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1 Sets (Mengen)

For an excellent (more detailed) introduction to sets in German see Schichl, Her-
mann and Roland Steinbauer (2009) ’Einfithrung in das mathematische Arbeiten’,
Springer-Verlag. Chapter 4.

1.1 Introduction

[

The idea of sets is very important for what we will do in this course. The main
concepts that will be required are outlined in this section.

Definition 1 (Set). We define a set (Menge) as a well-defined (wohldefiniert)
collection of elements (Elemente).

The basic idea can be expressed by comparing a set to a bag filled with objects.
This bag can contain other bags; i.e. a set can contain other sets. The bag can
also be empty. We call this the empty set. Important to the idea of a set is the
concept 'well-defined’. This simply means that an object in a set cannot occur
more than once. A set is thus a collection of different objects or elements (this
will become clearer later).

Examples of Sets.
e The set of all students in a room.
e The set of natural numbers N

e The set of all positive real numbers R

1.2 Definitions and Notation
SPECIFYING SETS

There are two ways in which we can specify sets.

1. list the elements
A=1{1,2,5,10}
This set contains the integers 1, 2, 5 and 10.
B=1{1,2,3,4,...}

This set includes the natural numbers N. We, of course, cannot write down

all the natural numbers, but this notation assumes that we know how this

set continues due to ’...".

n this course we restrict ourselves to 'naive set theory’ (naive Mengenlehre).
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2. property method

With this method we describe the set in 'mathematical language’. We can
define the set B from above as

B={z:2eN}
This means that the set B is made up of all z’s that are contained in the
natural numbers. We read ’:" B is the set of all ’s such that x is contained in

the natural numbers, where ’:” means ’such that’. The information following
: defines the properties of that which precedes it.

Definition 2 (element in (element aus)). If an element a belongs to the set
A, we write

ac A

and say a is in A, a is an element of A or a is contained in a.

Definition 3 (Subset, Superset). The set B is called a subset (Teilmenge) of
the set A if the set B only contains elements also contained in A. A is then called
the superset (Obermenge) of B.

We denote this as B C A. We will use this notation for a proper subset (echte
Teilmenge). This means that A cannot be equal to B; i.e A contains all elements of
B, but B does not contain all elements of A. An alternative representation would
be B C A, which allows A and B to be equal.

Examples.

o Let A={2,5,7,8} and B = {2,5}. Then B C A. It is also correct to write
B C A as B is a real subset ob A. Further, we can write A C A; i.e. Ais a
subset of itself. However, it it incorrect to say A C A as a set cannot be a
real subset of itself.

e NCZCQCRCC, where N denotes the natural numbers, Z integers, Q
the rational numbers, R the real numbers and C the complex numbers.

Definition 4 (Equality of sets). Two sets A and B are equal (gleich) if and
only if they contain the same elements.

We write A = B.
Examples.

o Let A = {apple,orange,pear} and B = {pear,apple,orange}. Then ob-
viously A = B. Note that the order of the elments in the set does not
matter.



o Let C ={1,3,17,300} and = D {1,3,3,17,3,17,300}. Although in the set
D the element 3 is listed three times and the element 17 twice, C' and D
remain equal. This follows from the definition of sets, where we required
the elements of a set to be well defined, in other words different from one
another.

Definition 5 (Empty set). The empty set (leere Menge) is the set that contains
no elements.

The empty set is commonly denoted as () or {}. An important property of the
empty set is that it is a subset of every set.

Definition 6 (union (Vereinigung)). The union of two sets A and B is the
set of elements contained in A or B. Formally
AUB={a:x€ A or z € B}

Examples.

e Again, let A ={2,5,7,8} and B = {2,5}. Then the union of the two sets is
AUB=1{2,5,7,8} = A.

e LetC={z:2z€(0,1)}and D ={z:2 € [1,3)}, then CUD = {x : z € (0,3)}.

Definition 7 (intersection (Durchschnitt)). The intersection of two sets A
and B is the set of elements that are contained in both A and B. Formally,
ANB={a:xz € A and z € B}

Examples.

e Again, let A ={2,5,7,8} and B = {2,5}. Then the intersection of the two
setsis AN B = {2,5} = A.

e Let C={z:2€(0,2)}and D ={z:2 € [1,3)},then CND = {z : z € [1,2)}.

Definition 8 (disjoint sets(disjunkte Mengen)). If two sets A and B are
disjoint (disjunkt) they contain no elements in common; i.e.
ANB=10

Examples.

e Let A = {7,8} and B = {2,5}. Then the intersection of the two sets is
AN B =10. So, A and B are disjoint sets

e Let C={x:2€(0,1)} and D ={z:2 € (1,3)}, then C N D = and the
two sets are disjoint.



Definition 9 (complement (Komplement)). The complement A is the set of
elements not contained in A.

Examples.

e Let A= {1,23,5} and B = {1,5}, which is a subset of A. Then B¢ with
regards to A is B¢ = {23}.

e Let U be the universal set (the set that contains all elemts). The compelent
of the universal set U¢ = ().

e Again, let U be the universal set. The complement of the empty set )¢ = U.

Definition 10 (difference (Differenz)). The difference of the sets A and B,
written as A\ B, is the set of elements contained in A but not in B. Formally,
A\B={z:2€ Az ¢ B}

Examples.

o Let A={1,23,5} and B = {1,5}. Then A\ B = {23}.
o LetC={z:ze(-1,2)}and D ={z:2 € (0,2)}. Then C\D = {z:z € (—1,0]}.

1.3 Algebra of Sets
Let A, B and C be sets and U the universal set.
1. AUA=A
2. AnNA=A
3. (AUB)C =AU (BUC)
4. (ANB)C =AN(BNC)
5. AUB=BUA
6. ANB=BnNA
7. AU(BNC) = (AUB)N(AUC)
8. AN(BUC)=(ANB)U(ANC)

9. AUD=A
10. AN =10
11. ANU=A



12. AuU =U

13. (49 =A
14. ANA°=10
15. AUA=U
16. U =1
17. )¢ =U

There are two more important rules that carry the name de Morgan’s laws
(without proof):

(AUB)¢ = AN B°
(AN B)¢ = A°U B°



2 Basics of Probability

2.1 Sample Space and Events

Probability theory helps us to look at things that are connected to chance. We
will call such things experiments (Zufallsexperiment). We do not know what the
outcome of an expereiment will be in advance, but often we konw what the possible
outcomes are. We call this set of possible events the sample space (Ereignis-
raum) and will denote it as 2. Each element of the sample space is called an
event (Ereignis).

Example. If we throw a coin it can land on either heads (H) or tails (T). Then
Q={H,T}
{H} C Q and {T'} C Q are events

Example. If we throw two coins
Q={(H,H),(H,T),(T,H),(T,T)}

{(H,H),(H,T), (T, H),(T,T)}, { (&, H)}, {(H,T)}, {(T, H)}, {(T, 1)}, {(H, H), (H,T)},
{(H,H),(H,T),(T,T)} and {(H,H),(T,H),(T,T)} etc. are events

Example. The lifetime of a car
Q={z:0<z < o0}

Let us take a closer look at the second example from above where we threw
two coins. We can define the event that at least one of the coins lands on H and
let us call this event A.

A= {(Ha H)a (T7H)a (HaT)}
The complement of A will then be Q\ A. Let us call this B.
A°=B={(T,7)}

Note that A and B are disjoint sets whose union is equal to the sample space;
ie.

AUB=Qand ANB=10
Further we define two sets C and D as

C={(H H)}
D ={(H,H),(H,T)}

Then the union is

CuD={(H,H),(H,T)}



and the intersection

CND={(H H)}

2.2 Axioms of Probability

We are interested in the probability of events. To be able to talk more formally
about this we will denote the probability that an event E will occur as P(FE).
P(FE) = 1 will mean that the event is sure to happen and P(E) = 0 that the event
cannot occur.

Most of probability theory is based on an axiomatic approach. An axiom is a
statement that is taken to hold from which one deduces other things that we call
theorems and propositions. What is remarkable is that for that which we will look
at in this course we require but three axioms.

Axiom 1
Let E be an event.
0<PE)<I1
This means that the probability of an event lies between (including) 0 and 1.
Axiom 2
Let € be the sample space.
P(Q)=1

This axiom states that the probility of an event in the sample space occuring is
1. In other words, it is sure that at least one of the events the sample space will
occur.

Axiom 3
Let A and B be two disjoint subsets (events) of the sample space 2.

For two mutually exclusive events (einander ausschlifende Ereignisse) A and
B
P(AuB)=P(A)+ P(B)

This means that the probability of the union of two mutually exclusive events (two
disjoint sets) is equal to the sum of the probability of the individual events.

This axiom can be written in the general form for the mutually exclusive events
E;
P(UZ E;) = Zzo; E;

Example. If we throw a fair coin
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1
P({H})=P({T}) =5
Example. In the case of two fair coins

P({(H,H)}) = P{(H,T)}) = P{(T, H)}) = P{(T,T)}) = i

We will learn later how to derive such probabilities.

2.3 Some Propositions

We state some important and useful propositions. They can be proven using the
three axioms from above. However, we will simply state them and not give any
proofs.

1. P(0) =0
2. P(E°) =1- P(E)

3. if E C F, then P(E) < P(F)

4. P(EUF) = P(E)+ P(F)— P(ENF)
5. P(E\ F)=P(E)— P(ENF)

2.4 Sample spaces with equally likely outcomes

After having discussed the very basics of probability, we conclude this chapter
with one last definition that will accompany us through much of this course. We
introduce the idea of sample space 2 in which all outcomes have equally likely
probability.

Definition 11 (Laplace’sche Wahrscheinlichkeit). Let all elements of the
sample space Q) have the same probability of occuring. Let A be an event in €2,
then

A
P(A) = ;Q;’ where

|A| is defined as the number of elements in A, which is called the cardinality
(Mdchtigkeit) of A.

Example. Previously we concluded that the sample space of throwing a die is
0=1{1,2,3,4,5,6}.

Then | = 6. Let us define the events A and B as the events that the number
two and an even number is cast respectevily. Then |A| =1 and |B| = 3. Thus,
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3 Conditional Probablitly
3.1 The basic idea

Sometimes it may occur in an experiment that we come by more information than
we had in the beginning and that we can use this to calculate the probability of
particular events given this information.

To motivate this idea, let us go back to the eternal example of rolling a die. Let
us further assume that each of the six numbers of the die have equal probability
of coming out on top. We already konw that

1
0=1{1,2,3,4,5,6} and P(z) = G for all i € {1,2,3,4,5,6}

Imagine now, that we know that the outcome is an even number; we define £ =
{2,4,6}. Given this information, we are interested in finding out the probability
that the number that fell is four; i.e. P(4). To calculate this, we introduce the
following:

Definition 12 (Conditional Probability (Bedingte Wahrscheinlichkeit)).
Let A and B be events in the sample space 2. The probability that the event A
occurs given that B has occured is called the conditional probability of A given B
(bedingte Wahrscheinlichkeit von A gegeben B). We write P(A|B). If P(B) > 0,

then
P(ANDB)

P(A|B) = BBy (1)

We can see this as the situation where we have compressed the original sample
space ) to the reduced sample space B.
We return to our example from above. We know that P(E) = P(2) + P(4) +

1
P(6) = 5 We define the event that the number four occurs as F' = {2}. Then
F N E = {2}. Further, we know from what we have already learned, that P(F' N
1
E)=P(F) = 6 We are now ready to apply definition
P(ANE) P(A)

PAIE) = =p@y = P(B)

ol o=
I

So, given the information that the number that fell is even, we were able to
deduce that the probability that the number four fell is two thirds. We look at
further cases of this example. We now let B = {2,5}. BN E = {2}. Then,
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P(BNE) _ P({2})

PIBIE)=—p@&) = PB)

TSN
[

Now, let C = {3,5}. Then, CNE = {).

(CNE) PO 0
_TZO
2

P
POB) = =5 = PE) -

3.2 Multiplication theorem for conditional probabili-
ties
If we multiply both sides of 12| with P(E), we get
P(AN E) = P(E)P(A|E)

This is the multiplication theorem for conditional probabilities (Multiplikation-
ssatz fiir bedingte Wahrscheinlichkeiten) and comes quite in handy sometimes.

Naturally, we can generalise the multiplication theorem to cover more than
just two sets.

Let £ —1,F,..., FE, be n different events. More succinctly we can write these
events as F;, wherei = 1,2,...,n. Then the multiplication theorem can be rewrit-
ten as

P(El NEsN...N En) = P(EI)P(E2|E1)P(E3|E2 N El) .. P(EH|E11 N Ey N
Eu1)

To verify this equation, apply the definition of conditional probability to the right
hand side of the equation and simplify.

Example. Three are 12 batteries in a box. 4 of these are broken. Without
replacement, 3 batteries will be randomly drawn from this box. We want to
calculate the probability that all 3 of these batteries are functions. To go about
this we define the following events:

A. .. the first battery we pull out is working

B. .. the second battery we pull out is working

C... the third battery we pull out is working

We now want to calculate the probability that A, B and C will all occur. In other
words, we want to know the probability described by P(AN BN C).

From what we have learnt we know that we can write this using the multiplication
theorem as follows:

P(ANBNC) = P(A)P(A|B)P(A|BNC)

We have to now find the probabilities on the right hand side of the equation.
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P(A) = o 7

P(AIB) = - 6

PABnC) =2

Tl(lel‘q Pr(fr)n B rleC) — P(AYPAB)P(ABAC) = S L8 11 a5
121110 55

3.3 Total Probability

Let A;, with ¢ = 1,2,...,n be mutually exclusive events (i.e. A; N A; = ( for all

i # j). Further, let the event E be a subset of the union of the A;s (E' C |J 4).
i=1

Then it holds that

P(E) = P(E|A1)P(A1) + P(E|A2)P(A2) + ... P(E|A,)P(A
Why does this hold? Recall that we can write

E=(ENA)U(ENA)U...(ENA,)

and from the Axiom 3, we know that the probability of the union of events is
the same as the sum of the probablities of their individual events. We call this
total probability (Satz der totalen Wahrscheinlichkeit).

Example. (taken from Futschick et al, (2010)) A factory has three machines X,
Y and Z that each produce different objects.

e X produces 50% of the objects of which 3% don’t funtion
e Y produces 30% of the objects of which 4% don’t funtion
e 7 produces 20% of the objects of which 5% don’t funtion

We define D as the event that arbitrary object produced in the factory does not
function. Now we want to calculate the probability of D with the information that
we have:

P(D) = P(X)P(D|X)+ P(Y)P(D|Y)+ P(Z)P(D|Z)
(0.5)(0.03) -+ (0.3)(0.04) + (0.2)(0.03)
= 0.037

3.4 Bayes

In this section we look at Bayes’ Formula (Bayes-Formel) and the Theorem of
Bayes (Theorem von Bayes). But before we get to these important results, we will
look at a couple of other things to help us along the way.

Let F and F be events. And as we have seen previously, we can write

E=(ENF)U(ENF°)
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From Axiom 3, we further know that

P(E) = P(ENnF)+P(ENF°
= P(E|F)P(F)+ P(E|F°)P(F°)
= P(E|F)P(F)+ P(E|F°)[1 — P(F)]
Before we procede to define Bayes’ Formula we need to take another look at the
definition of conditional probablitiy. Recall that for two events £ and F', we said

that
P(E|F) = P(f(;)m

Further we noted that we can thus rewrite the above as
P(ENF)=P(E|F)P(F)
We are now ready to define Bayes’ Formula

Definition 13 (Bayes’ Formula (Bayes-Formel)). Let E and F be two
events. Then

_ P(F|IE)P(E) _ P(F|E)P(E)
PEIE) = =55y = PIEIF)P(E) + P(FIE) P(ELS)

Take a close look at this formula to make sure that you know where we used which
result that we derived at some point earlier.

The Theorem of Bayes, which we will define next, follows the same ideas and
principles as those we used for definition But it also allows us to work with
more than two events.

Definition 14 (Bayes’ Theorem (Theorem von Bayes)). Let E and A;,
n

with I =1,2,...,n be events, such that E C |J. Then it holds that
i=1

P(E|A;)P(4;)
=1

(2

3.5 Independent Events

Independence of events will prove to be very useful later on and we will define it
here.

Definition 15 . Let A and B be two events. A and B are said to be independent
(unabhdngig) if the following holds

P(AN B) = P(A)P(B)

and dependent otherwise.
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Three events E, F' and G are said to be independent if the following hold:
P(ENFNG)=P(E)P(F)P(G)

P(ENF)=P(E)P(F)

P(ENG)=P(E)P(G)

P(GNF)=P(G)P(F)

3.5.1 A note of caution

Independent and mutually exclusive events are often confused. We will show here
that the two are absolutely not the same.

Let A and B be two independent, nonempty events. Then
P(AnB)= P(A)P(B)
Can A and B be mutually exclusive events (i.e. disjoint sets)? No! Why?

If the two sets are mutually exclusive, it follows that AN B = (). We learnt at the
beginning that P(@)) = 0. From this it would have to follow that

0 = P(A)P(B)

But this cannot be as P(A) = 0 or P(B) = 0 (this implies that the sets A or B
would be empty) would have to hold and this cannot be as we required both these
sets to be nonempty in the beginning. Therefore, two nonempty, independent sets
cannot be mutually exclusive!
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4 Inferential Statistics Basics

Up until this point we have been looking at elements of probability theory. With
this chapter we begin to deal with inferential statistics (Inferenzstatistik). Infer-
ential statistics is that which most people understand by the term ’statistics’.

So then, what is the difference between the two and why didn’t we start with
inferential statistics in the first place? The latter question is easier to answer:
one cannot understand inferential statistics without a certain understanding of
probability. The first question is not difficult to answer either, but requires a little
more space.

We began the previous chapters by defining the sample space, learned how to
present its elements as random variables and then found that one can describe
their ’behaviour’ with different distributions. The central point is that in these
cases we knew exactly what is contained in the sample space and then we were
able to calculate the probability of certain events of interest. We often looked at
examples of throwing fair coins. We were able to describe and in this case even
list all the possible outcomes. Recall the example of throwing a fair coin twice.
We wrote down the sample space and then calculated the probability of the event
that both times the coins would show heads.

In inferential statistics, we do pretty much the opposite. We now no longer
know what the sample space looks like. Instead, we have certain information about
that which is of interest to us that we were able to observe. This information is
called data. Using these data we want to make conclusions about the entire sample
space.

Before we can really get started, we still need to define a few concepts and
introduce some new ideas.

4.1 Definitions and Concepts

In this section we introduce some terms and concepts that are important when
talking about inferential statistics.

Population (Grundgesamtheit). In inferential statistics, the population refers
to the set about which we are trying to understand certain things. A population
can be many things: all people living in Austria, all students in the world that are
studying business economics or drosophila.

Sample (Stichprobe). A sample is a subset of the population. In inferential
statistics samples provide the data we use to make conclusions about certain char-
acteristics of the population.

Random sample (Zufallsstichprobe). A random sample is a sample of the
population of interest that was randomly produced. In many cases it is desirably
- as we will discuss later - that a sample be random.
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Estimator (Schdtzer). In the sections on probability we introduced parameters
for random variables such as the expected value (E(X) = p) and the variance
(Var(X) = o%). We were able to calculate these with the information we had.
In inferential statistics we very often do not know what these parameters for a
population are. So, we try to estimate them from the samples we have from the
population. An estimator is a 'formula’ that we apply to the data from the sample.
A common estimator for p is the mean T (see chapter [5)).

Estimate (Schdtzung). An estimate for a population parameter is simply the
numerical outcome of applying data to an estimator. We may calculate that the
mean hight of people in a sample is 1.7m; ie. T = 1.7. The formula for T is the
estimator and 1.7 is the estimate.

In essence, the story about inferential statistics as we will treat it here is that
we have a population about which we would like to know something that we don’t
know. Because we cannot look at every element of the population, we look at a
sample taken from this population and estimate the things we want to know from
the data generated by the sample.

4.2 An illustrative example

Assume a population is given by a set S = {4,7,10} and each element of the set
has equal probability of occuring. We can then actually calculate the population

mean g and variance o2.

p=7and 0> =6

Now imagine we take samples of size n = 2 with replacement. The follow-
ing table lists all possible samples from the population together with the sample
average .

_@b) |7
(44) [ 4
4,7) 55
(4,10) | 7
(74) |55
(7 |7
(7,10) | 8.5
(10,4) | 7
(10,7) | 8.5
(10,10) | 10

And now we derive the sampling distribution for Z.
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T

10
With this we can calculate the expected value and variance of .
E(Z)=7and 02=3

There are a number of things that are exemplified in this simple example.
First, the sample mean of 7 (i.e. T =7) has a higher probability of occuring than
any of the other sample means. This is no coincidence; 7 is the population mean.
Second, the expected value of T is also equal to the true population mean. The

sample variance U% is equal to 3. This is not the same as the population variace,

L . N . g2
but as is discussed in chapter |6| on sample distributions, the variance of T is 7~

In this example this would be 3, which is 3.

4.3 There’s more to it...

What is described as inferential statistics above is just a snippet of the whole story.
Yes, there’s more to it than that. A lot more, actually. But we will not venture
that far in this class and hence not in this textﬂ Just to give an idea: we have not
at all talked about causal relationships between variables and much of statistics is
dedicated to such questions.

20f course, the same holds for the treatment of probability theory in this text.
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5 Some Descriptive Statistics

When we collect data to measure something or gather information, the first thing
we would want to do is to describe it. This section briefly presents some of the most
common types of descriptive measures that we encounter in textbooks, the media,
but also in academic research. We can also be confronted with many different
types of data and we first discuss these. After this, we look at different types of
ways to numerically describe data.

We define the following notation:

n ... number of observations

;... observation %

5.1 Levels of Measurement

Nominal level (Nominalskaliert) Nominal data are items that are differenti-
ated by a naming system. The names refer to different characteristics (Auspragun-
gen) that something can take on. Examples are things such as eye colour, countries
or names of people. Data at the nominal level are qualitative. It does not make
sense to calculate something like the mean or standard deviation (see below) of
nominal data.

Ordinal level (Ordinalskaliert) Ordinal data are data that have an order (nom-
inal data do not). For example, placement in a race - first, second, et. - has an
order, but no meaning can be given to the difference in the placements; i.e. the
placements cannot be used to answer the question of 'how much more?’. Ordinal
data should also not be used to calculate some of the measures we will discuss
below.

Interval level (Intervallskaliert) In the case of interval scaled data, the idea
of difference does have meaning, but it does not have starting point. The most
commonly cited example is temperature. 30°C is 20°C' warmer than 10°C', but
0°C' does not mean that there is no temperature.

Ratio level (Verhéaltnisskaliert) For data at the ratio level the difference be-
tween two values makes sense and there is a starting point. For example between
10 and 30km there is a difference of 20km and the idea of Okm has meaning in the
sense that it is the absence of distance.

Data are metric (metrisch) if they are at interval or ratio level. These can be
discrete (diskret) or continuous (kontinuierlich).

5.2 Measures of Central Tendency

Here we look at different measures for the centre or middle of data.
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Definition 16 (arithmetic mean(arithmetisches Mittel))

n

T1+T2...+Tp Zi:lxi
n n

T =

Definition 17 median((Median))

nodd: T =1y
neven: T = (Tnj2+Tny2)/2)/2

Definition 18 (geometric mean(geometrisches Mittel))

3=

TG = (xll'g .. l‘n)

5.3 Measures of Dispersion

Definition 19 (variance(Varianz))

1 n
2 _ Z =
y 7n—1i:1(xl 7)

Definition 20 (standard deviation(Standardabweichung))

5= V2
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6 Sample Distributions

In the previous chapter, we said that we are interested in certain characteristics
that we cannot directly observe of a given population. In the sections on probabil-
ity theory we saw that certain parameters were central for describing the behaviour
of random variables.

In the case of binomial random variables, it was the parameter p describing
the probability of success. For both the Poisson and the exponential distributions
it was the parameter )\ that was essential for determining the probabilities of
outcomes. And for the normal distribution there were two parameters of interest;
the expected value p and the variance 0. (In this section we will start to get a
sense of why the normal distribution is so important.)

But now we are faced with the situation where we do not know these param-
eters. All we have is a (hopefully good) sample from the population. From this
sample, we can produce estimates for the unknown population parameters. For
this, we use estimators.

6.1 Estimators for Parameters

We will concentrate on the parameters p, u and o and present the estimators for
these herdﬂ (We have already seen estimators for the last two in chapter )

Sample mean

The sample mean T serves as an estimator for p. It is given by
1 n
1=

Sample Variance

The sample variance, denoted by s? is given by

1 _
52:n_12(93i—x) (8)

The question as to why we divide by n — 1 and not simply n will probably
arise. Suffice it to say, dividing by n — 1 instead of simply n provides us with a
better estimator for the variancel

3We will not discuss how these estimators are derived or what their characteristics are,
nor how good they are. Nevertheless, they are by and large intuitive
4Dividing by n — 1 makes s unbiased (erwartungstreu).
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Sample proportion

When we looked at binomially distributed random variables, the parameter p gave
us the probabiliy for the success of an experiment. If we have a sample of size
n, we can count how many successes and failures occured. If we there were m
successes in the sample, a plausible estimator, which we will call p, for p would be

m

p=" ©)

n

From this, it is clear why we talk about sample proportions (Anteilswerte) in
such a situation.

It is important to note that these estimators are also random variables. Intu-
itively, we can make sense of this if we consider that we can take many different
samples from a population and that p, 1 and o2 will vary accross these samples.
It can then happen that one sample provides an estimate for a parameter that is
much closer to the true value of the population parameter than another sample.
Therefore, methods were developed to test ’how good’ an estimate from a sample
is. We will discuss some of these later.

For now, it is important to understand that these estimators are random vari-
ables and that these random variables also have distributions. We now discuss the
distributions of our three estimators.

6.2 Sample Mean

The sample mean T is an estimator for the true population mean p. A mean
usually comes with a variance. For the distribution of the sample mean, we have
to distinguish between two possible cases:

1. the true population variance o2 is known

2

2. the true population variance ¢* is unknown

Note that in both cases we do not know p, which is why we are looking at the
"behaviour’ of its estimator 7.

6.2.1 variance known

Let X1,..., X, denote random variables with mean y and variance o2. The sample
2

_ . g .
mean T then has mean p, and variance —; that is
n
2

E(T) = p and Var(z) = %
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What are we to understand by E(Z) = p? It simply means that if we repeatedly
took a sample from the population, the average value of the sample mean would
equal the actual population mean. (Section illustrates this point.)E]

If in addition the random variables Xi,..., X, are all normally distributed
mean 4 and variance o2, then T is also normally distributed with mean p and
2
o
variance —.

This is very convenient, as we know how to work with the normal distribution.
But what if the random variables X1, ..., X, are not normally distributed? In this
case the Central Limit Theorem (Zentraler Grenzwertsatz) comes to the rescue:

Central Limit Theorem

Suppose that a random variables Xy, ..., X, follow a dis-
tribution other than the normal distribution with mean p
and variance o2 (all X; must have the same distribution).
If n is large enough, then the sample mean T is normally

o

distributed with ean p and variance —, i.e.
n

. 2

T ~ N(u, )

Of course, this scenario, where we know the true population variance, is less real-
istic than the one we discuss next.

6.2.2 variance unknown - the t-distribution

If the population variance o2 is unknown - which is in most cases very likely - we

have to use the sample variance s? as an estimator. In this case, it was shown, that
a distribution other than the normal distribution fares better than the normal in
describing the "behaviour’ of Z. This distribution is the t-distribution (also known
as the student-distribution). In other words, when we standardise T with

=

this random variable follows the t-distribution with n — 1 degrees of freedom
(Freiheitsgrade). We shall denote the degrees of freedom as q.

Characteristics of the t-distribution

The t-distribution resembles the normal distribution in shape. Like the normal
distribution it is a bell shaped curve and is symmetric about its mean. The mean
is 0 and the variance 1.

®0One may also ask why we divide the variance by n. This is not all too difficult to
derive, but shall not be done here.
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Its cumulative distribution functiorﬁ (Verteilungsfunktion) is given by
FO ) = P(T < 1),

where ¢ represents the degrees of freedom. To find the values we are looking
for, there are again - like for the standard normal distribution - tables where we
can look them up. However, the tables for the t-distribution vary with the degrees
of freedom q. So we need to look at the table with the 'right” degrees of freedom.
From the symmetry of the distribution it follows that

O (~t)=1-F@).

For a random variable T that follows a stundent distribution with ¢ degrees of
freedom, it holds that

P(T|<z) = P(—z<T<uz)
= F(@) - F"(~x)
= F2) - (1 - F{"(x))
= 2F (@) -1

Now, we know how to find the probability that a radom variable 7' (recall that
T is the standardised sample mean) lies below a certain value or between two
given values. All this is familiar to us from our discussion of the standard normal
distribution.

But, instead, we may want to find the value for which T lies below with a
certain probability or the interval in which 7" will be contained with a certain
probability. This we can do much in the same way as we did for the standard
normal distribution.

For example, we may want to know in which interval of the t-distribution the
random variable T' may lie with a particular probability a € [0, 1]. Let’s look at a
concrete example. We want to know for a random variable T with 24 degrees of
freedom for which value z

P(—z <T <x) =095

will hold. How do we go about this? Much in the same way as we did for the
standard normal distribution. We already know that this is the same as solving
the following for x

0.95 = 2F\) (2) — 1
= 0.95+ 1 =2F) (2)
0.95 + 1
— =R

6We do not look at the density function of this distribution. For our purposes, it suffies
to look only at the distribution function.
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To complete this, we introduce the inverse function (Umkehrfunktion) for Fq(t) (x)
which is denoted by Qt(lt). Applying the inverse, we get

5 (0.95+1
o= (%5

> = oY) (0.975)
le) (0.975) can be found on the table for the t-distribution with 24 degrees of
freedom and therefore

r = 2.064.

6.3 Sample Proportion

Suppose we want to look at the proportion in a sample that exhibits a certain
characteristic. We learned previously that the binomial distribution [] can be used
in some such situations.

In 1812, Pierre-Simon Laplace proved that if a random variable has a binomial
distribution with parameters p and n, its standardised form (subtracting its mean
np and dividing by its standard deviation \/np(l —p)) converges towards the
standard normal distribution. Due to this we can state th

DeMoivre-Laplace Theorem

When n independent trials, where each has a probability p
for success, are performed and S,, denotes the number of
successes, then for any a < b it holds that

P (a < m < b) "2 B (b) — B(a)

This looks very helpful as we know how to deal with the standard normal distribu-
tion. However, there are two things to keep in mind. First, we don’t know p. That
is not such a problem; we can just use our estimator p. (Note: the m in the for-
mula we gave earlier is simply the S, in the statement of theorem above.) Second,
binomial variables are discrete, whereas the normal distribution is continuous.

On the one hand, from the just stated theorem, we know that binomial random
variables can be approximated by the normal distribution for n and p that are
large enough. In this case, we have a rule of thumb. We consider n and p to be
large enough if np(1 — p) > 9. Further, the results are improved if we apply a
continuouity correction (Stetigkeitskorrektur). Putting all these things together,
for any a < b we can state the following for a binomial variable X

7 Another suspect for such a situation would be the hypergeometric distribution. How-
ever, we omit discussing it here.
8Why DeMoivre? Abraham DeMoivre published on this in 1733 as well.
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SH—np —05—np
P(a<X<)w<b+05m?)_¢<am?>

np(1 - p) np(1 —p)

In the above, 0.5 was added to b and subtracted from a. This is the continuouity
correction.
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7 Confidence Intervals

If we have a random sample from a population infront of us, we can use the data
from this to calculate estimates for unknown population parameters. This esti-
mators do not give any indication of their precision. We can make statements
about the precision of these estimates with confidence intervals (Konfidenzin-
tervalle). A confidence interval is an interval derived from the data in which the
true parameter lies with the probability chosen for the interval. For example, a
95% confidence interval for the mean calculated from the sample contains the true
population mean with a probability of 0.95.

7.1 Confidence Intervals for Means

7.1.1 known variance

F-oM-9) LT+ oM-9 %

n

7.1.2 unknown variance

70T )05

7.2 Confidence Intervals for Proportions

5- 0= Hy/E 51 01— )y HE

n>(@”ﬂsv2
- L

7.3 Confidence Intervals for the Difference of two Means
7.3.1 Dbefore-after comparisons

Generate sample mean of before and after differences and then apply relevant
formulae from section [7.1]
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7.3.2 independent samples
3 cases
known variance
(@1 —71) — QM (1 — G)op, (T1 — 71) + QN (1 — §)op],

where

2
o 2
op = Z1 +d072
n2

ni

unknown variance: case 1

on: 02 — o2
Assumption: o] = 05

[(fl — fz) - Q,(fl)JrnQ,Q(l - %)SPa (fl - 52) + letl)Jrnng(l - %)SP]’

where

1 1 \/(nl —1)s2 + (ng — 1)s2+
Sp = — + —

ni no ni+no — 2
unknown variance: case 2

om0 2
Assumption: oy # o5

[(@ —T2) — Q(ut)(l — 5)op, (T1 —T2) + Qf,t)(l — %)UD],

where
Sh
v= 2\ 2 2\ 2
) &)
ny ng
ny—1 + no—1
and
2 2
51, 5
SD = ni + no

7.4 Confidence Intervals for Proportion Differences
[(1 = D2) = QM (1 = §)op, (b1 — p2) + QW) (1 = §)op],

where

sp = \/ﬁl(l —p1) | p2(l —p2)

+
ni na
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8 Hypothesis Testing

In previous chapters we presented some estimators for unknown population means,
variances and proportions. In chapter[7] we learnt to construct confidence intervals
for estimates in order to be able to say more about their precision. In this chapter
another method method for making inferences about population parameters is
introduced; namely that of hypothesis testing.

A hypothesis test (Hypothesentest) is a statistical rule for deciding between
two rival hypotheses. The two hypothesis between which we want to decide are
the null hypothesis (Nullhypothese) and the alternative hypothesis (Alterna-
tivhypothese). The null hypothesis is commonly labeled Hy and the alternative as
H AP}

The null hypothesis is ”accepted” (so to say, by default) unless there is sufficient
evidence in the data to make us decide otherwise.

The procedure that is followed for a hypothesis test can be stipulated as follows:

1. Formulate the null and alternative hypotheses.
2. Decide on a significance level a.

3. Choose an appropriate test.

4. Construct a test statistic based on the data.

5. Based on the results, decide whether to reject or accept the nullhypothesis.

This is all good and well, but to actually apply this information we need to know
more about these steps and the concepts contained in them. We discudd them
below.

8.1 The Hypotheses

Let us call the true parameter that is unknown to us © and © the value that this
parameter takes on under the null hypothesis. Hypotheses can be constructed for
a one sided (einseitig) or a two sided (zweiseitig) test. We use the following
example to help us understand the differences:

Example (bread). A factory bakes bread every morning which it then
delivers to different customers. This bread factory is confronted with
a number of issues that it has to deal with.

Hypotheses for one sided tests.

9Some texts write H; for the alternative hypothesis.
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The owner of the factory thinks that the machine for a particular loaf

of bread makes the loaves too large (that is, too heavy) and this would
reduce his profits. This would be a case for hypotheses of the following
form (O in this case would be the true average weight of the loaves and
Op the weight that the average is supposed to be.)

Hol @:@0
Hy: © >0

An important customer comes along and complains that the bread he has
been buying weighs less than it should. To test this claim, this time
the hypotheses would look like this:

H(): @:@0
Hy: © <06y

Hypotheses for a two sided test.

Now, the owner of the bakery wants to check if, on average, the baguettes
have the weight they are supposed to have. This would mean that on average,
their weight should be neither above or below the intended weight. To

test this, we need to construct a two sided test. The hypotheses have

the following form:

Ho: @:@0
Hy: © £ 0

8.2 The Significance Level

The significance level a € (0,1) is the probability of rejecting Hy when the null
hypothesis is true that we find acceptable (rejecting the null hypothesis when it
is true is called the type 1 error and « is the probability of this error). The most
common values for a are 0.05 and 0.01. The significance level o should be decided
upon before calculating any test statistics with the data.

8.3 Tests, Test Statistics and Decisions

Here we will look at hypothesis test for the mean. Let us assume that we have a
random sample of size n from a population for which the true mean or expected
value p is unknown. We use T as an estimator for population mean. From chapter
[6] we know about the distribution of this random variable. Given that all the
required conditions discussed there hold, we can again differentiate between two
cases. One, where the population variance is known and two, where it is unknown
and estimated from the data.
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8.3.1 Test for the mean: population variance known

The test statistic (Teststatistik), which we will call T' is then given by

L — Ho
LT om
where p is the mean under the null hypothesis. From chapter [6] we know that
the test statistic follows a standard normal distribution. So, how do we decide
once we have calculated the test statistic? That depends on the o we have chosen
and the set up of the two rival hypotheses. For a given significance level o we
would decide as follows in the three cases below:

® Ho:p=povs. Ha:p# po

Reject Hy in favour of Hy when: |T| > QW\)(1 — 5)
o Ho:p<pgvs. Ha:p> po

Reject Hy in favour of Hy when: T > QW\)(1 — a)

o Hy:pu>povs. Ha:p<pg
Reject Hy in favour of H4 when: T < —Q(N)(l —a)

8.3.2 Test for the mean: population variance unknown
The test statistic for this case is given by

T — o

T =

1
where s is the sample standard deviation (recall s? = | Yo (z —7T)).

Again from chapter [6] we know that in this case we do not use the normal dis-
tribution, but instead the student or t-distribution with n — 1 degrees of freedom
(Freiheitsgrade). Our decision criteria then look as follows:

o Ho:p=pgvs. Ha:p+# pg
Reject Hy in favour of H4 when: |T| > ngl(l -3)

o Ho:p<povs. Ha:p>pp
Reject Hy in favour of H4 when: T > Qg)_l(l — )

o Ho:p>povs. Ha:tp<po
Reject Hy in favour of Hy when: T < —QS)_l(l —a)
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