
HACKERS &
PAINTERS

BIG IDEAS FROM THE COMPUTER AGE

PAUL GRAHAM

“Brimming with contrarian insight and practical wisdom.”
—Andy Hertzfeld, co-creator of the Macintosh computer



Chapter 2

Hackers andPainters

When Ifinished grad school in computer science Iwent
to art school to study painting. A lot of people seemed surprised
that someone interested in computers would also be interested in
painting. They seemed to think that hacking and painting were
very different kinds of work—that hacking was cold, precise, and
methodical, and that painting was the frenzied expression of some
primal urge.
Both of these images are wrong. Hacking and painting have

a lot in common. In fact, of all the different types of people I’ve
known, hackers and painters are among the most alike.
What hackers and painters have in common is that they’re

both makers. Along with composers, architects, and writers, what
hackers and painters are trying to do is make good things. They’re
not doing research per se, though if in the course of trying tomake
good things they discover some new technique, somuch the better.

I’ve never liked the term “computer science.” The main reason I
don’t like it is that there’s no such thing. Computer science is a grab
bag of tenuously related areas thrown together by an accident of
history, like Yugoslavia. At one end you have people who are really
mathematicians, but call what they’re doing computer science so
they can get DARPA grants. In the middle you have people work-
ing on something like the natural history of computers—studying
the behavior of algorithms for routing data through networks, for
example. And then at the other extreme you have the hackers, who
are trying to write interesting software, and for whom comput-
ers are just a medium of expression, as concrete is for architects

18



hackers and painters

or paint for painters. It’s as if mathematicians, physicists, and
architects all had to be in the same department.
Sometimes what the hackers do is called “software engineer-

ing,” but this term is just as misleading. Good software designers
are no more engineers than architects are. The border between
architecture and engineering is not sharply defined, but it’s there.
It falls between what and how: architects decide what to do, and
engineers figure out how to do it.
What and how should not be kept too separate. You’re asking

for trouble if you try to decide what to do without understanding
how to do it. But hacking can certainly be more than just deciding
how to implement some spec. At its best, it’s creating the spec—
though it turns out the best way to do that is to implement it.

Perhaps one day “computer science” will, like Yugoslavia, get bro-
ken up into its component parts. That might be a good thing.
Especially if it meant independence for my native land, hacking.
Bundling all these different types of work together in one de-

partment may be convenient administratively, but it’s confusing
intellectually. That’s the other reason I don’t like the name “com-
puter science.” Arguably the people in the middle are doing some-
thing like an experimental science. But the people at either end,
the hackers and the mathematicians, are not actually doing sci-
ence.
Themathematicians don’t seembothered by this. Theyhappily

set to work proving theorems like the other mathematicians over
in the math department, and probably soon stop noticing that the
building they work in says “computer science” on the outside. But
for the hackers this label is a problem. If what they’re doing is
called science, it makes them feel they ought to be acting scientific.
So instead of doing what they really want to do, which is to design
beautiful software, hackers in universities and research labs feel
they ought to be writing research papers.
In the best case, the papers are just a formality. Hackers write

cool software, and then write a paper about it, and the paper be-

19



hackers & painters

comes a proxy for the achievement represented by the software.
But often this mismatch causes problems. It’s easy to drift away
from building beautiful things toward building ugly things that
make more suitable subjects for research papers.
Unfortunately, beautiful things don’t alwaysmake the best sub-

jects for papers. Number one, research must be original—and as
anyone who has written a PhD dissertation knows, the way to
be sure you’re exploring virgin territory is to to stake out a piece
of ground that no one wants. Number two, research must be
substantial—and awkward systems yield meatier papers, because
you can write about the obstacles you have to overcome in order
to get things done. Nothing yields meaty problems like starting
with the wrong assumptions. Most of AI is an example of this
rule; if you assume that knowledge can be represented as a list of
predicate logic expressions whose arguments represent abstract
concepts, you’ll have a lot of papers to write about how to make
this work. As Ricky Ricardo used to say, “Lucy, you got a lot of
explaining to do.”
The way to create something beautiful is often to make subtle

tweaks to something that already exists, or to combine existing
ideas in a slightly new way. This kind of work is hard to convey
in a research paper.

So why do universities and research labs continue to judge hack-
ers by publications? For the same reason that “scholastic aptitude”
gets measured by simple-minded standardized tests, or the pro-
ductivity of programmers by lines of code. These tests are easy to
apply, and there is nothing so tempting as an easy test that kind
of works.
Measuring what hackers are actually trying to do, designing

beautiful software, would bemuchmore difficult. You need a good
sense of design to judge good design. And there is no correlation,
except possibly a negative one, between people’s ability to recog-
nize good design and their confidence that they can.

20



hackers and painters

The only external test is time. Over time, beautiful things tend
to thrive, and ugly things tend to get discarded. Unfortunately, the
amounts of time involved can be longer than human lifetimes.
Samuel Johnson said it took a hundred years for a writer’s rep-
utation to converge.1 You have to wait for the writer’s influential
friends to die, and then for all their followers to die.
I think hackers just have to resign themselves to having a large

random component in their reputations. In this they are no dif-
ferent from other makers. In fact, they’re lucky by comparison.
The influence of fashion is not nearly so great in hacking as it is
in painting.

There are worse things than having people misunderstand your
work. A worse danger is that you will yourself misunderstand
your work. Related fields are where you go looking for ideas. If
you find yourself in the computer science department, there is
a natural temptation to believe, for example, that hacking is the
applied version of what theoretical computer science is the theory
of. All the time I was in graduate school I had an uncomfortable
feeling in the back of my mind that I ought to know more theory,
and that it was very remiss of me to have forgotten all that stuff
within three weeks of the final exam.
Now I realize I was mistaken. Hackers need to understand the

theory of computation about as much as painters need to under-
stand paint chemistry. You need to knowhow to calculate time and
space complexity, and perhaps also the concept of a state machine,
in case you want to write a parser. Painters have to remember a
good deal more about paint chemistry than that.
I’ve found that the best sources of ideas are not the other fields

that have the word “computer” in their names, but the other fields
inhabited by makers. Painting has been a much richer source of
ideas than the theory of computation.
For example, I was taught in college that one ought to fig-

ure out a program completely on paper before even going near
a computer. I found that I did not program this way. I found

21



hackers & painters

that I liked to program sitting in front of a computer, not a piece
of paper. Worse still, instead of patiently writing out a complete
program and assuring myself it was correct, I tended to just spew
out code that was hopelessly broken, and gradually beat it into
shape. Debugging, I was taught, was a kind of final pass where
you caught typos and oversights. The way I worked, it seemed
like programming consisted of debugging.
For a long time I felt bad about this, just as I once felt bad that

I didn’t hold my pencil the way they taught me to in elementary
school. If I had only looked over at the other makers, the painters
or the architects, I would have realized that there was a name for
what I was doing: sketching. As far as I can tell, the way they
taught me to program in college was all wrong. You should figure
out programs as you’re writing them, just as writers and painters
and architects do.
Realizing this has real implications for software design. It

means that a programming language should, above all, be mal-
leable. A programming language is for thinking of programs, not
for expressing programs you’ve already thought of. It should be
a pencil, not a pen. Static typing would be a fine idea if people
actually did write programs the way they taught me to in college.
But that’s not how any of the hackers I know write programs. We
need a language that lets us scribble and smudge and smear, not
a language where you have to sit with a teacup of types balanced
on your knee and make polite conversation with a strict old aunt
of a compiler.

While we’re on the subject of static typing, identifying with the
makers will save us from another problem that afflicts the sciences:
math envy. Everyone in the sciences secretly believes that mathe-
maticians are smarter than they are. I think mathematicians also
believe this. At any rate, the result is that scientists tend to make
their work look as mathematical as possible. In a field like physics
this probably doesn’t do much harm, but the further you get from
the natural sciences, the more of a problem it becomes.

22



hackers and painters

A page of formulas just looks so impressive. (Tip: for extra
impressiveness, useGreek variables.) And so there is a great temp-
tation to work on problems you can treat formally, rather than
problems that are, say, important.
If hackers identified with other makers, like writers and paint-

ers, they wouldn’t feel tempted to do this. Writers and painters
don’t suffer from math envy. They feel as if they’re doing some-
thing completely unrelated. So are hackers, I think.

If universities and research labs keep hackers from doing the kind
of work they want to do, perhaps the place for them is in compa-
nies. Unfortunately, most companies won’t let hackers do what
they want either. Universities and research labs force hackers to
be scientists, and companies force them to be engineers.
I only discovered this myself quite recently. When Yahoo

bought Viaweb, they asked me what I wanted to do. I had never
liked business much, and said that I just wanted to hack. When I
got to Yahoo, I found that what hacking meant to them was im-
plementing software, not designing it. Programmers were seen
as technicians who translated the visions (if that is the word) of
product managers into code.
This seems to be the default plan in big companies. They do it

because it decreases the standard deviation of the outcome. Only
a small percentage of hackers can actually design software, and
it’s hard for the people running a company to pick these out. So
instead of entrusting the future of the software to one brilliant
hacker, most companies set things up so that it is designed by
committee, and the hackers merely implement the design.
If you want to make money at some point, remember this, be-

cause this is one of the reasons startups win. Big companies want
to decrease the standard deviation of design outcomes because
they want to avoid disasters. But when you damp oscillations, you
lose the high points as well as the low. This is not a problem for
big companies, because they don’t win by making great products.
Big companies win by sucking less than other big companies.

23



hackers & painters

So if you can figure out a way to get in a design war with a
company big enough that its software is designed by product man-
agers, they’ll never be able to keep up with you. These opportuni-
ties are not easy to find, though. It’s hard to engage a big company
in a design war, just as it’s hard to engage an opponent inside a
castle in hand-to-hand combat. It would be pretty easy to write
a better word processor than Microsoft Word, for example, but
Microsoft, within the castle of their operating system monopoly,
probably wouldn’t even notice if you did.
The place to fight design wars is in new markets, where no

one has yet managed to establish any fortifications. That’s where
you can win big by taking the bold approach to design, and hav-
ing the same people both design and implement the product. Mi-
crosoft themselves did this at the start. So didApple. AndHewlett-
Packard. I suspect almost every successful startup has.

So one way to build great software is to start your own startup.
There are two problems with this, though. One is that in a startup
you have to do so much besides write software. At Viaweb I con-
sidered myself lucky if I got to hack a quarter of the time. And
the things I had to do the other three quarters of the time ranged
from tedious to terrifying. I have a benchmark for this, because I
once had to leave a board meeting to have some cavities filled. I
remember sitting back in the dentist’s chair, waiting for the drill,
and feeling like I was on vacation.
The other problemwith startups is that there is notmuch over-

lap between the kind of software that makes money and the kind
that’s interesting to write. Programming languages are interest-
ing to write, and Microsoft’s first product was one, in fact, but
no one will pay for programming languages now. If you want to
make money, you tend to be forced to work on problems that are
too nasty for anyone to solve for free.
All makers face this problem. Prices are determined by supply

and demand, and there is just not as much demand for things that
are fun to work on as there is for things that solve the mundane

24



hackers and painters

problems of individual customers. Acting in off-Broadway plays
doesn’t pay as well as wearing a gorilla suit in someone’s booth
at a trade show. Writing novels doesn’t pay as well as writing ad
copy for garbage disposals. And hacking programming languages
doesn’t pay as well as figuring out how to connect some company’s
legacy database to their web server.

I think the answer to this problem, in the case of software, is a
concept known to nearly all makers: the day job. This phrase
began with musicians, who perform at night. More generally, it
means you have one kind of work you do for money, and another
for love.
Nearly all makers have day jobs early in their careers. Painters

and writers notoriously do. If you’re lucky you can get a day job
closely related to your real work. Musicians often seem to work in
record stores. A hacker working on some programming language
or operating system might likewise be able to get a day job using
it.2

When I say that the answer is for hackers to have day jobs, and
work on beautiful software on the side, I’m not proposing this as
a new idea. This is what open source hacking is all about. What
I’m saying is that open source is probably the right model, because
it has been independently confirmed by all the other makers.
It seems surprising to me that any employer would be reluc-

tant to let hackers work on open source projects. At Viaweb, we
would have been reluctant to hire anyone who didn’t. When we in-
terviewed programmers, the main thing we cared about was what
kind of software they wrote in their spare time. You can’t do any-
thing really well unless you love it, and if you love to hack you’ll
inevitably be working on projects of your own.3

Because hackers are makers rather than scientists, the right place
to look formetaphors is not in the sciences, but among other kinds
of makers. What else can painting teach us about hacking?

25



hackers & painters

One thing we can learn, or at least confirm, from the example
of painting is how to learn to hack. You learn to paint mostly
by doing it. Ditto for hacking. Most hackers don’t learn to hack
by taking college courses in programming. They learn by writing
programs of their own at age thirteen. Even in college classes, you
learn to hack mostly by hacking.4

Because painters leave a trail of work behind them, you can
watch them learn by doing. If you look at the work of a painter in
chronological order, you’ll find that each painting builds on things
learned in previous ones. When there’s something in a painting
that works especially well, you can usually find version 1 of it in a
smaller form in some earlier painting.
I thinkmostmakerswork thisway. Writers and architects seem

to as well. Maybe it would be good for hackers to act more like
painters, and regularly start over from scratch, instead of contin-
uing to work for years on one project, and trying to incorporate
all their later ideas as revisions.
The fact that hackers learn to hack by doing it is another sign of

how different hacking is from the sciences. Scientists don’t learn
science by doing it, but by doing labs and problem sets. Scientists
start out doing work that’s perfect, in the sense that they’re just
trying to reproduce work someone else has already done for them.
Eventually, they get to the point where they can do original work.
Whereas hackers, from the start, are doing original work; it’s just
very bad. So hackers start original, and get good, and scientists
start good, and get original.

The other way makers learn is from examples. To a painter, a
museum is a reference library of techniques. For hundreds of
years it has been part of the traditional education of painters to
copy the works of the great masters, because copying forces you
to look closely at the way a painting is made.
Writers do this too. Benjamin Franklin learned to write by

summarizing the points in the essays of Addison and Steele and

26



hackers and painters

then trying to reproduce them. Raymond Chandler did the same
thing with detective stories.
Hackers, likewise, can learn to program by looking at good

programs—not just at what they do, but at the source code. One
of the less publicized benefits of the open source movement is
that it has made it easier to learn to program. When I learned to
program, we had to rely mostly on examples in books. The one
big chunk of code available then was Unix, but even this was not
open source. Most of the people who read the source read it in
illicit photocopies of John Lions’ book, which though written in
1977 was not allowed to be published until 1996.

Another example we can take from painting is the way that paint-
ings are created by gradual refinement. Paintings usually begin
with a sketch. Gradually the details get filled in. But it is not
merely a process of filling in. Sometimes the original plans turn
out to be mistaken. Countless paintings, when you look at them
in x-rays, turn out to have limbs that have been moved or facial
features that have been readjusted.
Here’s a case where we can learn from painting. I think hack-

ing should work this way too. It’s unrealistic to expect that the
specifications for a program will be perfect. You’re better off if
you admit this up front, and write programs in a way that allows
specifications to change on the fly.
(The structure of large companies makes this hard for them to

do, so here is another place where startups have an advantage.)
Everyone by now presumably knows about the danger of pre-

mature optimization. I think we should be just as worried about
premature design—deciding too early what a program should do.
The right tools can help us avoid this danger. A good pro-

gramming language should, like oil paint, make it easy to change
your mind. Dynamic typing is a win here because you don’t have
to commit to specific data representations up front. But the key
to flexibility, I think, is to make the language very abstract. The
easiest program to change is one that’s short.

27



hackers & painters

Leonardo’s Ginevra de’ Benci, 1474.

This sounds like a paradox, but a great painting has to be better
than it has to be. For example, whenLeonardopainted theportrait
of Ginevra de’ Benci in the National Gallery, he put a juniper bush
behind her head. In it he carefully painted each individual leaf.
Many painters might have thought, this is just something to put in
the background to frame her head. No one will look that closely
at it.
Not Leonardo. How hard he worked on part of a painting

didn’t depend at all on how closely he expected anyone to look at
it. He was like Michael Jordan. Relentless.
Relentlessness wins because, in the aggregate, unseen details

become visible. When people walk by the portrait of Ginevra de’

28



hackers and painters

Benci, their attention is often immediately arrested by it, even be-
fore they look at the label andnotice that it says Leonardo da Vinci.
All those unseen details combine to produce something that’s just
stunning, like a thousand barely audible voices all singing in tune.
Great software, likewise, requires a fanatical devotion to beau-

ty. If you look inside good software, you find that parts no one is
ever supposed to see are beautiful too. When it comes to code I
behave in a way that wouldmakeme eligible for prescription drugs
if I approached everyday life the same way. It drives me crazy to
see code that’s badly indented, or that uses ugly variable names.

If a hacker were a mere implementor, turning a spec into code,
then he could just work his way through it from one end to the
other like someone digging a ditch. But if the hacker is a creator,
we have to take inspiration into account.
In hacking, like painting, work comes in cycles. Sometimes

you get excited about a new project and you want to work sixteen
hours a day on it. Other times nothing seems interesting.
To do good work you have to take these cycles into account,

because they’re affected by how you react to them. When you’re
driving a car with amanual transmission on a hill, you have to back
off the clutch sometimes to avoid stalling. Backing off can likewise
prevent ambition fromstalling. In both painting andhacking there
are some tasks that are terrifyingly ambitious, and others that are
comfortingly routine. It’s a good idea to save some easy tasks for
moments when you would otherwise stall.
In hacking, this can literally mean saving up bugs. I like de-

bugging: it’s the one time that hacking is as straightforward as
people think it is. You have a totally constrained problem, and
all you have to do is solve it. Your program is supposed to do x.
Instead it does y. Where does it go wrong? You know you’re going
to win in the end. It’s as relaxing as painting a wall.

29



hackers & painters

The example of painting can teach us not only how to manage
our own work, but how to work together. A lot of the great art of
the past is the work of multiple hands, though there may only be
one name on the wall next to it in the museum. Leonardo was an
apprentice in the workshop of Verrocchio and painted one of the
angels in his Baptism of Christ. This sort of thing was the rule, not
the exception. Michelangelo was considered especially dedicated
for insisting on painting all the figures on the ceiling of the Sistine
Chapel himself.
As far as I know, when painters worked together on a painting,

they never worked on the same parts. It was common for the
master to paint the principal figures and for assistants to paint the
others and the background. But you never had one guy painting
over the work of another.
I think this is the right model for collaboration in software too.

Don’t push it too far. When a piece of code is being hacked by
three or four different people, no one ofwhomreally owns it, it will
end up being like a common-room. It will tend to feel bleak and
abandoned, and accumulate cruft. The right way to collaborate,
I think, is to divide projects into sharply defined modules, each
with a definite owner, and with interfaces between them that are as
carefully designed and, if possible, as articulated as programming
languages.

Like painting, most software is intended for a human audience.
And so hackers, like painters, must have empathy to do really great
work. You have to be able to see things from the user’s point of
view.
When I was a kid I was constantly being told to look at things

from someone else’s point of view. What this always meant in
practice was to do what someone else wanted, instead of what I
wanted. This of course gave empathy a bad name, and I made a
point of not cultivating it.
Boy, was I wrong. It turns out that looking at things from

other people’s point of view is practically the secret of success.

30



hackers and painters

Empathy doesn’t necessarily mean being self-sacrificing. Far from
it. Understanding how someone else sees things doesn’t imply that
you’ll act in his interest; in some situations—in war, for example—
you want to do exactly the opposite.5

Most makers make things for a human audience. And to en-
gage an audience you have to understand what they need. Nearly
all the greatest paintings are paintings of people, for example,
because people are what people are interested in.
Empathy is probably the single most important difference be-

tween a good hacker and a great one. Some hackers are quite
smart, but practically solipsists when it comes to empathy. It’s
hard for such people to design great software, because they can’t
see things from the user’s point of view.6

One way to tell how good people are at empathy is to watch
them explain a technical matter to someone without a technical
background. We probably all know people who, though otherwise
smart, are just comically bad at this. If someone asks them at a
dinner party what a programming language is, they’ll say some-
thing like “Oh, a high-level language is what the compiler uses as
input to generate object code.” High-level language? Compiler?
Object code? Someone who doesn’t know what a programming
language is obviously doesn’t know what these things are, either.
Part of what software has to do is explain itself. So to write

good software you have to understand how little users understand.
They’re going to walk up to the software with no preparation, and
it had better do what they guess it will, because they’re not going
to read the manual. The best system I’ve ever seen in this respect
was the original Macintosh, in 1984. It did what software almost
never does: it just worked.7

Source code, too, should explain itself. If I could get people to
remember just one quote about programming, it would be the one
at the beginningofStructure and Interpretation of Computer Programs.8

Programs should be written for people to read, and only
incidentally for machines to execute.

31



hackers & painters

Piero della Francesca’s Federico da Montefeltro, 1465-66 (detail).

You need to have empathy not just for your users, but for your
readers. It’s in your interest, because you’ll be one of them. Many
a hacker has written a program only to find on returning to it six
months later that he has no idea how it works. I know several
people who’ve sworn off Perl after such experiences.9

Lack of empathy is associated with intelligence, to the point
that there is even something of a fashion for it in some places. But
I don’t think there’s any correlation. You can do well in math and
the natural sciences without having to learn empathy, and people
in these fields tend to be smart, so the two qualities have come to
be associated. But there are plenty of dumb people who are bad
at empathy too.

32



hackers and painters

So, if hacking works like painting and writing, is it as cool? After
all, you only get one life. You might as well spend it working on
something great.
Unfortunately, the question is hard to answer. There is always

a big time lag in prestige. It’s like light from a distant star. Painting
has prestige now because of great work people did five hundred
years ago. At the time, no one thought these paintings were as
important as we do today. It would have seemed very odd to people
in 1465 that Federico da Montefeltro, the Duke of Urbino, would
one day be known mostly as the guy with the strange nose in a
painting by Piero della Francesca.
So while I admit that hacking doesn’t seem as cool as painting

now, we should remember that painting itself didn’t seem as cool
in its glory days as it does now.
What we can say with some confidence is that these are the

glory days of hacking. In most fields the great work is done early
on. The paintings made between 1430 and 1500 are still unsur-
passed. Shakespeare appeared just as professional theater was be-
ing born, and pushed the medium so far that every playwright
since has had to live in his shadow. Albrecht Dürer did the same
thing with engraving, and Jane Austen with the novel.
Over and over we see the same pattern. A new medium ap-

pears, and people are so excited about it that they explore most
of its possibilities in the first couple generations. Hacking seems
to be in this phase now.
Paintingwas not, inLeonardo’s time, as cool as hisworkhelped

make it. How cool hacking turns out to be will depend on what
we can do with this new medium.

33


