must deal with the authorization, but authorization should be dealt with. For
services as developed in the case study, it could be very critical to have some
degree of control on users and their rights on the data too. For example, the
notary should only be able to do manipulations on features of type
draft_boundary and draft_parcel. For notaries, the other feature types (from

Chapter 5: Case study: Notary drafts parcel

 48

LKI) in the same service are only accessible for retrieving data. Now assume that
a surveyor/editor is using the same Web Feature Service to maintain the
boundaries, the surveyor/editor then needs rights to edit the LKI-database
directly as well. Thus, different users need different rights on different feature
types.
 Authorization issues and the rights of users should ideally be dealt with
at the server side, since the data at the server needs to be protected. Some
mediating service could perform this task as well. This could be dangerous when
a service is directly accessible for any client (as will be the case in most WFS),
since the mediating service could be ignored then.

• Transaction constraints. Splitting a parcel in this case study means that at least
one boundary and two locations for parcels should be inserted in the draft tables.
This means that a transaction should always be composed of an insert-operation
for one feature of type draft_boundary and two features of type draft_parcel,
as in figure 5.4. This constrains the transactions’ structure.

<Transaction>
 <Insert>
 <DRAFT_BOUNDARY>
 …
 </DRAFT_BOUNDARY>
 </Insert>
 <Insert>
 <DRAFT_PARCEL>
 …
 </DRAFT_PARCEL>
 <DRAFT_PARCEL>
 …
 </DRAFT_PARCEL>
 </Insert>
</Transaction>

Figure 5.4 Structure of transaction for splitting a parcel, i.e. inserting one new boundary and two new
locations for parcels.

 Transaction constraints could be dealt with at the server side, client side
or by a mediating service, if present. Since transactions affect the data at the
server, it seems most naturally to check on these transaction constraints at the
server side. The ideal situation would be that at all levels these constraints could
be tested, to avoid unnecessary errors and sending transactions that will not be
processed anyway.

• Validation of features. The features should be validated against certain
constraints, both syntactical and semantical by nature. Questions like ‘are new
features encoded in valid GML?’, ‘is the date and time of creation of this new
feature conform system time?’, ‘are the drafted parcels (points) on either side of
the drafted boundary?’ are examples of this. Similar to transaction constraints,
validation of features should at least be done at the server. If clients would allow
for validation before a transaction is send, clients can be held back to send invalid
features, thereby saving bandwidth and processing time at the server. This

Chapter 5: Case study: Notary drafts parcel

 49

means however that clients need to know what features are valid and should
know what constraints hold.

The WFS specification provides operations for clients to get (part of) this application
logic, which is discussed in sections 6.3 and 6.4.

Although important, only some of the issues mentioned above are implemented in the
presented case study. The reason for this is that the highest priority has been on
implementing both a WFS-client and web feature server to test the suitability of
processing transactions.

For Web Feature Services holds what holds for most client/server architectures:
the server holds the data and the client is responsible for the user interface. But
application logic like above has not been dealt with yet. Where to put these issues
always is a design problem. WFS and application specific issues are discussed in
Chapter 6.

5.2.3 Requirements for the server

Since new features have to be created in the cadastral database, the web feature server
should be transactional. The server has been built on top of the Oracle 9i database,
because the data are stored in an Oracle 9i database. In terms of WFS, the server should
be able to:
• Interpret GetFeature requests to make corresponding SQL-statements and encode

the result of the SQL in GML for sending it back to the client.
• Support filters to select features on the feature identifier and a spatial filter to

select features in a bounding box.
• Interpret Transaction requests to make corresponding SQL-statements (i.e. for

example, GML-features should be mapped to the table-structure to make SQL-
statement for Inserts) and encode the new id’s (in case of Inserts) in a WFS-
response to the client.

• Make valid WFS responses for error reporting.
• Provide a Capabilities document in response to a GetCapabilities request; this

could be static XML if the available feature types do not change (that is: new
feature types are defined or deleted). Otherwise, this document should be built
dynamically.

• Provide XML-schema per feature type in response to a DescribeFeatureType
request.

Especially the GetFeature and Transaction operations are critical to have. The other
operations are important, but not necessary to test the abilities of WFS for transactions.
Since GeoServer 1.1.0 on top of Oracle does not allow locking per feature and
developing such a locking mechanism is too complex for this thesis, locking is ignored.

5.2.4 Requirements for the client

Functionality necessary or critical for the client to test the concept of editing geodata is
discussed here. Other functionality, for instance concerning a good user interface, is left
aside in the case study, because this is not critical to test the main goal of a transactional

Chapter 5: Case study: Notary drafts parcel

 50

Web Feature Service: supporting the operations to retrieve geographic features and to
support transactions on geographic features.

The goal of the client is to demonstrate and test WFS for the case study. Only
functionality necessary for the case study has been implemented. The case study data
contains lines and points. Thus, the client will not deal with creating polygons.

The client for this case study, should be able to:
• Connect to a web feature server (preferably more than one) and optionally other

services, like WMS.
• support the retrieval of GML for all data (GetFeature);
• support a filter for selecting features in the bounding box of a parcel (complex

Filter operations);
• visualize GML;
• identify (GML-)features, i.e. give the thematic attributes of a feature;
• draw points for features of type draft_parcel ;
• draw lines for features of type draft_boundary;
• make WFS-requests in XML for inserting new features, deleting features and

updating features that can be send with a WFS Transaction;
• send the WFS-requests to the server and interpret the responses.
Section 5.4 discusses the implemented client.

5.3 Web Feature Servers

At first, the plan in this research was to develop a transactional web feature server using
XSQL, which is the subject of section 5.3.1. While developing a server with XSQL several
other alternatives became available for the web feature server. Open Source projects as
Deegree [46] and GeoServer [47] released implementations of a web feature server. Since
developing a web feature server with XSQL would have consumed lots of time there
was decided to investigate the use of web feature servers as Deegree or GeoServer.

The Deegree web feature server was not complete for transactions, in the sense
that not all operations were supported for all geometry types (e.g. inserts on points were
supported, but not on polylines). Therefore, the Deegree server was not suitable to use
in this research.

GeoServer claimed to be fully compliant as transactional web feature server, i.e.
for all feature types all transactional operations were said to be supported. Therefore
GeoServer was investigated further and used to develop the case study service. How the
service has been developed with GeoServer, is discussed in section 5.3.2.

5.3.1 XSQL

Using XSQL, one can retrieve XML from an Oracle database. GML can be generated in
an XSQL-page by using XSLT21. This principle has been used to generate GML from the
cadastral database in the MSc research.

21 Note that XSLT is not a powerful programming language, but nothing more and nothing less
than a tool to transform XML-encoded data in another format (e.g. XML, HTML or text). It has
some functions/methods to make computations on the data, but those functions/methods are
not very powerful.

Chapter 5: Case study: Notary drafts parcel

 51

As mentioned earlier, with XSQL one can include SQL-statements in a webpage.
This includes INSERT, UPDATE and DELETE-statements as well. In this research,
editing the data in the database with XSQL has not been tested. Because GeoServer
(section 5.3.2) was released while still making valid GML and there were several other
steps to be taken before a WFS could be developed with XSQL, there was decided to
proceed with GeoServer.

Although XSQL only has been used for retrieving GML from the database, it can
be said that XSQL should provide a very flexible way to retrieve and edit data. The
reason for this is that, using XSQL, the data from the database is directly encoded in
XML. The structure of the data thus remains untouched. This direct encoding in XML,
which can be transformed with XSLT to GML, enables the representation of features
containing multiple geometric properties. Therefore it should be able to develop a web
feature server with XSQL to interpret the requests and the geographic features in
requests.

A possible advantage of XSQL is that less components are necessary, since the
XSQL pages directly work at the DBMS. So for the server only a DBMS and a webserver
with XSQL-pages could be required.

5.3.2 GeoServer: an open source web feature server

On September 22 2003 the GeoServer Project [47] announced its first full release of
GeoServer, an open source web feature server. GeoServer is a full implementation of the
WFS Specification of the OpenGIS consortium. It is developed in Java and supports
versions 0.0.14, 0.0.15 and 1.0.0 (the current version) of the Web Feature Service
specification. GeoServer version 1.1.0 has been extensively tested against the official
OGC test suite [47].

GeoServer can be configured as a transactional Web feature server and is
originally developed for PostGIS22. But GeoServer is developed to be able to deal with
other datasources as well. At this moment, GeoServer can act as a Basic WFS on ESRI’s
shapefiles and GeoServer could be used on an Oracle Spatial database and ESRI’s
ArcSDE as a Transactional WFS. The fact that GeoServer supports Oracle is relevant, as
Oracle is also the platform of the Kadaster.

22 PostGIS is an open source spatial database technology that adds support for “OpenGIS style”
geographic objects to the PostgreSQL object-relational database [51].

Chapter 5: Case study: Notary drafts parcel

 52

Figure 5.5 The server consisting of the dataset, GeoServer to access the data and communicate according to

the WFS-specification and Tomcat as the webserver and Java platform.

Because of its transactional capabilities and because GeoServer already had
implemented all spatial filters (as it is a full implementation of the WFS-specification),
GeoServer 1.1.0 was chosen for further development of the Web Feature Service.
GeoServer 1.1.0 has been configured to serve as a Transactional WFS on the cadastral
database LKI in Oracle 9i (figure 5.5). Appendix F gives some details on configuring
GeoServer on top of an Oracle database.

GeoServer assumes that each feature is uniquely identifiable by one property.
Compound keys therefore are not supported in GeoServer. Since in the original LKI-
database parcels and boundaries are identified by a compound key (OBJECT_ID,
OGROUP and TMAX), GeoServer could not deal with this data. Therefore an attribute
(the name ‘FID’ has been chosen) has been added to all four tables to act as the primary
key.
 Furthermore, GeoServer 1.1.0 contained some bugs that troubled especially
processing transactions. In the MSc-project time has been spent on debugging and
testing, in cooperation with the developers of the GeoServer-project (see Appendix E for
an example of a problem). Most problems have been solved so that transactions can be
performed. Only Inserts on features containing more than one geometric property fail,
but it is expected that this will be solved in one of the next versions of GeoServer.
Besides that, all transaction operations are supported correctly at the moment. The only
thing that is not convenient is that views are not supported yet in GeoServer.

Chapter 5: Case study: Notary drafts parcel

 53

5.4 WFS clients

5.4.1 Existing transactional clients

At first, existing clients that claim to be WFS compliant have been tested. The
investigated clients are ESRI’s ArcExplorer, Intergraph’s GeoMedia Viewer,
Moximedia’s client (http://www.moximedia.com) and the Open Source clients
GeoClient (http://www.mycgiserver.com/~amri/geoclient.cocoon.xml) and OpenMap
(http://openmap.bbn.com).

According to ESRI, ArcExplorer (free available for download at
http://www.esri.com) should be able to act as a basic WFS-client after installation of a
plug-in. However, ArcExplorer – version 4.0.1, Java has been tested - can’t connect to
any other Web Feature Service than services based on ESRI’s Arc-products. ArcExplorer
thus is not suitable for visualizing the GML output of the web feature server.

Intergraph (http://www.intergraph.com) offers GeoMedia Viewer, which can be
ordered for free. This viewer can be extended to have a Web Feature Service as data
source. Data can only be retrieved, so the viewer is not transactional. In this research, the
viewer has been used for testing interoperability of the server (Chapter 6).

Moximedia offers a (commercial) transactional WFS client. This client is part of
the framework Moximedia offers for OpenGIS web services. However, the client does
not visualize GML, but uses a Web Map Server for visualization. This makes querying
the data more difficult and thus less suitable for the case.

The open source initiative called GeoClient currently can only connect to a sort of
stripped down version of a web feature server and therefore is not fully WFS-compliant.
Since editing is not supported, this client is not suitable for the case study.

BBN Technologies' OpenMap package is an Open Source JavaBeans based
programmer's toolkit [50]. Using OpenMap, one can quickly build applications and
applets that access data from legacy databases and applications. OpenMap provides the
means to allow users to see and manipulate geospatial information. OpenMap does not
support WFS as a data source, but can be extended. However, this demands quite an
effort.

The conclusion of the above is that, although many clients (websites) are
available for web mapping, for Web Feature Services and in particular transactional Web
Feature Services, not much clients are available yet23. Adapting these existing clients is
either not possible, since the source code is not available, or too much time would be
consumed with it. Therefore it is decided to develop a transactional WFS client for this
research.

5.4.2 Developed client in the case study

The developed client is based on a client made by the Section GIS Technology (TU Delft)
that has been used to visualize GML-encoded data from Top10NL as SVG (Scalable
Vector Graphics) in a web browser [33, 34]. This SVG-client is adapted to use a Web
Feature Service as data source. The client did not support transactions yet. Therefore the

23 At the website of OpenGIS (http://www.opengis.org/resources/?page=products) conforming
products are listed.

Chapter 5: Case study: Notary drafts parcel

 54

client has been extended with functionality to draw and encode features and send these
in a WFS-transaction to the server.

Both the GetCapabilities and the GetFeature request (for retrieval of the features in
GML) are send as Keyword-Value-Pair-requests and are issued using Javascript. If SVG
is chosen to visualize the data, XSLT is used in the browser to do the transformation
from GML to SVG. A screenshot of the client in figure 5.6 shows some features in SVG.
The transformation to SVG is done at the client side, after receiving the GML.

Figure 5.6 Viewing features as SVG from a web feature service

 For navigation (zooming and panning) the client uses standard SVG-
functionality. Support for SVG has to be available in the browser; a plug-in (e.g. from
Adobe) can be used for this. Note that not for all web browsers such a plug-in is
available, for instance for Mozilla. The thematic attributes of features can be queried by
clicking on a feature. A table with the attributes is generated from the GML in the client.

The part of the client that is responsible for the retrieval and visualization of
GML is generic in the sense that all Web Feature Services could be used as a data source.
For the case study, support for transactions had to be implemented however. The
functionality to draw and encode new features is developed for the case study and is not
generic (yet).

Transaction support at the client side has been implemented with Java Server Pages (JSP,
[41]). JSP has good support for XML and with JSP it is easy to add (complex)
functionality to a web-based application like the WFS-client. This support for XML is
necessary to compose and send the requests to the web feature server.

In order to use JSP-technology, a Java servlet container like for instance Tomcat
[45] or Resin [52] needs to be installed at a server. Processing is partially done at the
server, the results are returned to the browser. This way, functionality of the WFS-client

Chapter 5: Case study: Notary drafts parcel

 55

is distributed over the browser and a web-server (figure 5.7). Note that the machine that
has been used for the client and the web feature server are in fact not the same server.

Using Java Server Pages makes the user-side of the client light, because most
processing (e.g. constructing the transaction requests) is done at the Java web server.
The browser does not need to download plug-ins, applets or what so ever. However,
there is more traffic on the network, because the browser has to communicate with the
server where the Java Server Pages are.

Figure 5.7 Functionality of the WFS-client divided between browser and server

Functionality to compose and send Transaction requests is divided between browser
and web server as follows:
• Inserting new features. The shape of a feature (i.e. its coordinates) is drawn in SVG.

The coordinates are passed to a Java Server Page that creates a form to fill in the
other thematic attributes of the new feature. After submitting the form, the
feature is encoded with JSP (at the server) as GML. Then, an XML-string
containing the GML-feature and WFS-transaction-elements is sent to the
browser, see figure 5.8. This string is added to the Transaction request.

• Deleting and updating features. The feature is selected in SVG and its feature
identifier is used by the Java server to create an HTML-form from the feature in
GML. Then the user can choose to specify values and update the feature or to
delete the feature. Both are dealt with in JSPs to construct the corresponding part
of the WFS-request. This part is again passed to the browser and added to the
Transaction request.

• The user can send the Transaction request from the browser to a JSP. This will send
the (raw) XML-request to the web feature server and passes the response
(successful or failed) of the server to the browser.

Chapter 5: Case study: Notary drafts parcel

 56

The filters in XML are encoded at the server side of the client, i.e. in the JSP on Tomcat. It
concerns a filter to select a feature on its feature identifier and two filters to select
features of different types that lie in the bounding box of a parcel.
 For more details on the client, see Appendix C. That appendix provides more
detailed descriptions on what functionality is performed where and gives some schemas
on the different Java Server Pages that have been developed.

Figure 5.8 From SVG to GML/WFS. The white box below – in the blue frame - contains a part of the WFS-

request to add to the Transaction request.

5.5 Conclusion

These conclusions can be drawn from this chapter:
• Boundaries drawn or changed by a notary are not stored in the table with the

current boundaries directly, because the new or changed boundaries still have to
be surveyed by a cadastral surveyor. Consequently, tables containing the draft
boundaries and parcels have to be created in the same DBMS.

• With XSQL, one can retrieve and edit XML-encoded data from or in a database
by using SQL-statements. In this research, data in the database has not been
edited with XSQL nor a complete web feature server has been built with XSQL.
But GML can be generated in an XSQL-page by using XSLT. With XSQL and
XSLT the features from the cadastral data containing multiple geometric
attributes can be presented in GML without losing any data and more specific
losing any geometric attribute(s). Because SQL-statements to edit data are part of

Chapter 5: Case study: Notary drafts parcel

 57

XSQL as well, it should be possible to develop a transactional web feature server
with XSQL.

• By adding a new column as identifier to each table in Oracle, it is possible to have
a Transactional WFS running on the cadastral database (in Oracle) using
GeoServer 1.1.0. GeoServer is a full implementation of the WFS-specification. All
operations from the WFS-specification and all filters from the Filter Encoding are
supported. This makes GeoServer very suitable for testing WFS.

• Since the cadastral data are stored in millimetres and the coordinate system (the
Dutch RD-system) that is used for the data officially is in meters, the cadastral
data has been converted to meters. This way, data from other sources (e.g. WFS,
WMS) can be added in a client.

• Because existing WFS-clients are either not fully compliant with the specification,
nor transactional or it costs too much time to adapt them for the case study
service, a client needed to be developed in this research. The developed client
uses SVG for visualization. SVG can be generated by transforming the GML
stream with an XSLT stylesheet. The client uses a standard web-browser and Java
Server Pages (JSP). The JSPs are used for implementing functionality to compose
and send the transaction request. This way, the client remains extremely light at
the browser.

Chapter 5: Case study: Notary drafts parcel

 58

Chapter 6: Suitability of WFS for transactions: analysis

 59

6 Suitability of WFS for transactions: analysis

For this research, the main research question is on the suitability for transactions of WFS
as an interoperable service. This chapter analyses some important topics. First, tests on
interoperability of the implemented software (both client and server) are described in
section 6.1. In section 6.2 the way WFS handles transactions is discussed. When
performing transactions, features are modified. These features could be validated
against the constraints datasets have. How clients and servers could deal with this
validation, is the topic of section 6.3. Section 6.4 discusses other application logic that is
relevant for transactions. Conclusions on WFS’ suitability for transactions are drawn in
section 6.5.

6.1 Interoperability testing

A basic principle for interoperable services, in this case WFS, is that any WFS client
should be able to communicate with any web feature server that is based on open
standards. This means that both client and server have to comply with the specification,
i.e. open standard. If the specification does not contain errors or omissions, any generic
WFS-client and WFS-server should be able to interoperate.

6.1.1 Server

Several interoperability tests have been performed 1) to test whether the server and
client of the implemented service are compliant with the WFS specification or not and 2)
to test whether other WFS products can interoperate with the server or client. Validation
of output (responses, including the GML output stream) of GeoServer and using other
WFS clients were used to test interoperability.

For interoperability of the developed server, it is important that the web feature
server can provide valid GML. Therefore GeoServer has been tested on the GML it sends
to clients. This test showed that the GML was not valid at first. This was not caused by
GeoServer, but by errors in the hand made XML Schema documents for two feature
types. After correcting these errors using standard XML tools (see Appendix F for more
details), the GML tested valid.

The above shows that validation of XML is essential to make sure that the XML
output (in this case GML) is compliant with the specification. If the input or output of
the XML is not compliant with the service, the service is not truly interoperable. This
results in generic clients (as GeoMedia Viewer, see section 6.1.2) that can’t use the
service correctly, for example.

GeoServer has been tested for transactions using the client of the case study from
Chapter 5. All kinds of Transaction requests have been constructed based on the WFS-
specification.

Transactions consisting of insert, update and delete operations, in random order
and different quantities have been sent to the server with the case study client. These
transactions all were processed successfully and the responses are valid WFS responses.

Chapter 6: Suitability of WFS for transactions: analysis

 60

In addition, other requests (GetFeature, GetCapabilities, DescribeFeatureType) have been
sent to the server, which also are processed successfully. All requests have been
constructed (and have been validated) as in the specification. Table 6.1 lists the requests
of which the responses of the web feature server have been tested and validated using
XMLSpy (Appendix F).

Response to request Additional tested for Valid response
GetCapabilities

GetFeature (output GML
(2.1.2))

DRAFT_BOUNDARY

 DRAFT_PARCEL

 TEST_BOUNDARY

 CL_PARCEL2

 TOP10_GEBOUW

Transaction Insert operations mixed with
delete and delete operations

Incomplete transaction Error report is validated

Table 6.1 Requests of which responses of GeoServer have validated against the corresponding schemas.

GeoServer claims to be compliant to the WFS-specification24. GeoServer 1.1.0 has passed
the CITE tests of the OpenGIS Consortium. These tests are developed by the OGC and
are used to test whether a product is compliant to the specification. Based on this, one
may conclude that GeoServer is fully compliant to the WFS specification.
 To test interoperability of the server in practice other generic clients have been
used. One client managed to connect to the web feature server and retrieve features.
This is described below.

6.1.2 Clients

Besides the case study client, GeoMedia Viewer with an extension for WFS has been
tested as a basic client25. GeoMedia Viewer does not support editing data, but can
retrieve data from a Web Feature Service. With this viewer, the service has been
accessed. The results of this test are:
• Some changes to the schemas are necessary for GeoMedia Viewer to understand

the schemas. GeoMedia Viewer does not accept restrictions (see Appendix D for
a full schema of draft_boundary and draft_parcel) that are defined in the
XML-schemas of feature types. If these parts of the schema are left away (see
figure 6.1), GeoMedia Viewer accepts the features.

24 In fact GeoServer is the reference implementation of a web feature server, which means that
GeoServer can be used to evaluate other implementations
(http://cite.occamlab.com/reference/).
25 ESRI’s ArcExplorer also has been tested, but never managed to connect to the web feature
server, see section 5.4.1.

Chapter 6: Suitability of WFS for transactions: analysis

 61

• All features are completely retrieved and visualized.
• GeoMedia Viewer orientates all features differently (the x and y coordinates are

swapped and the features have been mirrored in the y axis) than the case study
client. GeoMedia Viewer gets the correct coordinate system, but somehow
features are not displayed correctly, see figure 6.2. However, this is an internal
problem to deal with the features from the GML encoding in GeoMedia Viewer.

<?xml version="1.0" encoding="ISO-8859-1"?>
<xs:schema
 targetNamespace="http://130.161.150.109:8080/geoserver"
 xmlns:cad="http://130.161.150.109:8080/geoserver"
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified" version="1.0">
<xs:import namespace="http://www.opengis.net/gml"
schemaLocation="http://130.161.150.109:8080/geoserver/data/capabilities/gml/2.1.2/feature
.xsd"/>
<xs:complexType xmlns:xs="http://www.w3.org/2001/XMLSchema" name="DRAFT_BOUNDARY_Type">
 <xs:complexContent>
 <xs:extension base="gml:AbstractFeatureType">
 <xs:sequence>
 <xs:element name="SHAPE" minOccurs="0" nillable="true"
type="gml:MultiLineStringPropertyType"/>
 <xs:element name="OBJECT_ID" minOccurs="0" nillable="true" type="xs:decimal"/>
 <xs:element name="CLASSIF" minOccurs="0" nillable="true" type="xs:decimal"/>
 <xs:element name="STATUS_CD" minOccurs="0" nillable="true" type="xs:decimal"/>
 <xs:element name="OBJECT_DT" minOccurs="0" nillable="true" type="xs:decimal"/>
 <xs:element name="TMIN" minOccurs="0" nillable="true" type="xs:decimal"/>
 <xs:element name="TMAX" minOccurs="0" nillable="true" type="xs:decimal"/>
 <xs:element name="SOURCE" minOccurs="0" nillable="true" type="xs:string"/>
 <xs:element name="QUALITY" minOccurs="0" nillable="true" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:element name='DRAFT_BOUNDARY' type='cad:DRAFT_BOUNDARY_Type'
substitutionGroup='gml:_Feature'/>

</xs:schema>

Figure 6.1 Stripped XML Schema document that is accepted by GeoMedia Viewer, because all restrictions
have been left away.

Chapter 6: Suitability of WFS for transactions: analysis

 62

 (a)

(b)
Figure 6.2 (a) is a screenshot of GeoMedia Viewer, (b) of the case study client of approximately the same

area. It shows that the orientation of features in GeoMedia Viewer is quite different from the orientation in
the case study client.

However, GeoMedia Viewer managed to connect to the server and retrieve all features.
This shows that WFS actually can work as an interoperable service. That is, some client,
not knowing anything about the internal setup of the server, can retrieve data from that
server because both WFS client and the web feature server are compliant with the WFS-
specification. If existing applications (like GIS-software for analysis or viewers) are able
to connect to a web feature server, data could also easily be used in thick clients like
GeoMedia Pro or ArcGIS.

The fact that WFS uses standard web technologies as HTTP and XML (GML and
the WFS-requests/responses self) makes integration of geographic data in web-
applications relatively easy. Common web technologies like Java Server Pages and SVG
can be used for that, since these are very suitable to deal with XML. In addition, for
these common standards (technologies) all kinds of tools – both commercial and

Chapter 6: Suitability of WFS for transactions: analysis

 63

freeware - are available, which makes development of open, interoperable services less
difficult.

6.2 Handling transactions

For processing geometric transactions, WFS only provides an interface. This means that
WFS describes the operations and the requests/responses for sending geometric
transactions. Processing a transaction (this includes how the transaction is dealt with in
the database, e.g. atomic) is up to the server. Below, some issues are discussed that are
important to make sure that the transaction is processed correctly.

• Transactions have to start and end with an operation like START and

COMMIT/ABORT. In WFS, the transaction is handled as an XML-element. That
is, it has to start with <Transaction> and end with </Transaction>, everything in
between is the content of the transaction. The server can assure that the entire
transaction is received, by checking that the XML-request is well formed and
valid. This means that any incomplete request, for example because the network
connection was lost while sending the transaction, can easily be rejected.

• Transactions may consist of several operations that modify features. The fact that
transactions in WFS can consist of Insert, Update and Delete-elements is very
convenient for sending large, complex transactions to one server. In the case
study, composing and sending such transactions has been accomplished. WFS
transactions can be dealt as ‘true’ database transactions (in case a web feature
server is based on a DBMS), in the sense that if one of the operations (that is part
of the transaction) fails, the entire transaction fails.

However, web feature servers are allowed to process transactions
partially, e.g. if the server is not based on a DBMS. How a transaction is dealt
(e.g. atomic or not), can’t be advertised by the server. This means that clients
can’t know how transactions are dealt at the server, even if they have asked for
the capabilities.

• Important to note is that transactions, as defined in the WFS specification, can
only be performed on one web feature server. Transactions running over
multiple servers can only be performed in another way. For example, this can be
done by using the locking operations and some mediator that manages the locks.
That mediator manages the “parent” transaction (i.e. the transaction that accesses
several servers) by splitting that up in a transaction for every server that is
involved. Every individual transaction must succeed to make the parent
transaction succeed.

• Processing the transactions includes ensuring serializability. Using and
managing locks to ensure serializability is the responsibility of the server.
However, the WFS specification describes operations to ask for locks and release
locks at the feature level. This should allow clients to request servers to acquire
and release locks, because they want to modify certain features. The locking-
operations of WFS appear provide was to ask for locks and release these again on
the request of a client. These could be used to implement long transactions, but
this has not been tested.

Chapter 6: Suitability of WFS for transactions: analysis

 64

• For certain operations to edit geographic databases, it is necessary to lock an
area. For example, if some person is editing features in an area, it could be
forbidden for others to add new features to that area, since this can cause
inconsistencies. The WFS specification only defines operations to lock individual
features, not areas.

• Compound keys are not allowed in WFS. In addition, it is not possible to
advertise in the XML Schema definition of a feature type which attribute is the
identifier, since GML always uses the fid-attribute to indicate the value of the id.

6.3 Validation of features

Datasets often have restrictions that features should meet with. For instance, a road
cannot intersect a house, a house should at least have an area of 10 square meters,
addresses must have a postal code or a boundary must have a reference to the parcel left
and right of it. Of course, these restrictions should also hold for all new features or
changed features. Validation of (changes in) features should prevent that a dataset will
contain invalid features.

The server would be the best place to perform the validation checks. However, if
the client is able to construct features that already are consistent with the constraints in
the data model of the server, unnecessary transactions can be avoided.

Since a transactional web feature service could have numerous clients that
modify features, the chances increase that invalid features are submitted to the dataset.
This makes validation a very important issue. The WFS-specification defines some
operations and mechanisms that can be used for validation. To what extent these
mechanisms are sufficient for validation of features, is the topic of this section.

6.3.1 Validation of single features

In any Web Feature Service, every feature type must be defined in an XML Schema
document at the server side. This XML Schema document may contain all kinds of
constraints on attributes/elements of a feature, see figure 6.3 for an example. Such a
schema can be used to validate features at the server side, not between features or
objects.

In addition, clients can ask for the schema description by sending the
DescribeFeatureType-request. Clients could validate newly created or changed features
against the corresponding schema, before sending them to the server. Validation checks
thus can be also done at the client side. However, for some clients these schemas are
difficult to understand, as described in section 6.1 for GeoMedia Viewer.

<xs:complexType name="DRAFT_BOUNDARY_Type">
 <xs:complexContent>
 <xs:extension base="gml:AbstractFeatureType">
 <xs:sequence>
 <xs:element name="FID" nillable="false" minOccurs="1" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:maxLength value="11"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

Chapter 6: Suitability of WFS for transactions: analysis

 65

 <xs:element name="SHAPE" type="gml:LineStringPropertyType" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="OBJECT_ID" nillable="true" minOccurs="1" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:maxLength value="11"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="CLASSIF" nillable="false" minOccurs="1" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:maxLength value="11"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
…
</xs:complexType>

Figure 6.3 Example of a part of an XML-schema. Restrictions are defined by the <xs:restriction>-element.

If a client does not validate features for some reason (a client is not obligated to validate
features against the schema), the server could still do the validation. The server can do
this by validating all new features and changes against the schema description in the
web feature server, but this is not obligatory in the WFS-specification.

Validation of data is ideally done as close as possible to the database self. The
reason for this is that inconsistencies may arise in the database because the validation
process was missed26.

In the database constraints can be defined. For instance, the length of an attribute
can be constrained in the definition of a table in a relational database. If a feature is
passed from the web feature server to the database and the database does not accept the
feature because an attribute is not valid (e.g. too long), the database throws an exception.
This exception is passed to the web feature server. The web feature server then
constructs an error report and sends that to the client, as in figure 6.4. The WFS
specification does not specify the contents of the error report. So the error message could
literally be the error message of the DBMS, but it may also be some error of the web
feature server that is installed on the DBMS. In any case, the result is that the server has
not accepted the feature, so the dataset is still correct in the sense that it only contains
valid features. The client has also been notified that the transaction failed.

<wfs:WFS_TransactionResponse
 version="1.0.0"
 xmlns:wfs="http://www.opengis.net/wfs"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wfs
http://130.161.150.109:8080/geoserver/data/capabilities/wfs/1.0.0/WFS-transaction.xsd">
 <wfs:TransactionResult handle="">
 <wfs:Status>
 <wfs:FAILED/>
 </wfs:Status>
 <wfs:Locator></wfs:Locator>
 <wfs:Message>org.vfny.geoserver.responses.wfs.WfsTransactionException: Row adding
failed.
 at
org.vfny.geoserver.responses.wfs.TransactionResponse.execute(TransactionResponse.java:289
)

26 This does not mean that validation should only be done at the database. It can be very
beneficial if validation also is done in the client to give feedback to the user quickly.

Chapter 6: Suitability of WFS for transactions: analysis

 66

 at
org.vfny.geoserver.responses.wfs.TransactionResponse.execute(TransactionResponse.java:66)
 at org.vfny.geoserver.servlets.AbstractService.doService(AbstractService.java:280)
 at org.vfny.geoserver.servlets.AbstractService.doPost(AbstractService.java:225)
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:760)

…
</wfs:Message>
</wfs:TransactionResult>

</wfs:WFS_TransactionResponse>

Figure 6.4 Example of an error message, caused by an attribute that violated a constraint in the database.
The message itself (between <wfs:Message> and </wfs:Message>) is constructed by the web feature server.

However, besides some elements to indicate that an error occurred, the web
feature server is completely free to specify the contents of the error message. This can
result in ugly, hard to understand messages, like in figure 6.4. For a generic client these
messages cannot be interpreted to give useful feedback to the user. A user thus may not
understand what went wrong when sending the transaction. In practice, to give useful
feedback to a user, a generic client therefore should validate features itself.

If error messages were standardized (e.g. using error codes), it would be easier to
give useful feedback to clients. Of course, it is very difficult to standardize all errors of
different (heterogeneous) systems. However, common errors like features that don’t
validate against the schema or features that violate a constraint should be standardized.
This way, generic clients can give useful feedback for at least part of the errors (‘known’
or standardized errors, like in HTTP) that might occur.

6.3.2 Validation of features in their environments

As described in Chapter 3, changes in features could affect other (already existing)
features in the dataset as well. In a topologically structured dataset features cannot just
be inserted, changed geometrically or deleted, since relations between features are
stored and modifications affect other features than the features in the transaction alone.
Spatial constraints (e.g. a road is not allowed to intersect a house) on non-topologically
structured data could also be relevant. Therefore some validation and processing is
necessary to maintain the topologic structure or to check other spatial constraints.

The current specification of WFS (1.0.0) uses GML 2.1.2 to describe new features
in insert operations. Since topology is not supported in GML 2.1.2, topology is hard to
describe in the transaction itself. Thus, the server should do some checking and maybe
some extra processing to insert new features. But deletion of features and changes in
geometry affect the topologic structure as well. Therefore, the server should perform
validation checks and compute the topologic structure of the affected area again for
every transaction that is performed.

Take for example a topological model where it is necessary that objects refer to
other objects. If new features are created, these new features must refer to other
(possibly new) objects as well, even before the transaction is sent. Otherwise the
transaction contains invalid features. This means that these new features have to know
the id of features that don’t have an id yet.

This problem can be solved by either reserving identifiers at the server before
new features are created (so the client requests new ids from the server, creates new
features and then sends the transaction), or by providing temporary references which
are changed into the actual ids as soon as the transaction is processed at the server. The

Chapter 6: Suitability of WFS for transactions: analysis

 67

latter leaves the database in an inconsistent state until the temporary ids have been
replaced, so preferably new ids are acquired before the database is affected. But in WFS
there is no such mechanism or operation.

A good generic client might understand topological structures. For such a
generic client it is difficult to provide features that are valid in the topologically
structured dataset, because clients don’t know what that structure exactly is. If a server
would also have an output format that supports topology (e.g. GML 3.0), clients could
retrieve topology from the server. However, transactions are still difficult to process,
since a client must send its features in GML 2.1.2 format to the server at this moment.
Topology then can hardly be taken into account if the current WFS-specification is
implemented.

The future version of WFS will be based on GML 3. Because GML 3 is more
comprehensive and complicated than GML 2.1.2, GML profiles could be used to make
the use and implementation of GML 3 easier. Discussion to define such GML 3 profiles
is going on at the moment.

For other spatial constraints holds actually the same. Some additional checking is
necessary, before the actual transaction is performed. If features do meet with the spatial
constraints, then the features can be committed to the dataset. Otherwise, the transaction
will fail entirely on a DBMS based WFS (or partially on non-DBMS based servers, since
these do not support true transactions) and an error message must be sent to the client.

Validation and processing features at the server side can be implemented, without
violating the WFS-specification. The reason for this is that it is an issue for the server to
deal with internally27. However, generic clients will not know anything about
restrictions (topological and other spatial constraints) on the relations between other
features unless these are encoded somewhere, e.g. in the GML application schema. If
features are not accepted, the web feature server will respond with an error report. But
again, since the contents of the error message are not standardized, it is difficult for a
generic client to interpret these messages and give feedback to the user.

6.4 Application logic

This section deals with application logic in systems that use WFS for exchanging and
manipulating geodata. Examples of application logic are mentioned in Chapter 5, like
authorization, users rights, billing/costs and transaction constraints. Spatial constraints
on features can be considered application logic as well. To what WFS is capable of
dealing these constraints, has already been discussed in section 6.3.

Regarding application logic, choices have to be made where to implement this.
WFS limits most of these choices because the specification defines the operations and the
requests and responses both client and server should deal with. For transactional WFS,
clients must have functionality to compose the requests for manipulation of features and
functionality to communicate these requests to the server. A client is not allowed to do
that in another way. For example, just sending coordinates and the type of a new feature
to the server and construct new features at the web feature server itself is not allowed.

27 For example, GeoServer 1.2 is going to support some validation checks internally.

Chapter 6: Suitability of WFS for transactions: analysis

 68

Some choices are thereby already made; some issues concerning application logic still
have to be dealt with in the service.

Application logic like user rights and authorization are not dealt with in the web feature
service itself. This means that anyone with access to the network where the server
resides on (e.g. the Internet) could have access to the service. For authorization sufficient
technologies are available (e.g. SHTTP or certificates). Authorization itself therefore is
not a big problem.

Once a user is logged on, a user can use GetCapabilities to know what operations
are allowed at what feature type. However, in a Web Feature Service it is not possible to
constrain the rights of users per user type. So if it is necessary for example to allow that
user type A may read and write feature type I, then it is not possible in WFS to allow
user type B to only read feature type I. Therefore some application service should
manage user rights or the server should do that some other way, since it is not dealt
with in the WFS specification.

There is an element in the Capabilities document (<AccessConstraints>) that
may contain a text block to describe any access constraints of the service. The service
provider should make sure that a clear description is given in the
<AccessConstraints> how a client can get access. This element could be used to refer
to an application service or an application that manages authorization, but how a client
should interpret this - for instance to access that application service -, is not clear since
the server is completely free (there are no fixed codes) to fill in the element. The other
way around, how web feature servers can be protected against clients that access the
service and ignore the application service that manages authorization (if possible), is not
discussed in the WFS specification either.

As mentioned in Chapter 5, constraints may exist on the structure of a transaction, that is
constraints28 on how many and which operations may be used in a transaction. The
server should check these constraints or some mediating application service could do
that for the web feature service. However, if the constraints are checked somewhere else
than at the server, web feature servers should make sure that clients use those
application services and that application services have the “knowledge” they need to
check the constraints. This seems to be sensitive for errors, since changes in application
logic should also be known in the application service.

If WFS deals with such transaction constraints directly, checking transactions - or
validating transactions – would be easier and more robust. For instance, similar to
feature type schemas, WFS could also provide XML-schemas for transactions that clients
can request, to make sure that the transactions they send are of the correct structure. It
also seems to be more natural to do these checks (if necessary) at the server, because the
type of modifications that is allowed on a dataset is tightly coupled to the data layer and
consequently to the web feature server or the DBMS.

28 In fact, dealing with all kinds of constraints in a data model is a generic problem. Using a
Model Driven Approach (MDA) constraints have to be modeled first, for instance in UML
(Unified Modeling Language) and OCL (Object Constraint Language). The actual
implementation is a derivative of the model. For more information on MDA, UML and OCL, visit
the website of the Object Management Group (http://www.omg.org/, [49]).

Chapter 6: Suitability of WFS for transactions: analysis

 69

From this section becomes clear that transactional web feature services could demand
for some mediating service to manage user rights and other application logic, e.g.
billing. This service is an application service for the web feature service, which can be
accessed by clients.

But if it is compulsory to use some application service, there still needs to be a
way to protect the web feature service against clients that try to send requests to the web
feature service and ignore the application service. The WFS specification does not define
how to refer to application services that should be used with the web feature server. The
problem is thus how to make sure how requests from (possible) other clients that do not
use the appropriate application service, are rejected.

Dealing with application logic is a generic problem for all kinds of web services.
Dealing with this application logic and issues concerning application services are not
treated more extensively, because that is out of the scope of this thesis.

6.5 Conclusion

The following conclusions can be drawn from this chapter:
• As should be the case with interoperable services, the developed server can be

accessed with another (WFS-)client than the developed client. With another client
it is possible to retrieve data from the server, although there still are some
problems with retrieving all data correctly. This shows that realizing robust,
interoperable services is quite a difficult task, because implementation of the
specification is a very exact matter. Common tools as XML validators are helpful
when building interoperable services. The fact that features from an unknown
data source can be retrieved, visualized and queried shows the power of
(interoperable) Web Feature Services.

• Transactions can be composed of Insert, Update and Delete operations very
flexible. The number of these operations and the types can be mixed freely. This
is very convenient for large or complex transactions, but it can cause problems if
transactions are constrained somehow.

• For transactional web feature servers, validation of features is important. WFS
provide operations to request the schema description of feature types. With this
schema description WFS can validate single features, that is, the attributes of
features can be checked. This is necessary to create valid new features.

Validation against other constraints (e.g. topological or spatial
constraints) is not dealt with by WFS. For clients it is not possible to get
descriptions of such constraints. In addition, if features do not pass the
constraints, it is not possible to inform clients clearly about the constraints that
have been violated. The reason for this is that the error messages are not
standardized but depend on the web feature server. This way, (generic) clients
cannot interpret these messages to give useful feedback to a user and thus it is
difficult for a user to correct the features if necessary.

• Since WFS uses GML 2.1.2 in the interface and GML 2.1.2 does not support
topology, transactions on topologically structured data are difficult to realize. In
addition, WFS doesn’t have an operation to acquire new ids. Such an operation

Chapter 6: Suitability of WFS for transactions: analysis

 70

could be necessary in case new objects need to refer to each other in a
topologically structured dataset.

• WFS misses an operation to lock an area, in addition to locking individual
features.

• Application logic concerning transactions could partially be dealt with in an
application service (e.g. billing) and partially at the server (e.g. transaction
constraints, validation of features). However, referring to these services from the
web feature server is not dealt with by the WFS specification.

Although there are some problems to overcome especially with constraints on datasets,
the conclusion can be drawn that WFS is suitable to retrieve and modify geographic
features over the Internet or other large networks.

Chapter 7: Conclusions and recommendations

 71

7 Conclusions and recommendations

7.1 Conclusions

GIS Web Services focus on the technical part of problems concerning interoperable
geoprocessing. The OpenGIS Consortium has developed several GIS Web Services,
based on ICT standards of the World Wide Web Consortium (W3C), like XML and
HTTP. In this context, Web Feature Services are a unique type of services, since they are
the only open standards-based services that can be used for editing geographic data.

In order to modify data in a multi-user environment, transactions can be used to
make sure that modifications of several users do not interfere. Geometric transactions
are usually complicated to process because of the geometric properties. In this context,
not only common difficulties with geo-databases like encoding, indexing and
computations with spatial operators play a role. But in particular the relations of
geographic features with features in the surroundings (either explicitly stored in some
topological structure or in other spatial constraints, or implicitly from the geometric
properties) make geometric transactions complicated to process.

Because Web Feature Services are based on common web technologies, WFS can benefit
from other developments in these technologies and web services in general. Also, for
these technologies lots of tools - commercial and free - are available that can be used to
develop interoperable WFS clients and servers. As is shown, transactional Web Feature
Services can be developed with XML, Java and Java Server Pages and SVG. These
technologies can be used to develop light, yet powerful, WFS-clients.

Interoperability tests showed that not all currently available clients that claim to be WFS-
compliant, work correctly. The clients either can’t connect to a web feature service, or
can’t retrieve all data correctly. However, the tests also showed the power of
interoperable services, since a generic client - not having any knowledge of the data
source – could retrieve features from the data source, because a web feature server was
configured on top of it.

The WFS-specification provides sufficient operations to make sure that geometric
transactions can be sent from client to server (processing these transaction requests is up
to the server). Using general web technologies as HTTP, XML and GML, with WFS
geographic features can be retrieved, created, modified and deleted. The fact that the
Insert, Update and Delete operations can be used in one transaction allows for very
flexible geometric transactions, thereby making it possible to process complex,
geometric transactions in a web environment.

The defined operations for locking existing features can also be used to define
transactions over more than one web feature server or long transactions. However, WFS
lacks an operation to lock an area, which is necessary for certain applications.

GML 2.1.2 is used in WFS to tackle problems with the encoding of geographic
features. However, GML 2.1.2 does not support topology and temporal aspects and

Chapter 7: Conclusions and recommendations

 72

lacks default styling, which could be very practical. With GML 3.0 topology, temporal
aspects and default styling can be encoded.

The filters from the Filter Encoding Specification are sufficient to select the
features on which (spatial) operations should be performed. Another issue with the use
of GML in WFS is that it is not possible to have compound keys.

The WFS specification offers a mechanism (using the GetCapabilities and
DescribeFeatureType operations) that makes validation of (single) features possible, both at
the client and server side. This way, transactions should only contain valid features, at
least valid for the corresponding feature definition.

At this moment, WFS does not provide sufficient operations to deal with
transactions where topology or spatial constraints are involved. It is not the
responsibility of WFS to actually execute the validation and processing of this kind of
transactions, but there is no mechanism in WFS for clients to retrieve the information
they need to construct features that do not violate the topological structure or the spatial
constraints of the dataset. In addition, new objects in (a transaction) cannot refer to each
other using the correct identifiers, since WFS does not have an operation to acquire
feature identifiers before the actual features have been created. Using generic clients for
transactions on topologic data or data with spatial constraints is therefore difficult.

Error messages are not standardized, which makes it very difficult for (generic)
clients to give useful feedback to a user in the case errors have occurred during a
transaction.
 From the case study can also be concluded that application logic is only partially
accounted for in WFS. Per application, application logic should be divided between
other (mediating) services like application services, supporting services like billing
services, the server itself and the client.

The main conclusion is that Web Feature Services are suitable and powerful,
interoperable GIS web services to edit geographic data over large networks as the
Internet. But WFS (version 1.0.0) is not advanced enough to strongly support
transactions on complicated (e.g. with topology or other spatial constraints) data sets in
a generic way.

7.2 Recommendations

Based on the results and conclusions of this thesis, these recommendations are given:
• Incorporating GML 3.0 in WFS would allow WFS to deal with topology,

temporal aspects and default styling much easier. However, if WFS will use GML
3.0, web feature services will become more complicated, since GML 3.0 is more
complex than GML 2.1.2. How to use GML 3.0 and maybe even what parts of
GML 3.0 should be used in WFS therefore needs to be investigated.

• Error reporting should be enhanced in WFS. Common errors should be
standardized, to make it possible for a client to give useful feedback to the user.

• To support transactions better, additional operations and extensions of existing
operations should be defined in the next WFS specification. It concerns an
operation to lock areas and an operation for clients to acquire identifiers from the
server to create new features. Also, the capabilities document should be extended

Chapter 7: Conclusions and recommendations

 73

with an element to state how (e.g. atomic) transactions are dealt with at the
server.

• Where to deal with application logic will remain a difficult design issue,
especially in interoperable services. However, some issues like different rights
per user or user group, constraints on the structure of transactions and validation
against topologic and spatial constraints, tend to be tightly coupled with a
dataset and could thus (nearly always) be dealt with at the server side. For
instance, constraints on the structure of transactions could easily be handled by
defining XML Schemas for transactions for each application. But also UML and
OCL could be used to define constraints. Similar to the DescribeFeatureType- and
GetCapabilities-operation one could imagine that an operation to get such a
schema or constraints is then needed to inform a client of these restrictions and
make validation of transactions possible (for example GetConstraints). The same
could hold for spatial constraints, which might be modelled in XML as well, so
that clients and servers can exchange these constraints.

Research to determine which issues could and should be dealt with in the
WFS-specification as well as how these issues could be part of the WFS-
specification, has to be done to allow (generic) interoperable clients and servers
to deal better with application logic (including how constraints should be
passed).

• Research to the need and possibilities to extend WFS with a Data Definition
Language should be done.

• As soon as more transactional clients and servers are available that claim to be
WFS-compliant, extensive testing could be done to test whether WFS can deal
with transactions sufficiently in an interoperable manner.

Chapter 7: Conclusions and recommendations

 74

References

 75

References

[1] Alameh, N., 2002, Service Chaining of Interoperable Geographic Information Web
Services. Greenbelt, USA, accessed at
http://web.mit.edu/nadinesa/www/paper2.pdf.

[2] Alameh, N., 2001, Scalable and Extensible Infrastructures for Distributing

Interoperable Geographic Information Services on the Internet. PhD Dissertation
Submitted to MIT Libraries. In [1].

[3] Aybet, J. 1990, Integrated mapping systems – data conversion and integration.

Mapping awareness, 4(6), 18-23.

[4] Berg, C. van den, Tuijnman, F., Vijlbrief, T., Meijer, C., Oosterom, P. van,

Uitermark, H., Multi-server internet GIS: Standardization and practical
experiences. In Goodchild, M.F., M.J. Egenhofer, R. Fegeas, and C.A. Kottman,
editors (1999), Interoperating Geographic Information Systems, Boston, USA,
(International Conference and Workshop on Interoperating Geographic
Information Systems, Santa Barbara, California, USA, December 3-4 and 5-6,
1997) pages 365-378.

[5] Bernstein, P.A., Hadzilacos, V., Goodman, N., Concurrency control and recovery in

database systems, Addison-Wesley Publishing Company, 1987, USA.

[6] Bishr, Y., Radwan, M., Molenaar, M., 1998, Aspects of interoperability: a GII

perspective, International Institute for Aerospace Survey and Earth Sciences (ITC),
The Netherlands.

[7] Bos, B., 1999, XML in 10 points. http://www.w3.org/XML/1999/XML-in-10-

points.

[8] Buehler, K. and McKee, L., 1998, The OpenGIS Guide: Introduction to Interoperable

Geoprocessing and the OpenGIS Specification. OpenGIS Consortium Inc., Waltham
(USA).

[9] Eckstein, R., Casabianca, M., 2001, XML Pocket Reference, O’Reilly & Associates,

2nd edition.

[10] Egenhofer, M.J., 2002, Toward the Semantic Geospatial Web, ACM-GIS’02,

November 8-9, 2002, USA.

[11] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee,

T., 1999, Hypertext Transfer Protocol -- HTTP/1.1, W3C.

[12] Flowerdew, R., 1991, Spatial Data Integration. In [17]

References

 76

[13] Garnett, J., Owens, B., 2003, Validating Web feature server Design Document,

Refractions Research Inc., Victoria, Canada, accessed at
http://vwfs.refractions.net/docs/Validating_Web_Feature_Server.pdf.

[14] ISO, 2001, ISO/TC 211 Geographic Information / Geomatics,

http://www.statkart.no/isotc211/, in [1].

[15] Laurini, R., 1994, Sharing Geographic information in distributed databases.

Proceedings URISA, pp. 441-454.

[16] Laurini, R., 1998, Spatial Multidatabase Topological Continuity and Indexing: a

Step towards Seamless GIS Data Interoperability. International Journal of
Geographical Information Sciences, 12(4):373–402, june 1998.

[17] Maguire, D.J., Goodchild, M.G., Rhind, D.W. (eds), 1991, Geographical Information

Systems: Principles and Applications, London, United Kingdom, Longman.

[18] Molenaar, M., 1998, An Introduction to the Theory of Spatial Object Modelling for

GIS, London, UK.

[19] OGC, 1999, The OpenGIS Abstract Specification Topic 5: Features, version 4,

Reference number: 99-105r2, OpenGIS Consortium Inc, USA.

[20] OGC, 2001, Vretanos, P. (editor), Filter Encoding Implementation Specification,

version 1.0.0, Reference number: OGC 02-059, OpenGIS Consortium Inc., USA.

[21] OGC, 2002 a, Cox, S., Cuthbert, A., P., Lake, R., Martell, R. (editors), OpenGIS

Geography Markup Language (GML) Implementation Specification, version 2.1.2.
Reference number: OGC 02-069, OpenGIS Consortium Inc., USA.

[22] OGC, 2002 b, OGC Web Services Initiative 1 (OWS1) Baseline Documents Page,

http://ip.opengis.org/ows1/docIndex.html, in [1].

[23] OGC, 2002 c, Vretanos, P. (editor), Web Feature Service Implementation Specification.

Reference number: OGC 02-058, OpenGIS Consortium Inc., USA.

[24] OGC, 2002 d, Beaujardière, de La, J. (editor), Web Map Service Implementation

Specification, version 1.1.1, Reference number: OGC 01-068r3, OpenGIS
Consortium Inc., USA.

[25] OGC, 2003 a, Buehler, K. (editor), OpenGIS Reference model, Reference number:

OGC 03-040, OpenGIS Consortium Inc., USA.

[26] OGC, 2003 b, Evans, J. (editor), Web Coverage Service (WCS) version 1.0, Reference

number: OGC 03-065r6, OpenGIS Consortium Inc., USA.

References

 77

[27] OGC, 2003 c, Cox, S., Daisey, P., Lake, R., Portele, C., Whiteside, A. (editors),
OpenGIS Geography Markup Language (GML) Implementation Specification, version 3.
Reference number: OGC 02-023r4, OpenGIS Consortium Inc., USA.

[28] Oosterom, P. van, 1997, Maintaining consistent topology including historical

data in a large spatial database. In Chrisman, N. (Ed.), Proceedings of Auto-Carto
13, Bethesda: ACSM & ASPRS, pp. 327-336.

[29] Rodriques Lopes, D.L., Zevenbergen, J.A., Boekhold, R., Kadasters (dictaat), in

Dutch, TU Delft, September 1998.

[30] Sheth, A.P., Larson, J.A., 1990, Federated Database Systems for Managing

Distributed, heterogeneous and autonomous Databases. ACM Computing
Surveys, Vol. 22, No. 3, September 1990.

[31] Uitermark, H., 2001, Ontology-based geographic data set integration, PhD-thesis,

Deventer, the Netherlands.

[32] Vckovski, A., 1998, Interoperable and distributed processing in GIS, Taylor & Francis

Ltd., London.

[33] Vries, M.E. de, GML and SVG: from content to presentation. SVG Open Developers

Conference, Zürich, Switzerland, July 15-17, 2002

[34] Vries, M. de, Tijssen, T.P.M., Stoter. J.E., W. Quak, and Oosterom, P.J.M. van. The

GML prototype of the new TOP10vector object model. Report for the Topographic
Service, Delft University of Technology, GISt No. 9, Delft 2001

[35] Wiederhold, G., 1992, Mediators in the Architecture of Future Information

Systems, Computer, March 1992, pp. 38-49.

[36] Worboys, M.F., 1995, GIS: a computing perspective, Taylor & Francis, London.

Websites

[37] DTED, http://assist.daps.dla.mil/docimages/0002/45/22/89020.PD8, last

visited 23 April 2004

[38] GeoTIFF, http://www.remotesensing.org/geotiff/geotiff.html, last visited 23

April 2004

[39] HDF-EOS tools and information center,

http://hdfeos.gsfc.nasa.gov/hdfeos/index.cfm, last visited 26 April 2004.

[40] Introduction to JavaServer Pages,

http://developer.netscape.com/viewsource/kuslich_jsp/kuslich_jsp.html,
visited 13 April 2004

References

 78

[41] Java Server Pages Technology, http://java.sun.com/products/jsp/index.jsp, last

visited 26 April 2004.

[42] NITFS Technical Board Public Page,

http://www.ismc.nima.mil/ntb/baseline/1999.html , last visited 23 April 2004

[43] Oracle Technology Network, http://otn.oracle.com, visited 21 April 2004

[44] Scalable Vector Graphics at the W3C website,

http://www.w3.org/TR/SVG/intro.html, visited 13 April 2004

[45] Website of the Apache Jakarta Project, http://jakarta.apache.org/tomcat/, last

visited 26 April 2004.

[46] Website of Deegree project, http://deegree.sourceforge.net/, last visited 26 April

2004.

[47] Website of GeoServer Project, http://geoserver.sourceforge.net, last visited 30

March 2004.

[48] Website of ISO TC 211 Geographic Information/Geomatics, http://www.isotc211.org,

last visited 26 April 2004.

[49] Website of the Object Management Group, http://www.omg.org/, last visited 24

April 2004.

[50] Website of OpenMap, http://openmap.bbn.com, last visited 23 April 2004

[51] Website of PostGIS, http://postgis.refractions.net, visited 5 April 2004.

[52] Website of Resin, http://www.caucho.com/resin/, last visited 26 April 2004.

[53] XML Schema, http://www.w3.org/XML/Schema, last visited 21 April 2004

[54] XML Schema, a brief introduction, http://lucas.ucs.ed.ac.uk/xml-schema/, last

visited 19 March 2004.

[55] XSQL - Combining XML and SQL, http://xsql.sourceforge.net/, visited 13 April

2004.

Appendix A: Glossary

 79

Appendix A: Glossary

In this Glossary definitions are taken from the thesis. Only new references are explicitly
mentioned.
 Term/Abbreviation
Entire term

Explanation

Client/server The client-server architecture is a simple model of
computing, in which system functionality is
divided among the components that make
requests (the clients) and the components that
respond to them (the servers).

Federated database Federated databases are separate databases that
are structured, perhaps with middleware or
special database access software, in such a way
that they can be queried as a single database.

Geometric transaction A geometric transaction is a (database) transaction
that is performed on geographic datasets.

GML
Geography Markup Language

The Geography Markup Language (GML) is an
XML encoding for the modelling, transport and
storage of geographic information including both
the spatial and nonspatial properties of
geographic features.

HTTP
Hypertext Transfer Protocol

The HTTP protocol is a request/response
protocol. The HTTP protocol uses URI’s (Uniform
Resource Identifiers, for instance
http://www.someserver.com/index.jsp) to
identify resources. HTTP GET and POST are used
respectively to retrieve something (document,
result of a process, etc.) from the server or send
something (a message, XML-request, etc.) to the
server.

Interoperability Interoperability is the ability for a system or
components of a system to provide information
portability and interapplication, cooperative
process control. Interoperability, in the context of the
OpenGIS Specification, is software components
operating reciprocally (working with each other)
to overcome tedious batch conversion tasks,
import/export obstacles, and distributed resource
access barriers imposed by heterogeneous
processing environments and heterogeneous data.

Appendix A: Glossary

 80

Java An object-oriented programming language
developed by Sun Microsystems.

Javascript With Javascript, Java-like code can be embedded
in HTML-pages. Javascript is not as strong as
Java, but can easily be used to add some
functionality to HTML-pages.

JSP
Java Server Pages

JSP is a presentation layer technology that sits on
top of a Java servlets model and makes working
with HTML easier. It allows for mixing static
HTML content with server-side scripting to
produce dynamic output. By default, JSP uses
Java as its scripting language [40].

Mediator A mediator is software that exploits encoded
knowledge (application logic) about some sets or
subsets of data to create information for a higher
layer of application.

OGC
OpenGIS Consortium

The Open GIS Consortium Inc., a not-for-profit
trade association dedicated to promoting new
technical and commercial approaches to
interoperable geoprocessing, was founded in 1994
in response to widespread recognition of the
problem of interoperability and its many negative
ramifications for industry, government, and
academia.

Replicated database A database is called a replicated database if
multiple copies of some or all of the data are
stored at multiple sites.

Service, Web Service Web services are self-contained, self-describing,
modular applications that can be published,
located, and dynamically invoked across the web.
Web services provide access to sets of operations
accessible through one or more standardized
interfaces.

SQL
Structured Query Language

SQL is a standard language to ask (complex)
questions to and edit data in databases.

SVG
Scalable Vector Graphics

SVG is a language for describing two-dimensional
graphics in XML [44].

Appendix A: Glossary

 81

Transaction, Database transaction A transaction is a particular execution of a
program that edits the database by means of read
and write operations. In terms of SQL, these write
operations are INSERT, UPDATE and DELETE
operations.

WCS
Web Coverage Service

The Web Coverage Service (WCS) supports
electronic interchange of geospatial data as
"coverages" – that is, digital geospatial
information representing space-varying
phenomena.

WFS
Web Feature Service

Web Feature Services allow clients to retrieve and
edit geographic (vector-)data encoded in
Geography Markup Language (GML).

WMS
Web Map Service

A Web Map Service (WMS) produces maps of
georeferenced data in a digital format, e.g. JPEG,
GIF or PNG. The WMS specification standardizes
the way in which maps are requested by clients
and the way that servers describe their data
holdings.

XML
Extensible Markup Language

XML is a meta language that allows for creation
and formatting of specific document markups.
With XML, sets of tags (like in HTML) can be
defined for a specific application domain.

XML Schema An XML-schema is a document that describes the
valid format of an XML dataset. This definition
includes what elements are (and are not) allowed
at any point; what the attributes for any element
may be; the number of occurrences of elements;
etc.

XSL / XSLT
Extensible Stylesheet Language /
XSL Transformation

XSL allows developers to describe transformations
using XSL Transformations (XSLT). XSL
Transformations can convert XML documents into
HTML, another XML-document or other textual
output.

XSQL XSQL is the combination of XML and SQL to
provide a language and database independent
means for storing SQL queries, clauses and query
results [55].

Appendix A: Glossary

 82

Appendix B: Table definitions case study

 83

Appendix B: Table definitions case study

Because in the original cadastral database, features in test_boundary are uniquely
identified by its OBJECTID and TMAX, an extra column (FID) had to be added to the tables
as a unique identifier. The same holds for the table cl_parcel2. Below, the table
structures for all four tables in the case study are given with some extra remarks. For the
draft_parcel and draft_boundary tables the column FID has been added to be
primary key.

Test_boundary
Fid Int
shape SDO_geometry
object_id Int
classif Int
status_cd Int
object_dt Int
tmin Int
tmax Int
source String
quality String

Cl_parcel2
Fid Int
ogroup Int
object_id Int
slc Int
classif Int
location SDO_geometry
z Int
rotangle Int
accu_cd Int
oarea Float
object_dt Int
tmin Int
tmax Int
sel_cd String
source String
qulity String
vis_cd String
akr_area Float
bbox SDO_geometry
municip String
osection String
sheet String

Appendix B: Table definitions case study

 84

parcel String

Draft_boundary
Fid Int
object_id Int
classif Int - Classification, e.g. ‘new boundary’ or ‘striked out’
shape SDO_geometry
status_cd Int - e.g. ‘processed by notary’
object_dt Int - Date of creation of object
tmin Int – System time of ‘birth’ object
tmax Int - System time of ‘death’ object
source String – Always ‘Notary’
quality String – Always ‘Draft’

Draft_parcel
Fid Int
akte_datum Int – user date
tmin Int – System time of ‘birth’ object
tmax Int - System time of ‘death’ object
source String – Always ‘Notary’
quality String – Always ‘Draft’
municip String – cadastral municipality
osection String
parcel String
pp_i_ltr String – ‘D’ (for ‘deelperceel’, or ‘part of parcel’)
pp_i_nr String – Provided by AKR, therefore this could be ignored
x_akr_objectnummer String: Combination of municip, osection, parcel, pp_i_ltr,

pp_i_nr; Probably the reference used by the notary.
line_id1 Int – Referring to the first part of the parcel’s boundary
location SDO_geometry
d_location String
label String - Label used by notary to annotate in the deed which part

of the draft is the parcel (“het perceel aangeduid met A ..”).
status String – For instance ‘needs further processing’ or ‘processed’.
restperceel String – Indicates whether the rest of the parcel still has the

same owner.
aktenummer String: The deed number of the transaction.

Appendix C: Client in detail

 85

Appendix C: Client in detail

This appendix documents the Java Server Pages that have been developed for the case
study client. These Java Server Pages (JSPs) deal with the construction and sending of
XML-requests for WFS transactions. This appendix also provides a general description
of the client that extends section 5.4.2.

General description
The client consists of an SVG-layer that is capable of retrieving data from a web feature
server in GML and it can visualize that GML as SVG. The Adobe SVG-plug-in is needed.
The Viewer/editor uses standard SVG-functionality for zooming and panning. In this
layer new feature instances (points and polylines) can be drawn in SVG as well. Points
are used for adding features of type draft_parcel, polylines for adding features of type
draft_boundary. This layer uses HTML and JavaScript for retrieving the GML stream
and an XSLT transformation is done to make SVG out of the GML-stream.

The SVG-layer uses keyword-value-pairs for retrieving data. Filtering is not
implemented in this layer. Therefore, when requesting for raw GML or GML to
transform to SVG, the entire data set is returned. For real world applications, this is too
much, so some selection of the data has to be made.

There is one exception to this, because functionality has been implemented to
retrieve data that is in the bounding box of a parcel (a feature instance of type
CL_PARCEL2). The X_AKR_OBJECTNUMMER needs to be specified in a form in an
HTML-form in the viewer. A GetFeature request (using a filter on the
X_AKR_OBJECTNUMMER) is constructed in XML-encoding that retrieves the specified
parcel. This request is sent to the web feature server. The bounding box of the returned
feature is used for making another GetFeature-request to select data from other feature
types as well. This way a GetFeature-request is constructed that retrieves all features
that interact with the bounding box of one parcel. Thus, data are filtered using a
bounding box. With a filter to select a feature on its feature identifier (fid), these filters
are the only implemented filters in XML-encoding. The requests are constructed, sent
and processed with Java Server Pages. The returned GML is transformed to SVG again
(similar to the way GML is transformed to SVG when the entire dataset is retrieved).

In order to make valid WFS-requests for adding new features, another layer (“WFS-
layer”) is used. When a new feature is drawn in SVG, the coordinates of this feature are
passed to a form where the user has to fill in some more details on the new feature. This
is encoded in the correct XML for the corresponding feature type (a point is always of
type draft_parcel). These XML-data are added to a Transaction-request. The user can
add other transaction operations (e.g. creating another new feature) to this request.
When finished, the user has to send the transaction to the web feature server, where it is
processed. This layer consists of several Java Server Pages (JSPs).
 For deleting features, the feature has to be selected in the SVG-layer. The user can
then choose to delete the selected feature. Then the WFS-layer is called to create the
XML for deleting the feature. This XML is added to the Transaction request.

Appendix C: Client in detail

 86

Constructing the request to add a new draft_boundary
Figure C.1 shows the components (the User, the SVG-layer and the JSPs) that are
involved in constructing the XML-request for inserting a new feature instance of type
draft_boundary. The result of this is the new feature encoded in GML and the WFS-
elements for the transaction-request (for an example see Figure C.2). Note that the
feature lacks the primary key (FID), because this has to be provided on insert by the
server. This string is added to the (potentially) existing WFS-request in the
requeststore.jsp.

Figure C.1 Collaboration diagram for construction of the XML to add a new draft_boundary.

<wfs:Insert>
 <cad:DRAFT_BOUNDARY>
 <cad:SHAPE>
 <gml:MultiLineString srsName="http://www.opengis.net/gml/srs/epsg.xml#28992">
 <gml:lineStringMember>
 <gml:LineString>
 <gml:coordinates decimal="." cs="," ts=" ">106616787,448520583
106639566,448504105 106660406,448513798 106678822,448512344</gml:coordinates>
 </gml:LineString>
 </gml:lineStringMember>
 </gml:MultiLineString>
 </cad:SHAPE>
 <cad:OBJECT_ID>341411971</cad:OBJECT_ID>
 <cad:CLASSIF>31</cad:CLASSIF>
 <cad:STATUS_CD>0</cad:STATUS_CD>
 <cad:OBJECT_DT>19920213</cad:OBJECT_DT>
 <TMIN>260218287</TMIN>
 <TMAX>0</TMAX>
 <SOURCE>-</SOURCE>

Appendix C: Client in detail

 87

 <QUALITY>T1</QUALITY>
 </cad:DRAFT_BOUNDARY>
</wfs:Insert>

Figure C.2 Example of constructed string to add to the Transaction-request for a new draft_boundary.

Constructing the request to add a new draft_parcel
Figure C.3 shows the components (the User, the SVG-layer and the JSPs) that are
involved in constructing the XML-request for inserting a new feature instance of type
draft_parcel. The result of this is the new feature encoded in GML and the WFS-
elements for the transaction-request (for an example see Figure C.4). Note that the
feature lacks the primary key (FID), because this has to be provided on insert by the
server. This string is added to the (potentially) existing WFS-request in the
requeststore.jsp.

 Figure C.3 Collaboration diagram for the construction of the XML to add a new draft_parcel.

<wfs:Insert>
 <DRAFT_PARCEL>
 <TMIN>260218287</TMIN>
 <TMAX>0</TMAX>
 <SOURCE>-</SOURCE>
 <QUALITY>T1</QUALITY>
 <MUNICIP>GDA01</MUNICIP>
 <OSECTION> w</OSECTION>
 <PARCEL>X4489</PARCEL>
 <PP_I_LTR>D</PP_I_LTR>
 <PP_I_NR>0001</PP_I_NR>
 <X_AKR_OBJECTNUMMER>GDA01M 04489G0000</X_AKR_OBJECTNUMMER>
 <LINE_ID1>340505636</LINE_ID1>

Appendix C: Client in detail

 88

 <LOCATION>
 <gml:Point srsName='http://www.opengis.net/gml/srs/epsg.xml%23;28992'>
 <gml:coordinates decimal='.' cs=',' ts=' '>
106634235,448502651
 </gml:coordinates>
 </gml:Point>
 </LOCATION>
 <AKTE_DATUM>0</AKTE_DATUM>
 <LABEL>perceel A</LABEL>
 <STATUS>0</STATUS>
 <RESTPERCEEL>oude eigenaar</RESTPERCEEL>
 <AKTENUMMER>123456</AKTENUMMER>
 </DRAFT_PARCEL>
</wfs:Insert>

Figure C.4 Example of constructed string to add to the Transaction-request for a new draft_parcel.

Constructing the request to delete a feature
Figure C.5 shows the components (the User, the SVG-layer and the JSPs) that are
involved in constructing the XML-request for deleting an already existing feature. The
result of this is an XML-string that contains the WFS-elements for a Delete-operation
with the feature’s identifier (for an example see Figure C.6). This string is added to the
(potentially) existing WFS-request in the requeststore.jsp.

Figure C.5 Collaboration diagram for construction of the XML-request to delete a feature.

<wfs:Delete typeName="cad:DRAFT_PARCEL">
 <ogc:Filter>
 <ogc:FeatureId fid="DRAFT_PARCEL.7779161"/>
 </ogc:Filter>

Appendix C: Client in detail

 89

</wfs:Delete>

Figure C.6 Example of constructed string to add to the Transaction-request for deleting the feature
draft_parcel with feature identifier 7779161.

Sending a WFS transaction
When the user wishes to send the transaction to the server, the user can submit the
request from the requeststore.jsp (Figure C.7). The request is send to the Web
Feature Server and the response is send back to requeststore.jsp where the response
is shown to the user.

 Figure C.7 Sending the request from the client to the web feature server.

Appendix C: Client in detail

 90

Appendix D: Example Transactional WFS

 91

Appendix D: Example Transactional WFS

This example shows how the Web Feature Service developed in the case study can be
used to insert new features. Let’s assume that a client wishes to access the Web Feature
Service located at:
http://130.161.150.109:8080/geoserver/wfs/

The client sends the KVP-request:
http://130.161.150.109:8080/geoserver/wfs/wfs?request=GetCapabilities

The server responds with the capabilities document:
<?xml version="1.0" encoding="UTF-8"?>
<WFS_Capabilities
 version="1.0.0"
 xmlns="http://www.opengis.net/wfs"
 xmlns:cad="http://130.161.150.109:8080/geoserver"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wfs
http://130.161.150.109:8080/geoserver/data/capabilities/wfs/1.0.0/WFS-capabilities.xsd">
 <Service>
 <Name>Cadastre</Name>
 <Title>Splitting parcels</Title>
 <Abstract>This is a test server for Cadastral data. It contains some LKI-data from
the city of Gouda.</Abstract>
 <Keywords>WFS, TEST, Cadastre, Notary, Gouda, splitting parcel</Keywords>
 <OnlineResource>http://130.161.150.109:8080/</OnlineResource>
 <Fees>NONE</Fees>
 <AccessConstraints>NONE</AccessConstraints>
 </Service>
 <Capability>
 <Request>
 <GetCapabilities>
 <DCPType><HTTP><Get
onlineResource="http://130.161.150.109:8080/geoserver/wfs/GetCapabilities?"/></HTTP></DCP
Type>
 <DCPType><HTTP><Post
onlineResource="http://130.161.150.109:8080/geoserver/wfs/GetCapabilities"/></HTTP></DCPT
ype>
 </GetCapabilities>
 <DescribeFeatureType>
<SchemaDescriptionLanguage><XMLSCHEMA/></SchemaDescriptionLanguage>
 <DCPType><HTTP><Get
onlineResource="http://130.161.150.109:8080/geoserver/wfs/DescribeFeatureType?"/></HTTP><
/DCPType>
 <DCPType><HTTP><Post
onlineResource="http://130.161.150.109:8080/geoserver/wfs/DescribeFeatureType"/></HTTP></
DCPType>
 </DescribeFeatureType>
 <GetFeature>
 <ResultFormat><GML2/></ResultFormat>
 <DCPType><HTTP><Get
onlineResource="http://130.161.150.109:8080/geoserver/wfs/GetFeature?"/></HTTP></DCPType>
 <DCPType><HTTP><Post
onlineResource="http://130.161.150.109:8080/geoserver/wfs/GetFeature"/></HTTP></DCPType>
 </GetFeature>

 <Transaction>
 <DCPType><HTTP><Get
onlineResource="http://130.161.150.109:8080/geoserver/wfs/Transaction?"/></HTTP></DCPType
>
 <DCPType><HTTP><Post
onlineResource="http://130.161.150.109:8080/geoserver/wfs/Transaction"/></HTTP></DCPType>

Appendix D: Example Transactional WFS

 92

 </Transaction>

 <LockFeature>
 <DCPType><HTTP><Get
onlineResource="http://130.161.150.109:8080/geoserver/wfs/LockFeature?"/></HTTP></DCPType
>
 <DCPType><HTTP><Post
onlineResource="http://130.161.150.109:8080/geoserver/wfs/LockFeature"/></HTTP></DCPType>
 </LockFeature>

 <GetFeatureWithLock>
 <ResultFormat><GML2/></ResultFormat>
 <DCPType><HTTP><Get
onlineResource="http://130.161.150.109:8080/geoserver/wfs/GetFeatureWithLock?"/></HTTP></
DCPType>
 <DCPType><HTTP><Post
onlineResource="http://130.161.150.109:8080/geoserver/wfs/GetFeatureWithLock"/></HTTP></D
CPType>
 </GetFeatureWithLock>
 </Request>
 </Capability>
 <FeatureTypeList>
 <Operations>
 <Query/><Insert/><Update/><Delete/><Lock/>
 </Operations>
 <FeatureType>
 <Name>cad:CL_PARCEL2</Name>
 <Title>CL_PARCEL2</Title>
 <Abstract>Parcel location data</Abstract>
 <Keywords/>
 <SRS>EPSG:28992</SRS>
 <LatLongBoundingBox minx="4.5" miny="51.8" maxx="5.0" maxy="52.3"/>
 </FeatureType>
 <FeatureType>
 <Name>cad:DRAFT_BOUNDARY</Name>
 <Title>DRAFT_BOUNDARY</Title>
 <Abstract>draft_boundary where drafts of boundaries should be placed in</Abstract>
 <Keywords/>
 <SRS>EPSG:28992</SRS>
 <LatLongBoundingBox minx="4.5" miny="51.8" maxx="5.0" maxy="52.3"/>
 </FeatureType>
 <FeatureType>
 <Name>cad:DRAFT_PARCEL</Name>
 <Title>DRAFT_PARCEL</Title>
 <Abstract>DRAFT_PARCEL, having 1 geometrie, where drafts of parcels should be
placed in</Abstract>
 <Keywords/>
 <SRS>EPSG:28992</SRS>
 <LatLongBoundingBox minx="4.5" miny="51.8" maxx="5.0" maxy="52.3"/>
 </FeatureType>
 <FeatureType>
 <Name>cad:TEST_BOUNDARY</Name>
 <Title>TEST_BOUNDARY</Title>
 <Abstract>Parcel boundaries</Abstract>
 <Keywords/>
 <SRS>EPSG:28992</SRS>
 <LatLongBoundingBox minx="4.5" miny="51.8" maxx="5.0" maxy="52.3"/>
 </FeatureType>
 </FeatureTypeList>
 <ogc:Filter_Capabilities>
 <ogc:Spatial_Capabilities>
 <ogc:Spatial_Operators>
 <ogc:Disjoint/>
 <ogc:Equals/>
 <ogc:DWithin/>
 <ogc:Beyond/>
 <ogc:Intersect/>
 <ogc:Touches/>
 <ogc:Crosses/>
 <ogc:Within/>
 <ogc:Contains/>

Appendix D: Example Transactional WFS

 93

 <ogc:Overlaps/>
 <ogc:BBOX/>
 </ogc:Spatial_Operators>
 </ogc:Spatial_Capabilities>
 <ogc:Scalar_Capabilities>
 <ogc:Logical_Operators/>
 <ogc:Comparison_Operators>
 <ogc:Simple_Comparisons/>
 <ogc:Between/>
 <ogc:Like/>
 <ogc:NullCheck/>
 </ogc:Comparison_Operators>
 <ogc:Arithmetic_Operators>
 <ogc:Simple_Arithmetic/>
 </ogc:Arithmetic_Operators>
 </ogc:Scalar_Capabilities>
 </ogc:Filter_Capabilities>
</WFS_Capabilities>

Now the client wishes to insert a new feature instance of draft_boundary and 2 new
instances of type draft_parcel, but first needs to know how such a feature is defined.
The client requests the server to send the XML-schema of draft_boundary and
draft_parcel, by sending this DescribeFeatureType request:

http://130.161.150.109:8080/geoserver/wfs/wfs?request=DescribeFeatureTy
pe&typeName=DRAFT_BOUNDARY,DRAFT_PARCEL

The server responds with:
<?xml version="1.0" encoding="ISO-8859-1"?>
<xs:schema
 targetNamespace="http://130.161.150.109:8080/geoserver"
 xmlns:cad="http://130.161.150.109:8080/geoserver"
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified" version="1.0">
<xs:import
 namespace="http://www.opengis.net/gml"
schemaLocation="http://130.161.150.109:8080/geoserver/data/capabilities/gml/2.1.2/feature
.xsd"/>
<xs:complexType name="DRAFT_BOUNDARY_Type">
 <xs:complexContent>
 <xs:extension base="gml:AbstractFeatureType">
 <xs:sequence>
 <xs:element name="FID" nillable=“false” minOccurs="1" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:maxLength value="11"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="SHAPE" type="gml:LineStringPropertyType" minOccurs="0"
maxOccurs="1"/>
 <xs:element name="OBJECT_ID" nillable=“true” minOccurs="1" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:maxLength value="11"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="CLASSIF" nillable=“false” minOccurs="1" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:maxLength value="11"/>
 </xs:restriction>
 </xs:simpleType>

Appendix D: Example Transactional WFS

 94

 </xs:element>
 <xs:element name="STATUS_CD" nillable=“false” minOccurs="1" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:maxLength value="11"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="OBJECT_DT" nillable=“false” minOccurs="1" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:maxLength value="11"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="TMIN" nillable=“false” minOccurs="1" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:maxLength value="11"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="TMAX" nillable=“false” minOccurs="1" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:maxLength value="11"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="SOURCE" nillable=“false” minOccurs="1" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="5"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="QUALITY" nillable=“false” minOccurs="1" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="2"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
<xs:complexType name="DRAFT_PARCEL_Type">
 <xs:complexContent>
 <xs:extension base="gml:AbstractFeatureType">
 <xs:sequence>
 <xs:element name="OGROUP" nillable=“false” minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:maxLength value="11"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="OBJECT_ID" nillable=“false” minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:maxLength value="11"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="SLC" nillable=“false” minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:maxLength value="11"/>
 </xs:restriction>
 </xs:simpleType>

Appendix D: Example Transactional WFS

 95

 </xs:element>
 <xs:element name="CLASSIF" nillable=“false” minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:maxLength value="11"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="SHAPE" type="gml:PointPropertyType" minOccurs="1"
maxOccurs="1"/>
 <xs:element name="Z" nillable=“true” minOccurs="0" maxOccurs="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:maxLength value="11"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:element name='DRAFT_BOUNDARY' type='cad:DRAFT_BOUNDARY_Type'
substitutionGroup='gml:_Feature'/>
<xs:element name='DRAFT_PARCEL' type='cad:DRAFT_PARCEL_Type'
substitutionGroup='gml:_Feature'/>
</xs:schema>

Now the client constructs two new feature instances for draft_parcel and one for
draft_boundary and sends following transaction request to the server using HTTP
POST:

<?xml version='1.0'?>
<wfs:Transaction version='1.0.0' service='WFS'
 xmlns='http://130.161.150.109:8080/geoserver'
 xmlns:wfs='http://www.opengis.net/wfs'
 xmlns:cad='http://130.161.150.109:8080/geoserver'
 xmlns:gml='http://www.opengis.net/gml'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns:ogc='http://www.opengis.net/ogc'
 xsi:schemaLocation='http://130.161.150.109:8080/geoserver
 http://130.161.150.109:8080/geoserver/wfs/DescribeFeatureType?typeName=DRAFT_BOUNDARY
 http://130.161.150.109:8080/geoserver/wfs/DescribeFeatureType?typeName=draft_parcel
 http://www.opengis.net/wfs
 http://130.161.150.109:8080/geoserver/data/capabilities/wfs/1.0.0/WFS-
transaction.xsd'>
<wfs:Insert>
 <cad:DRAFT_BOUNDARY>
 <cad:SHAPE>
 <gml:MultiLineString srsName="http://www.opengis.net/gml/srs/epsg.xml#28992">
 <gml:lineStringMember>
 <gml:LineString>
 <gml:coordinates decimal="." cs="," ts=" ">
 106417204,448719275 106367184,448675614
 </gml:coordinates>
 </gml:LineString>
 </gml:lineStringMember>
 </gml:MultiLineString>
 </cad:SHAPE>
 <cad:OBJECT_ID>341411971</cad:OBJECT_ID>
 <cad:CLASSIF>31</cad:CLASSIF>
 <cad:STATUS_CD>0</cad:STATUS_CD>
 <cad:OBJECT_DT>19920213</cad:OBJECT_DT>
 <cad:TMIN>260218287</cad:TMIN>
 <cad:TMAX>0</cad:TMAX>
 <cad:SOURCE>-</cad:SOURCE>
 <cad:QUALITY>T1</cad:QUALITY>
 </cad:DRAFT_BOUNDARY>
</wfs:Insert>

Appendix D: Example Transactional WFS

 96

<wfs:Insert>
 <cad:DRAFT_PARCEL>
 <cad:TMIN>260218287</cad:TMIN>
 <cad:TMAX>0</cad:TMAX>
 <cad:SOURCE>-</cad:SOURCE>
 <cad:QUALITY>T1</cad:QUALITY>
 <cad:MUNICIP>GDA01</cad:MUNICIP>
 <cad:OSECTION> w</cad:OSECTION>
 <cad:PARCEL>X4489</cad:PARCEL>
 <cad:PP_I_LTR>D</cad:PP_I_LTR>
 <cad:PP_I_NR>0001</cad:PP_I_NR>
 <cad:X_AKR_OBJECTNUMMER>GDA01M 04489G0000</cad:X_AKR_OBJECTNUMMER>
 <cad:LINE_ID1>340505636</cad:LINE_ID1>
 <cad:LOCATION>
 <gml:Point srsName='http://www.opengis.net/gml/srs/epsg.xml%23;28992'>
 <gml:coordinates decimal='.' cs=',' ts=' '>
 106410845,448674342
 </gml:coordinates>
 </gml:Point>
 </cad:LOCATION>
 <cad:AKTE_DATUM>0</cad:AKTE_DATUM>
 <cad:LABEL>perceel A</cad:LABEL>
 <cad:STATUS>0</cad:STATUS>
 <cad:RESTPERCEEL>oude eigenaar</cad:RESTPERCEEL>
 <cad:AKTENUMMER>123456</cad:AKTENUMMER>
 </cad:DRAFT_PARCEL>
</wfs:Insert>
<wfs:Insert>
 <cad:DRAFT_PARCEL>
 <cad:TMIN>260218287</cad:TMIN>
 <cad:TMAX>0</cad:TMAX>
 <cad:SOURCE>-</cad:SOURCE>
 <cad:QUALITY>T1</cad:QUALITY>
 <cad:MUNICIP>GDA01</cad:MUNICIP>
 <cad:OSECTION> w</cad:OSECTION>
 <cad:PARCEL>X4489</cad:PARCEL>
 <cad:PP_I_LTR>D</cad:PP_I_LTR>
 <cad:PP_I_NR>0001</cad:PP_I_NR>
 <cad:X_AKR_OBJECTNUMMER>GDA01M 04489G0000</cad:X_AKR_OBJECTNUMMER>
 <cad:LINE_ID1>340505636</cad:LINE_ID1>
 <cad:LOCATION>
 <gml:Point srsName='http://www.opengis.net/gml/srs/epsg.xml%23;28992'>
 <gml:coordinates decimal='.' cs=',' ts=' '>
 106376934,448708677
 </gml:coordinates>
 </gml:Point>
 </cad:LOCATION>
 <cad:AKTE_DATUM>0</cad:AKTE_DATUM>
 <cad:LABEL>perceel B</cad:LABEL>
 <cad:STATUS>0</cad:STATUS>
 <cad:RESTPERCEEL>nieuwe eigenaar</cad:RESTPERCEEL>
 <cad:AKTENUMMER>123456</cad:AKTENUMMER>
 </cad:DRAFT_PARCEL>
</wfs:Insert>
</wfs:Transaction>

The server responds with the result of the transaction and specifies the new id (fid) of
the feature instance:
<wfs:WFS_TransactionResponse
 version="1.0.0"
 xmlns:wfs="http://www.opengis.net/wfs"
 xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wfs
 http://130.161.150.109:8080/geoserver/data/capabilities/wfs/1.0.0/WFS-
transaction.xsd">
 <wfs:InsertResult handle="null cad:DRAFT_BOUNDARY 1">
 <ogc:FeatureId fid="feature-13261823"/>
 </wfs:InsertResult>

Appendix D: Example Transactional WFS

 97

 <wfs:InsertResult handle="null cad:DRAFT_PARCEL 2">
 <ogc:FeatureId fid="feature-30940873"/>
 </wfs:InsertResult>
 <wfs:InsertResult handle="null cad:DRAFT_PARCEL 3">
 <ogc:FeatureId fid="feature-19736274"/>
 </wfs:InsertResult>
 <wfs:TransactionResult>
 <wfs:Status>
 <wfs:SUCCESS/>
 </wfs:Status>
 </wfs:TransactionResult>
</wfs:WFS_TransactionResponse>

This concludes the transaction, since it has been completed successfully.

Appendix D: Example Transactional WFS

 98

Appendix E: Open source development GeoServer

 99

Appendix E: Open source development GeoServer

The GeoServer project aims to be the Apache for web feature servers. More information
on GeoServer can be found at http://geoserver.sourceforge.net.

GeoServer 1.0.0 and 1.1.0 beta contained several bugs that troubled especially processing
transactions. In the MSc-project time has been spent on debugging and testing this. Most
problems have been solved in version 1.1.0 so that transactions can be performed. The
box below contains a discussion with a GeoServer developer on one of these one of these
issues.

Thijs:
Hi,
…, here are some things on inserts with 1.1beta (and an Oracle database).

1. …, this problem is known in JIRA already (as GEOS-33), but now I finally have a good
example. With inserts, FID's are returned as: <ogc:FeatureId fid="feature-17227669"/>. This is
GeoServer's internal FID, not the one that should come from the sequence in the (Oracle)
database.
…

Sean:
This is a known issue. Do you have any suggestions on how you would like GeoServer
to perform here? The JIRA task has a couple ideas on how to fix it, your input would be
appreciated.

Well, if you mean how GeoServer should get its value for the FID, I think the best would be that
GeoServer picks the next value from the sequence in Oracle. I assume Postgis/postgres has a
similar mechanism to generate values for id's e.g. Anyway, the specs say that the server must
generate the id and I think using a sequence would be the most elegant way. I do not know any
other solutions in Oracle than that (I'm not an Oracle expert, just some new user :)).

I've seen in the code and from a test that GeoServer does determine the next value for the Oracle
sequence correctly, but the only thing is that this value is not used/put in the database. And how
is GeoServer's internal fid determined now? It seems to be some random value, but is it checked
to the existing ids to make sure it is unique?

To make it short, maybe this is an acceptable solution for Oracle (and Postgis as well?):
- let GeoServer check for a sequence on the fidcol (don't know if this is possible however)
- in case there is a sequence: get the nextvalue and use that as ID
- in case there is no sequence: use a random value. The thing is that this value has to be checked
for uniqueness.

Sean (Oracle expert for GeoServer)
Just a couple things:

Appendix E: Open source development GeoServer

 100

* Ideally the FID should be generated from a sequence. However a sequence is not
always present and if it is it is there are a couple of different ways it can be used
depending on how the database is set up. So what I am asking for is opinions on how to
allow users to specify a FID generation strategy.

* We have come up with a way of handling this that added a configuration property for
each feature type. This property will be called something like fidGenerationType. It
will have at least the following options:
AUTO (means that the database will automatically generate the fid so geotools should
insert NULL into the fid column. This will be used when you have a trigger or an auto-
incrementing column),
the other option is MANUAL (This will use the OracleDataSource method of
incrementing the max value. It should only be used if there are no sequences or
autoincrement options). The OracleDataStore will also add an option that allows you to
specify a sequence which will be used, this option can be used if you have a sequence
but no trigger set up.

* Having thought about this, there also needs to be a way to get the last insert id when
the auto method is being used so it can be reported back. There is not really any vendor
independant way of handling this though, e.g. Oracle allows you to select curr_val from
the sequence, but I don't know how other DBs do it. This might mean that this
functionality needs to be pushed up into DataStore subclasses and a sequence name will
need to be provided if the AUTO method is used.

Besides the issued mentioned above, other problems that have been signalised and
tested in this research project are:
• problems with attributes that are allowed to be NULL but were not returned on a

GetFeature request, even if the attribute was not NULL;
• a problem with filtering on feature identifiers, that didn’t succeed;
• a problem with matching of data types (strings only containing numbers were

treated as integers or doubles)
• a problem in converting geometry from GeoServer to Oracle’s geometry type

SDO_geometry;
• problems with the structure of transaction request in XML. For example, if two

features should be inserted, two insert elements (one for each feature) had to be
used in GeoServer, while (according the WFS specification) these features are
allowed to be in one insert-element.

These problems have been solved in cooperation with developers contributing to the
GeoServer project.

Appendix F: Validation of web feature server responses

 101

Appendix F: Validation of web feature server responses

This appendix describes the validation of responses of the GeoServer web feature server.
Validation has been done using XMLSpy Home edition version 2004
(http://www.xmlspy.com, see figure F.1 for a screenshot).

Figure F.1 Screenshot of XMLSpy. The GML is validated against it’s schema and is tested valid.

For GeoServer one can define application schemas by hand. This has been done for all
feature types in the case study. During testing of GeoMedia Viewer as a WFS client, it
became clear that errors occurred when retrieving features from the web feature server
(GeoServer). GeoMedia Viewer uses the XML Schema documents for each feature type
when connecting to a web feature server. The features it received for two feature types
did not validate against the schemas and therefore were not visualized.

Because of this error, it was decided to validate the GML output stream of
GeoServer. Validating this GML did not succeed. However, the GML itself seemed to be
correct. Therefore the hand made XML Schema documents were checked. These
contained errors in some attribute and element names, for two feature types. Because the
schema was not correct, the GML did not validate (Figure F.2).

After correcting these errors (i.e. matching the element names to the exact
column names in Oracle of the corresponding feature type), the GML output stream was
validated again. Now the GML validated against the schemas.

Appendix F: Validation of web feature server responses

 102

Figure F.2 GML that is not valid against it’s schema.

This example shows that validation of XML is essential to make sure that the XML
output (in this case GML) is compliant with the specification. If the input or output of
the XML is not compliant with the service specification, the service is not truly
interoperable. This results in generic clients (as GeoMedia Viewer) that can’t use the
service correctly, for example.

