Math 150 Lecture Notes Introduction to Vectors

Quantities that are determined only by magnitude, i.e., length, mass, temperature, area, are called **scalars**.

A vector is a line segment (with magnitude) and an assigned direction. An arrow is used to specify the direction. Vector \overrightarrow{AB} has initial point *A* and terminal point *B*. The magnitude or length of the vector is the length of the segment *AB* and is denoted by $|\overrightarrow{AB}|$.

Two vectors are **equal** if they have equal magnitude and the same direction.

Vector \overrightarrow{AC} is the **sum** of vectors \overrightarrow{AB} and \overrightarrow{BC} when it is the displacement $\mathbf{u} = \overrightarrow{AB}$ followed by the displacement $\mathbf{v} = \overrightarrow{BC}$.

Multiplication of a Vector by a Scalar

If *a* is a real number and **v** is a vector, then *a***v** is a vector of magnitude $|a| |\mathbf{v}|$ and has the same direction as **v** if a > 0 or the opposite direction as **v** if a < 0.

The difference of two vectors **u** and **v** is defined by $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v})$.

In the coordinate plane, a vector v can be represented as an ordered pair of real numbers, $v = \langle a, b \rangle$, where *a* is the **horizontal component** of v and *b* is the **vertical component** of v.

Component Form of a Vector

If a vector **v** is represented in the plan with initial point $P(x_1, y_1)$ and terminal point $Q(x_2, y_2)$, then $\mathbf{v} = \langle x_2 - x_1, y_2 - y_1 \rangle$.

Two vectors are equal iff their corresponding components are equal.

The magnitude or length of a vector $\mathbf{v} = \langle a, b \rangle$ is $|\mathbf{v}| = \sqrt{a^2 + b^2}$

Algebraic Operations on Vectors

If $\mathbf{u} = \langle a_1, b_1 \rangle$ and $\mathbf{v} = \langle a_2, b_2 \rangle$, then $\mathbf{u} + \mathbf{v} = \langle a_1 + a_2, b_1 + b_2 \rangle$ $\mathbf{u} - \mathbf{v} = \langle a_1 - a_2, b_1 - b_2 \rangle$ $c\mathbf{u} = \langle ca_1, cb_1 \rangle, \quad c \in \Re$

Properties of Vectors

Vector AdditionMultiplication by a Scalar $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ $\mathbf{u} + 0 = \mathbf{u}$ $(cd)\mathbf{u} = c(d\mathbf{u}) = d(c\mathbf{u})$ $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ $1\mathbf{u} = \mathbf{u}$ Length of a Vector $0\mathbf{u} = \mathbf{0}$ $|c\mathbf{u}| = |c| |\mathbf{u}|$ $c\mathbf{0} = \mathbf{0}$

Vectors in Terms of I and j

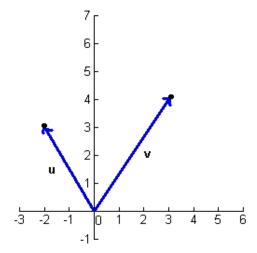
The vector $\mathbf{v} = \langle a, b \rangle$ can be expressed in terms of \mathbf{i} and \mathbf{j} by $\mathbf{v} = \langle a, b \rangle = a\mathbf{i} + b\mathbf{j}$.

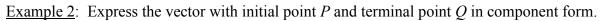
Horizontal and Vertical Components of a Vector

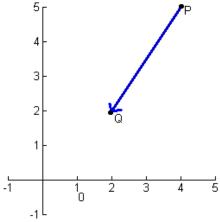
Let v be a vector with magnitude |v| and direction θ . Then $v = \langle a, b \rangle = a\mathbf{i} + b\mathbf{j}$, where $a = |v| \cos \theta$ and $b = |v| \sin \theta$

We can express **v** as $\mathbf{v} = |\mathbf{v}| \cos \theta \mathbf{i} + |\mathbf{v}| \sin \theta \mathbf{j}$.

Example 1: Sketch $\mathbf{u} + 2\mathbf{v}$ using vectors \mathbf{u} and \mathbf{v} in the figure.







Example 3: Find $\mathbf{u} - 2\mathbf{v}$ and $-3\mathbf{u} + 4\mathbf{v}$ for vectors $\mathbf{u} = \langle 2, -5 \rangle$ and $\mathbf{v} = \langle -3, 1 \rangle$.

Example 4: Find $|\mathbf{u}|$, $|\mathbf{v}|$, $|2\mathbf{v}|$, $|\frac{1}{2}\mathbf{u}|$, and $|\mathbf{u} + \mathbf{v}|$ for vectors $\mathbf{u} = 3\mathbf{i} + 2\mathbf{j}$ and $\mathbf{v} = -2\mathbf{i} + \mathbf{j}$.

<u>Example 5</u>: Find the horizontal and vertical components of the vector with given length and direction, and write the vector in terms of the vectors \mathbf{i} and \mathbf{j} .

 $|{\bf u}| = 60, \, \theta = 120^{\circ}$

Example 6: Find the magnitude and direction (in degrees) of the vector $\mathbf{u} = \langle -5, 12 \rangle$.

Example 7: A river flows due south at 4 miles per hour. An alligator heads due east swimming at 3 miles per hour relative to the water. Find the true velocity of the alligator as a vector.

http://hypertextbook.com/physics/foundations/vector-addition/worksheet-addition.pdf http://hypertextbook.com/physics/foundations/vector-addition/worksheet-subtraction.pdf http://hypertextbook.com/physics/foundations/vector-addition/worksheet-words.pdf