Package ‘tidygeocoder’

August 12, 2020
Type Package
Title Geocoding Made Easy
Version 1.0.1

Description An intuitive interface for getting data from geocoder services.

URL https://jessecambon.github.io/tidygeocoder/,
https://github.com/jessecambon/tidygeocoder

BugReports https://github.com/jessecambon/tidygeocoder/issues
Depends R (>=3.2.0)

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports tibble, dplyr, httr, jsonlite

RoxygenNote 7.1.0

Suggests knitr, DT, rmarkdown, ggplot2, ggrepel, maps, testthat (>=
2.1.0)

VignetteBuilder knitr

NeedsCompilation no

Author Jesse Cambon [aut, cre]

Maintainer Jesse Cambon <jesse.cambon@gmail.com>
Repository CRAN

Date/Publication 2020-08-12 21:30:02 UTC

R topics documented:

api_parameter_reference e
extract_results e e e e e e e e e e
BCO . o v e e e
geocode L e e
geo_cascade

https://jessecambon.github.io/tidygeocoder/
https://github.com/jessecambon/tidygeocoder
https://github.com/jessecambon/tidygeocoder/issues

2 api_parameter_reference

GEO_CENSUS . v v v v v v e 8
L APL_QUETY e e e e e e e 9
louisville e e 10
QUETY_APT + v v v v v e 10
sample_addresses e e 11
Index 13

api_parameter_reference
Geocoder service API parameter reference

Description

This dataset contains the mapping that allows this package to use a universal syntax to specify
parameters for different geocoder services.

The generic_name field is a universal field name while the api_name field shows the specific
parameter name for the given geocoder service (method). When the api_name is missing this
means that the parameter is not supported by the given geocoder service. When generic_name is
missing this means the parameter is specific to that geocoding service.

Reference the documentation for geo for more information. Also reference vignette("tidygeocoder™)
for more details on constructing API queries.

Usage

api_parameter_reference

Format

A tibble dataframe

method Geocoder service name

generic_name Universal parameter name

api_name Name of the parameter for the specified geocoder service
default_value Default value of the parameter

required Is the parameter required by the specified geocoder service?

Source
Links to API documentation for each geocoder service are below.
* Census
e Nominatim ("osm")
* Geocodio

* Location IQ ("iq")

https://www.census.gov/programs-surveys/geography/technical-documentation/complete-technical-documentation/census-geocoder.html
https://nominatim.org/release-docs/develop/api/Search/
https://www.geocod.io/docs/
https://locationiq.com/docs

extract_results 3

See Also

get_api_query query_api geo geocode

extract_results Extract geocoder results

Description

Parses the output of the query_api function. Latitude and longitude are extracted into the first two
columns of the returned dataframe. This function is not used for batch geocoded results. Refer to
query_api for example usage.

Usage

extract_results(method, response, full_results = TRUE, flatten = TRUE)

Arguments
method method name
response content from the geocoder service (returned by the query_api function)

full_results if TRUE then the full results (not just latitude and longitude) will be returned.
flatten if TRUE then flatten any nested dataframe content

Value

geocoder results in tibble format

See Also

get_api_query query_api geo

geo Geocode addresses

Description

Geocodes addresses given as character values. The geocode function utilizes this function on ad-
dresses contained in dataframes. See example usage in vignette("tidygeocoder™)

Note that not all geocoder services support certain address component parameters. For example,
the Census geocoder only covers the United States and does not have a "country" parameter. Refer
to api_parameter_reference for more details on geocoder services and API usage.

This function uses the get_api_query, query_api, and extract_results functions to create,
execute, and parse the geocoder API queries.

Usage

geo(
address

geo

NULL,

street = NULL,

city = NULL,

county = NULL,

state = NULL,

postalcode = NULL,

country = NULL,

method = "census”,

cascade_order = c("census”, "osm"),

lat = 1lat,
long = long,

limit =

min_time = NULL,
api_url = NULL,

timeout = 20,

mode =

full_results = FALSE,
unique_only = FALSE,
return_addresses = TRUE,

flatten

TRUE,

batch_limit = 10000,

verbose

FALSE,

no_query = FALSE,
custom_query = list(),

return_type = "locations”,
ig_region = "us”,
geocodio_v = 1.6
)
Arguments
address single line address (ie. 1600 Pennsylvania Ave NW, Washington, DC’). Do
not combine with the address component arguments below (street, city, county,
state, postalcode, country).
street street address (ie. 1600 Pennsylvania Ave NW”)
city city (ie. "Tokyo’)
county county (ie. *Jefferson’)
state state (ie. "Kentucky’)
postalcode postalcode (zip code if in the United States)
country country (ie. ’Japan’)
method the geocoder service to be used. Refer to api_parameter_reference and the

API documentation for each geocoder service for usage details and limitations.

* "census”: US Census Geocoder. US street-level addresses only. Can per-
form batch geocoding.

cascade_order

lat
long

limit

min_time

api_url

timeout

mode

full_results

unique_only

e "osm"”: Nominatim (OSM). Worldwide coverage.

* "geocodio”: Commercial geocoder. Covers US and Canada and has batch
geocoding capabilities. Requires an API Key to be stored in the "GEOCO-
DIO_API_KEY" environmental variable.

’

e "iqg": Commercial Nominatim geocoder service. Requires an API Key to
be stored in the "LOCATIONIQ_API_KEY" environmental variable.

* "cascade” : Attempts to use one geocoder service and then uses a sec-
ond geocoder service if the first service didn’t return results. The services
and order is specified by the cascade_order argument. Note that this is not
compatible with full_results = TRUE as geocoder services have different
columns that they return.

a vector with two character values for the method argument in the order in which

the geocoder services will be attempted for method = "cascade" (ie. c('census', 'geocodio'))

latitude column name. Can be quoted or unquoted (ie. lat or ’lat’).
longitude column name. Can be quoted or unquoted (ie. long or ’long’).

number of results to return per address. Note that limit > 1 is not compatible
with batch geocoding if return_addresses = TRUE.

minimum amount of time for a query to take (in seconds) if using Location 1Q
or OSM. This parameter is used to abide by API usage limits. You can set it to
a lower value (ie. 0) if using a local Nominatim server, for instance.

custom API URL. If specified, the default API URL will be overridden. This
can be used to specify a local Nominatim server.

query timeout (in minutes)

set to “batch’ to force batch geocoding or ’single’ to force single address geocod-
ing (one address per query). If not specified then batch geocoding will be used
if available (given method selected) when multiple addresses are provided, oth-
erwise single address geocoding will be used.

returns all data from the geocoder service if TRUE. If FALSE then only longi-
tude and latitude are returned from the geocoder service.

only return results for unique addresses if TRUE

return_addresses

flatten

batch_limit

verbose
no_query

custom_query

return_type

return input addresses with results if TRUE

if TRUE then any nested dataframes in results are flattened if possible. Note that
Geocodio batch geocoding results are flattened regardless.

limit to the number of addresses in a batch geocoding query. Both geocodio and
census batch geocoders have a 10,000 address limit so this is the default.

if TRUE then detailed logs are output to the console
if TRUE then no queries are sent to the geocoder and verbose is set to TRUE

API-specific parameters to be used, passed as a named list (ie. list(vintage =
'Current_Census2010')).

only used when method = ’census’. Two possible values:

e "locations” (default)

6 geocode

e "geographies”: returns additional geography columns. See the Census
geocoder API documentation for more details.

ig_region ’us’ (default) or "eu’. Used for establishing API URL for the ’iq” method

geocodio_v version of geocodio api. 1.6 is default. Used for establishing API URL for the
"geocodio’ method.

Value

parsed geocoding results in tibble format

See Also

geocode api_parameter_reference

Examples

geo(street = "600 Peachtree Street NE", city = "Atlanta"”,

state = "Georgia"”, method = "census")
geo(address = c("Tokyo, Japan”, "Lima, Peru”, "Nairobi, Kenya"),
method = 'osm')
geo(county = 'Jefferson', state = "Kentucky"”, country = "US",
method = 'osm')
geocode Geocode addresses in a dataframe
Description

Takes a dataframe containing addresses as an input and returns the dataframe results from a specified
geocoder service by using the geo function. See example usage in vignette("tidygeocoder™).

This function passes all additional parameters (. ..) to the geo function, so you can refer to its
documentation for more details on possible arguments.

Note that the arguments used for specifying address columns (address, street, city, county, state,
postalcode, and country) accept either quoted or unquoted column names (ie. "address_col" and
address_col are both acceptable).

Usage

geocode(
.tbl,
address = NULL,
street = NULL,
city = NULL,

geocode 7

county = NULL,

state = NULL,

postalcode = NULL,
country = NULL,

lat = 1lat,

long = long,
return_addresses = FALSE,
unique_only = FALSE,

)
Arguments
.tbl dataframe containing addresses
address single line street address column name. Do not combine with address compo-
nent arguments (street, city, county, state, postalcode, Country)
street street address column name
city city column name
county county column name
state state column name
postalcode postalcode column name (zip code if in the United States)
country country column name
lat latitude column name. Can be quoted or unquoted (ie. lat or ’lat’).
long longitude column name. Can be quoted or unquoted (ie. long or ’long’).

return_addresses

if TRUE then addresses with standard names will be returned This is defaulted
to FALSE because the address fields are already in the input dataset

unique_only if TRUE then only unique addresses and results will be returned. The input
dataframe’s format is not preserved. Addresses will also be returned if TRUE
(overrides return_addresses argument).

arguments passed to the geo function

Value

input dataframe (.tbl) with geocoder results appended as columns

See Also

geo api_parameter_reference

Examples

library(dplyr)
sample_addresses[1:2,] %>% geocode(addr)

8 geo_census

louisville[1:2,] %>% geocode(street = street, city = city, state = state,
postalcode = zip)

sample_addresses[8:9,] %>% geocode(addr, method 'osm'
lat = 'lattes', long = 'longos')

sample_addresses[4:5,] %>% geocode(addr, method = 'cascade',
lat = latitude, long = longitude)

geo_cascade Convenience function for calling the geo function with method = ’cas-
cade’

Description

b}

Convenience function for calling the geo function with method = ’cascade

Usage

geo_cascade(..., cascade_order = c("census"”, "osm"))

Arguments

arguments passed from and to the geo function

cascade_order avector with two character values for the method argument in the order in which
the geocoder services will be attempted (ie. c('census', 'geocodio'))

geo_census Convenience functions for calling the geo function with a specified
method

Description

Convenience functions for calling the geo function with a specified method

Usage

geo_census(...)
geo_osm(...)
geo_geocodio(...)
geo_iq(...)

Arguments

arguments to be passed to the geo function

get_api_query 9

get_api_query Construct a geocoder API query

Description

The geocoder API query is created using universal "generic" parameters and optional api-specific
"custom" parameters. Generic parameters are converted into api parameters using the api_parameter_reference
dataset.

The query_api function executes the queries created by this function.

Usage

get_api_query(method, generic_parameters = list(), custom_parameters = list())

Arguments

method method name (ie. ’census’)

generic_parameters
universal ’generic’ parameters

custom_parameters
custom api-specific parameters

Value

API parameters as a named list

See Also

query_api geo api_parameter_reference

Examples
get_api_query("osm”, list(address = 'Hanoi, Vietnam'))

get_api_query(”census”, list(street = '11 Wall St', city = "NY"”, state = 'NY'),
list(benchmark = "Public_AR_Census2010"))

10

query_api

louisville Louisville, Kentucky street addresses

Description

Louisville, Kentucky street addresses

Usage

louisville

Format

A tibble dataframe with component street addresses

street Description of the address
city Single line address
state state

zip zip code

Source

Downloaded from OpenAddresses.io on June 1st 2020

query_api Execute a geocoder API query

Description

The get_api_query function can create queries for this function to execute.

Usage

query_api(
api_url,
query_parameters,
mode = "single",
batch_file = NULL,
address_list = NULL,
content_encoding = "UTF-8",
timeout = 20

http://results.openaddresses.io/sources/us/ky/jefferson

sample_addresses 11

Arguments

api_url Base URL of the API. query parameters are appended to this
query_parameters
api query parameters in the form of a named list

mode * "single" : geocode a single address (all methods)
e "list" : batch geocode a list of addresses (geocodio)

» "file" : batch geocode a file of addresses (census)
batch_file a csv file of addresses to upload (census)

address_list a list of addresses for batch geocoding (geocodio) should be "json’ for geocodio
and "multipart’ for census

content_encoding
Encoding to be used for parsing content

timeout timeout in minutes

Value

raw results from the query

See Also

get_api_query extract_results geo

Examples

raw <- query_api(”http://nominatim.openstreetmap.org/search”,
get_api_query("osm”, list(address = 'Hanoi, Vietnam')))

extract_results('osm', jsonlite::fromJSON(raw))

sample_addresses Some sample addresses for testing

Description

Some sample addresses for testing

Usage

sample_addresses

12 sample_addresses

Format
A tibble dataframe with single line addresses

name Description of the address

addr Single line address

Index

+ datasets
api_parameter_reference, 2
louisville, 10
sample_addresses, 11

api_parameter_reference, 2, 3, 4,6, 7,9
extract_results, 3,3, 11

geo, 2, 3,3,6-9, 11
geo_cascade, 8
geo_census, 8

geo_geocodio (geo_census), 8
geo_iq (geo_census), 8
geo_osm (geo_census), 8
geocode, 3, 6,6
get_api_query, 3,9, 10, 11

louisville, 10
query_api, 3, 9, 10

sample_addresses, 11

13

	api_parameter_reference
	extract_results
	geo
	geocode
	geo_cascade
	geo_census
	get_api_query
	louisville
	query_api
	sample_addresses
	Index

