
The Counting Sort Page 1

THE COUNTING SORT

The counting sort is an efficient algorithm for sorting values that have a limited range. It was
invented by Harold H. Seward in the mid 1950s.

Suppose you have an array v containing m integers, each within the range 0 to m−1, shuffled into
random order. You can sort these integers simply by moving each integer into its correct position
within an auxiliary array.

Example
The picture below shows how the first three items in array v are moved into their correct
positions within the auxiliary array.

0 1 2 3 4 5 6 7 8 9

v 5 9 0 3 2 4 1 7 6 8

0 1 2 3 4 5 6 7 8 9

aux 0 5 9

Here’s the counting sort algorithm:

Counting Sort Algorithm

int [] aux = new int[m];

for (int k=0; k < m; k++)

aux[v[k]] = v[k];

The Counting Sort Page 2

A more realistic situation assumes that array v contains n integers in the range 0 to m−1, where m
is within some constant factor of n (i.e. m < cn for some constant c > 0). Also, duplicate values
are allowed. Under these conditions, the counting sort works in three passes. The first pass
counts each integer in v:

Example
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

v 0 3 3 0 1 1 0 3 0 2 0 1 1 2 0

0 1 2 3

count 6 4 2 3

Each integer k occupies count[k]positions in the final sorted array. If integer k starts at
position p then, for it to occupy count[k], integer k+1 must start at position p+count[k].

Example, continued
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

v 0 3 3 0 1 1 0 3 0 2 0 1 1 2 0

0 1 2 3

count 6 4 2 3

In the sorted array, integer 0 starts at position 0 and occupies count[0] = 6 positions. Thus,
integer 1 starts at position 0+6 = 6. Likewise, integer 2 starts at position 6 + count[1] = 6 + 4
= 10.

Revised Counting Sort Algorithm
Pass 1

int [] count = new int[m];

for (int k=0; k < n; k++)

count[v[k]]++;

The Counting Sort Page 3

The second pass of the algorithm calculates all of these starting positions and places them into a
third array.

Example, continued

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

v 0 3 3 0 1 1 0 3 0 2 0 1 1 2 0

0 1 2 3

count 6 4 2 3

0 1 2 3

start 0 6 10 12

Revised Counting Sort Algorithm
Pass 2

int [] start = new int[m];

start[0] = 0;

for (int k=1; k < m; k++)

start[k] = start[k-1] + count[k-1];

The Counting Sort Page 4

The third and final pass distributes each integer in the original array v to its final position in the
sorted array:

Example, concluded

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

v 0 3 3 0 1 1 0 3 0 2 0 1 1 2 0

0 1 2 3

count 6 4 2 3

0 1 2 3

start 0 6 10 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

fin 0 0 0 0 0 0 1 1 1 1 2 2 3 3 3

Revised Counting Sort Algorithm
Pass 3

int [] fin = new int[n];

for (int k=0; k < n; k++)

fin[start[v[k]]++] = v[k];

The Counting Sort Page 5

Programming Exercises

1. Implement the revised counting sort algorithm as the following Java method:

int [] countingSort(int [] v, int m)

// Use Seward's counting sort algorithm that

// returns an array containing the items in 'v'

// in ascending order.

// Each v[k] is in the range 0 to m.

Write an application to test your method. The application must create an unsorted array,
call your method to sort it and print the results.

