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1. Introduction

This paper is a sequel to our paper [PY3] and we expect that the reader is familiar
with the basic definitions and techniques of the earlier paper. The notion of arith-
metic fake compact Hermitian symmetric space has been defined in 1.2 of [PY3]. It
has been shown in [PY2] and [PY3] that arithmetic fake compact Hermitian sym-
metric spaces can only be of type Aj, A, Az and As. The ones of type As are
the fake projective planes which are smooth projective complex algebraic surfaces of
considerable interest. These have been classified in [PY1] (please see the corrected
version of this paper posted on arXiv) in 28 nonempty classes, and we know now
that up to biholomorphism there are 100 fake projective planes. It has been shown
in [PY2] that there are some arithmetic fake compact Hermitian symmetric spaces of
type Ay, for example a few arithmetic fake P‘é and also a few arithmetic fake Gra s,
but there do not exist any arithmetic fake compact Hermitian symmetric spaces of
type Aay, for n > 2. Using the techniques of [PY1] and the results of [PY2] it should
not be hard to determine all arithmetic fake compact Hermitian symmetric spaces
of type A4. On the other hand, there are too many examples of such spaces of type
A for a convenient classification. Thus the only arithmetic fake compact Hermitian
symmetric spaces which may be classified, but have remained to be classified until
this work, are the ones of type As. The purpose of this article is to complete the
investigation of these spaces (of type As).

1.1 We begin by giving a description of groups of type As of interest to us in this pa-
per. Let k be a number field of degree d over Q and V; be the set of nonarchimedean
places of k. Let GG be an absolutely almost simple simply connected k-group of type
As. Let vy, ..., v, be the archimedean places of k where G is isotropic (equivalently,
G(ky,) is noncompact) and let & = [[;_; G(k,,) considered as a real Lie group with
with the product topology. Let X denote the symmetric space of 4 and X, be the
compact dual of X. We assume that » > 1 and the symmetric space X is Hermitian.
Then for i < r, G(ky,) is isomorphic to SU(m;,4 — m;), with m; # 0, hence each v;
is real. Moreover, for any archimedean place v of k where G is anisotropic, G(ky) is
isomorphic to the compact group SU(4), so any such v is also real. Thus we see that
k is totally real and G is of type 2As, i.e., it is an outer form of a split group. Let £
be the quadratic extension of k£ over which G is inner. Then ¢ is totally complex.

From the classification of classical groups we know that there is a division algebra
2 with center £ and of degree 0 dividing 4, & given with an involution ¢ of second
kind such that k is fixed pointwise under o, and a hermitian form h on 2%? defined
in terms of the involution o so that G is the special unitary group SU(h). Since the
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division algebra Z is equipped with an involution o of second kind, if v is a place
of k which does not split in ¢, then k, ®x Z is the matrix algebra My (¥, ), where £,
denotes the field £ ®y k.

Ifo # 1, ie, 2 # £, then 0 = 4 or 2. Let v be a place of k£ which splits
in ¢, then there is a division algebra ®©, with center k, and of degree d,, 0,9,
such that ky @ Z = Myp, (Dy) X Mypp, (D7), where D7 is the opposite of D,, and
the involution o interchanges the two factors of k, ® 2. For such a v, G(k,) is
isomorphic to SLy/, (Dy)-

Let 9 be the set of places v of k which split in ¢ and 9, > 1. From Class Field
Theory we know that only for finitely many v, 9, > 1, and moreover, there exists v
such that 9, =, so % is finite and nonempty (if @ # 1). As k is totally real and ¢
is totally complex, none of the archimedean places of k split in £. So every v € % is
nonarchimedean.

1.2 Let G be the adjoint group of G and let 7 : G — G be the natural isogeny. The
kernel of this isogeny is described in 1.5 of [PY3] for groups of type 2A,; for n = 3,
C(R) is a cyclic group of order 4. We will denote the image m(¢) < [[;_; G(ky,)
by 4. The subgroup ¢ is the identity component of [i_; G(ky,). Let Il = & be
the fundamental group of an arithmetic fake compact Hermitian symmetric space
(arithmetic with respect to the k-group structure on G) which is a compact quotient
of X. Then II is a torsion-free co-compact discrete subgroup of ¢, and II is arithmetic
with respect to the k-group structure on G. Let II be the inverse image of IT in ¥.
Then as the kernel of II — II is a subgroup of order 4", and the Euler-Poincaré

~

characteristic x(II) of II equals x(X,), the Euler-Poincaré characteristic x(II) of
II (in the sense of C.T.C. Wall) equals y(X,)/4". Now let I' be a maximal discrete
subgroup of ¢ containing IT and A = I' n G(k), G(k) embedded in ¥ = [1Ti— G(ky,)
diagonally. The subgroup A is a “principal” arithmetic subgroup, i.e., for every
nonarchimedean place v of k, the closure P, of A in G(k,) is a parahoric subgroup.
By the strong approximation property of the simply connected semi-simple group G
we see that A = G(k)n] [ Py, moreover I' is the normalizer of A in ¢; see Proposition
1.4 of [BP]. In terms of the Haar measure p used in [P] and [BP], and to be used
here, x(II) = x(X.)u(#/I0). So we conclude that p(%/I1) = 1/4” and therefore
w(¢)T) is a submultiple of 1/4". Hence, in particular, 4" (4/T") < 1.

1.3 Let .7 be the set of nonarchimedean places v of k such that either (i) v does
not ramify in ¢ (equivalently, G splits over an unramified extension of k,) and P,
is not a hyperspecial parahoric subgroup of G(k,), or (ii) v ramifies in ¢ and either
G is not quasi-split over k, (i.e., its k,-rank is 1) or P, is not special. (Note that
T is precisely the set of nonarchimedean places v of k such that ¢'(P,) # 1. It
contains the .7 introduced in §2.10 of [PY3].) As every place v € 9 splits in ¢, but
G does not split over k, (and hence G(k,) cannot contain a hyperspecial parahoric
subgroup) we see that %) < 7.



ARITHMETIC FAKE COMPACT HERMITIAN SYMMETRIC SPACES OF TYPE Aj 3
Preliminaries

2.1 All unexplained notation are from [P], [BP] and [PY3]. The value of 5(¥) given
in [P] for 2A3 is 5. Hence the formula for the covolume of the principal arithmetic
group A = G(k) n ][ P, given in [P] is:

1) w(@/8) = (DD (o) 6.
where
(2) & = J]e®)
veVy
(3) = ((2) Ly (3)Ck(4) 1_‘/[ e'(Py).
ool

The index of A in the maximal arithmetic I' is bounded by (see (54) in §8 of
[PY3])

(4) [F . A] < 2d+2r+2#‘7h574,

where hy 4 is the order of the subgroup of the class group of ¢ consisting of elements
of order dividing 4.

2.2 The values of e(P,) and ¢/(P,) appearing in (2) and (3) are
(dim My+dim .4 ,,)/2

Qv
P’U = — )
o) #30,(5)
¢(R) = e(py)- 2],
qv

in the notation of [P]. In the following we first list the possible values of #-M (o)

dim .4
Case 1: v splits in ¢. Then .#, = SL4 and
#H M (fo 1 1 1
) g Ly Dy

gdim A % g 7

).

Case 2: v is inert in ¢, i.e., it does not split in ¢, but is unramified. Then .#Z, = SU,

and o
My (fo 1 1 1
iwjf=u—ﬁm+ﬁm—%>

Case 3: v is ramified in £. Then .#, is of type Cy and

#]v(fv) _ (1 o i)(l o i)

qgim %v q% qg

2.3 Now we list the values of e(P,) and €'(F,).
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Case 1: v splits in £ and G splits over k,. There are five possibilities:
Case 1a: P, is hyperspecial, then M, = SLy4, and in this case
1.4 1.4 1
il 1— — 1— —
q3> ( q?)) ( @
Case 1b: M, is isogenous to GL3, in which case

1. 1. _ 1.
e(P) = gy(1 = =) (1= )7 (1= =) €(R) = (g + 1)(gZ + 1).
Qv 4y dy
Case 1c: M, is isogenous to GL; x (SLg)2, in which case
1. 1. _
e(Po) = qy(1— —)""(1=5)7% ¢(P) = (¢ + 1)(g5 + g0 + 1)
Qo dy
Case 1d: M, is isogenous to (GL1)? x SLy, in which case
1. 1.
e(Py) = gi(1 = )7 (1= )7 €(P) = (g + (e + Dlgy + g0 +1).
v v

Case le: P, is a Iwahori subgroup, then M, = (GL1)3 and

e(Py) =(1- )7L (P = 1.

wm:ﬁu—;>iaaw4%+N@+n@+%+n

v

Case 2: v splits in £ and G does not split over k,. There are three possibilities:
Case 2a: rank, G = 0. In this case, M, = Rgv/fv(GLl)/GLl, where §, is the
extension of degree 4 of f,. In this case,
1. 1. _
e(Py) = g1+ )7 1+ )7 d(R) = (@ = Digg ~ Ve - D).
v v
Case 2b(i): ranky, G = 1 and P, is a maximal parahoric subgroup. In this case
M, is isogenous to the product of Rg, /j,(SL2) with the unique 1-dimensional f,-

anisotropic torus RETIU) /fU(GLl)’ where F, is the extension of degree 2 of f,, and

1 1

e(P) =qr(14+ —)'1— =

(Po) = gu(1+ =) "

Case 2b(ii): rank,,G = 1 and P, is an Iwahori subgroup. In this case M, is
isomorphic to Rz, j;, ((GL1)?)/GL1, where F, is the extension of degree 2 of §, and

wm=£u+iﬂu—;r%aarﬂ%—mﬁ+wﬁ—u

)7 E(P) = (00— 1)(g) - 1).

Case 3: v is inert in £. There are two possibilities:
Case 3a: ranky G = 2 (i.e.G is quasi-split over k,). There are five possible
subcases.
Case 3a(i): P, is hyperspecial, in which case M, = .#, and these groups are
isomorphic to SUy over f,. In this case,

am=u—;rw+érm—%r%am=l
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Case 3a(ii): M, is isgenous to the product of SLy x SLy with the 1-dimensional
fy-anisotropic torus. In this case

wm:ﬁu+iﬁu—;r%aaw4ﬁ+mﬁ—%+u

Case 3a(iii): M, is isogenous to the product Ry, j, (SL2) x GL; in which case

1 _ 1. _
e(P)) = qy(1——)""1— )71 €(P) = (g + 1(gs + 1).
Qv qv
Case 3a(iv): M, is isogenous to the product of SLy and the torus Ry, s, (GL1),
where F, is the extension of degree 2 of f,. In this case,

1. _
e(Po) = gi(1 = 5)7% ¢(Po) = (@ + 1)(ay +1)-
(2
Case Sa(v): P, is an Iwahori subgroup. Then M, is isogenous to the product
Ry, 5,(GL1) x GL1, where F, is the degree 2 extension of f,. In this case,

1 _ 1
e(Py) = qy(1 - ;) '1- 2
v v

Case 3b: ranky, G = 1. There are two subcases.

)7L E(Py) = (g0 + 1)(g2 + 1)(g2 + 1).

Case 3b(i): P, is a maximal parahoric subgroup. In this case M, is isogenous
to the product of SU3 with the 1-dimensional f,-anisotropic torus, and

1 1 1
e(P) =q¢(1+=)11-= =
(Po) = qy(1+ ) o =
Case 3b(ii): P, is an Iwahori subgroup. Then M, = Rz, s (GL1)?/GLy, where
Fy is the degree 2 extension of f,. In this case,
1 1

e(Py) = qp(1 + ;)—1(1 - ?)_1, ¢'(Py) = (g0 — 1)(gy +1)(gy +1).

)M+ =) 7h (R = (a0 — 1)(g + D).

Case 4: v is ramified in £. There are two possibilities:

Case 4a: ranky, G = 2 (i.e. G is quasi-split over k,). There are four subcases.
Case 4a(i): P, is a special maximal parahoric subgroup. Then M, = .#, and
these groups are isomorphic to Sp, (i.e., are of type C3). In this case,

dW=ﬂ—%V%—%r%am=L

Case 4a(ii): M, is isogenous to SLy x SLs. In this case,

wm:&u—;>%aﬂw4ﬁ+u

Case 4a(iii): M, is isogenous to GLo. In this case,

wm:ﬁu—iﬁm—;r%daw4%+mﬁ+m
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Case 4a(iv): P, is an Iwahori subgroup. Then M, = GL; x GL1. In this case,

e(Py) = qy(1— ;)27 ¢(Py) = (qu + 1)%(¢2 + 1).

v
Case 4b: ranky, G = 1. There are three subcases.
Case 4b(i): M, = R, j;, (SLo), where F, is the degree 2 extension of f,. In
this case,
1.
G(PU) = qg(l - ?) 1’ el(Pv) = (qg - 1)‘

v
Case 4b(ii): M, is isogenous to the product of SLy and the 1-dimensional
fy-anisotropic torus. In this case,

e(P,) = 4(1 + qlvrlu - ql> () = (g0 — 1)(g2 + 1).

Case 4b(iii): P, is an Iwahori subgroup. Then M, = Rz, /t,(GL1), where F,
is the degree 2 extension of f,. In this case,

e(P,) = qi(1 - qb-l, ¢(P) = (¢! —1).

2.4 From the functional equations

Go(25) = D%_Qj(W)de(l —2j),
and 102j. 2j+1
Lop(2 +1) = (1;:)%; W TLon(~27),
we find that
5 %= (DD (5 ) (GH(2) L (3G 4)

= 2739, (= 1) Ly (—2) G (—3).
For all nonarchimedean v ¢ .7, as €¢/(P,) = 1, quations (1), (2) and (3) give that
wG/A) =2 [ ] €(P).
ved

As the values of €/(P,) given in 1.3 are integral, we conclude that p(¢/A) is an
integral multiple of Z. Moreover,

(6) (@)T) = ﬂEf/AAf _ e%’n[zif:y;i(m

Proposition 2.9 of [BP] applied to G’ = G and TV = T implies that any prime
divisor of [I' : A] divides 4, hence [I' : A] is a power of 2. Now if u(¥4/I') is a
submultiple of 1 (i.e., it is the reciprocal of an integer) then we have the following:

Proposition 1. The numerators of # and Z ||, € (Ps) are powers of 2.
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3. Discriminant bounds

3.1 We list in this section the basic estimates to be used later. In the notation of
[PY3], 2.1, the Haar measure is normalized so that |x(I')| = x(Xu)u(¥4/I'), where
4 =1;_, G(ky,), Xy is the compact dual of the symmetric space of ¢, and p(¥4/T)
is a submultiple of 1/4".

We are interested in I' satisfying x(I') < 1, where x(T') = x(I')/4". We derive
from bound (4) that

p(G/N)

From 8.1 of [PY3], we conclude that & > 4#7 and hence we obtain the following
from (1),

(8) 1> (DeDy)?? (5)" - —.

3.2 According to Proposition 3(ii) of [PY3], d < 2. The following bound for Di/ i
obtained from bound (57) of [PY3] for n = 3.

8.9
(9) DY < fi(d, hey) = [(QT”

We have the following bounds which are respectively the bounds (64) and (65) of
[PY3] for n = 3:

)d ) h(74] 2/15d‘

(10) Dg}/Qd < qi(d, Dy, hya)
.: [% ‘ (ﬁ)d 1/5d
: Dz/Q 3 )
(11) De}/zd < qz(d, Dk,Rg/wj)
1 S(1+46) (r(1 +0)C(1+6)* 287T9)d]1/d(475)
: (Rg/we>D2/2 (27r)1+‘5 3 .

In the above, Ry is the regulator of ¢ and wy is the order of the finite group of roots
of unity contained in /.

Similarly, we have the following bounds for the relative discriminant Dg/D,%, ob-
tained from bounds (61) and (62) of [PY3].

2879 _ 2/5
(12) Dy/D} < p1(d, Dishe) i= [ hea - (S5-) D72
(13) Dy/D} < pa(d, Dy, Ry/wy, §)
. [ 6(1+0) (F(l +6)C(1 + 0)2 2879 d]z/(4_5)
= (RZ/UJZ)DJ(:S?%)/Q (277)1+5 3 .
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4. Limiting the possible pairs (k, /)

We are going to limit possibilities for the number fields (k, /) involved in the
description of G. As recalled above, d < 2.
4.1 As in [PY3], we are going to use extensively the estimates on the lower bounds
for root discriminants of number fields given in [M], which in turn can be traced to
earlier work of Odlyzko and Diaz y Diaz. In brief, Martinet, and earlier Odlyzko,
gave increasing functions of n which provide a lower bound for the root discriminant
of all totally real (resp. totally complex) number fields of degree n, see ([O]; and [M],
§1.4). The fact that the bounds for root discriminant provided in [O] and [M] for
totally real (resp.,totally complex) number fields of degree n, increase with n, has
been used implicitly throughout [PY3] and will also be used here.

We study first the case d = 2. Suppose that Dy > 33. In this case, Ry/wy is
bounded from below by 1/8, see [Fr, Theorem B’]. It follows from bound (11) that

Dl}/4 < 2(2,33,1/8,0.6) < 18.93. The following argument involving Hilbert class
fields will be used repeatedly in the following. Denote by M.(n) the smallest root
discriminant among all totally complex number fields of degree n. The Hilbert class
field of 7 is a totally complex number field of degree hy over ¢, hence is of degree
4hy over QQ, with root discriminant the same as Dé/ 4 < 18.93. On the other hand, it
follows from Table IV of [M] that M.(260) > 18.98 (hence, in fact, M.(n) > 18.98
for all n = 260). So we conclude that 4h, < 260. Therefore, hy < |259/4] = 64,

where |z| denotes the integral part of z. So hy4 < 64. It follows from bound (10)

that D;/Al < q1(2,33,64) < 12.09. We iterate the above argument using Hilbert class
fields. From [M] again, M.(34) > 12.27. Hence h; < [34/4] = 8. It follows again

from bound (10) that D,’* < q1(2,33,8) < 9.82. From [M], M.(22) > 10.25. Hence
he < |22/4| = 5. This implies that hy4 < 4. Hence Dl}/zl < q1(2,33,4) <9.16.

We also have the bounds D,i/2 < f1(2,4) < 7.84, and D¢/D3? < |p1(2,33,4)| = 6.
Hence we have the following constraints when Dy > 33.

Dy < |7.84%] = 61, D, < (9.16%] = 7040, D;/D? < 6.

As we saw in [PY1], §8, the above constraints imply that the possible pairs of number
fields are the ones listed as %21 — a6 in §8 of [PY1].

4.2 Suppose now that Dy < 33. We know that the discriminant of a real quadratic
number field with discriminant < 33 is one of the following:

5,8, 12, 13, 17, 21, 24, 28, 29.

We are going to handle each of these real quadratic fields separately.

For Dy = 29, we use the known estimates of regulator Ry provided in [C]. We
know that the group of roots of unity in ¢ is a cyclic group of even order denoted
by m. Let (; be a primitive m-th root of unity. As the degree of the cyclotomic
field Q((p) is ¢(m), where ¢ is the Euler function, we know that ¢(m) is a divisor
of 2d = 4. Observe that the Euler function ¢(m) can take the value less than or
equal to 4 only for the following values of m.
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m: 2 4 6 8 10 12
pm): 1 2 2 4 4 4

Hence either wy = 4 or wy < 2. In the first case, as ¢ contains Q((,,) and both
have degree 4, we conclude that ¢ = Q((,,), where m = 8,10 or 12. In the second
case with wy < 2, we know from a standard fact that Ry/wy, < Ry/2, (cf. [W],
Proposition 4.16, page 42). Since Dy = 29, we quote from [C], Table B.2, page 515,
that Ry = 1.647. Hence from estimates in (11),

(14) DY < q2(2,29,1.647/2,0.65) < 15.02.

Clearly the above root discriminant bound is satisfied by ¢ = Q((,,) for m = 8,10
or 12 as well, cf. [W], Proposition 2.7, page 12. Hence the bound in (14) holds for
both cases.

Since M.(68) > 15.14 from [M], we infer using Hilbert class field argument as
above that hy < |67/4] = 16. This implies that D}/* < q1(2,29,16) < 11.45. Since
M.(30) > 11.7 from [M], we know that h, < |29/4] = 7. Hence hy 4 < 4. This implies

that D;/4 < q1(2,29,4) < 9.46. Now since |p1(2,29,4)] =9, from bound (12) we see
that Dg/D,% <9, and so D; < 29%-9 < 7569. In conclusion, we have

Dy =29, Dy <7569, Dy/Di < 9.

4.3 Using similar arguments, we can handle the case of Dy = 8,12,13,17 using the
information on Ry from Table B.2 of [C], on the class number hy from the tables in
[1], and lower bounds of root discriminant from the tables of [M]. The explicit lower
bound of Ry is listed in the second row of the table below.

Dy ) 8 12 13 17 21 24 28
Ry > Ry = 0.4811 | 0.8813 | 1.317 | 1.194 | 2.094 | 1.566 | 2.291 | 2.768
o 0.492 | 0.534 | 0.573 | 0.576 | 0.615 | 0.623 | 0.649 | 0.672

q2(2, Dy, Ro/2,6) < | 34.1 26.4 215 | 212 | 17.7 | 17.1 | 154 | 141

q1(2, Dy, 64) < 19.37 | 17.3 15.6 | 153 | 14.3 | 13.6 | 13.1 | 12,6

hea < 8 16 8 8 4 4 4 4
Dy < 61175 | 50458 | 25493 | 23532 | 13638 | 11040 | 9660 | 8280
Dy/Di < 2447 | 788 | 177 | 139 | 47 25 16 | 10

Let us explain how the above table is obtained. We first consider the cases of
D, = 8. The fourth row comes from direct computation with choice of § given in
the third row. Except for the case of Dy = 5, the values on the fourth row satisfy
q2(2, D, Ro/2,0)* < 105. Hence the value of Dy lies in the list in [1]. From [1],
we check that hy, < 70, which implies that hy4 < 64. This is the beginning of an
argument using Hilbert Class Fields and the tables of [M] as was done in the earlier
cases of Dy > 33 and Dy = 29. In particular, this argument allows us to conclude
the upper bound hy 4 < 4 for Dy, > 12 listed in the fifth row, note that here n = 3.
Let us carry out the procedure in details for Dy = 12 and 8.
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For D), = 12, D)* < q1(2,12,64) < 15.56. Since M.(80) > 15.7 from [M

we know that h, < [79/4] = 19. Hence hyy < 16. This implies that D;pd
q1(2,12,16) < 13.55. Since M.(46) > 13.59 from [M], we know that hy < [45/4]
11. Hence hyq < 8. This implies that D,/** < q,(2,12,8) < 12.6359 and D,
|91(2,12,8)*] < |12.6359%] = 25493. Furthermore, Dy/D? < |p1(2,12,8)| = 177.

For Dy = 8, D[}/Qd < q1(2,8,64) < 17.22. Since M.(130) > 17.28 from [M

we know that hy < [129/4]| = 32. Hence hy4 < 32. This implies that D;/M

q1(2,8,32) < 16.064, Since M.(88) > 16.066 from [M], we know that hy < |87/4]
21. Hence hyy < 16. This implies that Dy/*? < q1(2,8,16) < 14.99, and D,

|91(2,8,16)%] = 50458. Furthermore, Dy/D? < |p1(2,8,16)| = 788.

The other items in the table with Dy > 13 are obtained similarly.

For Dy = 5, (k = Q(+/5)) we simply use the bound D, < q2(2,5,0.4811/2,0.5)* <
34.1* < 1.36 x 10%. At the request of the authors, Malle provide us with a complete
list of all totally complex number fields of degree 4 containing Q(+/5) satisfying this
discriminant bound. There are 2556 such number fields and for each ¢ in this list,
he < 65. Hence hgy < 64. It follows that D, < q1(2,5,64)* < 140565. From the
list of Malle, it follows that there are 276 totally complex number fields satisfying
discriminant D, < 140565. Moreover, hy < 18 and hence hy4 < 16, from which
we conclude that D, < [q1(2,5,16)%] < 80733. Checking in Malle’s list of number
fields again, there are 164 number fields ¢ with discriminant D, < 80733, we find that
he < 12 for them, and hence hy 4 < 8. We conclude that Dy/D? < |p1(2,5,8)] < 2447.
Hence Dy < 61175. There are altogether 121 such number fields £.

—

)

/A

IN

[}

/A

A

4.4 We summarize the results from the previous subsections in the following.

Proposition 2. The followings are all possible pairs (k,{) which may give an arith-
metic fake compact hermitian symmetric space of type As.

(a) [k: Q] =2, and (k,£) is one of the pairs Ga1 — Gap described in §8 of [PY1], or
k = Q(v/«) for « as in the table below, and the discriminant Dy of € satisfies the
following bound:

o 5 2 3 13 17 21 6 7 29
D, < | 61175 | 50458 | 25493 | 23532 | 13638 | 11040 | 9660 | 8280 | 7569
N 121 50 13 12 4 3 2 2 1

where N is the number of number fields satisfying the discriminant bounds.

(b)) k=Q, and £ = Q(v/—a): Dy < 1363.

Assertion (b) is from 9.3 of [PY3]. We note that in case (b) there are altogether
434 possible number fields ¢. In (a), there are altogether 208 pairs of number fields in
the table, apart from the 6 pairs of number fields $51 —%6. The authors are grateful
to Gunter Malle for providing the list of number fields satisfying the constraints in
the table above. The list of number fields can be found in the weblink [2] provided
by Malle.
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5. Zeta and L-values

In this and the next section, we are going to use the value of #Z given by (5)
and the explicit values of (- and L-functions to restrict the possible number fields
involved. We will use the fact that the numerators of #Z and Z[],.4 ¢ (P,) are
powers of 2 as given by Proposition 1.

5.1 Consider %;, for i = 21-26 the pairs of number fields (k, ¢) introduced in [PY1],
§8. Denote by (, a primitive n-th root of unity. Then %2; = (Q(v/33),Q(v/33,(5)),
Ca2 = (@(\/ﬁ)v Q(\/ﬁ, C4))> Ga3 = (Q(\/ﬂ)? Q(\/ﬂ, \/j7))7 G = (Q(\/ﬁ)a Q(\/ﬁ> C3))7
o5 = (Q(v15),Q(v/15,/=5)) and €6 = (Q(V15),Q(v/15,(4)). From computa-

tions using Magma, we have the following table of values for (x(—1), L/ (—2),
Ck(—3) and Z.

| (R, 0) [ Ge(=1) | Ly (—2) [ R(=3) [Z \
G | 1 |43 14110 | 47/160

G | 76 |3 9153/60 | 15071,/7680
Gy | B/3 | 48/7 | 2503/30 | 2503/168

Gos | 7/3 | 44/9 | 2867/30 | 220759/12960
Gos |2 (2053|5375 | 179

G5 | 2 |8 537/5 | 537/20

By looking at the last column of the above table, we see that the cases %21 — %26
can be ruled out since the numerators are not power of 2.

5.2 We compute the value of # for the candidates (k,¢) provided by Malle in
Proposition 2(a). Only four of them have numerator a power of 2. These are listed
below. Note that for & = Q(+/5) the zeta values are (y(—1) = 1/30 and (,(—3) =
1/60.

(k.0 [Low(=2) [ % |
2 4/5 | 1/144000 = 1/(27 - 3% - 5%)
2 32/9 | 1/32400 = 1/(2% - 3%.5%)
2 15 1/7680 = 1/(27 - 3-5)

T 2400 | 1/48 =1/(2%-3)

Here %;, i = 1,2,3 are pairs as in [PY1], §8, and .#; = (Q(+/5), Q(\/5,+/—11)),
with Dy = 5 and Dy = 3025; 61 = (Q(+/5),Q((5)); 62 = (Q(+5), Q(+5,(3)), and
% = (Q(+5),Q(V/5,¢4)). Note that the class number of £ in 41, %> and %3 is 1,
while the class number of ¢ (= Q(v/5,4/—11)) in .F is 2.

5.3 Consider now the case of £ = Q. In this case, (i is just the regular Riemann
Zeta function.
After computing the values of L;/q(—2) for £ with Dy < 1363, the only candidates

for the cases of k = Q, ¢ = Q(y/—a) are the following ten for which the numerator
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of Z is a power of 2. In this table, h is the class number of £ = Q(1/—a).

laln|Z |
1 [1]1/23040 = 1/(2°-32.5)
2 [1]1/3840=1/(2%-3-5)

3| 1]1/51840 =1/(27-3%.5)
5 2]1/384=1/(2"-3)

7 1]1/5040 =1/(2*-3%-5-7)
11[1]1/1920 = 1/(27-3-5)
152 ]1/720 =1/(2*-3%.5)
233 [1/240 =1/(2%-3-5)
3113]1/120=1/(2%-3-5)
4715 [ 1/40 =1/(23-5)

6. Contributions by ¢'(P,)

6.1 We are going to make use of the factor ¢(P,) in u(G/A) = Z]],¢€(P,) to
eliminate some more cases.

We will first consider the cases where the division algebra & # ¢. Then % is
nonempty and every place in .7 is nonarchimedean and splits in ¢ (see 1.1)

Here is the list of rational primes p < 71 which split in . Note that for the
pairs €1, a2, 63 and F1, we only list those p < T1, which are restrictions to Q
of monarchimedean places of k which split in £. For any nonarchimedean place v
of k which splits in ¢ and lies over a rational prime larger than 71, the value of
e (P,) » 1 for all the cases presently under consideration (these are the 14 cases
for which Z has been listed in 5.2 and 5.3).

] (k,0) \ primes < 71 which split in £ ‘
(Q,Q(+v/-1)) 5,13,17,29, 37,41, 53,61
(Q,Q(v/-2)) 3,11,17,19,41,43,59,67
(Q,Q(v/-3)) 7,13,19,31,37,43,61,67
(Q,Q(+v/=5)) 3,7,23,29,41,43,47,61,67
(Q,Q(v/—1)) 2,11,23,29,37,43,53,67, 71
(Q,Q(v/—11)) 3,5,23,31,37,47,53,59,67, 71
(Q,Q(+v/—15)) 2,17,19,23, 31,47, 53,61
(Q,Q(v/—23)) 2,3,13,29,31,41,47,59, 71
(Q,Q(x/—31)) 2,5,7,19,41,47,59,67, 71
(Q,Q(v/—47)) 2,3,7,17,37,53,59,61, 71
€ = (Q(W5),Q(¢s)) 11,31,41,61,71
% = (Q(+5),Q(W5,¢3)) | 7,13,17,19,23,31,37,43,53, 61,67
% = (Q(W5),Q(v5,¢))  |3,5,7,13,17,23,29,37,41,43,47,53,61, 67
71 = (Q(V5),Q(V5,+v/—11)) | 3,5,7,13,17,23, 31,37,43, 47, 53,59, 67, 71
The primes < 71 which split in @(\/5) are 11, 19, 29, 31, 41, 59, 61 and 71.
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Note that in each of the cases above, £ is a Galois extension of Q.

6.2 The values of €/(P,) for v € F are given in Case 2 of §2.3. We see that €'(P,)
is an integral multiple of (¢, — 1)(¢2 — 1). By direct computation, we conclude that
except for the pair (Q,Q(v/—7)), for every other pair in the above table, for any
possible choice of a nonempty 9 either Z[ ], 4 €'(Py) » 1 or its numerator is not
a power of 2. We also observe that for (Q,Q(+/—7)), the only possible .7 is the set
{2}

We know from 9.6 of [PY3] that if £ = Q, then & # ¢. Thus the only possible
pair with & = Q is (Q,Q(v/=7)) and in this case Jp = {2}. So 4/[Z : {] = 2 or 4.

We summarize the above results as follows.

Proposition 3. The following are all possible pairs (k,{) which may give rise to a
fake compact hermitian symmetric space of type As.

(a) (k,f) € {%1,%2,%3,%\1} and 9 = 4.

(b) (k,0) = (Q,Q(V=T7)), V[Z : ] =2 or 4 and Ty = {2}.

7. Potential examples?

7.1 We consider the case of (k,¢) = (Q,Q(+/=7)). If \/[Z:(] = 2, ie., D is
a quaternion division algebra, then .7, determines it uniquely. Using the values
of ¢/(Py) given in Cases 2b(i) and 2b(ii) in §2.3 we see that either P» can be a
maximal parahoric subgroup in which case ¢/(P;) = 7 and hence Ze’(P2) = 7/5040 =
1/720, or P, can be an Iwahori subgroup in which case ¢/'(P;) = 35 and Z¢'(P,) =
35/5040 = 1/144.

Now since G is anisotropic over k, there exist at least two primes ¢ which do not
split in Q(1/—7) and Qg -rank of G is 1; in fact the number of such primes is even
(and at least 2). Let

Pilg) = (¢ —1),
V2(q) (¢—1)(¢* +1).

From the values of €/(P,) given in Cases 3b, 4b of §2.3, if ¢ is ramified in Q(+/—7)
(i.e,, ¢ = 7), €/(Pr) is an integral multiple of either ¢ (7) = 48 or it is ¥2(7) = 300,
and if it is unramified in ¢, it is an integral multiple of 15(q).

For small primes ¢ which do not split in Q(1/—7), we have the following values of
¥1(q) and ¥2(q). Clearly, both these functions are increasing in ¢. So we find that it
suffices for us to consider v¥2(q) only for ¢ =3, 5, 7 and 13.

12(3) 22.5
Pa(5) 2°-13
Uo(7) | 2%.3.52
o (13) [ 23-3-5-17
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By computing Ze'(P2) [ [ ez 2} ¢/(P,) and checking whether its numerator is a
power of 2 (recall from the above that .7 contains at least two primes ¢ which do
not split in Q(v/—7) and Qg-rank of G is 1), we see that .7 must equal {2,3,7}
and moreover, for each p € .7, P, is a maximal parahoric subgroup of G(Q,) and
M7 = Rpg, Jt;(SLg). This data determines a principal arithmetic subgroup A in
SU(2,2) whose covolume is Z¢’(P2)e’(Ps)e'(P7) = 4/3. Now the question is whether
its normalizer in PU(2,2) contains a torsion-free subgroup of suitable index.

7.2 Let us now consider the case where the degree of 2 is 4. Using the formu-
lae in §2.3, Case 2a, we see that one possibility is 7 = 5 = {2}, in which case
Ze'(Py) = 21/5040 = 1/(2*-3-5) = 1/240. (In this case My = Ry, ,(GL1)/GL1,
determines a principal arithmetic subgroup A’ of covolume 1/240 in SU(2,2). Ques-
tion: Does there exist a torsion-free subgroup of index 240 in A’? Note that the
second congruence subgroup SL§2) (Q2 ®q Z) of G(Q2) = SL1(2) is a normal sub-
group of index 240, but it has torsion.)

Another possibility (when 2 is of degree 4) is that at primes 3 and 7 the group
G is of rank 1 and the parahoric subgroup P, for p = 3,7 is maximal with M7 =
Rz, /s, (SL2). In this case, 7 = {2,3,7} and we obtain a principal arithmetic sub-
group A” whose covolume is €'(Ps)e/(Pr)/240 = 20 - 48/240 = 4.

8

8.1 We consider the case of (k,{) = 61,%2,%3, %1 and 2 = (. Then there exists
a hermitian form h on ¢* (defined in terms of the nontrivial automorphism of ¢/k)
such that G = SU(h).

As k = Q(+/5) is a field of degree 2, r < 2. Here we claim that actually » = 1.
To prove this claim, we assume on the contrary that » = 2. Then G is isotropic at
both the real places of k = Q(1/5). On the other hand, for a place v of k, the group
G is isomorphic to the split group SLy4 over k, if v splits in ¢, and if v does not split
in ¢, then G is k,-isomorphic to the special unitary group of a hermitian form on
¢ where £, = { ®j, ky. So we see, for example, from Proposition 7.2 of [PR] that
G is isotropic over k and hence we get a non-compact locally Hermitian symmetric
space, contradicting our initial assumption.

8.2 For the four pairs of fields 41, %2, 63 and %1, we will now list the parahoric
subgroups involved in the description of the principal arithmetic subgroup A. Let
us assume that (k,¢) is one of the four pairs under consideration. Let us denote
by Z the set of nonarchimedean places v of k which do not split in k& and G is of
ky-rank 1. It is known that the cardinality of 7] is even, 77 can be empty. We
are going to show that in fact 27 is empty and thus the Witt index of h is 2 at
every nonarchimedean place of k£ which does not split in . To see this let us assume
that 7] is nonempty, and let v’ and v” be two places belonging to it. By computing
Ke'(Py)e' (P,r) using the values listed in Cases 3b and 4b in §2.3 we see that if either
of these places lies over a rational prime > 29, then Ze'(Py)e/(Py) » 1. On the
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other hand, if v" and v” lie over primes < 29, then the numerator of Ze’(P,/)e’(Py,»)
is not a power of 2. From these observations we conclude that 77 is empty.

Also, by computing Ze'(P,) using the values of ¢/(P,) given in §2.3, Cases 1, 3a
and 4a, we see that P, has to be hyperspecial if either v splits in £ or is inert, and if
v ramifies in ¢, then P, is a special maximal parahoric subgroup. So €¢/(P,) = 1 for
all nonarchimedean v. This implies that the covolume of A is precisely Z%.

Question Does there exist torsion-free subgroup of right index, so that its covolume
is 1, in the normalizer T' of A in SU(2,2) in case of €1, €2, €3, F1 respectively for
Hermitian form case?. We can also work with the image of I' in PU(2, 2).

The values of Z are given in 5.1. To rule out examples in the case of F7, it suffices
for us to find in the principal arithmetic group A a torsion element of order 5, 7, 32,
or contain a factor not dividing 2% - 3 for any positive integer a.
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