
The LaTEXinfo Documentation Format

Version 1.7

Richard M. Stallman and Robert J. Chassell
The Free Software Foundation,

675 Massachusetts Ave., Cambridge MA,

Michael Clarkson
Centre for Earth and Space Science,

York University,
North York, Ontario, M3J 1P3

February 23, 1995

Copyright c© 1988, 1990, 1991 Free Software Foundation, Inc.
Copyleft c© 1988, 1989, 1990, 1991 Michael E. Clarkson.

This is version 1.7 of the LaTEXinfo documentation, and is for Version 18 of GNU Emacs.
This is the second edition of the LaTEXinfo documentation, and is also consistent with version
2 of Texinfo documentation ‘texinfo.tex’.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Foundation.

Contents

1 Overview of LaTeXinfo 3
1.1 Advantages of LaTeXinfo over TeXinfo . 4
1.2 Info files . 5
1.3 Printed Manuals . 7
1.4 \-commands . 7
1.5 A Short Sample LaTeXinfo File . 9
1.6 The Structure of this Manual . 12

I LaTeX 13

2 Beginning a LaTeXinfo File 15
2.1 General Syntactic Conventions . 15
2.2 What a LaTeXinfo File Must Have . 16
2.3 Six Parts of a LaTeXinfo File . 17
2.4 The LaTeXinfo File Header . 18
2.5 The Title and Copyright Pages . 21
2.6 Generating a Table of Contents . 23
2.7 The Top Node and Master Menu . 24
2.8 Software Copying Conditions . 26
2.9 Ending a LaTeXinfo File . 27

3 Chapter Structuring 31
3.1 Tree Structure of Sections . 31
3.2 Types of Structuring Command . 33
3.3 Chapter . 33
3.4 Appendix . 33
3.5 Section . 34
3.6 Subsection . 34
3.7 Subsubsection . 34

i

ii CONTENTS

4 Marking Words and Phrases 35
4.1 Indicating Definitions, Commands, etc. 35
4.2 Emphasizing Text . 41
4.3 Special Insertions . 44

5 Displaying Material 49
5.1 Quotations . 50
5.2 Justifying Text . 51
5.3 Display Environments . 52
5.4 Examples and Verbatim . 52
5.5 Controlling Indentation . 55
5.6 Drawing Cartouches Around Examples . 55
5.7 Special Glyphs for Examples . 56
5.8 Conditionally Visible Text . 59

6 Making Lists Tables and Descriptions 61
6.1 Itemize Environment . 62
6.2 Enumerate Environment . 62
6.3 Description Environment . 63
6.4 Tabular Environment . 64
6.5 Figures and Tables . 65

7 Formatting Paragraphs 67
7.1 Making and Preventing Breaks . 67
7.2 The Line Breaking Commands . 67
7.3 The Page Breaking Commands . 69
7.4 Refilling Paragraphs . 70
7.5 Always Refilling Paragraphs . 71

8 Citations and Footnotes 73
8.1 Footnotes . 73
8.2 Citations . 74

9 Input and Include Files 75
9.1 Input Files . 75
9.2 Include Files . 75

10 Definition Commands 79
10.1 Untyped Languages Definition Commands . 80
10.2 C Functions . 84
10.3 Object-Oriented Programming . 87
10.4 A Sample Function Definition . 90

CONTENTS iii

II Info 93

11 Nodes and Menus 95
11.1 Node and Menu Illustration . 95
11.2 \node . 96
11.3 Menu Environment . 98
11.4 Referring to Other Info Files . 101

12 Making Cross References 103
12.1 Different Cross Reference Commands . 103
12.2 Parts of a Cross Reference . 104
12.3 \xref . 105
12.4 Naming a ‘Top’ Node . 110
12.5 \nxref . 110
12.6 \pxref . 111
12.7 \inforef . 112

13 Creating Indices 115
13.1 Making Index Entries . 115
13.2 Defining the Entries of an Index . 116
13.3 Combining Indices . 118

14 Creating and Installing an Info File 121
14.1 Creating an Info file . 121
14.2 Installing an Info File . 123

III Emacs 127

15 Using LaTeXinfo Mode 129
15.1 Inserting Frequently Used Commands . 130
15.2 Showing the Section Structure of a File . 131
15.3 Updating Nodes and Menus . 131
15.4 Formatting for Info . 136
15.5 Formatting and Printing . 137
15.6 LaTeXinfo Mode Summary . 138

16 Printing Hardcopy 141
16.1 How to Print Using Shell Commands . 141
16.2 Printing from an Emacs Shell . 143
16.3 Formatting and Printing in LaTeXinfo Mode 143
16.4 Using the Local Variables List . 144
16.5 Preparing for Use of LaTEX . 145
16.6 Overfull “Hboxes” . 145

iv CONTENTS

17 Catching Formatting Mistakes 147
17.1 Catching Errors with Info Formatting . 147
17.2 Catching Errors with LaTEX Formatting . 148
17.3 Using latexinfo-show-structure . 149
17.4 Using occur . 150
17.5 Finding Badly Referenced Nodes . 151

18 Extending LaTeXinfo 155
18.1 Optional Style Files . 155
18.2 LaTeXinfo support for European languages . 159
18.3 Writing Your Own Style Files . 162

IV Appendices 163

A Installing LaTeXinfo 165
A.1 Compiling LaTeXinfo . 165
A.2 Installing the LaTeXinfo Distribution . 167

B Converting Files to LaTeXinfo 169
B.1 Converting LaTeX Files to LaTeXinfo . 169
B.2 Converting TeXinfo Files into LaTeXinfo Files 171
B.3 Converting Scribe Files to LaTeXinfo . 173

C Obtaining LaTEX 175

D Command List 177

Command Index 189

Concept Index 193

List of Tables

6.1 The First Table’s Caption . 65

10.1 The Definition Commands . 79

16.1 Formatting a Buffer Commands . 144
16.2 Formatting a Document Commands . 145

18.1 The Clisp Definition Commands . 157

v

LaTeXinfo Copying Conditions

The programs currently being distributed that relate to LaTEXinfo include portions of GNU
Emacs, plus other separate programs (including latexinfo.sty, latexindex, and info).
These programs are free; this means that everyone is free to use them and free to redistribute
them on a free basis. The Latexinfo-related programs are not in the public domain; they are
copyrighted and there are restrictions on their distribution, but these restrictions are designed
to permit everything that a good cooperating citizen would want to do. What is not allowed
is to try to prevent others from further sharing any version of these programs that they might
get from you.

Specifically, we want to make sure that you have the right to give away copies of the
programs that relate to LaTEXinfo, that you receive source code or else can get it if you want
it, that you can change these programs or use pieces of them in new free programs, and that
you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of
these rights. For example, if you distribute copies of the LaTEXinfo related programs, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is
no warranty for the programs that relate to LaTeXinfo. If these programs are modified by
someone else and passed on, we want their recipients to know that what they have is not what
we distributed, so that any problems introduced by others will not reflect on our reputation.

The precise conditions of the licenses for the programs currently being distributed that
relate to LaTEXinfo are found in the General Public Licenses that accompany them.

1

2 LaTeXinfo Copying Conditions

Chapter 1

Overview of LaTeXinfo

LaTEXinfo1 is a documentation system that uses a single source file to produce both on-line
help (and other information) and a printed manual. This means that instead of writing two
different documents, one providing on-line information and the other for a printed manual, you
need write only one document. When the system is revised, you need revise only one document.
You can print the manual with most laser printers, and you can read the on-line help, known
as an Info file, with the Info documentation-reading programs. These documentation-reading
programs are available for use under GNU Emacs, under X-windows, or for termcap based
ordinary terminals.

Using LaTEXinfo, you can create a printed document with the normal features of a book,
including chapters, sections, cross references, and indices. From the same LaTEXinfo source file,
you can create a menu-driven, on-line Info file with nodes, menus, cross references, and indices.
You can, if you wish, make the chapters and sections of the printed document correspond to
the nodes of the on-line information, and use the same cross references and indices for both
the Info file and the printed document.

To make a printed manual, process a LaTEXinfo source file with the LaTEX typesetting
program. This creates a dvi file that you can typeset and print as a book. To create an Info
file, you process a LaTEXinfo source file with Emacs’s latexinfo-format-buffer command;
this creates an Info file that you can install on-line.

Info works with almost every type of computer terminal; similarly, LaTEX works with many
types of printer. This power makes LaTEXinfo a general purpose system, but brings with
it a constraint, which is that a LaTEXinfo file may contain only the customary “typewriter”
characters (letters, numbers, spaces, and punctuation marks) but no special graphics.

A LaTEXinfo file is a plain ascii file containing text and \-commands (words preceded by an
‘\’) that tell the typesetting and formatting programs what to do. You may edit a LaTEXinfo
file with any text editor; but it is especially convenient to use GNU Emacs since that editor
has a special mode, called LaTEXinfo mode, that provides various LaTEXinfo-related features.

1Note that the first syllable of “texinfo” is pronounced like “speck”, not “hex”. This odd pronunciation is
derived from LaTEX, in which the ‘X’ is actually the Greek letter “chi” rather than the English letter “ex” (the
‘T’ and ‘E’ are Greek letters also, but they happen to be pronounced the same way in Greek as in English).

3

4 CHAPTER 1. OVERVIEW OF LATEXINFO

(See section 15 [LaTeXinfo Mode], page 129.)
Before writing a LaTEXinfo source file, you should become familiar with the Info documen-

tation reading program and learn about nodes, menus, cross references, and the rest. On Unix
systems, these programs are called info for terminals, and xinfo for systems with X-Windows.
(See Info file ‘info’, node ‘Top’, for more information.)

LaTEXinfo creates both on-line help and a printed manual; moreover, it is freely redis-
tributable.

1.1 Advantages of LaTeXinfo over TeXinfo

Documentation for GNU utilities and libraries is usually written in a format called TEXinfo.
This document describes an enhancement of this format which can be used with LaTEX instead
of TEX.

LaTEXinfo offers a number of advantages over TEXinfo:

1. The point size or layout style of a document can be changed easily, using the
documentstyle (article, report, book, twoside, . . .).

2. LaTEX has better error checking than TEX files, especially in begin/end environments.
In addition, the LaTEX error messages are more informative. This makes it considerably
easier to make extensions and enhancements (read hacks).

3. LaTEX delimits its arguments with braces, so it’s easier to tell where a LaTEXinfo command
starts, and where it ends. TeXinfo has to stand on its head to avoid using TeX’s braces.

4. Any LaTEX commands not understood by the on-line manual generator
(‘latexinfo.el’) are simply ignored. This means that you are free to add a considerable
number of LaTEX commands to make you manual look pretty, as long as you don’t care
that there will be no action taken by the Info formatting program.

5. It is easy to add your own extensions to the on-line manual generator by making GNU
Emacs handlers for your LaTEX extensions. This is the Emacs counterpart to the
documentstyle options. LaTEXinfo looks in a specified directory for GNU Elisp code
that corresponds to each style file. This makes it easy to modularize your style files.

6. LaTEX has many advantages over TEX, such as being able to easily incorporate the BibTEX
bibliography formatting program.

1.2. INFO FILES 5

1.2 Info files

A LaTEXinfo file can be transformed into a printed manual and an on-line Info file.
An on-line Info file is a file formatted so that the Info documentation reading program

can operate on it. Info files are divided into pieces called nodes, each of which contains the
discussion of one topic. Each node has a name, and contains both text for the user to read
and pointers to other nodes, which are identified by their names. The Info program displays
one node at a time, and provides commands with which the user can move to the other related
nodes. See Info file ‘info’, node ‘Top’, for more information about using Info.

Each node of an Info file may have any number of child nodes that describe subtopics of
the node’s topic. The names of these child nodes, if any, are listed in a menu within the
parent node; this allows you to use certain Info commands to move to one of the child nodes.
Generally, a LaTEXinfo file is organized like a book. If a node is at the logical level of a chapter,
its child nodes are at the level of sections; likewise, the child nodes of sections are at the level
of subsections.

All the children of any one parent are linked together in a bidirectional chain of ‘Next’
and ‘Previous’ pointers. This means that all the nodes that are at the level of sections within
a chapter are linked together. Normally the order in this chain is the same as the order of
the children in the parent’s menu. Each child node records the parent node name, as its ‘Up’
pointer. The last child has no ‘Next’ pointer, and the first child has the parent both as its
‘Previous’ and as its ‘Up’ pointer.2

The book-like structuring of an Info file into nodes that correspond to chapters, sections,
and the like is a matter of convention, not a requirement. The ‘Up’, ‘Previous’, and ‘Next’
pointers of a node can point to any other nodes, and a menu can contain any other nodes.
Thus, the node structure can be any directed graph. But it is usually more comprehensible
to follow a structure that corresponds to the structure of chapters and sections in a printed
manual.

In addition to ‘Next’, ‘Previous’, and ‘Up’ pointers and menus, Info provides cross–
references, that can be sprinkled throughout the text. This is usually the best way to represent
links that do not fit a hierarchical structure. Usually, you will design a document so that its
nodes match the structure of chapters and sections in the printed manual. But there are times
when this is not right for the material being discussed. Therefore, LaTEXinfo uses separate
commands to specify the node structure of the Info file and the section structure of the printed
manual.

Generally, you enter an Info file through a node that by convention is called ‘Top’. This node
normally contains just a brief summary of the file’s purpose, and a large menu through which
the rest of the file is reached. From this node, you can either traverse the file systematically by

2In some documents, the first child has no ‘Previous’ pointer. Occasionally, the last child has the node name
of the next following higher level node as its ‘Next’ pointer.

6 CHAPTER 1. OVERVIEW OF LATEXINFO

going from node to node, or you can go to a specific node listed in the main menu, or you can
search the index menus and then go directly to the node that has the information you want.

1.3. PRINTED MANUALS 7

1.3 Printed Manuals

A LaTEXinfo file can be formatted and typeset as a printed manual. To do this, you need to use
LaTEX, a powerful, sophisticated typesetting program written by Leslie Lamport, based on the
TEX typesetting system written by by Donald Knuth. A LaTEXinfo-based printed manual will
be similar to any other book; it will have a title page, copyright page, table of contents, and
preface, as well as chapters, numbered or unnumbered sections and subsections, page headers,
cross references, footnotes, and indices.

You can use LaTEXinfo to write a book without ever having the intention of converting it
into on-line information. You can use LaTEXinfo for writing a printed novel, and even to write
a printed memo.

LaTEX is a general purpose typesetting program. LaTEXinfo provides a file called
‘latexinfo.sty’ that contains information (definitions or macros) that LaTEX uses when it
typesets a LaTEXinfo file. (The macros tell LaTEX how to convert the LaTEXinfo \-commands
to LaTEX commands, which LaTEX can then process to create the typeset document.) LaTEX
allows you to customize the design of your document by selecting different document styles and
options. You can readily change the style in which the printed document is formatted; for ex-
ample, you can change the sizes and fonts used, the amount of indentation for each paragraph,
the degree to which words are hyphenated, and the like. By changing the specifications, you
can make a book look dignified, old and serious, or light-hearted, young and cheery. See the
LaTEX Manual for more details [Lam86].

LaTEX is freely distributable. It is written in a dialect of Pascal called WEB and can
be compiled either in Pascal or (by using a conversion program that comes with the LaTEX
distribution) in C. (See Info file ‘emacs’, node ‘TeX Mode’, for information about LaTEX.)

LaTEX is very powerful and has a great many features. Because a LaTEXinfo file must be
able to present information both on a character-only terminal in Info form and in a typeset
book, the formatting commands that LaTEXinfo supports are necessarily limited. However, you
are free to use any LaTEX extensions as long as you don’t mind them being ignored by the Info
formatting program. Or you can write your own extensions to the Info formatting program.
See section 18 [Extending LaTeXinfo], page 155.

1.4 \-commands

In a LaTEXinfo file, the commands that tell LaTEX how to typeset the printed manual and
tell latexinfo-format-buffer how to create an Info file are preceded by ‘\’; they are called
\-commands. For example, \node is the command to indicate a node and \chapter is the
command to indicate the start of a chapter.

Remark: Most of the \-commands, with a few exceptions such as \LaTeX{}, must be written entirely

8 CHAPTER 1. OVERVIEW OF LATEXINFO

in lower case.

The LaTEXinfo \-commands are a limited subset of LaTEX commands. The limits make it
possible for LaTEXinfo files to be understood both by LaTEX and by the code that converts them
into Info files. This is because you have to be able to display Info files on any terminal that
displays alphabetic and numeric characters.

Because LaTEXinfo is an extension of LaTEX, it is assumed in this manual that you are
familiar with LaTEX. There is a good reference manual available by the author [Lam86], and
there are several beginner’s introduction manuals alos available. You should read these first
before trying to use LaTEXinfo.

Unlike LaTEX, all ASCII printing characters except ‘\’, ‘{’ and ‘}’ can appear in body text
in a LaTEXinfo file and stand for themselves. This means that the characters # $ % ^ & _ |
all print as normal characters. This is for several reasons. Firstly, LaTEXinfo is designed for
documenting computer programs, where these characters are used quite often. Secondly, the
special uses in LaTEX of some of these characters, such as math mode, are not used in LaTEXinfo,
so there is little point in making then special. And finally, because there is only one character
in LaTEXinfo that starts a command (\), it is easier to implement the Info formating program,
without making a complete implementation of LaTEX.

See section 5.8.1 [Using Ordinary LaTeX Commands], page 60, for how to make LaTEXinfo
treat these characters as LaTEX does.

1.5. A SHORT SAMPLE LATEXINFO FILE 9

1.5 A Short Sample LaTeXinfo File

A LaTEXinfo file looks like the following, which is a complete but very short LaTEXinfo file. The
\comment or \c command introduces comments that will not appear in either the Info file or
the printed manual; they are for the person who reads the LaTEXinfo file.

The first part of the file, from ‘\documentstyle’ through to ‘\setfilename’, looks more
intimidating than it is. Most of the material is standard boilerplate; when you write a manual,
you just put in the name of your own manual in this section.

All the commands that tell LaTEX how to typeset the printed manual and tell
latexinfo-format-buffer how to create an Info file are preceded by ‘\’; thus, \node indicates
a node and \chapter indicates the start of a chapter.

\documentstyle[11pt,latexinfo]{book}

\begin{document}

\c Declare which indices you want to make use of.

\newindex{cp}

\c Declare the bibliography style you want for BibTeX.

\bibliographystyle{alpha}

\c No ugly overfull black boxes.

\finalout

\c \refill automatically.

\alwaysrefill

\c Anything before the \setfilename will not appear in the Info file.

\setfilename{plisp.info}

\c Start the stuff for the titlepage.

\title{The PLisp Manual}

\author{Fred Foobar,\\

Clarke Institute,\\

999 Queen Street,\\

Toronto, Ontario}

\date{\today}

\maketitle

10 CHAPTER 1. OVERVIEW OF LATEXINFO

\c The following commands start the copyright page for the printed manual.

\clearpage

\vspace*{0pt plus 1filll}

Copyright \copyright{} year copyright-owner

Permission is granted to copy and distribute modified versions of this

document under the conditions for verbatim copying, provided that the entire

resulting derived work is distributed under the terms of a permission

notice identical to this one.

\c End the Copyleft page and don’t use headings on this page.

\pagestyle{empty}

\clearpage

\pagestyle{headings}

\c Use roman numerals for the page numbers and Insert the Table of Contents.

\pagenumbering{roman}

\tableofcontents

\c End the Table of Contents

\clearpage

\c Make a list of tables if you have any

\listoftables

\clearpage

\c The Top node contains the master menu for the Info file.

\c This appears only in the Info file, not the printed manual.

\node Top, First Chapter, (dir), (dir)

\c A preface or overview to give the structure of the document.

\chapter*{Preface}

\clearpage

\c Start numbering from 1 with Arabic numbers

\pagenumbering{arabic}

\begin{menu}

* First Chapter:: The first chapter is the

only chapter in this sample.

\end{menu}

1.5. A SHORT SAMPLE LATEXINFO FILE 11

\node First Chapter, Concept Index, Top, Top

\chapter{First Chapter}

\cindex{Reference to First Chapter}

This is the contents of the first chapter.

Here is a numbered list.

\begin{enumerate}

\item

This is the first item.

\item

This is the second item.

\end{enumerate}

The \kbd{M-x latexinfo-format-buffer} command transforms a LaTeXinfo file

like this into an Info file; and \LaTeX\ typesets it for a printed manual.

\bibliography{plisp.bib}

\twocolumn

\node Concept Index, Top, First Chapter, Top

\unnumbered{Concept Index}

\printindex{cp}

\end{document}

12 CHAPTER 1. OVERVIEW OF LATEXINFO

Here is what the contents of the first chapter of the sample look like:

This is the contents of the first chapter.
Here is a numbered list.

1. This is the first item.

2. This is the second item.

The M-x latexinfo-format-buffer command in Emacs transforms a LaTEXinfo
file like this into an Info file; and LaTEX typesets it for a printed manual.

1.6 The Structure of this Manual

This manual is structured in four parts:

LaTeX This introduces the LaTEX commands that are supported by LaTEXinfo. This includes
topic such as chapter structuring, marking words and phrases, displayed material, making
lists tables and descriptions, formatting paragraphs, citations and footnotes.

Info This introduces the concept of the \node, and the specific requirements of the Info format-
ting program. This includes nodes and menus, making cross references, creating indices,
and creating and installing an info file.

Emacs This part show how to run LaTEX and Info to generate the printed and on–line versions
of the manual. It also describes how Emacs can make your life easier when writing
LaTEXinfo programs.

Appendices The appendices describe how to install LaTEXinfo, how to convert files from other
formats to LaTEXinfo, and gives a summary of all of the commands.

Part I

LaTeX

13

Chapter 2

Beginning a LaTeXinfo File

2.1 General Syntactic Conventions

All ascii printing characters except ‘\’, ‘{’ and ‘}’ can appear in a LaTEXinfo file and stand for
themselves. ‘\’ is the escape character which introduces commands. ‘{’ and ‘}’ should be used
only to surround arguments to certain commands. To put one of these special characters into
the document, put an ‘\’ character in front of it, like this: ‘\back’, ‘\{’, and ‘\}’.

It is customary in LaTEX to use doubled single-quote characters to begin and end quotations:
‘‘ and ’. This convention should be followed in LaTEXinfo files. LaTEX converts doubled single-
quote characters to left- and right-hand doubled quotation marks, “like this,” and Info converts
doubled single-quote characters to ascii double-quotes: ‘‘ and ’’ to ‘"’. See section 4.3.6
[Inserting Characters Verbatim], page 47 for how to protect sections of documentation from
these global substitutions.

Use three hyphens in a row, ‘---’, for a dash—like this. In LaTEX, a single or even a double
hyphen produces a printed dash that is shorter than you want. Info reduces three hyphens to
two for display on the screen.

LaTEX ignores the line-breaks in the input text, except for blank lines, which separate
paragraphs. Info generally preserves the line breaks that are present in the input file. Therefore,
break the lines in the LaTEXinfo file the way you want them to appear in the output Info file, and
let LaTEX take care of itself. Since Info does not normally refill paragraphs when it processes
them, a line with commands in it will sometimes look bad after Info has run on it. To cause Info
to refill the paragraph after finishing with the other processing, you need to put the command
\refill at the end of the paragraph. (See section 7.4 [Refilling Paragraphs], page 70.)

If you mark off a region of the LaTEXinfo file with the \begin{iftex} and \end{iftex}
commands, that region will appear only in the printed copy; in that region, you can use
commands borrowed from LaTEX that you cannot use in Info. Likewise, if you mark off a region
with the \begin{ifinfo} and \end{ifinfo} commands, that region will appear only in the
Info file; in that region, you can use Info commands that you cannot use in LaTEX. (See section
5.8 [Conditionals], page 59.)

15

16 CHAPTER 2. BEGINNING A LATEXINFO FILE

Caution: Do not use tabs in examples in a LaTEXinfo file! LaTEX treats them like
single spaces.1

2.1.1 Comments

You can write comments in a LaTEXinfo file that will not appear in either the Info file or the
printed manual by using the \comment command (which may be abbreviated to \c). Such
comments are for the person who reads the LaTEXinfo file. All the text on a line that follows
either \comment or \c is a comment; the rest of the line does not appear in either the Info file
or the printed manual. (The \comment or \c does not have to be at the beginning of the line;
only the text on the line that follows after the \comment or \c command does not appear.)

You can write long stretches of text that will not appear in either the Info file or the
printed manual by using the \begin{ignore} and \end{ignore} commands. Write each of
these commands on a line of its own, starting each command at the beginning of the line.
Text between these two commands does not appear in the processed output. You can use
\begin{ignore} and \end{ignore} for writing comments or for holding text you may wish
to use in another version of your document. Often, \begin{ignore} and \end{ignore} is
used to enclose a part of the copying permissions that applies to the LaTEXinfo source file of a
document, but not to the Info or printed version of the document.

2.2 What a LaTeXinfo File Must Have

In order to be made into a printed manual, a LaTEXinfo file must begin with lines that looks
like

\documentstyle[12pt,latexinfo]{book}
\pagestyle{headings}

\begin{document}

\setfilename{latexinfo.info}

The ‘\documentstyle[12pt,latexinfo]{book}’ line tells LaTEX to use the
‘latexinfo.sty’ style and ‘book.sty’ documentstyle files. The \pagestyle{headings} com-
mand is the LaTEX command to put the chapter and section headings and page numbers at

1To avoid putting tabs into your file, you can set the indent-tabs-mode variable in Emacs to nil so that
Emacs inserts multiple spaces when you press the TAB key. Also, you can run untabify to convert tabs in a
region to multiple spaces.

2.3. SIX PARTS OF A LATEXINFO FILE 17

the top of each page. The \begin{document} command starts the document, and makes the
characters # $ % ^ & _ | all begin to print as normal characters. (These characters retain their
normal LaTEX meanings in the preamble between the \documentstyle and \begin{document}
commands.) This line must be followed (sooner or later) by the ‘\setfilename{info-file-
name}’. It is needed to provide a name for the Info file to output to. The \setfilename
command must occur at the beginning of a line. The

\end{document}

line at the end of the file on a line of its own tells LaTEX that the file is ended and to stop
typesetting.

Usually, you won’t use quite such a spare format, but will include mode setting and index
declarations at the beginning of a LaTEXinfo file, like this:

\documentstyle[12pt,latexinfo]{book}
\pagestyle{headings}

\begin{document}

\newindex{cp}
\bibliographystyle{alpha}

\finalout
\alwaysrefill
\setfilename{latexinfo.info}

Furthermore, you will usually provide a LaTEXinfo file with a title page, master menu, and
the like. But the minimum, which can be useful for short documents, is just the three lines at
the beginning and the one line at the end.

2.3 Six Parts of a LaTeXinfo File

Various pieces of information have to be provided to LaTEXinfo at the beginning of a LaTEXinfo
file, such as the name of the file, the title of the document and the like. If you want to get
elaborate, the beginning of a LaTEXinfo file has six parts:

1. The preamble, which includes the command to tell LaTEX what style files to use when
processing the file. This starts with the \documentstyle, and is terminated by the
\begin{document} command.

2. The header, which is terminated by the \setfilename command that contains the
LaTEXinfo options needed to tailor your output to your needs.

18 CHAPTER 2. BEGINNING A LATEXINFO FILE

3. The title page and the copyright page, which usually are set without any page numbers
(\pagestyle{empty). This is terminated by the \maketitle command.

4. Then the table of contents, list of figures and tables, and possibly a pref-
ace, which are usually set with roman page numbers (\pagestyle{headings} and
\pagenumbering{roman).

5. The ‘Top’ node that contains an extensive menu for the whole Info file. This is written
with the \node command, with a nodename of Top. The contents of this node should
only appear in the Info file.

6. The beginning of the text, which is set with \pagenumbering{arabic), and a chapter or
section command.

For a a short sample latexinfo file, see the file ‘lnfo-sample.tex’ which is supplied with
the LaTEXinfo distribution.

2.4 The LaTeXinfo File Header

LaTEXinfo files start with at least three lines that provide Info and LaTEX with necessary infor-
mation.

\documentstyle[12pt,latexinfo]{book}
\begin{document}
\setfilename{foo.info}

2.4.1 The Documentstyle

Every LaTEXinfo file that is to be the top-level input to LaTEX must begin with a line that looks
like this:

\documentstyle[12pt,latexinfo]{book}

When the file is processed by LaTEX, it loads the macros listed as options to the
documentstyle command. The option latexinfo is needed for processing a LaTEXinfo file,
and LaTEX will then input the file ‘latexinfo.sty’; see section 16.5 [Preparing for LaTeX],
page 145.

Unlike TEXinfo, you can also include other options that may also include style files. These
LaTEXinfo style files may have an Emacs counterpart, so that you can extend LaTEXinfo by
writing your own styles. See section 18 [Extending LaTeXinfo], page 155, for more information

2.4. THE LATEXINFO FILE HEADER 19

on writing your own styles. Also look in the inputs directory of your TEX distribution for other
LaTEX styles that are provided with TEX.

Remark: The region of the file between the \documentstyle and the \begin{document} commands
is know in LaTEX as the preamble. Only certain LaTEX commands are allowed there, and you’ll need
to consult the LaTEX manual for the list of allowed commands. It is best to put your commands that
modify your LaTEX commands in the region between the \begin{document} and the \setfilename;
they will be ignored by Info, and LaTEX will not object.

2.4.2 \setfilename

It is important to note that the \setfilename command is required for Info. In order to be
made into an Info file, a LaTEXinfo file must contain a line that looks like this:

\setfilename{info-file-name}

Write the \setfilename command at the beginning of a line followed by the Info file name.
The \setfilename line specifies the name of the Info file to be generated. Specify the name

with an ‘.info’ extension, to produce an Info file name such as ‘latexinfo.info’.
Any text that appears before the \setfilename command is not included in the Info file.

So if you want to include the title and author material, place the \setfilename command
before them; if not, after them.

This region, between the \begin{document} command and the \setfilename command
is known as the header, and should contain any of the commands that alter the overall style of
your document.

2.4.3 New Indexes

In order to generate any of the indices, you must declare them with the \newindex com-
mand, before it is first used by one of the index commands. This is usually done after the
\begin{document} but before the \setfilename.

newindex takes one argument, which is the two letter index type. For example, to declare
a concept and function index, you would use

\documentstyle[12pt,latexinfo]{book}

\begin{document}
\newindex{cp}
\newindex{fn}
\setfilename{plisp.info}

20 CHAPTER 2. BEGINNING A LATEXINFO FILE

See section 13.2.1 [Declaring indices], page 117, for the declaring indices and the definitions
of the index types.

2.4.4 Customizing Your Layout

You may, if you wish, create your own, customized headings and footings. The \markboth
and \markright commands are both supported in LaTEXinfo. These should occur on a line by
themselves. See [Lam86, § 5.1], for a detailed discussion of this process.

The \oddfoot and \evenfoot commands specifiy the odd and even page footings respec-
tively. These should occur on a line by themselves.

At the beginning of a manual or book, pages are not numbered—for example, the title and
copyright pages of a book are not numbered. To accomplish this, use the command

\pagestyle{empty}

as shown in the sample file, ‘lnfo-sample.tex’.
By convention, table of contents pages are numbered with roman numerals and not in

sequence with the rest of the document. To accomplish this, use the commands

\pagestyle{headings}
\pagenumbering{roman}

as shown in the sample file, ‘lnfo-sample.tex’.
Since an Info file does not have pages, the \markboth, \markright, pagestyle and

pagenumbering commands have no effect on it. The lines containing these commands will
be deleted from the Info file.

The \footnotestyle command to specify an Info file’s footnote style. See section 8.1
[Footnotes], page 73 for how to use this command.

2.4.4.1 Paragraph Indenting

The Info formatting commands may insert spaces at the beginning of the first line of each
paragraph, thereby indenting that paragraph. The \paragraphindent command specifies the
indentation. Write \paragraphindent at the beginning of a line followed by either ‘asis’ or a
number in braces. The template is:

\paragraphindent{indent}

The Info formatting commands indent according to the value of indent:

• If the value of indent is ‘asis’, the Info formatting commands do not change the existing
indentation.

2.5. THE TITLE AND COPYRIGHT PAGES 21

• If the value of indent is 0, the Info formatting commands delete existing indentation.

• If the value of indent is greater than 0, the Info formatting commands indent the para-
graph by that number of spaces.

The default value of indent is ‘asis’.
Write the \paragraphindent command before the setfilename command at the beginning

of a LaTEXinfo file.
The latexinfo-format-buffer and latexinfo-format-region commands do not auto-

matically indent paragraphs. These commands only indent paragraphs that are ended by an
\refill command. (See section 7.5 [Always Refilling Paragraphs], page 71, for how to avoid
this.) See section 7.4 [Refilling Paragraphs], page 70, for more information about \refill.

2.5 The Title and Copyright Pages

2.5.1 Titlepage

The first printed material after the \begin{document} will make up the titlepage. The LaTEX
commands \title, \author and \date are used the same way as in any LaTEX report or book.
The title page is terminated by \maketitle. Following the material for the title page should
be the copyright page.

\title{The PLisp Manual}

\author{Fred Foobar,\\
Clarke Institute}

\date{\today}
\maketitle

The \title command produces a line in which the title is set centered on the page in a
larger than normal font. You can have many lines in the title by using \\ to force a newline.

The \author command sets the names of the author or authors in a middle-sized font,
centered on the page.

The \date command sets the date in a middle-sized font, centered on the page. You can
put the date in yourself, or use the \today command, which will put in the date that the
document is processed on.

The \maketitle command sets the author, title and date, and in the book documentstyle,
emitts a new page. The should be no other printing text between the documentstyle command
and the maketitle command.

22 CHAPTER 2. BEGINNING A LATEXINFO FILE

In a book style, text is printed on both sides of the paper, chapters start on right-hand
pages, and right-hand pages have odd numbers. But in a report style, text is printed only
on one side of the paper unless the twoside LaTEX option is provided to the documentstyle
command.

2.5.2 The Copyright Page and Printed Permissions

This part of the beginning of a LaTEXinfo file contains the text of the copying permissions that
will appear in the manual. This is usually followed by the \tableofcontents command. If
you put title and copyright pages before the \setfilename command, then this material will
only appear only in the printed manual, not in the Info file.

By international treaty, the copyright notice for a book should be either on the title page
or on the back of the title page. The copyright notice should include the year followed by the
name of the organization or person who owns the copyright.

The following commands start the copyright page for the printed manual.

\maketitle
\clearpage
\vspace*{0pt plus 1filll}
Copyright \copyright{} year copyright-owner

Permission is granted to copy and distribute modified versions of this
document under the conditions for verbatim copying, provided that the entire
resulting derived work is distributed under the terms of a permission
notice identical to this one.

\pagestyle{empty}
\clearpage

When the copyright notice is on the back of the title page, the page is not numbered.
Therefore, this is usually done while a \pagestyle{empty} is in effect. See the LaTEX Manual
for more details on the pagestyle command [Lam86].

To cause a page break, the \clearpage command is used. In the sample, the \clearpage
that ends the titlepage is followed by the somewhat mysterious line that reads: ‘\vspace*{0pt
plus 1filll}’. This is a line that uses LaTEX commands to push the copyright notice and the
other text on the copyright page towards the bottom of the page. The \vspace* command
means to put in white space. The ‘0pt plus 1filll’ means to put in zero points of mandatory
white space, and as much optional white space as needed. Note the use of three ‘l’s in the
word ‘filll’; this is the correct use in LaTEX.

The \copyright command generates a ‘c’ inside a circle. The copyright notice itself has
the following legally defined sequence:

2.6. GENERATING A TABLE OF CONTENTS 23

Copyright c© year copyright-owner

It is customary to put information on how to get a manual after the copyright notice (the
address of the Free Software Foundation, for example) and the permissions.

When you write a manual about a computer program, you should write the version of the
program to which the manual applies on the title page. If the manual changes more frequently
than the program or is independent of it, you should also include an edition number2 for the
manual. This helps readers keep track of which manual is for which version of the program.

See section 2.8.1 [Sample Permissions], page 26, for recommended permission text.

2.6 Generating a Table of Contents

The commands \chapter, \section, etc., supply the information to make up a table of con-
tents, but they do not cause an actual table to be generated. To do this, you must use the
\tableofcontents command.

The table of contents command outputs (into a printed manual) a complete table of con-
tents, based on the \chapter, \section and other sectioning commands. This command
should be used on a line by itself. This command automatically generates a Table of Contents
heading at the top of the page. Tables of contents should be generated at the beginning of the
manual, usually just after the \maketitle command or copyright pages.

You can also use the \listoftables command to make a listing of all of the tables in the
document. See section 6.5 [Figures and Tables], page 65, for how to define tables.

\pagestyle{empty}
\clearpage
\pagestyle{headings}
\pagenumbering{roman}
\tableofcontents
\clearpage

\c Make a list of tables if you have any
\listoftables
\clearpage

Since an Info file uses menus instead of tables of contents, the Info formatting commands
ignore the \tableofcontents and \listoftables commands.

2We have found that it is helpful to refer to versions of manuals as ‘editions’ and versions of programs
as ‘versions’; otherwise, we find we are liable to confuse each other in conversation by referring to both the
documentation and the software with the same words.

24 CHAPTER 2. BEGINNING A LATEXINFO FILE

2.7 The Top Node and Master Menu

The ‘Top’ node is the node at which you enter the file when browing the Info file with one of
the Info browsing programs.

A ‘Top’ node should contain a brief description of the file and an extensive, master menu for
the whole Info file. The contents of anything other than the master menu should appear only in
the Info file; none of it should appear in printed output, so enclose it between \begin{ifinfo}
and \end{ifinfo} commands. LaTEX does not print either an \node line or a menu; they
appear only in Info, so you do not have to enclose these parts between \begin{ifinfo} and
\end{ifinfo}. See section Conditionals in Conditionally Visible Text.)

For example, the beginning of the Top node of a manual might like this:

. . .
\tableofcontents
\clearpage

\begin{ifinfo}
\node Top, Copying, (dir), (dir)

LaTEX info is a documentation system. . .

This is edition. . .
\end{ifinfo}

\begin{menu}
* Copying:: LaTEX info is freely redistributable.
* Overview:: What is LaTeXinfo?. . .
\end{menu}

In a ‘Top’ node, the ‘Previous’, and ‘Up’ nodes usually refer to the top level directory of the
whole Info system, which is called ‘(dir)’. See section 14.2 [Installing an Info File], page 123,
for more information about the dir Info file in the ‘info’ directory.

2.7.1 Parts of a Master Menu

A master menu is a detailed main menu listing all the nodes in a file. A master menu is enclosed
in \begin{menu} and \end{menu} commands and does not appear in the printed document.
Generally, a master menu is divided into parts.

• The first part contains the major nodes in the LaTEXinfo file: the nodes for the chapters,
chapter-like sections, and the appendices.

2.7. THE TOP NODE AND MASTER MENU 25

• The second part contains nodes for the indices.

• The third and subsequent parts contain a listing of the other, lower level nodes, often
ordered by chapter. This way, rather than go through an intermediary menu, an inquirer
can go directly to a particular node when searching for specific information. These menu
items are not required; add them if you think they are a convenience.

Each section in the menu can be introduced by a descriptive line. So long as the line does
not begin with an asterisk, it will not be treated as a menu item. (See section 11.3 [Menu
Environment], page 98, for more information.)

For example, the master menu for a manual might look like the following:

\begin{menu}
* Copying:: LaTEX info is freely

redistributable.
* Overview:: What is LaTeXinfo?
* LaTeXinfo Mode:: Special features in GNU Emacs.
. . .
. . .
* Command and Variable Index::

An item for each \-command.
* Concept Index:: An item for each concept.

--- The Detailed Node Listing ---

Overview of LaTeXinfo

* Info Files:: What is an Info file?
* Printed Manuals:: Characteristics of

a printed manual.
. . .
. . .

Using LaTEX info Mode

* Info on a Region:: Formatting part of a file
for Info.

. . .

. . .
\end{menu}

26 CHAPTER 2. BEGINNING A LATEXINFO FILE

2.8 Software Copying Conditions

If the LaTEXinfo file has a section containing the distribution information and a warranty
disclaimer for the software that is being documented, this section usually follows the ‘Top’
node. The General Public License is very important to Project GNU software. It ensures that
you and others will continue to have a right to use and share the software.

The copying and distribution information and the disclaimer are usually followed by a
preface, or else by the first chapter of the manual.

Although a preface is not a required part of a LaTEXinfo file, it is very helpful. Ideally, it
should state clearly and concisely what the file is about and who would be interested in reading
it. In general, the preface would follow the licensing and distribution information, although
sometimes people put it earlier in the document. Usually, a preface is put in an \chapter*
type of section. (See section 3.3 [Chapter], page 33.)

2.8.1 Sample Permissions

LaTEXinfo files should contain sections that tell the readers that they have the right to copy and
distribute the Info file, the printed manual, and any accompanying software. Here are samples
containing the standard text of the Free Software Foundation copying permission notice for an
Info file and printed manual.

See Info file ‘emacs’, node ‘Distrib’, for an example of the text that could be used in the
software Distribution, General Public License, and NO WARRANTY sections of a document.

2.8.2 Titlepage Copying Permissions

In the copyright section of the LaTEXinfo file, the standard Free Software Foundation copy-
ing permission notice follows the copyright notice and publishing information. The standard
phrasing is:

Permission is granted to make and distribute verbatim
copies of this manual provided the copyright notice and
this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified
versions of this manual under the conditions for
verbatim copying, provided also that the sections
entitled ‘‘Distribution’’ and ‘‘General Public License’’
are included exactly as in the original, and provided
that the entire resulting derived work is distributed
under the terms of a permission notice identical to this
one.

2.9. ENDING A LATEXINFO FILE 27

Permission is granted to copy and distribute
translations of this manual into another language, under
the above conditions for modified versions, except that
the sections entitled ‘‘Distribution’’ and ‘‘General
Public License’’ may be included in a translation
approved by the author instead of in the original
English.

2.9 Ending a LaTeXinfo File

The end of a LaTEXinfo file should include the commands that create the bibliography, and the
indices. It must include the \end{document} command that marks the last line that LaTEX
processes. For example, a LaTEXinfo file might be ended as follows:

For example,

\bibliography{latexinfo}

\twocolumn
\node Concept Index, , Previous Node, Top
\unnumbered{Concept Index}
\cindex{Concept Index}

\printindex{cp}

\end{document}

The \end{document} command should be on a line by itself and every LaTEXinfo file must
end with such a line. This command terminates LaTEX processing and forces out unfinished
pages.

2.9.1 Making a Bibliography

You may also choose to include a bibliography of citations in the document, using the \cite
command . Citations are prepared using the program BibTEX, which formats the citations for
use with LaTEX. See the LaTEX Manual for more details in BibTEX [Lam86, Appendix B].

Before you use the \cite command, you must declare the bibliography style that you are
going to use. This is usually done at the beginning of the document, for example

28 CHAPTER 2. BEGINNING A LATEXINFO FILE

\begin{document}
\bibliographystyle{alpha}

At the end of the document comes the bibliography itself. The \bibliography takes as an
argument a comma separated list of filenames that contain the bibliography entries.

\bibliography{latexinfo}

With these two sections in your document, you can use the \cite command to refer to the
bibliography. For example

a citation of the GNU Emacs Manual \cite{GNUEmacsManual}\dots

would produce

a citation of the GNU Emacs Manual [Sta86]. . .

and would cause an entry to be put in the Bibliography section something like

Sta86 Richard Stallman. The GNU Emacs Manual, The Free Software Foundation, 675 Mas-
sachusetts Ave., Cambridge MA, 02139, 1986.

See section 8.2 [Citations], page 74, for how to use citations in the document.

2.9.2 Index Menus and Printing an Index

Using LaTEXinfo, you can generate printed indices and Info file menus without having to sort
and collate entries manually. LaTEXinfo will do this for you automatically. Each index covers
a certain kind of entry (functions, or variables, or concepts, etc.) and lists all of those entries
in alphabetical order, together with information on how to find the discussion of each entry.
In a printed manual, this information consists of page numbers. In an Info file, it consists of a
menu item leading to the first node where the entry is defined.

To print an index means to include it as part of a manual or Info file. This does not happen
automatically just because you use \cindex or other index-entry generating commands in the
LaTEXinfo file; those just cause the raw data for the index to be accumulated. To generate an
index, you must include the \printindex command at the place in the document where you
want the index to appear, and declare the index at the beginning of the document with the
\newindex command. Also, as part of the process of creating a printed manual, you must run
a program called latexindex (see section 16 [Printing Hardcopy], page 141) to sort the raw
data to produce a sorted index file. The sorted index file is what will actually be used to print
the index.

2.9. ENDING A LATEXINFO FILE 29

Like typesetting, the construction of an index is a highly skilled, professional art, the
subtleties of which are not appreciated until you have to do it yourself. LaTEXinfo offers six
different types of predefined index: the concept index, the function index, etc. (See section 13
[Creating Indices], page 115.) Each index type has a two-letter name. You may merge indices,
or put them into separate sections (See section 13.3 [Combining Indices], page 118.).

The \printindex command does not generate a chapter heading for the index. Conse-
quently, you should precede the \printindex command with a suitable section or chapter
command (usually \unnumbered) to supply the chapter heading and put the index into the
table of contents. Precede the \unnumbered command with an \node line. Also, if you want
the index to be set in two-column mode, then you should precede the index with the LaTEX
\twocolumn command. You can switch back to one-column mode with the LaTEX \onecolumn
command. For example,

\twocolumn
\node Command Index, Concept Index, The Last Section, Top
\unnumbederd{Command Index}
\cindex{Command Index}

\printindex{fn}

\onecolumn
\node Concept Index,Top, Command Index, Top
\unnumbered{Concept Index}
\cindex{Concept Index}

\printindex{cp}

\end{document}

(Readers often prefer that the concept index come last in a book, since that makes it easiest
to find.)

2.9.3 \end{document} File Ending

An \end{document} command terminates LaTEX or Info formatting. None of the formatting
commands see any of the file following \end{document}. The \end{document} command
should be on a line by itself.

Optionally, you may follow an \end{document} line with a local variables list. See section
Compile-Command in Using Local Variables and the Compile Command, for more information.

30 CHAPTER 2. BEGINNING A LATEXINFO FILE

Chapter 3

Chapter Structuring

The chapter structuring commands divide a document into a hierarchy of chapters, sections,
subsections, and subsubsections. These commands generate large headings; they also provide
information for the table of contents of a printed manual.

The chapter structuring commands do not create an Info node structure, so normally you
should put an \node command immediately before each chapter structuring command (see
section Nodes and Menus in Nodes and Menus). The only time you are likely to use the
chapter structuring commands without using the node structuring commands is if you are
writing a document that contains no cross references and will never be transformed into Info
format.

3.1 Tree Structure of Sections

A LaTEXinfo file is usually structured like a book with chapters, sections, subsections, and the
like. This structure can be visualized as a tree (or rather as an upside-down tree) with the root
at the top and the levels corresponding to chapters, sections, subsection, and subsubsections.
In Info format, ‘Next’ and ‘Previous’ pointers of a node usually lead to other nodes at the
same level; an ‘Up’ pointer usually leads to a node at the level above; and a ‘Menu’ leads to
nodes at a level below. Cross references can point to nodes at any level. See section 12 [Cross
References], page 103.

Here is a diagram that shows a LaTEXinfo file with three chapters, each of which has two
sections.

31

32 CHAPTER 3. CHAPTER STRUCTURING

top
|

| | |

Chapter 1 Chapter 2 Chapter 3
| | |

-------- -------- --------
| | | | | |

Section Section Section Section Section Section
1.1 1.2 2.1 2.2 3.1 3.2

In a LaTEXinfo file that has this structure, the beginning of Chapter 2 might look like this:

\node Chapter 2, Chapter 3, Chapter 1, top
\chapter{Chapter 2}

To get to Sections 2.1 and 2.2, you need a menu inside of Chapter 2 that says:

\begin{menu}
* Sect. 2.1:: Description of this section.
* Sect. 2.2::
\end{menu}

This menu is located inside Chapter 2, after the beginning of the chapter, just before Section
2.1.

Usually, a \node command and a chapter structuring command are used in sequence, along
with indexing commands. For example, the node for the chapter on Ending a LaTeXinfo File
looks like this:

\node Ending a LaTeXinfo File, Structuring, Beginning a LaTeXinfo File, Top
\chapter{Ending a LaTeXinfo File}
\cindex{Ending a LaTeXinfo File}
\cindex{LaTeXinfo file ending}
\cindex{File ending}

The \node command is the only one in LaTEXinfo where the arguments are not delineated
by braces. The arguments are separated by commas, and are terminated at the end of the
line. This is because the Info format itself requires the node arguments to be like this. Note

3.2. TYPES OF STRUCTURING COMMAND 33

that it also means that you cannot use a comma within any of the four arguments to the node
command.

The chapter structuring commands are described in the sections that follow; the \node
and \begin{menu} commands are described in a following chapter (see section 11 [Nodes and
Menus], page 95).

3.2 Types of Structuring Command

There are four chapter-structuring commands for chapters, sections, subsections and subsub-
sections. The optional heading argument of LaTEX to these commands is not supported. You
should avoid the use of any LaTEX commands in the headings: any such commands should be
preceded by a \protect. See the LaTEX Manual for more details [Lam86].

3.3 Chapter

\chapter identifies a chapter in the document. It is followed by a single argument:

\chapter{Node and Chapter Structuring}

In LaTEX, it creates a chapter in the document, specifying the chapter title. The chapter
will be numbered automatically in the printed manual. In the Info file, \chapter causes its
argument to appear on a line by itself, with a line of asterisks inserted underneath. For example:

This is a Chapter

To start a chapter without it being numbered, use the \unnumbered command. To start a
chapter without it being numbered or appearing in the table of contents, use the \chapter*
command.

In the printed manual, the chapters will begin on a new page. If you want the chapters to
appear on the odd–sided pages, use the book documentstyle.

3.4 Appendix

\appendix is the same as the LaTEX command of the same name. In a printed manual, all
chapters that follow this command are numbered differently in the table of contents: they are
given a letter instead of a number, and the letters restart from A.

34 CHAPTER 3. CHAPTER STRUCTURING

3.5 Section

\section is like \chapter except that in LaTEX it makes a section rather than a chapter. (See
section 3.3 [Chapter], page 33.) Sections go within chapters. In the Info file, \chapter and
\section differ only in that \section underlines with ‘=’. For example,

This is a section
=================

To start a section without it being numbered, use the \unnumberedsec command. To start
a section without it being numbered or appearing in the table of contents, use the \section*
command.

3.6 Subsection

Subsections are to sections as sections are to chapters. (See section 3.5 [Section], page 34.)
They are underlined with ‘-’. For example,

This is a subsection

To start a subsection without it being numbered, use the \unnumberedsubsec command.
To start a subsection without it being numbered or appearing in the table of contents, use the
\subsection* command.

3.7 Subsubsection

Subsubsections are to subsections as subsections are to sections. (See section 3.6 [Subsection],
page 34.) They are underlined with periods. For example,

This is a subsubsection
.......................

To start a subsubsection without it being numbered, use the \unnumberedsubsubsec com-
mand. To start a subsubsection without it being numbered or appearing in the table of contents,
use the \subsubsection* command.

Chapter 4

Marking Words and Phrases

In LaTEXinfo, you can mark words and phrases in a variety of ways. These ways specify, for
example, whether a word or phrase is a defining occurrence, a metasyntactic variable, or a
symbol used in a program. Also, you can use fonts to emphasize text.

In addition, there are special commands for inserting single characters that have special
meaning in LaTEXinfo, such as braces, and for inserting symbols with special handling, such as
dots and bullets. Finally, there are ways to emphasize words.

4.1 Indicating Definitions, Commands, etc.

LaTEXinfo has commands for indicating just what kind of object a piece of text refers to.
Metasyntactic variables, for example, are marked by \var and code by \code. LaTEXinfo uses
this information to determine how to highlight the text. Since the pieces of text are labelled
by commands that tell what kind of object they are, it is easy to change the way LaTEXinfo
formats such text.

For example, code is usually illustrated in a typewriter font, but it would be easy to change
the way LaTEXinfo highlights code to use another font. This change would not effect how
keystroke examples are highlighted. If straight typesetting commands were used in the body
of the file and you wanted to make a change, you would have to check every single occurrence
to make sure that you were changing code and not something else that should not be changed.

The highlighting commands can be used to generate useful information from the file, such as
lists of functions or file names. It is possible, for example, to write a LaTEXinfo style to insert
an index entry after every paragraph that contains words or phrases marked by a specified
command. You could do this to construct an index of functions automatically; see section
18.1.1 [The fvpindex Style], page 155 for an example.

35

36 CHAPTER 4. MARKING WORDS AND PHRASES

The font changing commands commands serve a variety of purposes:

\code{sample-code} Indicate text that is a literal example of a piece of a program.

\kbd{keyboard-characters} Indicate keyboard input.

\key{key-name} Use for the conventional name for a key on a keyboard.

\samp{text} Indicate text that is a literal example of a sequence of characters.

\var{metasyntactic-variable} Indicate a metasyntactic variable.

\file{file-name} Indicate the name of a file.

\dfn{term} Use for the introductory or defining use of a term.

\ctrl{ctrl-char} Use for an ascii control character.

4.1.1 \code{sample-code}

Use the \code command to indicate text that is a piece of a program and which consists of
entire syntactic tokens. Enclose the text in braces.

Thus, you should use \code for an expression in a program, for the name of a variable or
function used in a program, or for a keyword. Also, you should use \code for the name of a
program, such as diff, that is a name used in the machine. (You should write the name of a
program in the ordinary text font if you regard it as a new English word, such as ‘Emacs’ or
‘Bison’.)

Use \code for the TEXINPUTS environment variable and other such variables.
Do not use the \code command for a string of characters shorter than a syntactic token.

In particular, you should not use the \code command when writing about the characters used
in a token; do not, for example, use \code when you are explaining what letters or printable
symbols can be used in the names of functions. (Use \samp.) Also, you should not use \code
to mark text that is considered input to programs unless the input is written in a language
that is like a programming language. For example, you should not use \code for the single
character commands of GNU Emacs (use \kbd instead) although you may use \code for the
names of the Emacs Lisp functions that the keyboard commands invoke.

In the printed manual, \code causes LaTEX to typeset the argument in a typewriter face.
In the Info file, it causes the Info formatting commands to use ‘. . .’ quotation. For example:

Use \code{diff} to compare two files.

produces this in the printed manual:

4.1. INDICATING DEFINITIONS, COMMANDS, ETC. 37

Use diff to compare two files.

and this in Info file:

Use ‘diff’ to compare two files.

4.1.2 \kbd{keyboard-characters}

Use the \kbd command for characters of input to be typed by users. For example, to refer to
the characters M-a, write

\kbd{M-a}

and to refer to the characters M-x shell, write

\kbd{M-x shell}

The \kbd command has the same effect as \code in Info, but may produce a different font
in a printed manual.

You can embed another \-command inside the braces of an \kbd command. Here, for
example, is the way to describe a command that would be described more verbosely as “press
an ‘r’ and then press the RET key”:

\kbd{r \key{RET}}

This produces: r RET
You also use the \kbd command if you are spelling out the letters you type; for example:

To give the \code{logout} command,
type the characters \kbd{l o g o u t \key{RET}}.

This produces

To give the logout command, type the characters l o g o u t RET.

(Also, this example shows that you can add spaces for clarity. If you really want to mention
a space character as one of the characters of input, write \key{SPC} for it.)

38 CHAPTER 4. MARKING WORDS AND PHRASES

4.1.3 \key{key-name}

Use the \key command for the conventional name for a key on a keyboard, as in

\key{RET}

You can use the \key command within the argument of an \kbd command when the se-
quence of characters to be typed includes one or more keys that are described by name.

For example, to produce C-x ESC you would type:

\kbd{C-x \key{ESC}}

The recommended names to use for keys are in upper case and are

SPC Space

RET Return

LFD Linefeed

TAB Tab

BS Backspace

ESC Escape

DEL Delete

SFT Shift

CTL Control

META Meta

There are subtleties to handling words like ‘meta’ or ‘ctl’ that are names of shift keys. When
mentioning a character in which the shift key is used, such as Meta-a, use the \kbd command
alone without the \key command, but when you are referring to the shift key in isolation, use
the \key command. For example, write ‘\kbd{Meta-a}’ to produce Meta-a and ‘\key{META}’
to produce META. This is because Meta-a refers to keys that you press on a keyboard, but META
refers to a key without implying that you press it.

4.1. INDICATING DEFINITIONS, COMMANDS, ETC. 39

4.1.4 Ctrl

\ctrl is used to describe an ASCII control character. The pattern of usage is \ctrl{ch},
where ch is an ASCII character whose control-equivalent is wanted. Thus you put in an ‘f’
when you want to indicate a ‘control-f’. For example, to specify ‘control-f’, you would
enter

\ctrl{f}

which produces

↑f
In the Info file, this generates the specified control character, output literally into the file. This
is done so a user can copy the specified control character (along with whatever else he or she
wants) into another Emacs buffer and use it. Since the ‘control-h’,‘control-i’, and ‘control-j’
characters are formatting characters, they should not be indicated this way.

In a printed manual, this generates text to describe or identify that control character: an
uparrow followed by the character ch.

4.1.5 \samp{text}

Use the \samp command to indicate text that is a literal example of a sequence of characters
in a file, string, pattern, etc. Enclose the text in braces. The argument appears within ‘. . .’
quotation in both the Info file and the printed manual; in addition, it is printed in a fixed-width
font.

To match \samp{foo} at the end of the line,
use the regexp \samp{foo$}.

produces

To match ‘foo’ at the end of the line, use the regexp ‘foo$’.

\samp is used for entire statements in C, for entire shell commands, and for names of
command-line options. Use it for buffer names in Emacs and for node names in Info or LaTeX-
info. Often \samp is a catchall for whatever is not covered by \code, \kbd, or \key.

Only include punctuation marks within braces if they are part of the string you are speci-
fying. Write punctuation marks outside the braces if those punctuation marks are part of the
English text that surrounds the string. In the following sentence, for example, the commas and
period are outside of the braces:

40 CHAPTER 4. MARKING WORDS AND PHRASES

In English, the vowels are \samp{a}, \samp{e},
\samp{i}, \samp{o}, \samp{u}, and sometimes
\samp{y}.

This produces:

In English, the vowels are ‘a’, ‘e’, ‘i’, ‘o’, ‘u’, and sometimes ‘y’.

4.1.6 \var{metasyntactic-variable}

Use the \var command to indicate metasyntactic variables. A metasyntactic variable is some-
thing that stands for another piece of text. For example, you should use a metasyntactic
variable in the documentation of a function to describe the arguments that are passed to that
function.

Do not use \var for the names of particular variables in programming languages. These
are specific names from a program, so \code is correct for them. For example, the Lisp
variable latexinfo-latex-command is not a metasyntactic variable; it is properly formatted
using \code.

The effect of \var in the Info file is to upcase the argument; in the printed manual, to
italicize it. For example:

To delete file \var{filename},
type \code{rm \var{filename}}.

produces

To delete file filename, type rm filename.

(Note that \var may appear inside of \code, \samp, \file, etc.)
Write a metasyntactic variable all in lower case without spaces, and use hyphens to make

it more readable. In some documentation styles, metasyntactic variables are shown with angle
brackets, for example:

. . ., type rm <filename>

Although this is not the style we use in LaTEXinfo, you can, of course, write your own LaTEXinfo
formatting commands to output the <. . .> format if you wish. See section 18 [Extending
LaTeXinfo], page 155.

4.2. EMPHASIZING TEXT 41

4.1.7 \file{file-name}

Use the \file command to indicate text that is the name of a file, buffer, or directory, or is
the name of a node in Info. You can also use the command for filename suffixes. Don’t use
\file for symbols in a programming language; thus, a node name is a name in an Info file but
not an identifier in a programming language.

Currently, \file is equivalent to \samp in its effects on the output. For example,

The \file{.el} files are in
the \file{/usr/local/emacs/lisp} directory.

produces

The ‘.el’ files are in the ‘/usr/local/emacs/lisp’ directory.

4.1.8 \dfn{term}

Use the \dfn command to identify the introductory or defining use of a technical term. Use
the command only in passages whose purpose is to introduce a term which will be used again
or which the reader ought to know. Mere passing mention of a term for the first time doesn’t
deserve \dfn. The command generates italics in the printed manual, and double quotation
marks in the Info file. For example:

Getting rid of a file is called \dfn{deleting} it.

produces

Getting rid of a file is called deleting it.

As a general rule, a sentence containing the defining occurrence of a term should be a
definition of the term. The sentence does not have to say explicitly that it is a definition, but
it should contain the information of a definition—it should make the meaning clear.

4.2 Emphasizing Text

Usually, LaTEXinfo changes the font to mark words in the text according to what category the
words belong to. The \code command, for example, does this. Most often, this is the best
way to mark words. However, sometimes you will want to emphasize text without indicating a
category. LaTEXinfo has two ways to do this: commands that tell LaTEXinfo to emphasize the

42 CHAPTER 4. MARKING WORDS AND PHRASES

text but leave the method to the program, and commands that specify the method to use. The
first way is generally the best because it makes it possible to change the style of a document
without needing to re-edit it line by line.

4.2.1 \emph{text} and \strong{text}

The \emph and \strong commands are for emphasis; \strong is stronger. In printed output,
\emph produces italics and \strong produces bold.

For example,

\begin{quote}
\strong{Caution:} \code{rm * .[^.]*} removes \emph{all}
files in the directory.
\end{quote}

produces the following in printed output:

Caution: rm * .[^.]* removes all files in the directory.

and the following in Info:

Caution: ‘rm * .[^.]*’ removes *all*
files in the directory.

The \strong command is seldom used except to mark what is, in effect, a typographical
element, such as the word ‘Caution’ in the preceding example.1

In the Info file, both \emph and \strong put asterisks around the text.

4.2.2 The Small Caps Font

Use the ‘\scap’ command to set text in the printed output in a small caps font and set
text in the Info file in upper case letters.

Write the text between braces in lower case, like this:

The \sc{acm} and \sc{ieee} are technical societies.

This produces:

1Don’t try to use \emph or \strong with the word ‘Note’; Info will mistake the combination for a cross
reference. Use a phrase such as Please note or Caution instead.

4.2. EMPHASIZING TEXT 43

The acm and ieee are technical societies.

LaTEX typesets the small caps font in a manner that prevents the letters from ‘jumping out
at you on the page’. This makes small caps text easier to read than text in all upper case.
LaTEX typesets any upper case letters in the small caps fonts in FULL-SIZE CAPITALS.
Use them sparingly. The Info formatting commands set all small caps text in upper case.

You may also use the small caps font for acronyms such as ato (a nasa word meaning
‘abort to orbit’).

There are subtleties to using the small caps font with a jargon word such as cdr, a word
used in Lisp programming. In this case, you should use the small caps font when the word
refers to the second and subsequent elements of a list (the cdr of the list), but you should use
‘\code’ when the word refers to the Lisp function of the same spelling.

4.2.3 Fonts for Printing, Not Info

LaTEXinfo provides four font commands that specify font changes in the printed manual but
have no effect in the Info file. \i requests italic font (in some versions of LaTEX, a slanted
font is used), \b requests bold face, \t requests the fixed-width font used by \code, and \r
requests a roman font, which is the usual font in which text is printed. In addition \n requests
the fontsize be set in the normal size of the typeface, All the commands apply to an argument
that follows, surrounded by braces. All four commands apply to an argument that follows,
surrounded by braces.

Only the \r command has much use: in example programs, you can use the \r command to
convert code comments from the fixed-width font to a roman font. This looks better in printed
output.

For example,

\begin{lisp}
(+ 2 2) ; \r{Add two plus two.}
\end{lisp}

produces

(+ 2 2) ; Add two plus two.

If possible, you should avoid using the other three font commands. If you need to use one,
it probably indicates a gap in the LaTEXinfo language.

44 CHAPTER 4. MARKING WORDS AND PHRASES

4.3 Special Insertions

LaTEXinfo provides several commands for formatting dimensions, for inserting single characters
that have special meaning in LaTEXinfo, such as braces, and for inserting special graphic symbols
that do not correspond to characters, such as dots and bullets.

These are:

• Braces, ‘\’ and periods.

• Format a dimension, such as ‘12 pt’.

• Dots and bullets.

• The LaTEX logo and the copyright symbol.

• A minus sign.

• The \verb command, for inserting characters verbatim.

4.3.1 Inserting \, Braces, and Periods

‘\’ and curly braces are special characters in LaTeXinfo. Periods are also special. Depending
on whether the period is inside of or at the end of a sentence, less or more space is inserted
after a period in a typeset manual. Since it is not always possible for LaTEXinfo to determine
when a period ends a sentence and when it is used in an abbreviation, special commands are
needed in some circumstances. (Usually, LaTEXinfo can guess how to handle periods, so you
don’t have to use the special commands; you just enter a period as you would if you were using
a typewriter, which means you put two spaces after the period, question mark, or exclamation
mark that ends a sentence.) Do not put braces after any of these commands; they are not
necessary.

4.3.1.1 Inserting \—\back

\back stands for a single ‘\’ in either printed or Info output.
Do not put braces after an \back command.

4.3.1.2 Inserting ‘{’ and ‘}’—\{ and \}

\{ stands for a single ‘{’ in either printed or Info output.
\} stands for a single ‘}’ in either printed or Info output.
Do not put braces after either an \{ or an \} command.

4.3. SPECIAL INSERTIONS 45

4.3.1.3 Spacing After Colons and Periods

Use the \: command after a period, question mark, exclamation mark, or colon that should
not be followed by extra space. For example, use \: after periods that end abbreviations which
are not at the ends of sentences. \: has no effect on the Info file output.

For example:

The U.S.A. \: is a continental nation.

produces

The U.S.A. is a continental nation.

Use \. instead of a period at the end of a sentence that ends with a single capital letter.
Otherwise, LaTEX will think the letter is an abbreviation and will not insert the correct end-of-
sentence spacing. Here is an example:

Give it to X. and to Y \. Give it to Z \.
Give it to X. and to Y. Give it to Z.

If you look carefully at this printed output, you will see a little more whitespace after the Y
in the first line than the Y in the second line.

Give it to X. and to Y. Give it to Z.
Give it to X. and to Y. Give it to Z.

In the Info file output, \. is equivalent to a simple ‘.’. Do not put braces after either an
\: or an \. command.

4.3.2 \dmn{dimension}: Format a Dimension

At times, you may want to write ‘12 pt’ or ‘8.5 in’ with little or no space between the number
and the abbreviation for the dimension. You can use the \dmn command to do this. On seeing
the command, LaTEX inserts just enough space for proper typesetting; the Info formatting
commands insert no space at all, since the Info file does not require it. To use the \dmn
command, write the number and then follow it immediately, with no intervening space, by
\dmn, and then by the dimension within braces.

For example,

A4 paper is 8.27 \dmn{in} wide.

46 CHAPTER 4. MARKING WORDS AND PHRASES

produces

A4 paper is 8.27 in wide.

Not everyone uses this style. Instead of ‘8.27 in’, you may write ‘8.27 in.’ or ‘8.27
inches’.

4.3.3 Inserting Ellipsis, Dots, and Bullets

An ellipsis (a line of dots) is typeset unlike a string of periods, so a special command is used
for ellipsis in LaTeXinfo. The \bullet command is special, too. Each of these commands is
followed by a pair of braces, ‘{}’, without any whitespace between the name of the command
and the braces.

\dots{} Use the \dots{} command to generate an ellipsis, which is three dots in a row,
appropriately spaced, like this: ‘. . .’. Do not simply write three periods in the input file; that
would work for the Info file output, but would produce the wrong amount of space between
the periods in the printed manual.

Here is an ellipsis: . . .

Here are three periods in a row: ...
In printed output, the three periods in a row are closer together than the dots in the ellipsis.

\bullet{} Use the \bullet{} command to generate a large round dot, or the closest possible
thing to one. In Info, an asterisk is used.

Here is a bullet: •

4.3.4 Inserting LaTEX and the Copyright Symbol

The logo LaTEX is typeset in a special fashion and it needs an \-command, as does the command
for inserting the copyright symbol. Each of these commands is followed by a pair of braces,
‘{}’, without any whitespace between the name of the command and the braces.

\LaTeX{} Use the \LaTeX{} command to generate ‘LaTEX’. In a printed manual, this is a
special logo that is different from three ordinary letters. In Info, it just looks like ‘LaTeX’. The
\LaTeX{} command is amongst the few LaTEXinfo commands in that the L, T and the X are in
upper case.

\copyright{} Use the \copyright{} command to generate ‘ c© ’. In a printed manual, this
is a ‘c’ inside a circle, and in Info, this is ‘(C)’.

4.3. SPECIAL INSERTIONS 47

4.3.5 Inserting a Minus Sign

Use the \minus{} command to generate a minus sign. In a fixed-width font, this is a single
hyphen, but in a proportional font, the symbol is the customary length for a minus sign—a
little longer than a hyphen.

You can compare the two forms:

‘−’ is a minus sign generated with ‘ \minus{}’,

‘-’ is a hyphen generated with the character ‘-’.

In the fixed-width font used by Info, \minus{} is the same as a hyphen.
You should not use \minus{} inside of \code or \begin{example} because the width

distinction is not made in the fixed-width font they use.

4.3.6 Inserting Characters Verbatim

You can use the LaTEX \verb command to inserting characters verbatim. The next character
after the command must be a non-alphabetic or numeric character, such as ‘+’. Any characters
between this marker character, and the next occurence of this marker character, will be pro-
tected from any operations in LaTEX or Info. The contents will be displayed in a fixed-width
font. Unlike LaTEX, LaTEXinfo has a restriction on the use of the \verb command: it must
occur at the beginning of a line (or preceded only by whitespace). Hence you will usually use
it something like:

characters to \scap{ascii} double-quotes:
\verb+‘‘+ and
\verb+’’+
to \samp{"}.\refill

48 CHAPTER 4. MARKING WORDS AND PHRASES

Chapter 5

Displaying Material

Displayed Material are blocks of text consisting of one or more whole paragraphs that are set
off from the bulk of the text and treated differently. They are usually indented.

In LaTEXinfo, you always begin a quotation or example by writing an \begin-command at
the beginning of a line by itself, and end it by writing an \end command that is also at the
beginning of a line by itself. For instance, you begin an example by writing \begin{example}
by itself at the beginning of a line and end the example by writing \end{example} on a line
by at itself, at the beginning of that line.

Since the lines containing \begin{example} and \end{example} will be turned into blank
lines, you won’t need to put a blank line before the \begin{example}, and another blank line af-
ter the \end{example}. (Remember that blank lines between the beginning \begin{example}
and the ending \end{example} will also appear in the Info output.)

There are a variety of commands for Displaying Material:

\begin{quote} Used to indicate text that is quoted. The text is filled, and printed in a roman
font by default.

\begin{quotation} Used to indicate text that is quoted. The text is filled, indented, and
printed in a roman font by default.

\begin{display} Used for illustrative text. The text is indented but not filled, and no font is
specified (so, by default, the font is roman).

\begin{format} Used for illustrative text. The text is not indented and not filled and no
font is specified (so, by default, the font is roman).

\begin{center} Used to center a body of text.

\begin{flushleft} Used to line up the left margin of unfilled text.

\begin{flushright} Used to line up the right margin of unfilled text.

\begin{lisp} Used to illustrate Lisp code. The text is printed in a fixed-width font without
filling.

49

50 CHAPTER 5. DISPLAYING MATERIAL

\begin{smalllisp} Used to illustrate Lisp code. The text is printed in a smaller fixed-width
font.

\begin{example} Used to illustrate code, and commands. The text is printed in a fixed-
width font without filling.

\begin{smallexample} Used to illustrate code, commands, and the like, in a smaller font.

\begin{verbatim} Used to illustrate code and commands, but the text is protected from
processing by LaTEX and Info, and is printed in a fixed-width font without filling.

\begin{smallverbatim} Used to illustrate code, commands, and the like. The content is
protected from processing by LaTEX and Info, and is set in a smaller font.

The \exdent command is used within the above constructs (except of course for the
verbatim ones) to undo the indentation of a line.

The \noindent command may be used after one of the above constructs to prevent the
following text from being indented as a new paragraph.

5.1 Quotations

5.1.1 Quotations

The text of a quote is processed normally except that

• The margins are closer to the center of the page, so the whole of the quotation is offset.

• The first lines of paragraphs are indented no more than the other lines.

• In the printed output, interline spacing and interparagraph spacing are reduced.

This is an example of text written between an \begin{quote} command and an
\end{quote} command. A \begin{quote} command is most often used to indicate
text that is excerpted from another (real or hypothetical) printed work.

Write an \begin{quote} command as text of a line by itself. This line will disappear from
the output. Mark the end of the quotation with a line beginning with and containing only
\end{quote}. The \end{quote} line will likewise disappear from the output. Thus, the input

\begin{quote}
This is
a foo.
\end{quote}

produces

This is a foo.

The text of a \begin{quotation} environment is processed the same way, except that the
first line of the text is indented.

5.2. JUSTIFYING TEXT 51

5.2 Justifying Text

5.2.1 Left Justification and Right Justification

The \begin{flushleft} and \begin{flushright} commands line up the left or right ends of
lines on the left and right margins of a page, but do not fill the text. The commands are written
on lines of their own, without braces. The \begin{flushleft} and \begin{flushright}
commands are ended by \end{flushleft} and \end flushright commands on lines of their
own.

For example,

\begin{flushleft}
This text is
written flushleft.
\end{flushleft}

produces

This text is written flushleft. The \code{\begin{flushleft}}
command left justifies every line but leaves the
right end ragged.

Flushright produces the type of indentation often used in the return address of letters.

\begin{flushright}
Here is an example of text written
flushright. The \code{ \begin{flushright}} command
right justifies every line but leaves the
left end ragged.
\end{flushright}

produces

Here is an example of text written flushright. The \begin{flushright} command right
justifies every line but leaves the left end ragged.

5.2.1.1 Center Environment

Text enclosed in a center environment produces lines of output containing text centered be-
tween the margins. This is the same as the center environment of LaTEX, and different from
the TEXinfo command of the same name.

52 CHAPTER 5. DISPLAYING MATERIAL

5.3 Display Environments

5.3.1 \begin{display}

The \begin{display} command begins a kind of example. It is like the \begin{example}
command except that, in a printed manual, \begin{display} does not select the fixed-width
font. In fact, it does not specify the font at all, so that the text appears in the same font it
would have appeared in without the \begin{display} command.

This is an example of text written between an
\begin{display} command and an \end{display}
command. The \begin{display} command indents the text,
but does not fill it.

5.3.2 \begin{format}

The \begin{format} command is similar to \begin{example} except that, in the printed
manual, \begin{format} does not select the fixed-width font and does not narrow the margins.

This is an example of text written between an \
begin{format} command and an \end{format} command. The
\begin{format} command does not fill the text.

5.4 Examples and Verbatim

5.4.1 \begin{example}

The \begin{example} command is used to indicate an example that is not part of the running
text, such as computer input or output.

This is an example of text written between an \begin{example}
command and an \end{example} command. The text is
indented but not filled.

In the printed manual, the text is typeset in a fixed-width font, and
extra spaces and blank lines are significant. In the Info file, an
analogous result is obtained by indenting each line with five extra
spaces.

Write an \begin{example} command at the beginning of a line (or possibly preceded by
whitespace) as the only text on a line by itself. This line will turn into a blank line in the Info
output. Mark the end of the example with a line beginning containing only \end{example}
(or possibly preceded by whitespace). The \end{example} will likewise turn into a blank line
in the Info output. For example:

5.4. EXAMPLES AND VERBATIM 53

\begin{example}
mv foo bar
\end{example}

produces

mv foo bar

Caution: Do not use tabs in lines of an example (or anywhere else in LaTEXinfo,
for that matter)! LaTEX treats tabs like single spaces, and that is not what they
look like. This is a problem with LaTEX. (If necessary, in Emacs, you can use M-x
untabify to convert tabs in a region to multiple spaces.)

Examples are often, logically speaking, “in the middle” of a paragraph, and the text con-
tinues after an example should not be indented. The \noindent command prevents a piece of
text from being indented as if it were a new paragraph.

(The \code command is used for examples of code that is embedded within sentences, not
set off from preceding and following text. See section code in \code.)

5.4.2 \noindent

If you have text following an \begin{example} or other similar inclusion that reads as a
continuation of the text before the \begin{example}, it is good to prevent this text from
being indented as a new paragraph. To accomplish this, write \noindent at the beginning of
a line by itself preceding the continuation text. For example,

\begin{example}
This is an example
\end{example}

\noindent
This line will not be indented. As you can see, the
beginning of the line is fully flush left with the line
that follows after it. (This whole example is between
\begin{display} and \end{display}.)

produces

This is an example

This line will not be indented. As you can see, the beginning of the
line is fully flush left with the line that follows after it. (This
whole example is between \begin{display} and
\end{display}.)

54 CHAPTER 5. DISPLAYING MATERIAL

To adjust the number of blank lines properly in the Info file output, remember that the
line containing \noindent does not generate a blank line, and neither does the \end{example}
line.

In the LaTEXinfo source file for this documentation, each of the lines that says ‘produces’ is
preceded by a line containing \noindent. Do not put braces after an \noindent command.

The smallexample environment sets its contents in a smaller font.

5.4.3 \begin{lisp}

The \begin{lisp} command is used for Lisp code. It is synonymous with the
\begin{example} command.

This is an example of text written between an
\begin{lisp} command and an \end{lisp} command.

Use \begin{lisp} instead of \begin{example} so as to preserve information regarding the
nature of the example. This is useful, for example, if you write a function that evaluates only
and all the Lisp code in a LaTEXinfo file. Then you can use the LaTEXinfo file as a Lisp library.1

Mark the end of \begin{lisp} with \end{lisp} on a line by itself.
The smalllisp environment sets its contents in a smaller font.

5.4.4 Verbatim Environment

The verbatim environment is very similar to the example environment except that no parsing
of the contents is carried out, and the text is not indented. In the Info file things will appear
exactly as they have been typed in. In the printed manual, this is the same as the LaTEX
command of the same name. Verbatim environments cannot be nested, nor can they appear
inside another environment such as example. The \begin{verbatim} and \end{verbatim}
must occur at the beginning of a line.

The smallverbatim environment sets its contents in a smaller font.
The verbatimfile command includes the contents of a file with a verbatim environment.

The command is followed by an \end{verbatim} command, such as

\verbatimfile{foo.bar}

\end{verbatim}

The smallverbatimfile command sets its argument in a smaller font, and is terminated
by an \end{smallverbatim} command.

1It would be straightforward to extend LaTEXinfo to work in a similar fashion for C, Fortran, or other
languages.

5.5. CONTROLLING INDENTATION 55

5.5 Controlling Indentation

5.5.1 exdent: Undoing a Line’s Indentation

The \exdent command removes any indentation a line might have. The command is written
at the beginning of a line and applies only to the text that follows the command that is on the
same line. Don’t use braces around the text. In the printed manual, the text on the \exdent
line is printed in the roman font.

\exdent is usually used within examples. Thus,

\begin{example}
This line follows an \begin{example} command.
\exdent{This line is exdented.}
This line follows the exdented line.
The \end{example} comes on the next line.
\end{example}

produces

This line follows an \begin{example} command.
This line is exdented.

This line follows the exdented line.
The \end{example} comes on the next line.

In practice, the \exdent command is rarely used. Usually, you un-indent text by ending
the example and returning the page to its normal width.

5.6 Drawing Cartouches Around Examples

In a printed manual, the cartouche environment draws a box with rounded corners around
its contents. Pair with \end{cartouche}. You can use this command to further highlight an
example or quotation. For instance, you could write a manual in which one type of example is
surrounded in a cartouche to emphasize them.

The \cartouche command affects only the printed manual; it has no effect in the Info file.
For example,

\begin{example}
\cartouche
% pwd
/usr/local/lib/emacs/info
\end{cartouche}
\end{example}

56 CHAPTER 5. DISPLAYING MATERIAL

produces

� �

% pwd
/usr/local/lib/emacs/info

 	

surrounds the two-line example with a box with rounded corners, in the printed manual.

5.7 Special Glyphs for Examples

In LaTEXinfo, code is often illustrated in examples that are delimited by \begin{example} and
\end{example}, or by \begin{lisp} and \end{lisp}. In such examples, you can indicate the
results of evaluation or an expansion using ‘⇒’ or ‘7→’. Likewise, there are special symbols to
indicate printed output, an error message, equivalence of expressions, and the location of point.
The special glyph commands do not have to be used within an example. Every special glyph
command is followed by a pair of left- and right-hand braces.

Here are the different special glyph commands:

⇒ \result{} points to the result of an expression.

7→ \expansion{} shows the results of a macro expansion.

a \print{} indicates printed output.

error \error{} indicates that the following text is an error message.

≡ \equiv{} indicates the exact equivalence of two forms.

? \point{} shows the location of point.

5.7.1 ⇒: Indicating Evaluation

Use the \result{} command to indicate the result of evaluating an expression. The \result{}
command is displayed as ‘=>’ in Info and as ‘⇒’ in the printed output. Thus, the following,

(cdr ’(1 2 3))
⇒ (2 3)

may be read as “(cdr ’(1 2 3)) evaluates to (2 3)”.

5.7. SPECIAL GLYPHS FOR EXAMPLES 57

5.7.2 7→: Indicating an Expansion

When an expression is a macro call, it expands into a new expression. You can indicate the
result of the expansion with the \expansion{} command. The \expansion{} command is
displayed as ‘==>’ in Info and as ‘7→’ in the printed output. For example, the following

\begin{lisp}
(third ’(a b c))

\expansion{} (car (cdr (cdr ’(a b c))))
\result{} c

\end{lisp}

produces

(third ’(a b c))
7→ (car (cdr (cdr ’(a b c))))
⇒ c

which may be read as:

(third ’(a b c)) expands to (car (cdr (cdr ’(a b c)))); the result of evaluating
the expression is c.

(Often, as in this case, an example looks better if the \expansion{} and \result{} com-
mands are indented five spaces.)

5.7.3 a : Indicating Printed Output

Sometimes an expression will print output during its execution. You can indicate the printed
output with the \print{} command. The \print{} command is displayed as ‘-|’ in Info and
as ‘a ’ in the printed output.

In the following example, the printed text is indicated with ‘a ’, and the value of the
expression follows on the last line.

(progn (print ’foo) (print ’bar))
a foo
a bar
⇒ bar

In a LaTEXinfo source file, this example is written as follows:

58 CHAPTER 5. DISPLAYING MATERIAL

\begin{lisp}
(progn (print ’foo) (print ’bar))

\print{} foo
\print{} bar
\result{} bar

\end{lisp}

5.7.4 error : Indicating an Error Message

A section of code may cause an error when you evaluate it. You can designate the error message
with the \error{} command. The \error{} command is displayed as ‘error-->’ in Info and
as ‘ error ’ in the printed output. Thus,

\begin{lisp}
(+ 23 ’x)
\error{} Wrong type argument: integer-or-marker-p, x
\end{lisp}

produces

(+ 23 ’x)
error Wrong type argument: integer-or-marker-p, x

This indicates that the following error message is printed when you evaluate the expression:

Wrong type argument: integer-or-marker-p, x

Note that ‘ error ’ itself is not part of the error message.

5.7.5 ≡: Indicating Equivalence

Sometimes two expressions produce identical results. You can indicate the exact equivalence of
two forms with the \equiv{} command. The \equiv{} command is displayed as ‘==’ in Info
and as ‘≡ ’ in the printed output.

Thus,

\begin{lisp}
(make-sparse-keymap) \equiv{} (list ’keymap)
\end{lisp}

produces

(make-sparse-keymap) ≡ (list ’keymap)

This indicates that evaluating (make-sparse-keymap) produces identical results to evaluating
(list ’keymap).

5.8. CONDITIONALLY VISIBLE TEXT 59

5.7.6 Indicating Point in a Buffer

Sometimes you need to show an example of text in an Emacs buffer. In such examples, the
convention is to include the entire contents of the buffer in question between two lines of dashes
containing the buffer name.

You can use the ‘\point{}’ command to show the location of point in the text in the buffer.
(The symbol for point, of course, is not part of the text in the buffer; it indicates the place
between two characters where point is located.) The \point{} command is displayed as ‘-!-’
in Info and as ‘?’ in the printed output.

The following example shows the contents of buffer ‘foo’ before and after evaluating a Lisp
command to insert the word changed.

---------- Buffer: foo ----------
This is the ?contents of foo.
---------- Buffer: foo ----------

(insert "changed ")
⇒ nil

---------- Buffer: foo ----------
This is the changed ?contents of foo.
---------- Buffer: foo ----------

In a LaTEXinfo source file, the example is written like this:

\begin{example}
---------- Buffer: foo ----------
This is the \point{}contents of foo.
---------- Buffer: foo ----------

(insert "changed ")
\result{} nil

---------- Buffer: foo ----------
This is the changed \point{}contents of foo.
---------- Buffer: foo ----------
\end{example}

5.8 Conditionally Visible Text

Sometimes it is good to use different text for a printed manual and its corresponding Info file.
In this case, you can use the conditional commands to specify which text is for the printed
manual and which is for the Info file.

60 CHAPTER 5. DISPLAYING MATERIAL

\begin{ifinfo} begins text that should be ignored by LaTEX when it typesets the printed
manual. The text appears only in the Info file. The \begin{ifinfo} command should appear
on a line by itself. End the Info-only text with a line containing \end{ifinfo} by itself. The
\begin{iftex} and \end{iftex} commands are used similarly but to delimit text that will
appear in the printed manual but not in the Info file.

For example,

\begin{iftex}
This text will appear only in the printed manual.
\end{iftex}

\begin{ifinfo}
However, this text will appear only in Info.
\end{ifinfo}

The preceding example produces the following. Note how you only see one of the two lines,
depending on whether you are reading the Info version or the printed version of this manual.

This text will appear only in the printed manual.

5.8.1 Using Ordinary LaTEX Commands

Inside a region delineated by \begin{iftex} and \end{iftex}, you can embed some LaTEX
commands. Info will ignore these commands since they are only in that part of the file that is
seen by LaTEX.

You can enter LaTEX completely by delineating a region with the \begin{tex} and
\end{tex} commands. The characters # $ % ^ & _ | all revert to their normal LaTEX mean-
ings. The \begin{tex} command also causes Info to ignore the region, like the \begin{iftex}
command.

For example, here is some mathematics:

\begin{tex}
$ \bigl(x \in A(n) \bigm|x \in B(n) \bigr)$
\end{tex}

The output of this example will appear only in the printed manual. If you are reading
this in Info, you will not see anything after this paragraph. In the printed manual, the above
mathematics looks like this:

(x ∈ A(n) | x ∈ B(n))

Chapter 6

Making Lists Tables and
Descriptions

LaTEXinfo has several ways of making lists and tables. Lists can be bulleted or numbered, while
descriptions can highlight the items in the first column.

LaTEXinfo automatically indents the text in lists or descriptions, and numbers an enumer-
ated list. This last feature is useful if you modify the list, since you do not have to renumber
it yourself.

Numbered lists and tables begin with the appropriate \begin command at the beginning
of a line, and end with the corresponding \end command on a line by itself. Begin an enu-
merated list, for example, with an \begin{enumerate} command and end the list with an
\end{enumerate} command. Begin an itemized list with an \begin{itemize} command, and
end the list with an \end{itemize} command. You precede each element of a list with an
\item command.

Here is an itemized list of the different kinds of table and lists:

• Itemized lists with and without bullets.

• Numbered lists.

• Descriptions with highlighting.

Here is an enumerated list with the same items:

1. Itemized lists with and without bullets.

2. Numbered lists.

3. Descriptions with highlighting.

And here is a description with the same items and their \-commands:

\begin{itemize} Itemized lists with and without bullets.

61

62 CHAPTER 6. MAKING LISTS TABLES AND DESCRIPTIONS

\begin{enumerate} Numbered lists.

\begin{description} two-column descriptions with highlighting.

\begin{tabular} Multio–column tables.

6.1 Itemize Environment

The \begin{itemize} is used to produce sequences of indented paragraphs, with a mark
inside the left margin at the beginning of each paragraph. The text of the indented paragraphs
themselves come after the \begin{itemize}, up to another line that says \end{itemize}.
Before each paragraph for which a mark in the margin is desired, place a line that says just
\item. It’s best not to put any other text on this line.

Before each paragraph for which a mark in the margin is desired, place a line that says just
\item. Don’t put any other text on this line.

Usually, you should put a blank line before an \item. This puts a blank line in the Info
file. (LaTEX inserts the proper interline whitespace in either case.) Except when the entries are
very brief, these blank lines make the list look better.

Here is an example of the use of \begin{itemize}, followed by the output it produces.

\begin{itemize}
\item
Some text for foo.

\item
Some text
for bar.
\end{itemize}

produces

• Some text for foo.

• Some text for bar.

Itemized lists may be embedded within other itemized lists.

6.2 Enumerate Environment

\begin{enumerate} is like \begin{itemize} except that the marks in the left margin contain
successive integers starting with 1. (See the preceeding section.) Do not put any argument on
the same line as \begin{enumerate}.

Normally, you should put a blank line between the entries in the list. This generally makes
it easier to read the Info file.

6.3. DESCRIPTION ENVIRONMENT 63

\begin{enumerate}
\item
Some text for foo.

\item
Some text for bar.
\end{enumerate}

produces

1. Some text for foo.

2. Some text for bar.

6.3 Description Environment

The description environment is similar to \begin{itemize}, but allows you to specify a
name or heading line for each item. (See section 6.1 [Itemize Environment], page 62.) The
command is used to produce two-column descriptions, and is especially useful for glossaries and
explanatory exhibits. You must follow each use of \item inside of the description environment
with text to serve as the heading line for that item. This text is put inside square brackets
on the same line as the \item command. Each heading line is put into the first column of
the table and the supporting text, which you put on the line following the line beginning with
\item, goes into the second column.

Usually, you should put a blank line before a \item. This puts a blank like in the Info file.
Except when the entries are very brief, a blank line looks better. The following description
highlights the text in the first column:

\begin{description}
\item[foo]
This is the text for \samp{foo}.
\item[bar]
This is the text for \samp{bar}.
\end{description}

produces

foo This is the text for ‘foo’.

bar This is the text for ‘bar’.

64 CHAPTER 6. MAKING LISTS TABLES AND DESCRIPTIONS

Info indents the lines of text in the second column, but does not automatically fill them.
As a result, the lines in the Info file may be too wide. To prevent this, cause Info to refill the
paragraphs after processing by adding the command \refill to the end of the paragraph. (See
section 7.4 [Refilling Paragraphs], page 70, for more information about the use of the \refill
command.)

6.4 Tabular Environment

The LaTEX tabular environment is weakly supported by LaTEXinfo. This environment makes it
easy to set small multi–column tables. The ampersand character has its special LaTEX meaning
of a separator in tables. To insert a &, type \&.

In the tabular environment, you must line the columns up the way you want them to
appear in the Info file, and you must use & as a separator. In the Info file, the separator will
become a SPC character thus preserving the alignment. The trailing \\ will be stripped; these
must occur at the end of the line.

The hline command is supported by the Info program. It will insert a line of hyphens
all the way to the current fill-column. Neither the cline or multicolumn commands are
supported. For example:

\begin{table}[hbtp]

\caption{The First Table’s Caption}

\begin{tabular}{||l|l|l|l||}
\hline

Column A & Column B & Column C & Column D \\

\hline

A 1 & B 1 & C 1 & D 1 \\

A 2 & B 2 & C 2 & D 2 \\

A 3 & B 3 & C 3 & D 3 \\

\hline

\end{tabular}

\end{table}

produces in the Info file

Table 1 : The First Table’s Caption

--

Column A Column B Column C Column D

--

A 1 B 1 C 1 D 1

A 2 B 2 C 2 D 2

A 3 B 3 C 3 D 3

--

6.5. FIGURES AND TABLES 65

and in the LaTEX file this produces:

Table 6.1: The First Table’s Caption
Column A Column B Column C Column D
A 1 B 1 C 1 D 1
A 2 B 2 C 2 D 2
A 3 B 3 C 3 D 3

The LaTEX math environments displaymath, equation, eqnarray and array are com-
pletely ignored in the Info file, but will have their LaTEX definitions in the printed manual.

6.5 Figures and Tables

Tables and Figures are only weakly supported by LaTEXinfo. Anything within a figure envi-
ronment is completely ignored in the Info file: \begin{figure} is equivalent to \begin{tex}

\begin{table} is supported by LaTEXinfo, as is the caption command. The lines contain-
ing the \begin{table} and \end{table} are deleted from the Info file. The caption command
causes its argument to be centered on a line, preceded by the word Table and the table number.
captions are assumed to be within tables because figures are not supported.

66 CHAPTER 6. MAKING LISTS TABLES AND DESCRIPTIONS

Chapter 7

Formatting Paragraphs

7.1 Making and Preventing Breaks

Usually, a LaTEXinfo file is processed both by LaTEX and by one of the Info formatting com-
mands. Sometimes line, paragraph, or page breaks occur in the ‘wrong’ place in one or other
form of output. You must ensure that text looks right both in the printed manual and in the
Info file.

For example, in a printed manual, page breaks may occur awkwardly in the middle of an
example; to prevent this, you can hold text together using a grouping command that keeps the
text from being split across two pages. Conversely, you may want to force a page break where
none would occur normally. Fortunately, problems like these do not often arise. When they
do, use the following commands.

7.2 The Line Breaking Commands

The line break commands create line breaks:

* Force a line break in the printed manual and in the Info file.

\\ Force a line break in the Info file.

\sp{n} Skip n blank lines.

The line-break-prevention command holds text together all on one line.

\w{text} Prevent text from being split across two lines.

7.2.1 *: Generate Line Breaks

The * command forces a line break in both the printed manual and in Info. The \\ command
forces a line break in the printed manual. The optional argument to the LaTEX \\ command is
not supported in LaTEXinfo.

For example,

67

68 CHAPTER 7. FORMATTING PARAGRAPHS

This line * is broken *in two places.

produces

This line
is broken
in two places.

(Note that the space after the first * command is faithfully carried down to the next line.)

This is version 2.0 of the LaTEX info documentation, *
and is for . . .

In this case, the * command keeps LaTEX from stretching the line across the whole page in an
ugly manner.

Do not write braces after an * command; they are not needed. Do not write an \refill
command at the end of a paragraph containing an * command; it will cause the paragraph to
be refilled after the line break occurs, negating the effect of the line break.

7.2.2 Preventing Line Breaks

\w{text} outputs text and prohibits line breaks within text.
You can use the \w command to prevent LaTEX from automatically hyphenating a long

name or phrase that accidentally falls near the end of a line.

You can copy GNU software from \w{ \file{prep.ai.mit.edu}}.

produces

You can copy GNU software from ‘prep.ai.mit.edu’.

In the LaTEXinfo file, you must write the \w command and its argument (all the affected
text) all on one line.

Do not write an \refill command at the end of a paragraph containing an \w command;
it will cause the paragraph to be refilled and may thereby negate the effect of the \w command.

7.2.3 Inserting Blank Lines

A line beginning with and containing only \sp n generates n blank lines of space in both the
printed manual and the Info file. \sp also forces a paragraph break. For example,

\sp{2}

generates two blank lines.

7.3. THE PAGE BREAKING COMMANDS 69

7.3 The Page Breaking Commands

The pagination commands apply only to printed output, since Info files do not have pages.

\clearpage Start a new page in the printed manual.

\begin{same} Hold text together that must appear on one printed page.End the text to be
held together with \begin{same}

\need{mils} Start a new printed page if not enough space on this one.

7.3.1 Start a New Page

A line containing only \clearpage starts a new page in a printed manual. The command has
no effect on Info files since they are not paginated. An \clearpage command is often used in
the title section of a LaTEXinfo file to start the copyright page.

7.3.2 Putting things on the Same Page

The \begin{same} command (on a line by itself) is used inside of an \begin{example} or
similar construct to begin an unsplittable vertical group, which will appear entirely on one
page in the printed output. The group is terminated by a line containing only \end{same}.
These two lines produce no output of their own, and in the Info file output they have no effect
at all.

Although \begin{same} would make sense conceptually in a wide variety of con-
texts, its current implementation works reliably only within \begin{example} and variants,
and within \begin{quote}, \begin{display}, \begin{format}, \begin{flushleft} and
\begin{flushright}. (What all these commands have in common is that they turn off ver-
tical spacing between “paragraphs”.) In other contexts, \begin{same} can cause anomalous
vertical spacing. See section 5 [Displaying Material], page 49.
with the \begin{same} and \end{same} command insides of the \begin{example} and
\end{example} commands.

The \begin{same} command is most often used to hold an example together on one page. In
this LaTEXinfo manual, about 100 examples contain text that is enclosed between \begin{same}
and \end group.

7.3.3 Prevent Page Breaks

A line containing only \need n starts a new page in a printed manual if fewer than n mils
(thousandths of an inch) remain on the current page. The \need command has no effect on
Info files since they are not paginated.

This paragraph is preceded by an \need command that tells LaTEX to start a new page if
fewer than 300 mils (nearly one-third inch) remain on the page. It looks like this:

70 CHAPTER 7. FORMATTING PARAGRAPHS

\need{300}
This paragraph is preceded by . . .

The \need command is useful for preventing orphans (single lines at the bottoms of printed
pages).

7.4 Refilling Paragraphs

The \refill command refills and, optionally, indents the first line of a paragraph.1

If a paragraph contains long \-constructs, the paragraph may look badly filled after be-
ing formatted by latexinfo-format-region or latexinfo-format-buffer. This is because
both of thes commands remove \-commands from formatted text but do not refill paragraphs
automatically although LaTEX does. Consequently, some lines become shorter than they were.
To cause these commands to refill a paragraph, write \refill at the end of the paragraph.
This command refills a paragraph in the Info file after all the other processing has been done.
\refill has no effect on LaTEX, which always fills every paragraph that ought to be filled.

For example, without any indenting, the following

To use \code{foo}, pass \samp{xx%$} and
\var{flag} and type \kbd{x} after running
\code{make-foo}. \refill

produces (in the Info file)

To use ‘foo’, pass ‘xx%$’ and FLAG and type ‘x’ after
running ‘make-foo’.

whereas without the \refill it would produce

To use ‘foo’, pass ‘xx%$’ and
FLAG and type ‘x’ after running
‘make-foo’.

with the line broken at the same place as in the LaTEXinfo input file.
Write the \refill command at the end of the paragraph. Do not put a space before

\refill; otherwise the command might be put at the beginning of the line when you refill the
paragraph in the LaTEXinfo file with Emacs command M-q (fill-paragraph). If this were to
happen, the \refill command might fail to work. Do not put braces after \refill. Because
an \refill command is placed at the end of a paragraph and never at the beginning of a line,
the braces are not necessary.

1Perhaps the command should have been called the \refillandindent command, but \refill is shorter and
the name was chosen before indenting was available.

7.5. ALWAYS REFILLING PARAGRAPHS 71

You can write an \refill command at the end of a footnote before the footnote’s closing
brace, even if the footnote text is embedded in a the middle of a paragraph in the LaTEXinfo
file. This is because the footnote text is extracted from the surrounding text and formatted on
its own.

Also, do not end a paragraph that uses either * or \w with an \refill command; otherwise,
latexinfo-format-buffer or latexinfo-format-buffer will refill the paragraph in spite of
those commands.

In addition to refilling, the \refill command may insert spaces at the beginning of the first
line of the paragraph, thereby indenting that line. The argument to the \paragraphindent
command specifies the amount of indentation: if the value of the argument is 0, an \refill
command deletes existing indentation. If the value of the argument is greater than 0, an
\refill command indents the paragraph by that number of spaces. And if the value of the
argument is ‘asis’, an \refill command does not change existing indentation. For more
information about the \paragraphindent command, section paragraphindent in Paragraph
Indenting.

The \refill command does not indent entries in a list, table, or definition, nor does
\refill indent paragraphs preceded by \noindent.

7.5 Always Refilling Paragraphs

In practice, one finds that many paragraphs in a LaTEXinfo document need refilling, and one’s
document is littered with \refill commands. One solution is to write a 6000 line ‘C’ program
to do the refilling automatically. This would have the advantage of great speed, but would
mean maintaining a two versions of the Info formating program, one in ‘C’ and one in Emacs
lisp.

Another solution is to implement a heuristic2 that searches for likely candidates for refilling,
and inserts a \refill command there. At the moment, the replacement takes place at any
period followed by two newlines, or a period followed by a newline, followed by \end{. Of
course, no replacements are made within verbatim or smallverbatim environments.
Implementation note: This is implemented as a search and replace of all occurences matching the
string ".\n\n" or ".\n\end{". This feature is likely to slow things down on a large document. This
matching string should probably be changed to the regular expression \\s.\n\n or \\s.\n\end{

2The ‘H’ in Heuristic is pronounced, as in Hack.

72 CHAPTER 7. FORMATTING PARAGRAPHS

Chapter 8

Citations and Footnotes

8.1 Footnotes

A footnote is for a reference that documents or elucidates the primary text.1 In LaTEXinfo,
footnotes are created with the \footnote command. This command is followed immediately
by a left brace, then by the text of the footnote, and then by a terminating right brace. The
template is: \footnote{text}.

For example, this clause is followed by a sample footnote;2 in the LaTEXinfo source, it looks
like this:

. . .a sample footnote \footnote;{Here is the sample
footnote.} in the LaTEX info source. . .

In a printed manual or book, the reference mark for a footnote is a small, superscripted
number; the text of the footnote is written at the bottom of the page, below a horizontal line.

In Info, the reference mark for a footnote is a pair of parentheses with the footnote number
between them, like this: ‘(1)’. Info has two footnote styles, which determine where the text of
the footnote is located:

• In the end of node style, all the footnotes for a single node are placed at the end of that
node. The footnotes are separated from the rest of the node by a line of dashes with the
word ‘Footnotes’ within it. Each footnote begins with an ‘(n)’ reference mark.

Here is an example of a single footnote in the end of node style:

--------- Footnotes ---------

(1) Here is a sample footnote.

1A footnote should complement or expand upon the primary text, but a reader should not need to read a
footnote to understand the primary text. For a thorough discussion of footnotes, see The Chicago Manual of
Style, which is published by the University of Chicago Press.

2Here is the sample footnote.

73

74 CHAPTER 8. CITATIONS AND FOOTNOTES

• In the separate style, all the footnotes for a single node are placed in an automatically
constructed node of their own. In this style, a “footnote reference” follows each ‘(n)’
reference mark in the body of the node. The footnote reference is actually a cross reference
and you use it to reach the footnote node.

The name of the footnotes’ node is constructed by appending ‘-Footnotes’ to the name
of the node that contains the footnotes. (Consequently, the footnotes’ node for the
‘Footnotes’ node is ‘Footnotes-Footnotes’!) The footnotes’ node has an ‘Up’ node
pointer that leads back to its parent node.

Here is how the first footnote in this manual looks after being formatted for Info in the separate
node style:

File: latexinfo.info Node: Overview-Footnotes, Up: Overview

(1) Note that the first syllable of "texinfo" is pronounced like
"speck", not "hex". . . .

A LaTEXinfo file may be formatted into an Info file with either footnote style.
Use the \footnotestyle command to specify an Info file’s footnote style. Write this

command at the beginning of a line followed by an argument, either ‘end’ for the end node
style or ‘separate’ for the separate node style. For example:

\footnotestyle{end}

or

\footnotestyle{separate}

The \footnotestyle command should be written in the header, before the \setfilename
and shortly after the \begin{document} at the beginning of a LaTEXinfo file. See section 2.4.4
[Custom Headings], page 20. (If you include the \footnotestyle command between the start
of header and end of header lines, the region formatting commands will format footnotes as
specified.) If you do not specify a footnote style, the formatting commands will chose a default
style.

8.2 Citations

\cite is the LaTEX command for a bibliographic citations. Citations are usually prepared using
the program BibTEX, which formats the citations for use with LaTEX. The argument to the
\cite command is the citation key, which appears in the printed manual as the citation key
surrounded by square brackets. How it appears in the printed manual is dependent on the
bibliographic style chosen. See the LaTEX Manual for more details [Lam86].

Before you use the \cite command, you must declare the bibliography style that you are
going to use. See section 2.9.1 [Making a Bibliography], page 27.

Chapter 9

Input and Include Files

LaTEX has two ways of including files: with the \input command, and with the \include
command. LaTEX makes some important distinctions between the two. See [Lam86, § 4.4] for
the exact nature of the differences. In LaTEX. Input files are simply inserted at the place where
the input command occurs, both in the Info file and the LaTEX file. include files have seperate
auxilliarly files (‘.aux’), and you can control which files are processed with the includeonly
command.

In LaTEXinfo, the Info program ignores the includeonly command. Both include and
input files are always processed. input files are always ignored by the latexinfo-multiple-
files-update command, which creates or updates or updates the \node entries in a file,
whereas, under certain conditions, this command will recognize the structure of include files.
See section 15.3.3 [latexinfo-multiple-files-update], page 135 for details

9.1 Input Files

A line of the form \input{filename} will include the contents of the file filename at that point.
A standard technique is to have a top–level file, used only for making a comprehensive manual,
containing nothing but the beginning, the end, and a series of \input commands. The \input
must occur at the beginning of a line.

A file that is intended to be processed with \input should not end with \end{document},
since that would terminate LaTEX processing immediately.

9.2 Include Files

When LaTEX or an Info formatting command sees an \include command in a LaTEXinfo file, it
processes the contents of the file named by the command and incorporates them into the dvi
or Info file being created. Index entries from the included file are incorporated into the indices
of the output file.

An included file should simply be a segment of text that you expect to be included as-is into
the overall or outer LaTEXinfo file; it should not contain the standard beginning and end parts

75

76 CHAPTER 9. INPUT AND INCLUDE FILES

of a LaTEXinfo file. In particular, you should not start an included file with a ‘\documentstyle’
command. Likewise, you should not end an included file with an \end{document} command;
that command will stop LaTEX processing immediately.

9.2.1 How to Use Include Files

To include another file within a LaTEXinfo file, write the \include command at the beginning
of a line and follow it on the same line by the name of a file to be included. For example:

\include{chap47.tex}

Conventionally, an included file begins with an \node line that is followed by an \chapter
line. Each included file is one chapter. This makes it easy to use the regular node and menu
creating and updating commands to create the node pointers and menus within the included
file. However, the simple Emacs node and menu creating and updating commands do not
work with multiple LaTEXinfo files. Thus you cannot use these commands to fill in the ‘Next’,
‘Previous’, and ‘Up’ pointers of the \node line that begins the included file. Also, you cannot
use the regular commands to create a master menu for the whole file. Either you must insert
the menus and the first and last ‘Next’, ‘Previous’, and ‘Up’ pointers by hand, or you must use
the latexinfo-multiple-files-update command that is designed for \include files. See
section 15.3.3 [latexinfo-multiple-files-update], page 135

9.2.2 Sample File with \include

If you plan to use the latexinfo-multiple-files-update command, the outer LaTEXinfo file
that lists included files within it should contain nothing but the beginning and end parts of a
LaTEXinfo file, and a number of \include commands listing the included files. It should not
even include indices, which should be listed in an included file of their own.

Moreover, each of the included files must contain exactly one highest level node (conven-
tionally, an \chapter node or equivalent), and this node must be the first node in the included
file. Furthermore, each of these highest level nodes in each included file must be at the same
hierarchical level in the file structure. Usually, each is an \chapter, an \chapter, or an
\unnumbered node. Thus, normally, each included file contains one, and only one, chapter or
equivalent-level node.

The outer file should not contain any nodes besides the single ‘Top’ node. The latexinfo-
multiple-files-update command will not process them.

Here is an example of an outer LaTEXinfo file with \include files within it before running
latexinfo-multiple-files-update, which would insert a main or master menu:

9.2. INCLUDE FILES 77

\documentstyle[12pt,latexinfo]{book}

\pagestyle{headings}

\begin{document}

\bibliographystyle{alpha}

\newindex{fn}

\title{The Manual}

\author{Fred Foobar,\\

Clarke Institute,\\

999 Queen Street,\\

Toronto, Ontario}

\date{\today}

\maketitle

\tableofcontents

\clearpage

\setfilename{themanual.info}

\include{foo.tex}

\include{bar.tex}

\bibliography{references}

\twocolumn

\unnumbered{Function Index}

\printindex{fn}

\end{document}

An included file, such as ‘foo.tex’, might look like this:

\node First, Second, , Top
\chapter{First Chapter}

Contents of first chapter . . .

The full contents of ‘index.tex’ might be as simple as this:

78 CHAPTER 9. INPUT AND INCLUDE FILES

\unnumbered{Concept Index, , Second, Top}
\printindex{cp}

Chapter 10

Definition Commands

The \deffn command and the other definition commands enable you to describe functions,
variables, macros, commands, user options, special forms and other such constructs in a uniform
format.

These constructs are most often used for documenting Lisp and C programs, and the table
below summarizes the different constucts, their language on usual usage, and their class. We
will order these functions by their usage: untyped languages such as Lisp, typed languages such
as C, or object–oriented langauges such as CLOS.

Command Name Language Class
deffn Lisp general functions
deffun Lisp functions
defspec Lisp special forms
defmac Lisp macros
defvr Lisp general variables
defvar Lisp variables
deftypefn C general typed functions
deftypefun C typed functions
deftypevr C general typed variables
deftypevar C typed variables
defcv CLOS general classes
defvar CLOS classes
defivar CLOS instances
defop CLOS generic functions
defmethod CLOS methods
deftp All data types
defopt All User Options

Table 10.1: The Definition Commands

In the Info file, a definition causes the category entity—‘Function’, ‘Variable’, or whatever—

79

80 CHAPTER 10. DEFINITION COMMANDS

to appear at the beginning of the first line of the definition, followed by the entity’s name and
arguments. In the printed manual, the command causes LaTEX to print the entity’s name and
its arguments on the left margin and print the category next to the right margin. In both
output formats, the body of the definition is indented.

The name of the entity is entered into the appropriate index: \deffn enters the name into
the index of functions, \defvr enters it into the index of variables, and so on.

As these functions are not always wanted, their definitions are contained in the LaTEXinfo
style elisp. To make these commands available to LaTEXinfo, include the elisp option in the
list of documentstyle options, such as

\documentstyle[latexinfo,elisp]{book}

Note: The Lisp documentation functions in the elisp style are compatible with the Emacs TEXinfo
fuunctions, and are intended to document the GNU Emacs elisp. As such, they are oriented to the
older Maclisp style of programming. See section 18.1.3 [Clisp Style], page 156, for a more modern
approach to a Lisp documentation style, as would be used for Common Lisp.

10.1 Untyped Languages Definition Commands

10.1.1 The Template for a Definition

The \deffn command is used for definitions of entities that resemble functions. To write a
definition using the \deffn command, write the \deffn command at the beginning of a line
and follow it by the category of the entity, the name of the entity itself, and its arguments in
braces. Then write the body of the definition on succeeding lines. (You may embed examples
in the body.) Finally, end the definition with an \enddeffn command written on a line of its
own. The other definition commands follow the same format. The template for a definition
looks like this:

\deffn{category}{name}{arguments. . .}
body-of-definition
\enddeffn

For example,

\deffn{Command}{forward-word}{count}
This command moves point forward \var{count} words
(or backward if \var{count} is negative). . . .
\enddeffn

produces

Commandforward-word count
This function moves point forward count words (or backward if count
is negative). . . .

10.1. UNTYPED LANGUAGES DEFINITION COMMANDS 81

Some of the definition commands are more general than others. The \deffn command, for
example, is the general definition command for functions and the like—for entities that may take
arguments. When you use this command, you specify the category to which the entity belongs.
The \deffn command possesses three predefined, specialized variations, \defun, \defmac,
and \defspec, that specify the category for you: “Function”, “Macro”, and “Special Form”
respectively. The \defvr command also is accompanied by several predefined, specialized
variations for describing particular kinds of variables.

The template for a specialized definition, such as \defun, is similar to the template for a
generalized definition, except that you don’t have to specify the category:

\defun{name}{arguments. . .}
body-of-definition
\enddefun

Thus,

\defun{buffer-end}{flag}
This function returns \code{(point-min)} if \var{flag}
is less than 1, \code{(point-max)} otherwise.
. . .
\enddefun

produces

Functionbuffer-end flag
This function returns (point-min) if flag is less than 1, (point-max) otherwise.
. . .

See section Sample Function Definition in A Sample Function Definition, for a more detailed
example of a function definition, including the use of \begin{example} inside of the definition.

The other specialized commands work like \defun.

10.1.2 Optional and Repeated Parameters

Some entities take optional or repeated parameters, which may be specified by a distinctive
special glyph that uses square brackets and ellipses. For example, a special form often breaks
its argument list into separate arguments in more complicated ways than a straightforward
function.

An argument enclosed within square brackets is optional. Thus, the phrase ‘[optional-
arg]’ means that optional-arg is optional. An argument followed by an ellipsis is optional and
may be repeated more than once. Thus, ‘repeated-args. . .’ stands for zero or more arguments.
Parentheses are used when several arguments are grouped into additional levels of list structure
in Lisp. Here is the \defspec line of an example of an imaginary special form:

Special Formfoobar var [from to [inc]]
body . . .

82 CHAPTER 10. DEFINITION COMMANDS

In this example, the arguments from and to are optional, but must both be present or both
absent. If they are present, inc may optionally be specified as well. In a LaTEXinfo source file,
this \defspec line is written like this:

\defspec{foobar}{ \var{var} [\var{from} \var{to}
[\var{inc}]]}

\var{body} \dots{}
\enddefspec

The function is listed in the Command and Variable Index under ‘foobar’.

10.1.3 The Definition Commands

The definition commands automatically enter the name of the entity in the appropriate index:
for example, \deffn, \defun, and \defmac enter function names in the index of functions;
\defvr and \defvar enter variable names in the index of variables. Remember to declare the
necessary indices with the \newindex commands (see section 2.4.3 [New Indexes], page 19).

Although the examples that follow mostly illustrate Lisp, the commands can be used for
other programming languages.

10.1.4 Functions

This section describes the commands for describing functions and similar entities.

\deffn{category}{name}{arguments. . .} The \deffn command is the general definition
command for functions, interactive commands, that may take arguments. You must choose
a term to describe the category of entity being defined; for example, “Function” could be used
if the entity is a function. The \deffn command is written at the beginning of a line and is
followed by the category of entity being described, the name of this particular entity, and its
arguments, if any. Terminate the definition with \enddeffn on a line of its own.

For example,

\deffn{Command}{forward-char}{nchars}
Move point forward \var{nchars} characters.
\enddeffn

shows a rather terse definition for a “command” named forward-char with one argument,
nchars.

\deffn prints argument names such as nchars in italics or upper case, as if \var had been
used, because we think of these names as metasyntactic variables—they stand for the actual
argument values. Within the text of the description, write an argument name explicitly with
\var to refer to the value of the argument. In the example above, we used ‘\var{nchars}’ in
this way. The template for \deffn is:

10.1. UNTYPED LANGUAGES DEFINITION COMMANDS 83

\deffn{category}{name}{arguments. . .}
body-of-definition
\enddeffn

\defun{name}{arguments. . .} The \defun command is the definition command for func-
tions. \defun is equivalent to ‘\deffn{Function} . . .’.

For example,

\defun{set}{symbol new-value}
Change the value of the symbol symbol to new-value.
\enddefun

shows a rather terse definition for a function set whose arguments are symbol and new-value.
The argument names on the \defun line automatically appear in italics or upper case as if
they were enclosed in \var. Terminate the definition with \enddefun on a line of its own. The
template is:

\defun{function-name}{arguments. . .}
body-of-definition
\enddefun

\defun creates an entry in the index of functions.

\defmac{name}{arguments. . .} The \defmac command is the definition command for
macros. \defmac is equivalent to ‘\deffn{Macro}. . .’ and works like \defun.

\defspec{name}{arguments. . .} The \defspec command is the definition command for spe-
cial forms. \defspec is equivalent to ‘\deffn{Special Form} . . .’ and works like \defun.

10.1.5 Variables

Here are the commands for defining variables and similar entities:

\defvr{category}{name} The \defvr command is a general definition command for some-
thing like a variable—an entity that records a value. You must choose a term to describe
the category of entity being defined; for example, “Variable” could be used if the entity is a
variable. Write the \defvr command at the beginning of a line and follow it by the category
of the entity and the name of the entity. Terminate the definition with \enddefvr on a line of
its own. For example:

\defvr{User Option}{fill-column}
This buffer-local variable specifies
the maximum width of filled lines.
. . .
\enddefvr

84 CHAPTER 10. DEFINITION COMMANDS

The template is:

\defvr{category}{name}
body-of-definition
\enddefvr

\defvr creates an entry in the index of variables for name.

\defvar{name} The \defvar command is the definition command for variables. \defvar is
equivalent to ‘\defvr{Variable}. . .’. For example,

\defvar{kill-ring}
. . .
\enddefvar

The template is:

\defvar{name}
body-of-definition
\enddefvar

\defvar creates an entry in the index of variables for name.

10.2 C Functions

10.2.1 Functions in Typed Languages

The \deftypefn command and its variations are for describing functions in C or any other
language in which you must declare types of variables and functions.

\deftypefn{category}{data-type}{name}{arguments. . .} The \deftypefn command is the
general definition command for functions that may take arguments and that are typed. The
\deftypefn command is written at the beginning of a line and is followed the category of
entity being described, the type of the returned value, the name of this particular entity, and
its arguments, if any.

For example,

\deftypefn{Library Function}{int}{foobar}{(int \var{foo}, float \var{bar})}
. . .
\enddeftypefn

produces the following in Info:

-- Library Function: int foobar (int FOO, float BAR)
. . .

10.2. C FUNCTIONS 85

In a printed manual, it produces:

Library Functionint foobar (int foo, float bar)
a “library function” that returns an int

This means that foobar is a “library function” that returns an int, and its arguments are
foo (an int) and bar (a float).

The argument names that you write in \deftypefn are not subject to an implicit \var—
since the actual names of the arguments in \deftypefn are typically scattered among data
type names and keywords, LaTEXinfo can’t find them without help. Instead, you must write
\var explicitly around the argument names. In the example above, the argument names are
‘foo’ and ‘bar’.

The template for \deftypefn is:

\deftypefn{category}{data-type}{name}{arguments} . . .
body-of-description
\enddeftypefn

Note that if the category or data type is more than one word then it must be enclosed in braces
to make it a single argument.

If you are describing a procedure in a language that has packages, such as Ada, you might
consider using \deftypefn in a manner somewhat contrary to the convention described in the
preceding paragraphs. For example:

\deftypefn{stacks}{private}{push}
{(\var{s}:in out stack; \var{n}:in integer)}
. . .
\enddeftypefn

In this instance, the procedure is classified as belonging to the package stacks rather than
classified as a ‘procedure’ and its data type is described as private. (The name of the procedure
is push, and its arguments are s and n.)

\deftypefn creates an entry in the index of functions for name.

\deftypefun{data-type}{name}{arguments. . .} The \deftypefun command is the special-
ized definition command for functions in typed languages. The command is equivalent to
‘\deftypefn{Function}. . .’.

\deftypefun{int}{foobar}
{(int \var{foo}, float \var{bar})}
. . .
\enddeftypefun

produces the following in Info:

86 CHAPTER 10. DEFINITION COMMANDS

-- Function: int foobar (int FOO, float BAR)
. . .

and the following in a printed manual:

Functionint foobar (int foo, float bar)
. . .

The template is:

\deftypefun{type}{name}{arguments. . .}
body-of-description
\enddeftypefun

\deftypefun creates an entry in the index of functions for name.

10.2.2 Variables in Typed Languages

Variables in typed languages are handled in a manner similar to functions in typed languages.
(See section 10.2.1 [Typed Functions], page 84.) The general definition command \deftypevr
corresponds to \deftypefn and the specialized definition command \deftypevar corresponds
to \deftypefun.

\deftypevr{category}{data-type}{name} The \deftypevr command is the general defi-
nition command for something like a variable in a typed language—an entity that records a
value. You must choose a term to describe the category of the entity being defined; for example,
“Variable” could be used if the entity is a variable.

The \deftypevr command is written at the beginning of a line and is followed by the
category of the entity being described, the data type, and the name of this particular entity.
For example:

\deftypevr{Global Flag}{int}{enable}
. . .
\enddeftypevr

produces the following in Info:

-- Global Flag: int enable
. . .

and the following in a printed manual:

Global Flagint enable
. . .

10.3. OBJECT-ORIENTED PROGRAMMING 87

The template is:

\deftypevr{category}{data-type}{name}
body-of-description
\enddeftypevr

\deftypevr creates an entry in the index of variables for name.

\deftypevar{data-type}{name} The \deftypevar command is the specialized defi-
nition command for variables in typed languages. \deftypevar is equivalent to
‘\deftypevr{Variable}. . .’.

For example,

\deftypevar{int}{foobar}
. . .
\enddeftypevar

produces the following in Info:

-- Variable: int foobar
. . .

and the following in a printed manual:

Variableint foobar
. . .

The template is:

\deftypevar{data-type}{name}
body-of-description
\enddeftypevar

\deftypevar creates an entry in the index of variables for name.

10.3 Object-Oriented Programming

LaTEXinfo has commands for formatting descriptions about abstract objects, such as are used
in object-oriented programming. A class is a defined type of abstact object. An instance of
a class is a particular object that has the type of the class. An instance variable is a variable
that belongs to the class but for which each instance has its own value.

In a definition, if the name of a class is truly a name defined in the programming system
for a class, then you should write an \code around it. Otherwise, it is printed in the usual text
font.

88 CHAPTER 10. DEFINITION COMMANDS

\defcv{category}{class}{name} The \defcv command is the general definition command
for variables associated with classes in object-oriented programming. The \defcv command is
followed by three arguments: the category of thing being defined, the class to which it belongs,
and its name. Thus,

\defcv{Class Option}{Window}{border-pattern}
. . .
\enddefcv

illustrates how you would write the first line of a definition of the border-pattern class option
of the class Window. The template is:

\defcv{category}{class}{name}
. . .
\enddefcv

\defcv creates an entry in the index of variables.

\defivar{class}{name} The \defivar command is the definition command for instance vari-
ables in object-oriented programming. \defivar is equivalent to ‘\defcv{Instance Variable}
. . .’

The template is:

\defivar{class}{instance-variable-name}
body-of-definition
\enddefivar

\defivar creates an entry in the index of variables.

\defop{category}{class}{name}{arguments. . .} The \defop command is the general defini-
tion command for entities that may resemble methods in object-oriented programming. These
entities take arguments, as functions do, but are associated with particular classes of ob-
jects. For example, some systems have constructs called wrappers that are associated with
classes as methods are, but that act more like macros than like functions. You could use
\defop{Wrapper} to describe one of these.

Sometimes it is useful to distinguish methods and operations. You can think of an operation
as the specification for a method. Thus, a window system might specify that all window classes
have a method named expose; we would say that this window system defines an expose opera-
tion on windows in general. Typically, the operation has a name and also specifies the pattern
of arguments; all methods that implement the operation must accept the same arguments, since
applications that use the operation do so without knowing which method will implement it.

Often it makes more sense to document operations than methods. For example, window
application developers need to know about the expose operation, but need not be concerned
with whether a given class of windows has its own method to implement this operation. To
describe this operation, you would write:

10.3. OBJECT-ORIENTED PROGRAMMING 89

\defop{Operation}{windows}{expose}{}

The \defop command is written at the beginning of a line and is followed by the overall
name of the category of operation, the name of the class of the operation, the name of the
operation, and its arguments.

The template is:

\defop{category}{class}{name}{arguments. . .}
body-of-definition
\enddefop

\defop creates an entry, such as ‘expose on windows’, in the index of functions.

\defmethod{class}{name}{arguments. . .} The \defmethod command is the definition com-
mand for methods in object-oriented programming. A method is a kind of function that im-
plements an operation for a particular class of objects and its subclasses.

\defmethod is equivalent to ‘\defop{Method . . .’}. The command is written at the begin-
ning of a line and is followed by the name of the class of the method, the name of the method,
and its arguments, if any. For example,

\defmethod{bar-class}{bar-method}{argument}
. . .
\enddefmethod

illustrates the definition for a method called bar-method of the class bar-class. The method
takes an argument.

The template is:

\defmethod{class}{method-name}{arguments. . .}
body-of-definition
\enddefmethod

\defmethod creates an entry, such as ‘bar-method on bar-class’, in the index of functions.

10.3.1 Data Types

Here is the command for data types:

\deftp{category}{name}{attributes. . .} The \deftp command is the generic definition com-
mand for data types. The command is written at the beginning of a line and is followed by
the category, by the name of the type (which is a word like int or float, and then by names
of attributes of objects of that type. Thus, you could use this command for describing int or
float, in which case you could use data type as the category. (A data type is a category of
certain objects for purposes of deciding which operations can be performed on them.)

In Lisp, for example, pair names a particular data type, and an object of that type has two
slots called the car and the cdr. Here is how you would write the first line of a definition of
pair.

90 CHAPTER 10. DEFINITION COMMANDS

\deftp{Data type}{pair}{car cdr}
. . .
\enddeftp

The template is:

\deftp{category}{name-of-type}{attributes. . .}
body-of-definition
\enddeftp

\deftp creates an entry in the index of data types.

\defopt{name} The \defopt command is the definition command for user options. \defopt
is equivalent to ‘\defvr {User Option} . . .’ and works like \defvar.

10.4 A Sample Function Definition

A function definition uses the \defun and \enddefun commands. The name of the function
follows immediately after the \defun command and it is followed by the parameter list.

Functionapply function &rest arguments
apply calls function with arguments, just like funcall but with one dif-
ference: the last of arguments is a list of arguments to give to function,
rather than a single argument. We also say that this list is appended
to the other arguments.

apply returns the result of calling function. As with funcall, function
must either be a Lisp function or a primitive function; special forms
and macros do not make sense in apply.

(setq f ’list)
⇒ list

(apply f ’x ’y ’z)
error Wrong type argument: listp, z
(apply ’+ 1 2 ’(3 4))

⇒ 10
(apply ’+ ’(1 2 3 4))

⇒ 10

(apply ’append ’((a b c) nil (x y z) nil))
⇒ (a b c x y z)

An interesting example of using apply is found in the description of
mapcar.

10.4. A SAMPLE FUNCTION DEFINITION 91

In the LaTEXinfo source file, this example looks like this:

\defun{apply}{function &rest arguments}

\code{apply} calls \var{function} with \var{arguments}, just like

\code{funcall} but with one difference: the last of \var{arguments} is a

list of arguments to give to \var{function}, rather than a single

argument. We also say that this list is \dfn{appended} to the other

arguments.

\code{apply} returns the result of calling \var{function}. As with

\code{funcall}, \var{function} must either be a Lisp function or a

primitive function; special forms and macros do not make sense in

\code{apply}.

\begin{example}

(setq f ’list)

\result{} list

(apply f ’x ’y ’z)

\error{} Wrong type argument: listp, z

(apply ’+ 1 2 ’(3 4))

\result{} 10

(apply ’+ ’(1 2 3 4))

\result{} 10

(apply ’append ’((a b c) nil (x y z) nil))

\result{} (a b c x y z)

In this manual, this function is listed in the Command and Variable Index under apply.
Ordinary variables and user options are described using a format like that for functions

except that variables do not take arguments.

92 CHAPTER 10. DEFINITION COMMANDS

Part II

Info

93

Chapter 11

Nodes and Menus

Most LaTEXinfo files are organized hierarchically like books, with chapters, sections, subsections,
and subsubsections. Such a hierarchy is tree-like; the chapters are the major limbs from which
the sections branch out. In a conventional diagram, however, such a hierarchy is drawn with
the “root” at the top and the “leaves” at the bottom—as an upside-down tree. The root node
is called the ‘Top’ node, and ‘Up’ pointers carry you closer to the root.

11.1 Node and Menu Illustration

Here is a copy of the diagram shown earlier that illustrates a LaTEXinfo file with three chapters,
each of which contains two sections.

top
|

| | |

Chapter 1 Chapter 2 Chapter 3
| | |

-------- -------- --------
| | | | | |

Section Section Section Section Section Section
1.1 1.2 2.1 2.2 3.1 3.2

In a LaTEXinfo file that has this organization, you would write the beginning of the node
for Chapter 2 like this:

\node Chapter 2, Chapter 3, Chapter 1, top
\comment node-name, next, previous, up

95

96 CHAPTER 11. NODES AND MENUS

To go to Sections 2.1 and 2.2 using Info, you need a menu inside of Chapter 2 that says:

\begin{menu}
* Sect. 2.1:: Description of this section.
* Sect. 2.2::
\end{menu}

You would locate this menu inside Chapter 2, after the beginning of the chapter and before
Section 2.1.

The node for Sect. 2.1 will look like this:

\node Sect. 2.1, Sect. 2.2, Chapter 2, Chapter 2
\comment node-name, next, previous, up

Usually, an \node command and a chapter structuring command are used in sequence,
along with indexing commands. (The updating commands require this sequence. See section
15.3.1 [Updating Requirements], page 134.) Also, you may want to follow the \node line with
a comment line that reminds you which pointer is which. For example, the beginning of the
node for the chapter on ending a file looks like this:

\node Ending a File, Structuring, Beginning a File, Top
\comment node-name, next, previous, up
\chapter{Ending a LaTeXinfo File}
\cindex{Ending a LaTeXinfo file}
\cindex{LaTeXinfo file ending}
\cindex{File ending}

The following two sections describe the \node and \begin{menu} commands in detail.

11.2 \node

\node defines the beginning of a new node in the Info output file. (See Info file ‘info’, node
‘Top’.) Write the command at the beginning of a line, followed by four arguments, separated
by commas, that make up the rest of the line. These arguments are the name of the node, and
the names of the ‘Next’, ‘Previous’, and ‘Up’ pointers, in that order. You may insert spaces
before each pointer if you wish. The spaces are ignored.

In LaTEX, \node is nearly ignored. It generates nothing visible. Its only function is to
identify the name to use for cross references to the chapter or section which follows the \node
command and which makes up the body of the node. (Cross references, such as the one
following this sentence, are made with \xref and its related commands. See section 12 [Cross
References], page 103.)

11.2. \NODE 97

In general, an \node line is followed immediately by a chapter-structuring command such as
\chapter, \section, \subsection, or \subsubsection. (See section Structuring Command
Types in Types of Structuring Command.)

The name of the node identifies the node. The pointers, which enable you to reach other
nodes, consist of the names of those nodes.

All the node names for a single Info file must be unique. Duplications confuse the Info
movement commands. This means, for example, that if you end each chapter with a summary,
you must name every summary node differently. You may, however, duplicate section titles
(although this practice may confuse a reader).

Try to pick node names that are informative but short. In the Info file, the file name, node
name, and pointer names are all inserted on one line, which may run into the right edge of the
window. (This does not cause a problem with Info, but is ugly.)

By convention, node names are capitalized just as they would be for section or chapter
titles.

Caution: Do not use any of the LaTEXinfo \-commands in a node name; these
commands confuse Info.

Do not use commas within a node name; a comma terminates the node name.

Pointer names must be the names of nodes defined elsewhere. It does not matter whether
pointers are before or after the node that refers to them.

Normally, a node’s ‘Up’ pointer should contain the name of the node whose menu mentions
that node. The node’s ‘Next’ pointer should contain the name of the node that follows that
node and its ‘Previous’ pointer should contain the name of the node that precedes it in that
menu. When a node’s ‘Up’ node is the same as its ‘Previous’ node, both node pointers should
name the same node.

11.2.1 Writing a Node Line

The easiest way to write a node line is to write \node at the beginning of a line and then the
name of the node. You can use update node commands provided by LaTEXinfo mode to insert
the names of the pointers; see section 15 [LaTeXinfo Mode], page 129.

Alternatively, you may insert the ‘Next’, ‘Previous’, and ‘Up’ pointers yourself. If you do
this, you may find it helpful to use the LaTEXinfo mode keyboard command C-c C-c n. This
command inserts ‘\node’ and a comment line listing the names of the pointers in their proper
order. The comment line helps you keep track of which arguments are for which pointers. This
template is especially useful if you are not familiar with LaTEXinfo.

If you wish, you can ignore node lines altogether in your first draft and then use the
latexinfo-insert-node-lines command to create node lines for you. However, this practice
is not recommended. It is better to name the node itself at the same time you write a section
so you can easily make cross references. A large number of cross references are an especially
important feature of a good Info file.

98 CHAPTER 11. NODES AND MENUS

After you have inserted a node line, you should immediately write an \-command for the
chapter or section and insert its name. Next (and this is important!), put in several index
entries. Usually, you will find at least two and often as many as four or five ways of referring
to the node in the index. Use them all. This will make it much easier for people to find the
node.

The top node of the file (which must be named ‘top’ or ‘Top’) should have as its ‘Up’ and
‘Previous’ nodes the name of a node in another file, where there is a menu that leads to this file.
Specify the file name in parentheses. If the file is to be installed directly in the Info directory
file, use ‘(dir)’ as the parent of the ‘Top’ node; this is short for ‘(dir)top’, and specifies the
‘Top’ node in the ‘dir’ file, which contains the main menu for Info. For example, the ‘Top’
node line of this manual looks like this:

\node Top, Overview, (dir), (dir)

(You may use the LaTEXinfo updating commands to insert these ‘Next’ and ‘(dir)’ pointers
automatically.)

See section 14.2 [Installing an Info File], page 123, for more information about installing an
Info file in the ‘info’ directory.

11.3 Menu Environment

The \begin{menu} command is used to create menus, which contain pointers to subordinate
nodes. In Info, you use menus to go to such nodes. Menus have no effect in printed manuals
and do not appear in them.

By convention, a menu is put at the end of a node. This way, it is easy for someone using
Info to find the menu, using the M-> (end-of-buffer) command.

A node that has a menu should not contain much text. If you have a lot of text and a
menu, move most of the text into a new subnode—all but a few lines. Otherwise, a reader
with a terminal that displays only a few lines may miss the menu and its associated text. As
a practical matter, you should locate a menu within 20 lines of the beginning of the node.

The short text before a menu may look awkward in a printed manual. To avoid this, you
can write a menu near the beginning of its node and follow the menu by an \node line and an
\section* line within \begin{ifinfo} and \end{ifinfo}. This way, the menu, node line,
and title appear only in the Info file, not the printed document.

The preceding two paragraphs follow an Info-only menu, node line, and heading, and look
like this:

11.3. MENU ENVIRONMENT 99

\begin{menu}
* Menu Location:: Put a menu in a short node.
* Menu Item:: How to write a menu item.
* Menu Example:: A menu example.
\end{menu}

\node Menu Location
\begin{ifinfo}
\subsection*{Menus Need Short Nodes}
\end{ifinfo}

See the beginning of the “Cross References” chapter in the LaTEXinfo source for this docu-
ment for another example this procedure.

11.3.1 Writing a Menu Item

In a menu, every line that begins with a ‘* ’ is a menu item. (Note the space after the asterisk.)
A line that does not start with a ‘* ’ can appear in the menu but is not a menu item, just a
comment.

A menu item has three parts, only the second of which is required:

1. The menu item name.

2. The name of the node.

3. A description of the item.

A menu item looks like this:

* Item name: Node name. Description.

Follow the menu item name with a single colon and follow the node name with tab, comma,
period, or newline.

In Info, a user can select a node with the m (Info-menu) command. The menu item name
is what the user types after the m command.

If the menu item name and the node name are the same, you can write the name immediately
after the asterisk and space at the beginning of the line and follow the name with two colons.

For example, write

* Name::

instead of

* Name: Name.

100 CHAPTER 11. NODES AND MENUS

You should use the node name for the menu item name whenever possible, since it reduces
visual clutter in the menu.

The third part of a menu entry is a short descriptive phrase or sentence. Menu item names
and node names are often short; the description explains to the reader what the node is about.
The description, which is optional, can spread over two or more lines. A useful description
complements the node name rather than repeating it.

11.3.2 A Menu Example

A menu looks like this in LaTEXinfo:

\begin{menu}
* Menu item name: Node name. A short description.
* Node name:: This form is preferred.
\end{menu}

This produces:

* menu:

* Menu item name: Node name. A short description.
* Node name:: This form is preferred.

Here is an example as you might see it in a LaTEXinfo file:

\begin{menu}
Larger Units of Text

* Files:: All about handling files.
* Multiples: Buffers. Multiple buffers; editing

several files at once.
\end{menu}

This produces:

* menu:
Larger Units of Text

* Files:: All about handling files.
* Multiples: Buffers. Multiple buffers; editing

several files at once.

11.4. REFERRING TO OTHER INFO FILES 101

In this example, the menu has two entries. ‘Files’ is both a menu item name and the name
of the node referred to by that item. In the other entry, ‘Multiples’ is the item name, and it
refers to the node named ‘Buffers’.

Since no file name is specified with either ‘Files’ or ‘Buffers’, they must be the names of
nodes in the same Info file. (See section Other Info Files in Referring to Other Info Files.)

The line ‘Larger Units of Text’ is a comment.

11.4 Referring to Other Info Files

You can refer to nodes in other Info files by writing the file name in parentheses just before
the node name. In this case, you should use the three-part menu item format, which saves the
reader from having to type the file name.

If you do not list the node name, but only name the file, then Info presumes that you are
referring to the ‘Top’ node.

The format looks like this:

\begin{menu}
* first-item:(filename)nodename. description
* second-item:(filename)second-node. description
\end{menu}

The ‘dir’ top level directory for the Info system has menu entries that take you directly to
the ‘Top’ nodes of each Info document. (See section 14 [Creating and Installing an Info File],
page 121.)

For example,

. . .
* Info: (info). Documentation browsing system.
* Emacs: (emacs). The extensible, self-documenting

text editor.
. . .

To refer directly to the ‘Outlining’ and ‘Rebinding’ nodes in the Emacs Manual, you
would write a menu similar to the following:

\begin{menu}
* Outlining: (emacs)Outline Mode. The major mode for

editing outlines.
* Rebinding: (emacs)Rebinding. How to redefine the

meaning of a key.
\end{menu}

102 CHAPTER 11. NODES AND MENUS

Chapter 12

Making Cross References

Cross references are used to refer the reader to other parts of the same or different LaTEXinfo
files. In LaTEXinfo, nodes are the points to which cross references can refer.

Often, but not always, a printed document should be designed so that it can be read
sequentially. People tire of flipping back and forth to find information that should be presented
to them as they need it.

However, in any document, some information will be too detailed for the current context,
or incidental to it; use cross references to provide access to such information. Also, an on-line
help system or a reference manual is not like a novel; few read such documents in sequence
from beginning to end. Instead, people look up what they need. For this reason, such creations
should contain many cross references to help readers find other information that they may not
have read.

In a printed manual, a cross reference creates a page reference, unless it is to another manual
altogether, in which case it names that manual.

In Info, a cross reference creates an entry that you can follow using the Info ‘f’ command.
(See Info file ‘info’, node ‘Help-Adv’.)

The various cross reference commands use nodes to define cross reference locations. This
is evident in Info, in which a cross reference takes you to the specified node. LaTEX also uses
nodes to define cross reference locations, but the action is less obvious. When LaTEX generates
a dvi file, it records nodes’ page numbers and uses the page numbers in making references.
Thus, if you are writing a manual that will only be printed, and will not be used on-line, you
must nonetheless write \node lines to name the places to which you make cross references.

12.1 Different Cross Reference Commands

There are several different cross reference commands:

\xref Used to start a sentence in the printed manual saying ‘See . . .’ or an entry in the Info
file saying ‘*Note . . .’.

103

104 CHAPTER 12. MAKING CROSS REFERENCES

\nxref Used within or, more often, at the end of a sentence; produces just the reference in the
printed manual without a preceding ‘See’. (‘n’ is for ‘node’.)

\pxref Used within parentheses to make a reference that starts with a lower case ‘see’ within
the printed manual. (‘p’ is for ‘parenthesis’.)

\inforef Used to make a reference to an Info file. manual.

12.2 Parts of a Cross Reference

A cross reference command requires only one argument, which is the name of the node to which
it refers. But a cross reference command may contain up to four additional arguments. By
using these arguments, you can provide a menu item name for Info, a descriptive phrase for the
printed output, the name of a different Info file, and the name of a different printed manual.

Here is a simple cross reference example:

\xref{Node name}.

which produces

*Note Node name::.

and in LaTEX, it turns into a sentence of the form

See section nnn [Node name], page ppp.

Here, however, is an example of a full five-part cross reference:

\xref{Node name, Item name, Topic, info-file-name,
A Printed Manual}, for details.

which produces

*Note Item name: (info-file-name)Node name, for details.

and

See section Topic of A Printed Manual, for details.

The five arguments for a cross reference are:

1. The node name (required). This is the node to which the cross reference takes you. In
a printed document, the location of the node provides the page reference (for references
within the same document).

12.3. \XREF 105

2. The item name for the Info reference, if it is to be different from the node name. It is
usually omitted.

3. A topic description or section name. Often, this is the title of the section. This is used
as the name of the reference in the printed manual. If omitted, the node name is used.

4. The name of the Info file in which the reference is located, if it is different from the
current file.

5. The name of another printed manual.

Cross references with one, two, three, four, and five arguments are described separately
following the description of \xref.

You can write cross reference commands within a paragraph, but note how Info and LaTEX
format the output of each of the various commands: write \xref at the beginning of a sentence;
write \pxref only within parentheses, and so on.

12.3 \xref

The \xref command generates a cross reference for the beginning of a sentence. The Info
formatting commands convert it into an Info cross reference, which the Info ‘f’ command can
use to bring you directly to another node. The LaTEX typesetting commands convert it into a
page reference, or a reference to another book or manual.

Most often, an Info cross reference looks like this:

*Note node-name::.

or like this

*Note item-name: node-name.

In LaTEX, a cross reference looks like this:

See section section [node-name], page page

or like this

See section section [topic], page page

The \xref command does not generate a period or comma to end the cross reference in
either the Info file or the printed output. You must write that period or comma yourself;
otherwise, Info will not recognize the end of the reference. (The \pxref command works
differently. See section pxref in \pxref.)

106 CHAPTER 12. MAKING CROSS REFERENCES

Please note: A period or comma must follow the closing brace of an \xref. It is
required to terminate the cross reference. This period or comma will appear in the
output, both in the Info file and in the printed manual.

\xref must refer to an Info node by name. Use \node to define the node (see section 11.2.1
[Writing a Node], page 97).

\xref is followed by several arguments inside braces, separated by commas. Whitespace
before and after these commas is ignored.

A cross reference requires only the name of a node; but it may contain up to four additional
arguments. Each of these variations produces a cross reference that looks somewhat different.

12.3.1 \xref with One Argument

The simplest form of \xref takes one argument, the name of another node in the same Info
file.
For example,

\xref{Tropical Storms}.

produces

*Note Tropical Storms::.

and

See section nnn [Tropical Storms], page ppp.

(Note that in the preceding example the closing brace is followed by a period.)
You can write a clause after the cross reference, like this:

\xref{Tropical Storms}, for more info.

which produces:

*Note Tropical Storms::, for more info.

See section nnn [Tropical Storms], page ppp, for more info.

(Note that in the preceding example the closing brace is followed by a comma, and then by the
clause.)

12.3. \XREF 107

12.3.2 \xref with Two Arguments

With two arguments, the second one is used as the name of the Info cross reference, while the
first argument is still the node that the cross reference points to:
The template is like this:

\xref node-name, item-name.

For example:

\xref{Electrical Effects, Lightning}.

which produces:

*Note Lightning: Electrical Effects.

and

See section nnn [Electrical Effects], page ppp.

(Note that in the preceding example the closing brace is followed by a period; and that the
node name is printed, not the item name.)

You can write a clause after the cross reference, like this:

\xref{Electrical Effects, Lightning}, for more info.

produces

*Note Lightning: Electrical Effects, for more info.

and

See section nnn [Electrical Effects], page ppp, for more info.

(Note that in the preceding example the closing brace is followed by a comma, and then by the
clause.)

12.3.3 \xref with Three Arguments

A third argument replaces the node name in the LaTEX output. The third argument should
state the topic discussed by the section being referenced, or be the name of the section. Often,
you will want to use initial upper case letters so it will be easier to read when the reference is
printed. Use a third argument when the node name is unsuitable because of syntax or meaning.

Remember that a comma or period must follow the closing brace of an \xref command to
terminate the cross reference. In the following examples, a clause follows a terminating comma.
The template is like this:

108 CHAPTER 12. MAKING CROSS REFERENCES

\xref node-name, item-name, topic.

For example,

\xref{Electrical Effects, Lightning, Thunder and Lightning}, for details.

which produces

*Note Lightning: Electrical Effects, for details.

and

See section nnn [Thunder and Lightning], page ppp, for details.

If a third argument is given and the second one is empty, then the third argument serves
both. (Note how two commas, side by side, mark the empty second argument.)

\xref{Electrical Effects, , Thunder and Lightning}, for details.

produces

*Note Thunder and Lightning: Electrical Effects, for details.

and

See section nnn [Thunder and Lightning], page ppp, for details.

12.3.4 \xref with Four and Five Arguments

In a cross reference, a fourth argument specifies the name of another Info file, different from the
file in which the reference appears, and a fifth argument specifies its title as a printed manual.

Remember that a comma or period must follow the closing brace of an \xref command to
terminate the cross reference. In the following examples, a clause follows a terminating comma.
The template is:

\xref{node-name, item-name, topic, info-file-name, printed-title}.

For example,

\xref{Electrical Effects, Lightning, Thunder and Lightning,
weather, An Introduction to Meteorology}, for details.

which produces

*Note Lightning: (weather)Electrical Effects, for details.

12.3. \XREF 109

The name of the Info file is enclosed in parentheses and precedes the name of the node.
In a printed manual, the reference looks like this:

See section Thunder and Lightning of An Introduction to Meteorology, for details.

The name of the printed manual is typeset in italics; and the reference lacks a page number
since LaTEX cannot know to which page a refer refers when the reference is to another manual.

Often, you will leave out the second argument when you use the long version of \xref. In
this case, the third argument, the topic description, will be used as the item name in Info.
The template looks like this:

\xref{node-name, , topic, info-file-name, printed-title}, for details.

which produces

*Note topic: (info-file-name)node-name, for details.

and

See section topic of printed-manual-title, for details.

For example:

\xref{Electrical Effects, , Thunder and Lightning,
weather, An Introduction to Meteorology}, for details.

which produces

*Note Thunder and Lightning: (weather)Electrical Effects, for details.

and

See section Thunder and Lightning of An Introduction to Meteorology, for details.

On rare occasions, you may want to refer to another Info file that is is within a single
printed manual—when multiple LaTEXinfo files are incorporated into the same LaTEX run but
make separate Info files. In this case, you need to specify only the fourth argument, and not
the fifth.

110 CHAPTER 12. MAKING CROSS REFERENCES

12.4 Naming a ‘Top’ Node

In a cross reference, you must always name a node. This means that in order to refer to a
whole manual, you must identify the ‘Top’ node by writing it as the first argument to the \xref
command. (This is different from the way you write a menu entry. See section Other Info Files
in Referring to Other Info Files.) At the same time, to provide a meaningful section topic or
title in the printed cross reference (instead of the word ‘Top’), you must write an appropriate
entry for the third argument to the \xref command.

Thus, to make a cross reference to The GNU Make Manual, write:

\xref{Top, , Overview, make, The GNU Make Manual}.

which produces

*Note Overview: (make)Top.

and

See section Overview of The GNU Make Manual.

In this example, ‘Top’ is the name of the node, and ‘Overview’ is the name of the first section
of the manual.

12.5 \nxref

\nxref is nearly the same as \xref except that it does not generate a ‘See’ in the printed
output, just the reference itself. This makes it useful as the last part of a sentence.
For example:

For more information, see \nxref{Orogenesis, ,
Mountaing Building}.

produces

For more information, see *Note Mountain
Building: Orogenesis.

and

For more information, see section nnn [Mountain Building]. page ppp.

12.6. \PXREF 111

The \nxref command sometimes leads writers to express themselves in a manner that is
suitable for a printed manual but looks awkward in the Info format. Bear in mind that your
audience will be using both the printed and the Info format.
For example,

Sea surges are described in \nxref{Hurricanes}.

produces

Sea surges are described in section nnn [Hurricanes].

in a printed document, but

Sea surges are described in *Note Hurricanes::.

in Info.

Caution: You must write a period or comma immediately after an \nxref com-
mand with two or more arguments. Otherwise, Info will not find the end of the cross
reference entry and attempts to follow the cross reference will fail. As a general
rule, you should write a period or comma after every \nxref command. This looks
best in both the printed and the Info output.

12.6 \pxref

The parenthetical reference command, \pxref, is nearly the same as \xref, but you use it only
inside parentheses and you do not type a comma or period after the command’s closing brace.
The command differs from \xref in two ways:

1. LaTEX typesets the reference for the printed manual with a lower case ‘see’ rather than
an upper case ‘See’.

2. The Info formatting commands automatically end the reference with a closing colon or
period.

Because one type of formatting automatically inserts closing punctuation and the other
does not, you should use \pxref only inside parentheses as part of another sentence. Also, you
yourself should not insert punctuation after the reference, as you do with \xref.

\pxref is designed so that the output looks right and works right between parentheses both
in printed output and in an Info file. In a printed manual, a closing comma or period should
not follow a cross reference within parentheses; such punctuation is wrong. But in an Info
file, suitable closing punctuation must follow the cross reference so Info can recognize its end.
\pxref spares you the need to use complicated methods to put a terminator into one form of
the output and not the other.

Don’t try to use \pxref as a clause in a sentence. It will look bad in either the Info file,
the printed output, or both. Use it only as a parenthetical reference.

With one argument, a parenthetical cross reference looks like this:

112 CHAPTER 12. MAKING CROSS REFERENCES

. . . large storms (\pxref{Hurricanes}) may cause flooding

. . .

which produces

. . . large storms (*Note Hurricanes::) may cause flooding . . .

and

. . . large storms (see section nnn [Hurricanes], page ppp) may cause flooding . . .

With two arguments, a parenthetical cross reference has this template:

. . . (\pxref{node-name, item-name}) . . .

which produces

. . . (*Note item-name: node-name.) . . .

and

. . . (see section nnn [node-name], page ppp) . . .

\pxref can be used with up to five arguments just like \xref (see section xref in \xref).

12.7 \inforef

\inforef is used for cross references to Info files for which there are no printed manuals. Even
in a printed manual, \inforef generates a reference directing the user to look in an Info file.

The command takes either two or three arguments, in the following order:

1. The node name.

2. The item name (optional).

3. The Info file name.

Separate the arguments with commas, as with \xref. Also, you must terminate the reference
with a comma or period after the ‘}’, as you do with \xref.
The template is:

\inforef{node-name, item-name, info-file-name},

Thus,

12.7. \INFOREF 113

\inforef{Expert, Advanced Info commands, info},
for more information.

produces

*Note Advanced Info commands: (info)Expert,
for more information.

and

See Info file ‘info’, node ‘Expert’, for more information.

Similarly,

\inforef{Expert, , info}, for more information.

produces

*Note (info)Expert::, for more information.

and

See Info file ‘info’, node ‘Expert’, for more information.

The converse of \inforef is \cite, which is used to refer to printed works for which no
Info form exists. See section 8.2 [Citations], page 74.

114 CHAPTER 12. MAKING CROSS REFERENCES

Chapter 13

Creating Indices

Using LaTEXinfo, you can generate indices without having to sort and collate entries manually.
In an index, the entries are listed in alphabetical order, together with information on how
to find the discussion of each entry. In a printed manual, this information consists of page
numbers. In an Info file, this information is a menu item leading to the first node referenced.

LaTEXinfo provides several predefined kinds of index: an index for functions, an index for
variables, an index for concepts, and so on. You can combine indices or use them for other
than their canonical purpose. If you wish, you can define your own indices.

13.1 Making Index Entries

When you are making index entries, it is good practice to think of the different ways people may
look for something. Different people do not think of the same words when they look something
up. A helpful index will have items indexed under all the different words that people may use.
For example, someone might think it obvious that the two-letter names for indices should be
listed under “Indices, two-letter names”, since the word “Index” is the general concept. But
another reader may remember the specific concept of two-letter names and search for the entry
listed as “Two letter names for indices”. A good index will have both entries and will help
both kinds of user.

Like typesetting, the construction of an index is a highly skilled, professional art, the
subtleties of which are not appreciated until you have to do it yourself.

See section 2.9.2 [Printing an Index and Generating Menus], page 28, for information about
the commands to put at the beginning and end of the file, for printing an index, or creating an
index menu in an Info file.

115

116 CHAPTER 13. CREATING INDICES

LaTEXinfo provides six predefined indices:

• A concept index listing concepts that are discussed.

• A function index listing functions (such as, entry points of libraries).

• A variables index listing variables (such as, global variables of libraries).

• A keystroke index listing keyboard commands.

• A program index listing names of programs.

• A data type index listing data types (such as, structures defined in header files).

Not every manual needs all of these. This manual has two indices: a concept index and an
\-command index (that is actually the function index but is called a command index in the
chapter heading). Two or more indices can be combined into one using the \synindex or
\syncodeindex commands. See section 13.3 [Combining Indices], page 118.

13.2 Defining the Entries of an Index

The data to make an index comes from many individual indexing commands scattered through-
out the LaTEXinfo source file. Each command says to add one entry to a particular index; after
processing, it will give the current page number or node name as the reference.An index entry
consists of an indexing command at the beginning of a line followed by the entry in braces. For
example, this section begins with the following five entries for the concept index:

\cindex{Defining indexing entries}
\cindex{Index entries}
\cindex{Entries for an index}
\cindex{Specifying index entries}
\cindex{Creating index entries}

Each declared index has its own indexing command—\cindex for the concept index,
\findex for the function index, and so on. An index must be declared at the beginning of
the document with the \newindex command, before the first use of the corresponding index
command. See section 13.2.1 [Declaring indices], page 117 for how to use this command.

The usual convention is to capitalize the first word of each index entry, unless that word is
the name of a function, variable, or other such entitity that should not be capitalized. Thus, if
you are documenting Emacs Lisp, your concept index entries are usually capitalized, but not
your function index entries. However, if your concept index entries are consistently short (one
or two words each) it may look better for each regular entry to start with a lower case letter.
Which ever convention you adapt, please be consistent!

By default, entries for a concept index are printed in a small roman font and entries for
the other indices are printed in a small \code font. You may change the way part of an entry

13.2. DEFINING THE ENTRIES OF AN INDEX 117

is printed with the usual LaTEXinfo commands, such as \file for file names and \emph for
emphasis (see section 4 [Marking Text], page 35).

The six indexing commands for predefined indices are:

\cindex{concept Make an entry in the concept index for concept.

\findex{function Make an entry in the function index for function.

\vindex{variable Make an entry in the variable index for variable.

\kindex{key Make an entry in the key index for key.

\pindex{program Make an entry in the program index for program.

\tindex{data} type Make an entry in the data type index for data type.

Caution: Do not use a colon in an index entry. In Info, a colon separates the menu
item name from the node name. An extra colon confuses Info. See section Menu
Item in Writing a Menu Item, for more information about the structure of a menu
entry.

If the same name is indexed on several pages, all the pages are listed in the printed manual’s
index. However, only the first node referenced will appear in the index of an Info file. This
means that it is best to write indices in which each entry will refer to only one place in the
LaTEXinfo file.

13.2.1 Declaring Indices

The \newindex command takes a two-letter index name, and makes the index commands for
that index available for use. The \printindex command takes a two-letter index name, reads
the corresponding sorted index file and formats it appropriately into an index. Normally, six
indices are provided for, and are referred to by their two-letter abbreviations:

cp A concept index listing concepts that are discussed.

pg A program index listing names of programs and leading to the places where those programs
are documented.

fn A function index listing functions (such as, entry points of libraries).

vr A variables index listing variables (such as, external variables of libraries).

tp A data type index listing data types (such as, structures defined in header files).

ky A keystroke index listing keyboard commands.

118 CHAPTER 13. CREATING INDICES

Not every manual needs all of these. This manual has two indices: a concept index and a
command index (that uses the function index but is called a command index in the chapter
heading). Two or more indices can be combined into one using the \synindex command. See
section 13.3 [Combining Indices], page 118.

You are not actually required to use the predefined indices for their canonical purposes.
For example, suppose you wish to index some C preprocessor macros. You could put them in
the function index along with actual functions, just by writing \findex commands for them;
then, when you print the “function index” as an unnumbered chapter, you could give it the
title ‘Function and Macro Index’ and all will be consistent for the reader. Or you could put
the macros in with the data types by writing \tindex commands for them, and give that
index a suitable title so the reader will understand. (See section 2.9.2 [Printing an Index and
Generating Menus], page 28.)

13.2.2 Special Index Entries

The concept index has two special index entries to help you make more elaborate concept
indices.

\cpsubindex{topic}{subtopic} defines an entry in the concept index, which has a
subtopic. In the Info manual, this line and anything on it is deleted.

\cpindexbold{topic} defines an entry in the concept index, which is set in bold type. In
the Info manual, this line and anything on it is deleted.

All other indices have just one special index, the \??indexbold command, which sets its
entry in bold type.

13.3 Combining Indices

Sometimes you will want to combine two disparate indices such as functions and variables,
perhaps because you have few enough of one of them that a separate index for them would
look silly.

You could put functions into the concept index by writing \cindex commands for them
instead of \findex commands, and produce a consistent manual by printing the concept index
with the title ‘Function and Concept Index’ and not printing the ‘Function Index’ at all; but
this is not a robust procedure. It works only if your document is never included in part of
or together with another document that is designed to have a separate function index; if your
document were to be included with such a document, the functions from your document and
those from the other would not end up together. Also, to make your function names appear
in the right font in the concept index, you would have to enclose every one of them between
\code and \end{code}.

What you should do instead when you want functions and concepts in one index is to index
the functions with \findex as they should be, but use the \syncodeindex command to redirect
these \findex commands to the concept index.

13.3. COMBINING INDICES 119

The \syncodeindex command takes two arguments: the name of an index to redirect, and
the name of an index to redirect it to:

\syncodeindex{from}{to}

For this purpose, the indices are given two-letter names:

cp the concept index

vr the variable index

fn the function index

ky the key index

pg the program index

tp the data type index

Write an \syncodeindex command before or shortly after the end of header line at the
beginning of a LaTEXinfo file. For example, to merge a function index with a concept index,
write the following:

\syncodeindex{fn}{cp}

This will cause all entries designated for the function index to go to the concept index instead.
The \syncodeindex command puts all the entries from the redirected index into the \code

font, overriding whatever default font is used by the index to which the entries are redirected.
This way, if you redirect function names from a function index into a concept index, all the
function names are printed the \code font as you would expect.

The \synindex command is nearly the same as the \syncodeindex command, except that
it does not put the redirected index into the \code font, but puts it in the roman font.

See section 2.9.2 [Printing an Index and Generating Menus], page 28, for information about
printing an index at the end of a book or creating an index menu in an Info file.

120 CHAPTER 13. CREATING INDICES

Chapter 14

Creating and Installing an Info File

14.1 Creating an Info file

In GNU Emacs, the way to create an Info file is to visit the file and invoke

M-x latexinfo-format-buffer

A new buffer is created and the Info file text is generated there. ↑x ↑s (save-buffer) will save
it under the name specified in the \setfilename command. latexinfo-format-region and
latexinfo-format-buffer are the two Emacs commands that you can also use for formatting.
A LaTEXinfo file must possess an \setfilename line near its beginning, otherwise the formatting
commands will fail.

For information on installing the Info file in the Info system, see section 14.2 [Installing an
Info File], page 123.

14.1.1 The latexinfo-format Commands

In GNU Emacs in LaTEXinfo mode, you can format part or all of a LaTEXinfo file with the
latexinfo-format-region command. This formats the current region and displays the for-
matted text in a temporary buffer called ‘*Info Region*’.

Similarly, you can format the whole file with the latexinfo-format-buffer command.
This command creates a new buffer and generates the Info file in it. Typing C-x C-s will
save the Info file under the name specified by the \setfilename line which must be near the
beginning of the LaTEXinfo file. See section 15.4 [Info Formatting], page 136, for how to use
the commands:

C-c C-e C-r (latexinfo-format-region) Format the current region for Info.

C-c C-e C-b (latexinfo-format-buffer) Format the current buffer for Info.

121

122 CHAPTER 14. CREATING AND INSTALLING AN INFO FILE

The latexinfo-format-region and latexinfo-format-buffer commands provide you
with some error checking; and other functions provide you with further help in finding for-
matting errors. These procedures are described elsewhere, see section 17 [Catching Formatting
Mistakes], page 147.

14.1.2 Tag Files and Split Files

If a LaTEXinfo file has more than 30,000 bytes, latexinfo-format-buffer automatically cre-
ates a tag table for its Info file. With a tag table, Info can jump to new nodes more quickly
than it can otherwise.

In addition, if the LaTEXinfo file contains more than about 70,000 bytes, latexinfo-
format-buffer splits the large Info file into shorter indirect subfiles of about 50,000 bytes
each. Big files are split into smaller files so that Emacs does not have to make a large buffer to
hold the whole of a large Info file; instead, Emacs allocates just enough memory for the small,
split off file that is needed at the time. This way, Emacs avoids wasting memory when you
run Info. (Before splitting was implemented, Info files were always kept short and include files
were designed as a way to create a single, large printed manual out of the smaller Info files.
See section 9.2 [Include Files], page 75, for more information. Include files are still used for
very large documents, such as The Emacs Lisp Reference Manual, in which each chapter is a
separate file.)

When a file is split, Info itself makes use of a shortened version of the original file that
contains just the tag table and references to the files that were split off. The split off files are
called indirect files.

The split off files have names that are created by appending ‘-1’, ‘-2’, ‘-3’ and so on to the
file names specified by the \setfilename command. The shortened version of the original file
continues to have the name specified by \setfilename.

At one stage in writing a document, for example, the Info file called ‘test-latexinfo’
might have looked like this:

14.2. INSTALLING AN INFO FILE 123

Info file: test-latexinfo, -*-Text-*-
produced by latexinfo-format-buffer
from file: new-manual.tex

^_
Indirect:
test-latexinfo-1: 102
test-latexinfo-2: 50422
test-latexinfo-3: 101300
^_^L
Tag table:
(Indirect)
Node: overview^?104
Node: info file^?1271
Node: printed manual^?4853
Node: conventions^?6855
. . .

Each of the split off, indirect files, ‘test-latexinfo-1’, ‘test-latexinfo-2’, and ‘test-
latexinfo-3’, is listed in this file after the line that says ‘Indirect:’. The tag table is listed
after the line that says ‘Tag table:’.

If you are using latexinfo-format-buffer to create Info files, you may want to run the
Info-validate command. However, you cannot run the M-x Info-validate node-checking
command on indirect files. For information on how to prevent files from being split and how
to validate the structure of the nodes, see section 17.5.1 [Using Info-validate], page 151.

14.2 Installing an Info File

Info files are usually kept in the ‘. . ./emacs/info’ directory. This directory is the values of the
Emacs variable Info-directory.

14.2.1 The ‘dir’ File

For Info to work, the ‘info’ directory must contain a file that serves as a top level directory
for the Info system. By convention, this file is called ‘dir’. The ‘dir’ file is itself an Info file.
It contains the top level menu for all the Info files in the system. The menu looks like this:

* Menu:

* Info: (info). Documentation browsing system.
* Emacs: (emacs). The extensible, self-documenting

text editor.

124 CHAPTER 14. CREATING AND INSTALLING AN INFO FILE

* LaTeXinfo: (latexinfo). With one source file, make
either a printed manual using
LaTeX or an Info file.

. . .

Each of these menu entries points to the ‘Top’ node of the Info file that is named in parentheses.
1 Thus, the ‘Info’ entry points to the ‘Top’ node of the ‘info’ file and the ‘Emacs’ entry points
to the ‘Top’ node of the ‘emacs’ file.

In each of the Info files, the ‘Up’ pointer of the ‘Top’ node refers back to the dir file. For
example, the node line for the ‘Top’ node of the Emacs manual looks like this:

File: emacs Node: Top, Up: (DIR), Next: Distrib

(Note that in this case, the file name is written in upper case letters—it can be written in either
upper or lower case. Info has a feature that it will change the case of the file name to lower
case if it cannot find the name as written.)

14.2.2 Listing a New Info File

To add a new Info file to your system, add the name to the menu in the ‘dir’ file by editing the
‘dir’ file by hand. Also, put the new Info file in the ‘. . ./emacs/info’ directory. For example,
if you were adding documentation for GDB, you would make the following new entry:

* GDB: (gdb). The source-level C debugger.

The first item is the menu item name; it is followed by a colon. The second item is the name
of the Info file, in parentheses; it is followed by a period. The third part of the entry is the
description of the item.

Conventionally, the name of an Info file has a ‘.info’ extension. Thus, you might list the
name of the file like this:

* GDB: (gdb.info). The source-level C debugger.

However, Info will look for a file with a ‘.info’ extension if it does not find the file under the
name given in the menu. This means that you can write to ‘gdb.info’ in a menu as ‘gdb’, as
shown in the first example. This looks better.

14.2.3 Info Files in Other Directories

If an Info file is not in the ‘info’ directory, there are two ways to specify its location:

• Write the menu’s second part as a pathname, or;
1The menu entry does not have to specify the ‘Top’ node, since Info goes to the ‘Top’ node if no node name

is mentioned. See section Other Info Files in Nodes in Other Info Files.

14.2. INSTALLING AN INFO FILE 125

• Specify an environment variable in your ‘.profile’ or ‘.login’ initialization file.

For example, to reach a test file in the ‘~bob/manuals’ directory, you could add an entry
like this to the menu in the ‘dir’ file:

* Test: (~bob/manuals/info-test). Bob’s own test file.

In this case, the absolute file name of the ‘info-test’ file is written as the second item of the
menu entry.

Alternatively, you may set the INFOPATH environment variable in your ‘.login’ or
‘.profile’ file. The INFOPATH environment variable will tell Info where to look.

If you use sh or bash for your shell command interpreter, you must set the INFOPATH
environment variable in the ‘.profile’ initialization file; but if you use csh or tcsh, you
must set the variable in the ‘.login’ initialization file. The two files require slightly different
command formats.

• In a ‘.login’ file, you could set the INFOPATH variable as follows:

setenv INFOPATH .:~bob/manuals:/usr/local/emacs/info

• In a ‘.profile’ file, you would achieve the same effect by writing:

INFOPATH=.:~bob/manuals:/usr/local/emacs/info
export INFOPATH

Either form would cause Info to look first in the current directory, indicated by the ‘.’, then in
the ‘~bob/manuals’ directory, and finally in the ‘/usr/local/emacs/info’ directory (which is
the usual location for the standard Info directory).

126 CHAPTER 14. CREATING AND INSTALLING AN INFO FILE

Part III

Emacs

127

Chapter 15

Using LaTeXinfo Mode

In GNU Emacs, LaTEXinfo mode provides commands and features especially designed for work-
ing with LaTEXinfo files. The special LaTEXinfo commands are in addition to the usual editing
commands, which are generally the same as the commands of Text mode. There are special
commands to:

• Insert commonly used strings of text.

• Automatically create node lines.

• Show the structure of a LaTEXinfo source file.

• Automatically create or update the ‘Next’,
‘Previous’, and ‘Up’ pointers of a node.

• Automatically create or update menus.

• Automatically create a master menu.

• Format a part or all of a file for Info.

• Typeset and print part or all of a file.

Implementation note: In LaTEXinfo mode the paragraph separation variable and syntax table are
redefined so that LaTEXinfo commands that should be on lines of their own are not inadvertently included
in paragraphs. Thus, the M-q (fill-paragraph) command will refill a paragraph but not mix an
indexing command on a line adjacent to it into the paragraph.

In addition, LaTEXinfo mode sets the page-delimiter variable to the value of latexinfo-chapter-
level-regexp; by default, this is a regular expression matching the commands for chapters and sections.
With this value for the page delimiter, you can jump from chapter title to chapter title with the C-
x] (forward-page) and C-x [(backward-page) commands and narrow to a chapter with the C-x p
(narrow-to-page) command. (See Info file ‘emacs’, node ‘Pages’, for details about the page commands.)

129

130 CHAPTER 15. USING LATEXINFO MODE

You may name a LaTEXinfo file however you wish, but the convention is to end a LaTEXinfo
file name with ‘.tex’. Emacs switches to LaTEXinfo mode for a file that has ‘-*-latexinfo-*-’
in its first line. If ever you are in another mode and wish to switch to LaTEXinfo mode, type
M-x latexinfo-mode.

Like all other Emacs features, you can customize or enhance LaTEXinfo mode as you wish.
In particular, the keybindings are very easy to change. The keybindings described here are the
default or standard ones.

15.1 Inserting Frequently Used Commands

LaTEXinfo mode provides commands to insert various frequently used \-commands into the
buffer. You can use these commands to save keystrokes.

The insert commands are invoked by typing C-c twice and then the first letter of the \-
command. In the following description, we will list the key sequence, and then the name of the
LaTEXinfo function that is invoked.

C-c C-c c (latexinfo-insert-code) Insert \code{} and put the cursor between the braces.

C-c C-c d (latexinfo-insert-dfn) Insert \dfn{} and put the cursor between the braces.

C-c C-c e (latexinfo-insert-end) Insert \end.

C-c C-c i (latexinfo-insert-item) Insert \item and put the cursor at the beginning of the
next line.

C-c C-c k (latexinfo-insert-kbd) Insert \kbd{} and put the cursor between the braces.

C-c C-c n (latexinfo-insert-node) Insert \node and a comment line listing the sequence
for the ‘Next’, ‘Previous’, and ‘Up’ nodes. Leave cursor after the \node.

C-c C-c o (latexinfo-insert-noindent) Insert \noindent and put the cursor in between.

C-c C-c s (latexinfo-insert-samp) Insert \samp{} and put the cursor between the braces.

C-c C-c v (latexinfo-insert-var) Insert \var{} and put the cursor between the braces.

C-c C-c x (latexinfo-insert-example) Insert \begin{example} \end{example} and put
the cursor at the beginning of the next line.

C-c C-c { (latexinfo-insert-braces) Insert {} and put the cursor between the braces.

C-c C-c } (up-list) Move from between a set of braces forward past the closing brace.

Remark: This set of insert commands was created after analyzing the frequency with which different
\-commands are used in the GNU Emacs Manual and the GDB Manual. If you wish to add your own
insert commands, you can bind a keyboard macro to a key, use abbreviations, or extend the code in
‘latexinfo-mde.el’.

15.2. SHOWING THE SECTION STRUCTURE OF A FILE 131

15.2 Showing the Section Structure of a File

You can show the section structure of a LaTEXinfo file by using the C-c C-s command
(latexinfo-show-structure). This command shows the section structure of a LaTEXinfo
file by listing the lines that begin with the \-commands for \chapter, \section, and the like.
The command constructs what amounts to a table of contents. These lines are displayed in
another buffer called the ‘*Occur*’ buffer. In that buffer, you can position the cursor over one
of the lines and use the C-c C-c command (occur-mode-goto-occurrence), to jump to the
corresponding spot in the LaTEXinfo file.

C-c C-s (latexinfo-show-structure) Show the \chapter, \section, and such lines of a
LaTEXinfo file.

C-c C-c (occur-mode-goto-occurrence) Go to the line in the LaTEXinfo file corresponding
to the line under the cursor in the ‘*Occur*’ buffer.

If you call latexinfo-show-structure with a prefix argument by typing C-u C-c C-s,
it will list not only those lines with the \-commands for \chapter, \section, and the like,
but also the \node lines. You can use latexinfo-show-structure with a prefix argument to
inspect whether the ‘Next’, ‘Previous’, and ‘Up’ pointers of a node line are correct.

Often, when you are working on a manual, you will be interested only in the structure of the
current chapter. In this case, you can mark off the region of the buffer that you are interested
in with the C-x n (narrow-to-region) command and latexinfo-show-structure will work
on only that region. To see the whole buffer again, use C-x w (widen). (See Info file ‘emacs’,
node ‘Narrowing’, for more information about the narrowing commands.)

In addition to providing the latexinfo-show-structure command, LaTEXinfo mode sets
the value of the page delimiter variable to match the chapter-level \-commands. This enables
you to use the C-x] (forward-page) and C-x [(backward-page) commands to move forward
and backward by chapter, and to use the C-x p (narrow-to-page) command to narrow to a
chapter. See Info file ‘emacs’, node ‘Pages’, for more information about the page commands.

See section 17.3 [Using latexinfo-show-structure], page 149, for how to detect formatting
errors using this command.

15.3 Updating Nodes and Menus

LaTEXinfo mode provides commands for automatically creating or updating menus and node
pointers. The commands are called “update” commands because their most frequent use is for
updating a LaTEXinfo file after you have worked on it.

You can use the updating commands

• to insert or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of a node,

• to insert or update the menu for a section, and

132 CHAPTER 15. USING LATEXINFO MODE

• to create a master menu for a LaTEXinfo source file.

You can also use the commands to update all the nodes and menus in a region or in a whole
LaTEXinfo file.

LaTEXinfo mode has five updating commands that are used most often: two are for updating
the node pointers or menu of a single node (or a region), two are for updating every node pointer
and menu in a file, and one, the latexinfo-master-menu command, is for creating a master
menu for a complete file, and optionally, for updating every node and menu in the whole
LaTEXinfo file.

The latexinfo-master-menu command is the primary command:

C-c C-u m (latexinfo-master-menu) Create or update a master menu that includes all the
other menus (incorporating the descriptions from pre-existing menus, if any).

With an argument (prefix argument, if interactive), first create or update all the nodes
and all the regular menus in the buffer before constructing the master menu. (See section
The Top Node in The Top Node and Master Menu, for more about a master menu.) For
latexinfo-master-menu to work, the LaTEXinfo file must have a node called ‘Top’.

After extensively editing a LaTEXinfo file, it is common to type C-u C-c C-u m or
C-u M-x latexinfo-master-menu to update all the nodes and menus completely
and all at once.

The other major updating commands do smaller jobs and are designed for the person who
updates nodes and menus as he or she writes a LaTEXinfo file. These commands are:

C-c C-u C-n (latexinfo-update-node) Insert the ‘Next’, ‘Previous’, and ‘Up’ pointers for
the node point is within (i.e., for the \node line preceding point). If the \node line has
pre-existing ‘Next’, ‘Previous’, or ‘Up’ pointers in it, the old pointers are removed and
new ones inserted. With an argument (prefix argument, if interactive), this command
updates all \node lines in the region (which is the text between point and mark).

C-c C-u C-m (latexinfo-make-menu) Create or update the menu in the node that point
is within. With an argument (prefix argument, if interactive), the command makes or
updates menus for the nodes within or part of the region.

Whenever latexinfo-make-menu updates an existing menu, the descriptions from that
menu are incorporated into the new menu. This is done by copying descriptions from
the existing menu to the entries in the new menu that have the same node names. If the
node names are different, the descriptions are not copied to the new menu.

Menu entries that refer to other Info files are removed since they do not refer to nodes
within the current buffer. This is a deficiency.

C-c C-u C-e (latexinfo-every-node-update) Insert or update the ‘Next’, ‘Previous’, and
‘Up’ pointers for every node in the buffer .

15.3. UPDATING NODES AND MENUS 133

C-c C-u C-a (latexinfo-all-menus-update) Create or update all the menus in the buffer.
With an argument (prefix argument, if interactive), first insert or update all the node
pointers before working on the menus.

If a master menu exists, the latexinfo-all-menus-update command updates it; but the
command does not create a new master menu if none already exists. (Use the latexinfo-
master-menu command for that.)

Implementation note: The latexinfo-column-for-description variable specifies the column to
which menu descriptions are indented. By default, the value is 32 although it is often useful to reduce
it to as low as 24. You can set the variable with the M-x edit-options command (See Info file ‘emacs’,
node ‘Edit Options’), or with the M-x set-variable command (See Info file ‘emacs’, node ‘Examining’).

Also, the latexinfo-indent-menu-description command may be used to indent existing
menus to a specified column.Finally, if you wish, you can use the latexinfo-insert-node-
lines command to insert missing \node lines into a file. (See section 15.3.2 [Other Updating
Commands], page 134, for more information.)

134 CHAPTER 15. USING LATEXINFO MODE

15.3.1 Updating Requirements

To use the updating commands, you must organize the LaTEXinfo file hierarchically with chap-
ters, sections, subsections, and the like. Each \node line, with the exception of the line for
the ‘Top’ node, must be followed by a line with a structuring command such as \chapter,
\section, or \unnumberedsubsec. Each \node line/structuring-command line combination
must look either like this:

\node Comments, Minimum, Conventions, Overview
\comment node-name, next, previous, up
\section{Comments}

or like this (without the \comment line):

\node Comments, Minimum, Conventions, Overview
\section{Comments}

(In this example, ‘Comments’ is the name of both the node and the section. The next node
is called ‘Minimum’ and the previous node is called ‘Conventions’. The ‘Comments’ section is
within the ‘Overview’ node, which is specified by the ‘Up’ pointer.)

If a file has a ‘Top’ node, it must be called ‘top’ or ‘Top’ and be the first node in the file.

15.3.2 Other Updating Commands

In addition to the five major updating commands, LaTEXinfo mode possesses several less fre-
quently used updating commands.

C-c C-u C-i (latexinfo-insert-node-lines) Insert \node before the \chapter, \section,
and other sectioning commands wherever it is missing throughout a region in a LaTEXinfo
file. With an argument (prefix argument, if interactive), the latexinfo-insert-node-
lines command not only inserts \node lines but also inserts the chapter or section titles
as the names of the corresponding nodes; and it inserts their titles for node names in
pre-existing \node lines that lack names. Since node names should be more concise than
section or chapter titles, node names so inserted should be edited manually. Also, section
titles cannot contain commas if this command is used, or else only the title yp to the first
comma will be used.

C-c C-u C-f (latexinfo-multiple-files-update) Update nodes and menus in a document
built from several separate files. With a prefix argument if called interactively (a non-
nil ‘make-master-menu’ argument, if called non-interactively), create and insert a master
menu in the outer file. With a numeric prefix argument if called interactively (a non-
nil ‘update-everything’ argument if called non-interactively), first update all the menus

15.3. UPDATING NODES AND MENUS 135

and all the ‘Next’, ‘Previous’, and ‘Up’ pointers of all the included files before creating
and inserting a master menu in the outer file. The latexinfo-multiple-files-update
command is described in the section on \include files. See section 9.2 [Include Files],
page 75.

C-c C-u C-d (latexinfo-indent-menu-description) Indent every description in the menu
following point to the specified column. You can use this command to give your-
self more space for descriptions. With an argument (prefix argument, if interactive),
the latexinfo-indent-menu-description command indents every description in every
menu in the region. However, this command does not indent the second and subsequent
lines of a multi-line description.

C-c C-u C-s (latexinfo-sequential-node-update) Insert the names of the nodes imme-
diately following and preceding the current node as the ‘Next’ or ‘Previous’ pointers
regardless of those nodes’ hierarchical level. This means that the ‘Next’ node of a subsec-
tion may well be the next chapter. Sequentially ordered nodes are useful for documents
that you read through sequentially. (However, in Info, the g* RET command lets you look
through the file sequentially, so sequentially ordered nodes are not strictly necessary.)
With an argument (prefix argument, if interactive), the latexinfo-sequential-node-
update command sequentially updates all the nodes in the region.

15.3.3 latexinfo-multiple-files-update

The latexinfo-multiple-files-update command creates or updates ‘Next’, ‘Previous’, and
‘Up’ pointers of included files as well as those in the outer or over all LaTEXinfo file, and it
creates or updates a main menu in the outer file. See section 9.2 [Include Files], page 75.
Depending whether you call it with optional arguments, it updates only the pointers in the
first \node line of the included files or all of them.

C-u C-c C-u C-f (latexinfo-multiple-files-update) Called without any arguments, will:

• Create or update the ‘Next’, ‘Previous’, and ‘Up’ pointers of the first \node line in
each file included in an outer or overall LaTEXinfo file.

• Create or update the ‘Top’ level node pointers of the outer or overall file.

• Create or update a main menu in the outer file.

C-u C-c C-u C-f (latexinfo-multiple-files-update) Called with a prefix argument (a non-
nil make-master-menu argument, if called from a program), create and insert a master
menu in the outer file in addition to creating or updating pointers in the first \node line
in each included file and creating or updating the ‘Top’ level node pointers of the outer
file. The master menu is made from all the menus in all the included files.

C-u 8 C-c C-u C-f (latexinfo-multiple-files-update) Called with a numeric prefix argu-
ment (a non-nil update-everything argument, if called from a program):

136 CHAPTER 15. USING LATEXINFO MODE

• Create or update the ‘Top’ level node pointers of the outer or overall file.

• Create or update all the ‘Next’, ‘Previous’, and ‘Up’ pointers of all the included
files.

• Create or update all the menus of all the included files.

• And then create a master menu in the outer file. This is similar to invoking
latexinfo-master-menu with an argument when you are working with just one
file.

Note the use of the prefix argument in interactive use: with a regular prefix argument, just C-
u, the latexinfo-multiple-files-update command inserts a master menu; with a numeric
prefix argument, such as C-u 8, the command updates every pointer and menu in all the files
and then inserts a master menu.

15.4 Formatting for Info

LaTEXinfo mode provides several commands for formatting part or all of a LaTEXinfo file for
Info. Often, when you are writing a document, you want to format only part of a file—that is,
a region. You can use the latexinfo-format-region command to format a region.

C-c C-e C-r (latexinfo-format-region) Format the current region for Info.

You can use the latexinfo-format-buffer command to format a whole buffer:

C-c C-e C-b (latexinfo-format-buffer) Format the current buffer for Info.

After writing a LaTEXinfo file, you can type C-u C-c C-u m or C-u M-x latexinfo-
master-menu to update all the nodes and menus and then type C-c C-u b or M-x
latexinfo-format-buffer to create an Info file.

For the Info formatting commands to work, the file must include a line that has
\setfilename in its header. See section 14 [Creating and Installing an Info File], page 121, for
details about Info formatting.

15.5. FORMATTING AND PRINTING 137

15.5 Formatting and Printing

Typesetting and printing a LaTEXinfo file is a multi-step process in which you first create a file
for printing (called a dvi file), and then you print the file. Optionally, also, you may create
indices.

Often, when you are writing a document, you want to typeset and print only part of a file,
to see what it will look like. You can use the latexinfo-latex-region and related commands
for this purpose. Use the latexinfo-latex-buffer command to format all of a buffer.

C-c C-t C-r (latexinfo-latex-region) Run LaTEX on the region.

C-c C-t C-b (latexinfo-latex-buffer) Run LaTEX on the buffer.

C-c C-t C-i (latexinfo-latexindex) Sort the indices of a LaTEXinfo file formatted with
latexinfo-latex-region or latexinfo-latex-buffer. You must run the latex com-
mand a second time after sorting the raw index files.

C-c C-t C-p (latexinfo-latex-print) Print the file (or the part of the file) previously for-
matted with latexinfo-latex-buffer or latexinfo-latex-region.

For latexinfo-latex-region or latexinfo-latex-buffer to work, the file must start with a
‘\documentstyle’ line and must include an \setfilename command as an end of header line.
The file must end with \end{document} on a line by itself.

See section 16 [Printing Hardcopy], page 141, for a description of the other LaTEX related
commands, such as latexinfo-latexindex and latex-show-print-queue.

138 CHAPTER 15. USING LATEXINFO MODE

15.6 LaTeXinfo Mode Summary

In LaTEXinfo mode, each set of commands has default keybindings that begin with the same
keys. All the commands that are custom-created for LaTEXinfo mode begin with C-c. The keys
that follow are arranged mnemonically.

Insert Commands The insert commands begin with C-c twice and then the first letter of
the \-command to be inserted.

C-c C-c c Insert ‘ \code’.
C-c C-c d Insert ‘ \dfn’.
C-c C-c e Insert ‘ \end{}’.
C-c C-c i Insert ‘ \item’.
C-c C-c n Insert ‘ \node’.
C-c C-c s Insert ‘ \samp’.
C-c C-c v Insert ‘ \var’.
C-c C-c { Insert braces.
C-c C-c } Move out of enclosing braces.

Show Structure latexinfo-show-structure is often used within a narrowed region.

C-c C-s List all the headings.

The Master Update Command The latexinfo-master-menu command creates a master
menu; and can be used to update every node and menu in a file as well.

C-c C-u m Create or update a master menu.
C-u C-c C-u m First create or update all nodes and regular menus.

Update Pointers The update pointer commands begin with C-c C-u:

C-c C-u C-n Update a node.
C-c C-u C-e Update every node in the buffer.

Update Menus The update menu commands begin with C-c C-u. You may precede a C-c
C-u C-a so as to update both nodes and menus.

C-c C-u C-m Make or update a menu.

C-c C-u C-a Make or update all the menus in a buffer;
C-u C-c C-u C-a first update all the nodes.

Format for Info The Info formatting commands begin with C-c C-e:

15.6. LATEXINFO MODE SUMMARY 139

C-c C-e C-r Format the region.
C-c C-e C-b Format the buffer.

Typeset and Print The typesetting and printing commands begin with C-c C-t:

C-c C-t C-r Run LaTEX on the region.
C-c C-t C-b Run LaTEX on the buffer.
C-c C-t C-i Run latexindex.
C-c C-t C-p Print the dvi file.
C-c C-t C-q Show the print queue.
C-c C-t C-d Delete a job from the print queue.
C-c C-t C-k Kill the current LaTEX formatting job.
C-c C-t C-x Quit a currently stopped LaTEX formatting job.
C-c C-t C-l Recenter the output buffer.

Other Updating Commands The ‘other updating commands’ begin with C-c C-u

C-c C-u C-i Insert missing node lines using
section titles as node names.

C-c C-u C-f Update a multi-file document.
C-c C-u C-d Indent descriptions.
C-c C-u C-s Insert node pointers in strict sequence.

140 CHAPTER 15. USING LATEXINFO MODE

Chapter 16

Printing Hardcopy

The typesetting program LaTEX is used for formatting a LaTEXinfo file. LaTEX is a very powerful
typesetting program and, if used correctly, does an exceptionally good job.

There are three major stages for printing hardcopy of a LaTEXinfo file. One is for formatting
the file, the second is for sorting the index, and the third is for printing the formatted document.
When you use the shell commands, you can either work directly in the operating system shell
or work within a shell inside of GNU Emacs.

Instead of shell commands, you can use commands provided by LaTEXinfo mode. In addition
to three commands to format a file, sort the indices, and print the result, LaTEXinfo mode offers
key bindings for commands to recenter the output buffer, show the print queue, and delete a
job from the print queue.

16.1 How to Print Using Shell Commands

Format the LaTEXinfo file with the shell command latex followed by the name of the LaTEXinfo
file. This produces a formatted dvi file as well as several auxiliary files containing indices, cross
references, etc. The dvi file (for DeVice Independent file) can be printed on a wide variety of
printers.

The latex formatting command itself does not sort the indices; it writes an output file of
unsorted index data. Hence, to generate a printed index, you first need a sorted index to work
from. The latexindex command sorts indices.1

The latex formatting command outputs unsorted index files under names that obey a
standard convention. These names are the name of your main input file to the latex formatting
command, with everything after the first period thrown away, and the two letter names of
indices added at the end. For example, the raw index output files for the input file ‘foo.tex’
would be ‘foo.cp’, ‘foo.vr’, ‘foo.fn’, ‘foo.tp’, ‘foo.pg’ and ‘foo.ky’. Those are exactly the
arguments to give to latexindex. Or else, under Unix you can use ‘??’ as “wild-cards” and
give the command in this form:

1The source file ‘latexindex.c’ comes as part of the standard LaTEXinfo distribution and is usually installed
when LaTEXinfo is installed.

141

142 CHAPTER 16. PRINTING HARDCOPY

latexindex foo.??

This command will run latexindex on all the unsorted index files. (You may execute ‘la-
texindex foo.??’ even if there are similarly named files with two letter extensions that are not
index files, such as ‘foo.el’. The latexindex command reports but otherwise ignores such
files.) For each file specified, latexindex generates a sorted index file whose name is made by
appending ‘s’ to the input file name. The \printindex command knows to look for a file of
that name. latexindex does not alter the raw index output file.

If you have a bibliography, you must also run the BibTEX program on the ‘aux’ file generated
by LaTEX. For example,

bibtex foo.aux

After you have sorted the indices or formatted the bibliography, you need to rerun the
latex formatting command on the LaTEXinfo file. This regenerates a formatted dvi file with
up-to-date index entries.2

To summarize, this is a three step process:

1. Run the latex formatting command on the LaTEXinfo file. This generates the formatted
dvi file as well as the raw index files with two letter extensions.

2. Run the shell command latexindex on the raw index files to sort them. This creates
the corresponding sorted index files.

3. Run the shell command bibtex on the raw index files to format the bibliography. This
creates the corresponding ‘.bbl’ file.

4. Rerun the latex formatting command on the LaTEXinfo file. This regenerates a formatted
dvi file with the index entries in the correct order. This second run also makes all the
cross references correct as well.

You need not run latexindex each time after you run the latex formatting. If you don’t,
on the next run, the latex formatting command will use whatever sorted index files happen
to exist from the previous use of latexindex. This is usually ok while you are in the early
stages of writing a document.

Rather than type the latex, bibtex and latexindex commands yourself, you can use
the shell script latex2dvi. This shell script is designed to simplify the latex, latexindex,
bibtex, latex sequence by figuring out whether index files and dvi files are up-to-date. It runs
latexindex and latex only when necessary. The syntax for latex2dvi is like this (where ‘%’
is the shell prompt):

2If you use more than one index and have cross references to an index other than the first, you must run
latex three times to get correct output: once to generate raw index data; again (after latexindex) to output
the text of the indices and determine their true page numbers; and a third time to output correct page numbers
in cross references to them. This may also be necessary to update the table of contents if the number of pages
used by the indices or bibliography changed.

16.2. PRINTING FROM AN EMACS SHELL 143

% latex2dvi filenames. . .

Finally, you can print a dvi file with the dvi print command. The precise command to use
depends on the system; ‘lpr -d’ is common. The dvi print command may require a file name
without any extension or with a ‘.dvi’ extension.

The following commands, for example, sort the indices, format, and print the Foo Lisp
Manual (where ‘%’ is the shell prompt):

% latex foo.tex
% latexindex foo.??
% bibtex foo.aux
% latex foo.tex
% lpr -d foo.dvi

(Remember that the shell commands may be different at your site; but these are commonly
used versions.)

16.2 Printing from an Emacs Shell

You can give formatting and printing commands from a shell within GNU Emacs. To create
a shell within Emacs, type M-x shell. In this shell, you can format and print the document.
See section How to Print in How to Print Using Shell Commands, for details.

You can switch to and from the shell buffer while latex is running and do other editing.
If you are formatting a long document on a slow machine, this can be very convenient. You
can also use latex2dvi from an Emacs shell. (See section How to Print in How to Print Using
Shell Commands.)

16.3 Formatting and Printing in LaTeXinfo Mode

LaTEXinfo mode provides several predefined key commands for LaTEX formatting and printing.
These include commands for sorting indices, looking at the printer queue, killing the formatting
job, and recentering display of the buffer in which the operations occur.

C-c C-t C-r (latexinfo-latex-region) Run LaTEX on the current region.

C-c C-t C-b (latexinfo-latex-buffer) Run LaTEX on the current buffer.

C-c C-t C-i (latexinfo-latexindex) Sort the indices of a LaTEXinfo file formatted with
latexinfo-latex-region or latexinfo-latex-buffer.

C-c C-t C-p (latexinfo-latex-print) Print a dvi file that was made with latexinfo-
latex-region or latexinfo-latex-buffer.

C-c C-t C-q (latexinfo-show-latex-print-queue) Show the print queue.

144 CHAPTER 16. PRINTING HARDCOPY

C-c C-t C-b Run LaTEX on the buffer.
C-c C-t C-i Sort the indices.
C-c C-t C-b Rerun LaTEX to regenerate indices.
C-c C-t C-p Print the dvi file.
C-c C-t C-q Display the printer queue.

Table 16.1: Formatting a Buffer Commands

C-c C-t C-d (latexinfo-delete-from-latex-print-queue) Delete a job from the print
queue; you will be prompted for the job number shown by a preceding C-c C-t C-q
command (latexinfo-show-latex-print-queue).

C-c C-t C-k (latexinfo-kill-latex-job) Kill the currently running LaTEX job started by
latexinfo-latex-region or latexinfo-latex-buffer, or any other process running
in the LaTEXinfo shell buffer.

C-c C-t C-x (latexinfo-quit-latex-job) Quit a LaTEX formatting job that has stopped be-
cause of an error by sending an X to it. When you do this, LaTEX preserves a record of
what it did in a ‘.log’ file.

C-c C-t C-l (latexinfo-recenter-latex-output-buffer) Redisplay the shell buffer in which
the LaTEX printing and formatting commands are run to show its most recent output.

Thus, the usual sequence of commands for formatting a buffer is as follows (with comments
to the right):

The LaTEXinfo mode LaTEX formatting commands start a subshell in Emacs called
the ‘*latexinfo-latex-shell*’. The latexinfo-latex-command, latexinfo-latexindex-
command, and latex-dvi-print-command commands are all run in this shell. You can watch
the commands operate in the ‘*latexinfo-latex-shell*’ buffer, and you can switch to and
from and use the ‘*latexinfo-latex-shell*’ buffer as you would any other shell buffer.

The formatting and print commands depend on the values of several variables. The default
values are:

The default values of latexinfo-latex-command and latexinfo-latexindex-command are
set in the ‘latexnfo-tex.el’ file.

You can change the values of these variables with the M-x edit-options command (See
Info file ‘emacs’, node ‘Edit Options’), with the M-x set-variable command (See Info file
‘emacs’, node ‘Examining’), or with your ‘.emacs’ initialization file (See Info file ‘emacs’, node
‘Init File’).

16.4 Using the Local Variables List

Yet another way to apply the LaTEX formatting command to a LaTEXinfo file is to put that com-
mand in a local variables list at the end of the LaTEXinfo file. You can then specify the LaTEX

16.5. PREPARING FOR USE OF LaTEX 145

Variable Default value
latexinfo-latex-command "latex"
latexinfo-latexindex-command "latexindex"
latexinfo-latex-shell-cd-command "cd"
latexinfo-latex-dvi-print-command "lpr -d"
latexinfo-show-latex-queue-command "lpq"
latexinfo-delete-from-print-queue-command "lprm"
latexinfo-start-of-header "\begin{document}"
latexinfo-end-of-header "\setfilename"
latexinfo-latex-trailer "\end{document}"

Table 16.2: Formatting a Document Commands

formatting command as a compile-command and have Emacs run the LaTEX formatting com-
mand by typing M-x compile. This creates a special shell called the ‘*compilation buffer*’
in which Emacs runs the compile command. For example, at the end of the ‘gdb.texinfo’ file,
after the \end{document}, you would put the following:

\c Local Variables:
\c compile-command: "latex2dvi foo.tex"
\c End:

This technique is most often used by programmers who also compile ‘C’ programs this way.
(See Info file ‘emacs’, node ‘Compilation’.)

Usually, the file’s first line contains an ‘\c -*-latexinfo-*-’ comment that causes Emacs
to switch to LaTEXinfo mode when you edit the file. In addition, the beginning must include a
\begin{document}. After this follows the title page, a copyright page, and permissions, and
a table of contents. Besides an \end{document}, the end of a file usually includes indices and
the bibliography.

16.5 Preparing for Use of LaTEX

You must put latexinfo as an option to the documentstyle of every LaTEXinfo file to tell LaTEX
to use the ‘latexinfo.sty’ file when it is processing the LaTEXinfo source file. Otherwise LaTEX
will not know what to do with the commands. See section 2.4.1 [The Documentstyle], page 18.
If LaTEXinfo has been installed properly, LaTEX should find the file automatically. See section
A [Installing LaTeXinfo], page 165, if you have troubles.

16.6 Overfull “Hboxes”

LaTEX is sometimes unable to typeset a line without extending it into the right margin. This
can occur when LaTEX comes upon what it interprets as a long word that it cannot hyphenate,

146 CHAPTER 16. PRINTING HARDCOPY

such as an electronic mail network address or a very long title. When this happens, LaTEX
prints an error message like this:

Overfull \hbox (20.76302pt too wide)

(In LaTEX, lines are in “horizontal boxes”, hence the term, “hbox”.)
LaTEX also provides the line number in the LaTEXinfo source file and the text of the offending

line, which is marked at all the places that LaTEX knows how to hyphenate words.
If the LaTEXinfo file has an overfull hbox, you can rewrite the sentence so the overfull hbox

does not occur, or you can decide to leave it. A small excursion into the right margin often
does not matter and may not even be noticeable.

However, if you do leave an overfull hbox, unless told otherwise, LaTEX will print a large,
ugly, black rectangle beside the line. This is so you will notice the location of the problem if
you are correcting a draft. To prevent such a mark from marring your final printout, put the
following in the beginning of the LaTEXinfo file on a line of its own, before the \maketitle
command:

\finalout

Chapter 17

Catching Formatting Mistakes

Besides mistakes with the content of what ever you are describing, there are two kinds of
mistake you can make with LaTEXinfo: you can make mistakes with commands, and you can
make mistakes with the structure of the nodes and chapters. There are two tools for catching
the first kind of mistake and two for catching the second.

For finding problems with commands, your best action is to run
M-x latexinfo-format-region on regions of your file as you write it. In LaTEXinfo mode, the
latexinfo-format-region command is bound to ↑c ↑f. In addition, you can run LaTEX on
the whole file.

For finding problems with the structure of nodes and chapters, you can use ↑c ↑s
(latexinfo-show-structure) (see section 17.3 [Using latexinfo-show-structure], page 149,)
the related occur command (pxrefUsing occur,) and you can use the M-x Info-validate com-
mand (see section 17.5 [Running Info-Validate], page 151.)

17.1 Catching Errors with Info Formatting

After you have written part of a LaTEXinfo file, you can use the
M-x latexinfo-format-region command to see whether the region formats properly. In La-
TeXinfo Mode, this command is bound to the keyboard command ↑c ↑f. If you have made
a mistake with a command, M-x latexinfo-format-region will stop processing at or after
the error and give an error message. To see where in the file the error occurred, switch to the
‘*Info Region*’ buffer; the cursor will be in a position that is after the location of the error.
Also, the text will not be formatted after the place the error occurred (or more precisely, where
it was detected).

The latexinfo-format-region command sometimes provides slightly odd error messages.
For example, if you forget a closing brace,

(\xref{Catching Formatting Mistakes, for more info.)

In this case, latexinfo-format-region detects the missing closing brace but displays a mes-
sage that says ‘Unbalanced parentheses’ rather than ‘Unbalanced braces’. This is because

147

148 CHAPTER 17. CATCHING FORMATTING MISTAKES

the formatting command looks for mismatches between braces as if they were parentheses.
Sometimes latexinfo-format-region fails to detect mistakes. For example, in the follow-

ing, the closing brace is swapped with the closing parenthesis:

(\xref{Catching Formatting Mistakes), for more info.}

Formatting produces:

(*Note for more info.: Catching Formatting Mistakes)

The only way for you to detect this error is to realize that the reference should have looked
like this:

(*Note Catching Formatting Mistakes::, for more info.)

17.2 Catching Errors with LaTEX Formatting

You can also catch mistakes when you format a file with LaTEX. Usually, you will want to do this
after you have run latexinfo-format-buffer on the same file, because latexinfo-format-
buffer sometimes displays error messages that make more sense than LaTEX. (See section 17.1
[Debugging with Info], page 147, for more information.)

For example, LaTEX was run on a LaTEXinfo file, part of which is shown here:

---------- Buffer: latexinfo.tex ----------
name of the latexinfo file as an extension. The
\samp{??} are ‘wildcards’ that cause the shell to
substitute all the raw index files. (\xref{sorting
indices, for more information about sorting
indices.) \refill
---------- Buffer: latexinfo.tex ----------

(The cross reference lacks a closing brace.) LaTEX produced the following output, after which
it stopped:

---------- Buffer: *latexinfo-latex-shell* ----------
Runaway argument?
{sorting indices, for more information about sorting
indices.) \refill \ETC.
! Paragraph ended before \xref was complete.
<to be read again>

\par
l.27

?
---------- Buffer: *latexinfo-latex-shell* ----------

17.3. USING LATEXINFO-SHOW-STRUCTURE 149

In this case, LaTEX produced an accurate and understandable error message:

Paragraph ended before \xref was complete.

(‘\par’ is an internal LaTEX command, which is how it represents a new paragraph marker.)
Because the } was forgotten from the \xref command, LaTEXnoticed that the paragraph ended
before the command was complete.

Unfortunately, LaTEX is not always so helpful, and sometimes you have to be truly a Sherlock
Holmes to discover what went wrong. In any case, if you run into a problem like this, you can
do one of two things.

1. You can tell LaTEX to continue running and to ignore errors as best it can by typing r
RET at the ‘?’ prompt.

This is often the best thing to do. However, beware: the one error may produce a cascade
of additional error messages as its consequences are felt through the rest of the file. (To
stop LaTEX when it is producing such an avalanche of error messages, type C-c (or C-c
C-c, if you running a shell inside of Emacs.))

2. You can tell LaTEX to stop this run by typing x RET at the ‘?’ prompt.

Sometimes LaTEX will format a file without producing error messages even though there
is a problem. This usually occurs if a command is not ended but LaTEX is able to continue
processing anyhow. For example, if you fail to end an itemized list with the \end{itemize}
command, LaTEX will write a dvi file that you can print out. The only error message that
LaTEX will give you is the somewhat mysterious comment that

(\end occurred inside a group at level 1)

However, if you print the dvi file, you will find that the text of the file that follows the itemized
list is entirely indented as if it were part of the last item in the itemized list. The error message
is the way LaTEX says that it expected to find an \end command somewhere in the file; but
that it could not determine where it was needed.

17.3 Using latexinfo-show-structure

It is not always easy to keep track of the nodes, chapters, sections, and subsections of a
LaTEXinfo file. This is especially true if you are revising or adding to a LaTEXinfo file that
someone else has written.

In GNU Emacs, in LaTEXinfo mode, the latexinfo-show-structure command lists all
the lines that begin with the \-commands that specify the structure: \chapter, \section,
\chapter, and so on. With an argument (prefix, if interactive), the command also shows the
\node lines. The latexinfo-show-structure command is bound to C-c C-s in LaTEXinfo
mode, by default.

150 CHAPTER 17. CATCHING FORMATTING MISTAKES

The lines are displayed in a buffer called the ‘*Occur*’ buffer. For example, when
latexinfo-show-structure was run on an earlier version of this appendix, it produced the
following:

Lines matching "^ \ \ \(chapter \ \|sect \ \|sub \ \|unnum \
\)" in buffer latexinfo.tex.
4: \chapter{Catching Formatting Mistakes}
52: \section{Catching Errors with Info Formatting}

222: \section{Catching Errors with \LaTeX{} Formatting}
338: \section{Using \code{latexinfo-show-structure}}
407: \subsection{Using \code{occur}}
444: \section{Finding Badly Referenced Nodes}
513: \subsection{Running \code{Info-validate}}
573: \subsection{Splitting a File Manually}

This says that lines 4, 52, and 222 of ‘latexinfo.tex’ begin with the \chapter, \section,
and \section commands respectively. If you move your cursor into the ‘*Occur*’ window, you
can position the cursor over one of the lines and use the C-c C-c command (occur-mode-goto-
occurrence), to jump to the corresponding spot in the LaTEXinfo file. See Info file ‘emacs’,
node ‘Other Repeating Search’, for more information about occur-mode-goto-occurrence.

Remark: The first line in the ‘*Occur*’ window describes the regular expression specified by latexinfo-
heading-pattern. This regular expression is the pattern that latexinfo-show-structure looks for. See
Info file ‘emacs’, node ‘Regexps’, for more information.

When you invoke the latexinfo-show-structure command, Emacs will display the structure of
the whole buffer. If you want to see the structure of just a part of the buffer, of one chapter, for
example, use the C-x n (narrow-to-region) command to mark the region. (See Info file ‘emacs’, node
‘Narrowing’.) This is how the example used above was generated. To see the whole buffer again, use
the command C-x w (widen).

If you call latexinfo-show-structure with a prefix argument by typing C-u C-c C-s, it
will list lines beginning with \node as well as the lines beginning with the \-commands for
\chapter, \section, and the like.

You can remind yourself of the structure of a LaTEXinfo file by looking at the list in the
‘*Occur*’ window; and if you have mis-named a node or left out a section, you can correct the
mistake.

17.4 Using occur

Sometimes the latexinfo-show-structure command produces too much information. Per-
haps you want to remind yourself of the overall structure of a LaTEXinfo file, and are over-
whelmed by the detailed list produced by latexinfo-show-structure. In this case, you can
use the occur command directly. To do this, type

17.5. FINDING BADLY REFERENCED NODES 151

M-x occur

and then, when prompted, type a regexp, a regular expression for the pattern you want to
match. (See Info file ‘emacs’, node ‘Regexps’.) The occur command works from the current
location of the cursor in the buffer to the end of the buffer. If you want to run occur on the
whole buffer, place the cursor at the beginning of the buffer.

For example, to see all the lines that contain the word ‘\chapter’ in them, just type
‘\\chapter’. This will produce a list of the chapters. It will also list all the sentences with
‘\chapter’ in the middle of the line. If you want to see only those lines that start with the word
‘\chapter’, type ‘^\\chapter’ when prompted by occur. If you want to see all the lines that
end with a word or phrase, end the last word with a ‘$’; for example, ‘Catching Formatting
Mistakes$’. This can be helpful when you want to see all the nodes that are part of the same
chapter or section and therefore have the same ‘Up’ pointer.See Info file ‘emacs’, node ‘Other
Repeating Search’, for more information.

17.5 Finding Badly Referenced Nodes

You can use the Info-validate command to check whether any of the ‘Next’, ‘Previous’, ‘Up’
or other node pointers fail to point to a node. This command checks that every node pointer
points to an existing node. The Info-validate command works only on Info files, not on
LaTEXinfo files.

17.5.1 Running Info-validate

To use Info-validate, visit the Info file you wish to check and type:

M-x Info-validate

(Note that the Info-validate command requires an upper case ‘I’. You may also need to
create a tag table before running Info-validate. See section 17.5.3 [Tagifying], page 152.)

If your file is valid, you will receive a message that says “File appears valid”. However, if
you have a pointer that does not point to a node, error messages will be displayed in a buffer
called ‘*problems in info file*’.

For example, Info-validate was run on a test file that contained only the first node of
this manual. One of the messages said:

In node "Overview", invalid Next: LaTeXinfo Mode

This meant that the node called ‘Overview’ had a ‘Next’ pointer that did not point to anything
(which was true in this case, since the test file had only one node in it).

Now suppose we add a node named ‘LaTeXinfo Mode’ to our test case but we don’t specify
a ‘Previous’ for this node. Then we will get the following error message:

In node "LaTexinfo Mode", should have Previous: Overview

152 CHAPTER 17. CATCHING FORMATTING MISTAKES

This is because every ‘Next’ pointer should be matched by a ‘Previous’ (in the node where the
‘Next’ points) which points back. Info-validate also checks that all menu items and cross
references point to actual nodes.

Note that Info-validate requires a tag table and does not work with files that have been
split. (The latexinfo-format-buffer command automatically splits files larger than 100,000
bytes.) In order to use Info-validate on a large file, you must run latexinfo-format-buffer
with an argument so that it does not split the Info file; and you must create a tag table for the
unsplit file.

17.5.2 Creating an Unsplit File

You can run Info-validate only on a single Info file that has a tag table. The command will
not work on the indirect subfiles that are generated when a master file is split. If you have
a large file (longer than 70,000 bytes or so), you need to run the latexinfo-format-buffer
command in such a way that it does not create indirect subfiles. You will also need to create a
tag table for the Info file. After you have done this, you can run Info-validate and look for
badly referenced nodes.

The first step is to create an unsplit Info file. To prevent latexinfo-format-buffer from
splitting a LaTEXinfo file into smaller Info files, give a prefix to the M-x latexinfo-format-
buffer command:

C-u M-x latexinfo-format-buffer

When you do this, LaTEXinfo will not split the file and will not create a tag table for it.

17.5.3 Tagifying a File

After creating an unsplit Info file, you must create a tag table for it. Visit the Info file you
wish to tagify and type:

M-x Info-tagify

(Note the upper case I in Info-tagify.) This creates an Info file with a tag table that you
can validate.

The third step is to validate the Info file:

M-x Info-validate

(Note the upper case I in Info-validate.) In brief, the steps are:

C-u M-x latexinfo-format-buffer
M-x Info-tagify
M-x Info-validate

After you have validated the node structure, you can rerun latexinfo-format-buffer in
the normal way so it will construct a tag table and split the file automatically, or you can make
the tag table and split the file manually.

17.5. FINDING BADLY REFERENCED NODES 153

17.5.4 Splitting a File Manually

You should split a large file or else let the latexinfo-format-buffer command do it for you
automatically. (Generally you will let one of the formatting commands do this job for you. See
section 14 [Creating and Installing an Info File], page 121.)

The split off files are called the indirect subfiles. Info files are split to save memory. With
smaller files, Emacs does not have make such a large buffer to hold the information. If an Info
file has more than 30 nodes, you should also make a tag table for it. See section 17.5.1 [Using
Info-validate], page 151, for information about creating a tag table. (Again, tag tables are
usually created automatically by the formatting command; you only need to create a tag table
yourself if you are doing the job manually. Most likely, you will do this for a large, unsplit file
on which you have run Info-validate.)

Visit the file you wish to tagify and split and type the two commands:

M-x Info-tagify
M-x Info-split

(Note that the ‘I’ in ‘Info’ is upper case.)
When you use the Info-split command, the buffer is modified into a (small) Info file which

lists the indirect subfiles. This file should be saved in place of the original visited file. The
indirect subfiles are written in the same directory the original file is in, with names generated
by appending ‘-’ and a number to the original file name.

The primary file still functions as an Info file, but it contains just the tag table and a
directory of subfiles.

154 CHAPTER 17. CATCHING FORMATTING MISTAKES

Chapter 18

Extending LaTeXinfo

One of the advantages of LaTEXinfo is that it is easy to add your own extensions. Adding new
styles in a standard feature of LaTEX, and this makes it easy to modularize your additions by
plcing them in style files. There are a large number of publically available style files that can
be found on the Internet by anonymous ftp, for example on soe.clarkson.edu.

In LaTEXinfo, you can similarly make additions to the on-line manual generator by mak-
ing GNU Emacs handlers for your LaTEX extensions. This is the Emacs counterpart to the
documentstyle options. LaTEXinfo looks in a specified directory for GNU Elisp code that cor-
responds to each style file, by looking for the file named style-fmt.el. If this file is found, then
it is loaded into the Emacs session when latexinfo-format-buffer is called (see section 14.1
[Creating an Info file], page 121). Look in the styles and elisp directories of the LaTEXinfo
distribution for examples of this, and in the next section we will show a simple example of how
this works.

18.1 Optional Style Files

LaTEX provides a number of optional style files by default. These include latexinfo, 11pt,
12pt, twoside and titlepage. If any of the optional styles is a member of the Emacs variable
latexinfo-known-document-styles, then LaTEXinfo does not bother to look for the associated
-fmt file. By default this list is:

’(latexinfo 11pt 12pt twoside titlepage A4 a4 dina4 psfonts format))

18.1.1 The fvpindex Style

18.1.2 fvpindex Style

Let’s say that you wanted to develop a special style for a program, which defined the command
\f to be used for specifying functions. This command would put its argument in the function
index, and set the function in the printed manual in a special font. The LaTEX commands to

155

156 CHAPTER 18. EXTENDING LATEXINFO

do this are quite simple. Firstly, define the \f command, to put its argument in the fn index,
and set its argument in sf font.

\def\f#1{\findex{#1}{\sf #1}}

But what about the Info file? As it stands, the command \f is not defined in LaTEXinfo, so when
you formatted the buffer it would ignore all the \f commands, and their arguments. You need
to introduce the appropriate Emacs lisp code to provide the definition of the command that you
have added. For each option in the documentstyle command, LaTEXinfo looks to see if the file
name option-fmt.el exists in the directory defined by the Emacs variable latexinfo-formats-
directory. (This variable defaults to the value of the environment variable LATEXINFO, or if
that has not been defined, then the current directory). If it does exist, then it loads this file.
So continuing with our example, if the file ‘fvpindex-fmt.el’ contained the code

(put ’f ’latexinfo-format ’latexinfo-format-code)

then it would define the \f command to treat its argument the same way that the \code
command does.

After the option-fmt.el has been loaded, LaTEXinfo checks to see if a function (of no
arguments) called option-fmt-hook has been defined. If so, this function is called. This allows
you to define functions in the option-fmt.el file that operate on the whole LaTEXinfo file.

You can use the \documentstyle optional called fvpindex that loaded the style
‘fvpindex.sty’, which contains these definitions, and similar definitions for \v and \p. In-
clude fvpindex in the list of options to the documentstyle command, after the latexinfo
option. Your LaTEXinfo file would begin with something like:

\documentstyle[12pt,latexinfo,fvpindex]{book}

This provides a convenient way of documenting all functions, variables ans packages of a
program, and having their names automatically entered in the appropriate index, and set in
the font of your choice. Additionally, if you are using fvpindex in conjunction with the elisp
or clisp styles, you will find that the \defun commands put their index entries in in index
in bold type, whereas the definitions for \f, \v and \p set their entries in normal type. This
allows you to distinguish where the function was defined, and where it was simply referenced.

18.1.3 Clisp Style

A more modern approach to the Lisp back defun commands can be found in the style clisp.
The format of the commands is similar to that found in the earlier chapter on Definition
Commands (see section 10 [Definition Commands], page 79). This style is still evolving, and
may have new features of changes in the next release of LaTEXinfo. The commands of this style
are summarized below.

The principal differences between this style and the elisp style are the following:

18.1. OPTIONAL STYLE FILES 157

Command Name Language Class
deffn Lisp general functions
deffun Lisp functions
defspec Lisp special forms
defmac Lisp macros
defvr Lisp general variables
defvar Lisp variables
defconst Lisp constants

Table 18.1: The Clisp Definition Commands

• An optional parameter can be defined after the name of the command, that is used to
indicate the package to which the entity belongs. Insert this optional argument in the
traditional LaTEX style of using square brackets.

• The function arguments can contain the keywords \&optional, \&rest, and \&key.

• The function arguments can contain the functions \keys{. . .} and \morekeys{. . .} to
properly align the keyword arguments of a function.

• The variable and function index entries are coerced to lower case.

• The commands \true, \false, \empty and \nil are defined to print as t, nil, ()and
nil respectively.

\defun{name}[package]{arguments. . .} The \defun command is the definition command for
functions. \defun is equivalent to ‘\deffn{Function} . . .’. The package argument is optional,
and the square brackets are omitted if no package is provided. Within the argument list, the
following keywords are recognized: \&optional, \&rest, and \&key. They print as themselves
in the \code font.

The argument names on the \defun line do not automatically appear in italics in the printed
manual; they should be enclosed in \var. Terminate the definition with \enddefun on a line
of its own.

Within the argument list, the following commands are recognized:

\args{} which does nothing.

\keys{. . .} prints the word & key, and sets the tab stop to be align subsequent keys.

\morekeys{. . .} starts a new line and moves to the tab stop set by \keys.

\yetmorekeys{. . .} the same as \morekeys.

Implementation note: The arguments to these functions are set with a LaTEX minpage environment.
This means that new lines within the argument list will start new lines in the region between the function
name and the function type. Furthermore, the arguments are contained within a tabbing environment,
that allows the use of the \= and \> tab–set and tab commands. This allows one to line up parts of the
argument list, such as keys, and the *keys commands are implemented in terms of these.

158 CHAPTER 18. EXTENDING LATEXINFO

\defmac{name}[package]{arguments. . .} The \defmac command is the definition command
for macros. \defmac is equivalent to ‘\deffn{Macro} . . .’. The package argument is optional,
and the square brackets are omitted if no package is provided. Within the argument list, the
following commands are recognized: \&optional, \&rest, and \&key. They print as themselves
in the \code font. \defspec is similarly defined for special forms.

Within the \defun and \defmac argument lists, the following special functions are recog-
nized:

mopt To indicate [optional forms] .

mchoice To indicate [[a choice of forms]] .

mstar To indicate 0 or more {optional forms}∗ .

mplus To indicate 1 or more {forms}+ .

mgroup To indicate a group of {forms}+ .

mor To indicate an or between | forms.

mind To indicate an ↓form.

For more information on this syntax, see [Ste90].

\defvar{name}[package] The \defvar command is the definition command for variables.
\defvar is equivalent to ‘\deffn{Variable}’. \defconst is similarly defined for constants.

In addition to these commands, there are the corresponding “head-less” commands:
\deffnx, \deffunx, \defspecx, \defmacx, \defvrx, \defvarx, \defconstx, which are de-
fined identically to the corresponding commands expect that no extra space is put before the
command heading. You can use these on the second or more of a section that describes a
number of definitions.

18.2. LATEXINFO SUPPORT FOR EUROPEAN LANGUAGES 159

18.2 LaTeXinfo support for European languages

LaTEXinfo tries to support European languages, but it is an area that is in great flux right
now. ‘german.sty’ is supported as an optional file, and this will also provide some support for
French.

The following diacrtical marks are supported by default in LaTEXinfo, either in the form
\letter or \{letter}

\^ Circumflex accent: ĉ.

\‘ Accute accent: è.

\’ Grave accent: é.

\" Trémat: ö.

In the Info file, these marks are removed.
But note that by default, the commands \c, \b \i are used for other purposes than their

LaTEX usage as diacritical marks.
The hyphenation character \- is also supported.
To support Multi-lingual TEX, latexinfo.sty looks for the presence of the LaTEX number

\language, which are assumed to be defined as follows:

\newcount\USenglish \global\USenglish=0
\newcount\german \global\german=1
\newcount\austrian \global\austrian=2
\newcount\french \global\french=3
\newcount\english \global\english=4

The presence of \language set to any of \english \english, \french or \german changes
the way the cross-references are printed in LaTEX. The default is \english.

18.2.1 german.sty

LaTEXinfo has support for the file ‘german.sty’, as of Vers. 2.3, 7 Aug 1990, collected by H.
Partl (TU Wien), using ideas

by W. Appelt, F. Hommes et al. (GMD St.Augustin), T. Hofmann (CIBA-GEIGY Basel),
N. Schwarz (Uni Bochum), J. Schrod (TH Darmstadt), D. Armbruster (Uni Stuttgart), R.
Schoepf (Uni Mainz), and others. It is a document style option for writing german texts with
TEX or LaTEX. It can be called via adding the german option to the \documentstyle command.
Note: User’s should resort to their already-installed version of ‘german.sty’ (if any) before using the
one from LaTEXinfo, so the existing LaTEX site documentation won’t break. Various copies of this file
exist from different eras; you may wish to inquire if one is already installed at your site, and look to see
if it is more or less recent than the one distributed with LaTEXinfo.

To support Multi-lingual TEX, latexinfo.sty looks for the presence of the LaTEX number
\language, and if it is set to \german, it sets the cross-references in German, and looks to see

160 CHAPTER 18. EXTENDING LATEXINFO

if \mdqon is defined. If so, it lets double quotes have their special meaning, and otherwise sets
them as double quotes in typewriter font.
Implementation note: This file conforms to the standard for Einheitliche deutsche TeX-Befehle as
proposed at the 6th Meeting of German TeX Users in Muenster, October 1987.

18.2.1.1 Commands to be used by the end users

"a for Umlaut-a (like ä), also for all other vowels.

"s for sharp s (like \ss).

"ck for ck to be hyphenated as k-k.

"ff for ff to be hyphenated as ff-f, also for certain other consonants.

"| to separate ligatures.

"- like , but allowing hyphenation in the rest of the word.

"" like "-, but producing no hyphen sign.

"‘ or \glqq for german left double quotes (similar to ,,)

"’ or \grqq for german right double quotes (similar to “)

\glq for german left single quotes (similar to ,)

\grq for german right single quotes (similar to ‘)

"< or \flqq for french left double quotes (similar to <<)

"> or \frqq for french right double quotes (similar to >>)

\flq for french left single quotes (similar to <)

\frq for french right single quotes (similar to >)

\dq for the original quotes character (")

\setlanguagen to switch to the language specified by n, which should be one of the following
command names:

\austrian \french \english \german \USenglish this changes the date format, captions
and (if “multilingual TeX”is installed) hyphenation.

\originalTeX to restore everything to the original settings of TEX and LaTEX (well, almost
everything).

\germanTeX to re-activate the german settings.

18.2. LATEXINFO SUPPORT FOR EUROPEAN LANGUAGES 161

18.2.1.2 Obsolete Commands

Obsolete commands, provided for compatibility with existing applications:

\3 for sharp s (like "s).

\ck for ck to be hyphenated as k-k (like "ck).

18.2.1.3 Lower Level Commands and Features

\umlautlow redefines the Umlaut accent such that the dots come nearer to the letter and that
hyphenation is enabled in the rest of the word.

\umlauthigh restores ẗo its original meaning.

\ss is \lccode’d to enable hyphenation.

\mdqon makes " an active (meta-) character that does the pretty things described above.

\mdqoff restores " to its original meaning.

\dospecials, sanitize are redefined to include ".

\dateaustrian, \dategerman, \dateenglish, \dateUSenglish, \datefrench redefine
\today to use the respective date format.

\captionsgerman, \captionsenglish, \captionsfrench switch to german, english or french
chapter captions and the like, resp. This will have an effect only if the document style
files use the symbolic names \chaptername etc. instead of the original english words.

\language a count that is set by \setlanguage and can be used by document style declarations
like

\ifnum\language=\english .textengl.\else
\ifnum\language=\german .textgerm.\fi\fi

and/or by M.Ferguson’s “Multilingual TêX”.

Finally, \germanTeX is switched on.
This file can be used both with Plain TEX and with LaTEX and other macro packages, and

with the original TEX and LaTEX fonts. Usage of german hyphenation patterns is recommended
to accompany this style file when writing german texts.

The file should be read in vertical mode only (usually at the beginning of the document)
to avoid spurious spaces. \undefined must be an undefined control sequence.

Multiple calls of this file (e.g. at the beginning of each subfile) will do no harm. Only the
first call (i.e., if \mdqon is undefined) performs all the definitions and settings.

162 CHAPTER 18. EXTENDING LATEXINFO

The catcode of @ remains unchanged after processing of this file. All definitions are global,
the switching on of the german options is local.

The commands \mdqon, \mdqoff, \originalTeX, \germanTeX, and \setlanguage are
“fragile” with LaTEX and should not be used within arguments of macro calls.

In Plain TeX, ‘\protect’ should be \let to ‘\relax’ normally and to something like
‘\string’ inside the arguments of ‘\write’ or ‘\message’ (see LaTeX.TEX for all the details).

The command \umlautlow may need adaption to font parameters (see comments there for
details).

The commands \flqq, \frqq, \flq, \frq, and \datefrench in their present forms do not
work properly with all font sizes and styles, they still require a better solution.

18.3 Writing Your Own Style Files

<to be written>

Part IV

Appendices

163

Appendix A

Installing LaTeXinfo

A.1 Compiling LaTeXinfo

To compile LaTEXinfo:

1. Run the shell script ‘configure’. You will be asked to provide the following:

BINDIR Where to install the executables.

INFODIR Where to install the info files.

EMACS the name of your GNU Emacs.

These must exists, and you must be able to write to these directories. For example,

Where would you like to install the binaries?

Please type the full path to your binaries directory:
>/usr5/gnu/bin-sparc

The binaries path was verfied to be [/usr5/gnu/bin-sparc]

Where are the Gnu Info files located?

Please type the full path to your info directory:
>/usr5/gnu/info

The Info directory was verfied to be [/usr5/gnu/info]

Where is your GNU Emacs command:

Please type the name of your GNU Emacs command:
>xemacs

165

166 APPENDIX A. INSTALLING LATEXINFO

2. Then you will be asked:

Would you like to install the elisp and LaTeX files elsewhere,
or leave them here, and set an environment variable to point to here?

Set an environment variable to point to here [y/n]?

If you choose

y ‘configure’ will set the environment variable LATEXINFO in the ‘.login’ to point to
this directory, and you won’t need to make install.

n You will be asked about:

ELISPDIR Where to install the compiled Elisp code.
TEXDIR Where to install the style files.

For example,

Set an environment variable to point to here [y/n]? n

Where would you like to install GNU Emacs code (elisp)?

Please type the full path to your elisp directory:
>/usr5/gnu/lib/emacs/latexinfo

The elisp path was verfied to be [/usr5/gnu/lib/emacs/latexinfo]

Where would you like to install the LaTeX style files?

Please type the full path to your LaTeX style directory:
>/usr5/gnu/lib/tex

The LaTeX style path was verfied to be [/usr5/gnu/lib/tex]

3. Type make. This will make the executables latexindex, info, make the manual, and
compile the ‘.el’ files. It will also make the files .emacs and .login.

You may also have to change the definitions of your LaTeX commands in the shell script
‘manual/latex2dvi’ is you are unusual.

A.2. INSTALLING THE LATEXINFO DISTRIBUTION 167

A.2 Installing the LaTeXinfo Distribution

1. If you chose to install the elisp and LaTeX files elsewhere, type make install to make
the executables, the manual and compile the ‘.el’ files. This will

make install.C which will move the executables to BINDIR.
make install.manual which will move a copy of the files ‘manual/latexinfo.info*’ to

the info directory of the GNU Emacs distribution specified by INFODIR, and a copy
of the sample file to the LaTEX styles directory specified by TEXDIR.

make install.elisp which will move a copy of the files ‘styles/*.elc’ to the the GNU
Emacs lisp directory specified by ELISPDIR.

make install.styles which will move a copy of the files ‘styles/*.sty’ to the the
LaTEX styles directory specified by TEXDIR.

2. Edit the ‘dir’ file in INFO directory to include lines like

* LaTeXinfo: (latexinfo2.info). With one source file, make either a
manual using LaTeX or an Info file.

3. Include a copy of the ‘.emacs’ file in your ~/.emacs.

4. Include a copy of the ‘.login’ file in your ~/.login.

5. Print a copy of the ‘manual/latexinfo.dvi’ file and enjoy.

See section 14.2 [Installing an Info File], page 123, for more information on installing an info
file. See section A.2.1 [Installing the Style Files], page 167, for more information on installing
style files.

A.2.1 Installing the Style Files

Usually, the ‘latexinfo.sty’ file is put in the default directory that contains LaTEX macros,
something like the directory ‘/usr/local/lib/tex/inputs’, which is created when LaTEX is
installed. In this case, LaTEX will find the file and you don’t have to do anything special.
Alternatively, you can put ‘latexinfo.sty’ in the directory in which each LaTEXinfo source
file is located, and LaTEX will find it there.

However, you may want to specify the location of the \input file yourself. One way is to
set the TEXINPUTS environment variable in your ‘.login’ or ‘.profile’ file. The TEXINPUTS
environment variable will tell LaTEX where to find the ‘latexinfo.sty’ file and any other file
that you might want LaTEX to use. This is done by the .login file supplied with the LaTEXinfo
distribution.

Whether you use a ‘.login’ or ‘.profile’ file depends on whether you use csh, sh, or
bash for your shell command interpreter. When you use csh, it looks to the ‘.login’ file for
initialization information, and when you use sh or bash, it looks to the ‘.profile’ file.

In a ‘.login’ file, you could use the following csh command sequence:

168 APPENDIX A. INSTALLING LATEXINFO

setenv LATEXINFO /usr/me/mylib
Add the format files to the list of directories that LaTeX searches.
if ($?TEXINPUTS) then
setenv TEXINPUTS "$TEXINPUTS"’:’"$LATEXINFO"
else

setenv TEXINPUTS "$LATEXINFO"
endif

In a ‘.profile’ file, you could use the following sh command sequence:

TEXINPUTS=.:/usr/me/mylib:/usr/lib/tex/macros
export TEXINPUTS

This would cause LaTEX to look for the style file first in the current directory, indicated by the
‘.’, then in a hypothetical user’s ‘me/mylib’ directory, and finally in the system library.

Appendix B

Converting Files to LaTeXinfo

B.1 Converting LaTeX Files to LaTeXinfo

LaTEXinfo files are essentially a special style of standard LaTEX files. To make a standard LaTEX
file into a LaTEXinfo file, you must begin it with the lines

\documentstyle[12pt,latexinfo]{book}
\pagestyle{headings}

\begin{document}

\setfilename{latexinfo.info}

See section 1.5 [A Short Sample LaTeXinfo File], page 9, for details of how a LaTEXinfo file
begins. Once you have added these lines, you will have a document that will pass both LaTEX,
and Info formating program, but it will be a document with any node structure, so it will be
in essence one large node. (See section 11 [Nodes and Menus], page 95 for more information
on nodes.)

This is not very useful for the people who read the document under the info program. To
add nodes and menus to the document, you can do it by hand, or you can use the function
latexinfo-insert-node-lines (see section 15.3.2 [Other Updating Commands], page 134.)
Alternatively, use the l2latexinfo.el file provided with LaTEXinfo, which does this, and makes
a number of other conversions as well. See section B.1.1 [l2latexinfo.el], page 170.

If you want to use LaTEX commands for which there is no LaTEXinfo support of any kind,
you can always wrap them in a tex environment:

\begin{tex}
...
\end{tex}

This ensures that this part will be ignored by the Info processor, and that all special characters
will be processed according to the normal LaTEX definitions.

169

170 APPENDIX B. CONVERTING FILES TO LATEXINFO

The following LaTEX commands are also supported by the Info formatter, although they
might not do everything in Info that they do in LaTEX.

\LaTeX
\S
\arrow
\geq
\hfill
\label
\leq
\newblock
\newpage
\onecolumn
\pi
\pm
\protect
\qquad
\quad
\ss
\thebibliography
\thispagestyle
\tie
\twocolumn
\vspace
\vspace*

B.1.1 l2latexinfo.el

With the LaTEXinfo distribution is a file called ‘l2latexinfo.el’, which helps convert a LaTEX
file to a LaTEXinfo file. Although it is not a perfectly automatic conversion, it will convert most
of a file to LaTEXinfo. To convert a LaTEX File into an LaTEXInfo file, just visit a LaTEXfile in
GNU Emacs and invoke

Meta-x latex-to-latexinfo

to convert it to a LaTEXInfo file. Then search through the buffer to see if there are any command
that were not converted.

When you run latex-to-latexinfo, you will be asked

Would you like to do the \input files now, to do it all at once?

If you say yes, all the \input files will be included, so you can do all of the subfiles at the
same time.

Remember that the characters & ^ % $ # are not special in LaTEXinfo. There is no support
for any of the mathematics commands. Braces that are not required for LaTEXinfo commands
will appear in the Info file.

B.2. CONVERTING TEXINFO FILES INTO LATEXINFO FILES 171

B.2 Converting TeXinfo Files into LaTeXinfo Files

Documentation for GNU utilities and libraries is usually written in a format called TEXinfo.
Perhaps the most significant difference of LaTEXinfo from TEXinfo is that if a LaTEX command
is found that the Info formatter does not know about, an error is not signalled, and processing
simply continues. This means that as long as you don’t mind having the commands ignored in
the Info file, you can use any LaTEX command.

B.2.1 Differences from TeXinfo

The following TEXinfo commands have been deleted:

@asis Not needed.
@defindex Not needed (how many more indexes do you want??)
@dmn Not needed.
@ftable Not needed.
@itemx Not needed.
@setchapternewpage Use documentstyle type and options instead.
@subtitle You are free to use fonts in \title command.
@summarycontents Controlled by LaTeX parameter \setcounter{tocdepth}
@titlefont Not needed.

The following commands have been replaced by their LaTEX equivalents:

\appendixsec replaced by \section
\appendixsubsec replaced by \subsection
\appendixsubsubsec replaced by \subsubsection
\bye replaced by \end{document}
\center replaced by \begin{center} .. \end{center}
\chapheading replaced by \chapter*
\contents replaced by \tableofcontents
\group replaced by \begin{same}
\heading replaced by \section*
\headings replaced by \pagestyle
\majorheading replaced by \chapter*
\page replaced by \clearpage
\sc replaced by \scap
\settitle replaced by \title
\heading replaced by \section*
\subheading replaced by \subsection*
\subsubheading replaced by \subsubsection*
\table replaced by \begin{description}
\titlepage replaced by \maketitle
\vskip replaced by \vspace

172 APPENDIX B. CONVERTING FILES TO LATEXINFO

The following commands have been changed to their LaTEX definitions:

\appendix
\author
\center
\chapter
\date
\section
\subsection
\subsubsection
\begin{enumerate}
\begin{flushleft}
\begin{flushright}
\title
\today

The TEXinfo custom headings are supplanted by the LaTEX commands.

B.2.2 t2latexinfo.el

With the LaTEXinfo distribution is a file called ‘t2latexinfo.el’, which helps convert a TEXinfo
file to a LaTEXinfo file. Although it is not a perfectly automatic conversion, it will convert most
of a file to LaTEXinfo. To convert a TEXinfo File into an LaTEXInfo file, just visit a TEXinfo file
in GNU Emacs and invoke

Meta-x tex-to-latexinfo

to convert it to a LaTEXInfo file. Then search through the buffer to see if there are any command
that were not converted. These start with the symbol ‘@’. You may have to fix up the titlepage
to use \author and \title etc, and may choose to move the setfilename command down to
somewhere after the title and copyright pages. You will also have to fix up any places where
you have embedded TEX code such as

@tex
\overfullrule=0pt
@end tex

which will be converted into

\begin{tex}
\back overfullrule=0pt
\end{tex}

When you run tex-to-latexinfo, you will be asked

B.3. CONVERTING SCRIBE FILES TO LATEXINFO 173

Would you like to do the @input files now, to do it all at once?

If you say yes, all the @input files will be included, so you can do all of the subfiles at the
same time. You will also be asked:

Would you like all occurences of ‘@@’ replaced by ‘@’?

This is normally the case, but if you say no, you will be asked

Would you like all occurences of ‘@@’ replaced by ‘ \ \’?

You must choose one of these two options. The first option is normal for most TEXinfo files;
the second option is only normally used for converting the TEXinfo manual itself.

B.3 Converting Scribe Files to LaTeXinfo

With the LaTEXinfo distribution is a file called ‘s2latexinfo.el’, which helps convert a Scribe
file to a LaTEXinfo file. Although it is not a perfectly automatic conversion, it will convert most
of a file to LaTEXinfo. To convert a Scribe file into a LaTEXInfo file, just visit the Scribe file in
GNU Emacs and invoke

Meta-x scribe-to-latexinfo

to convert it to a LaTEXInfo file. Then search through the buffer to see if there are any
commands that were not converted. These start with the symbol ‘@’. When you run scribe-
to-latexinfo, you will be asked:

Would you like to do the @include files now, to do it all at once?

If you say yes, all the @include files will be included, so you can do all of the subfiles at the
same time. You will also be asked:
Implementation note: This program was written to convert the CMU Lisp manuals. It is very heavily
tailored to CMU and Common Lisp. Expect to have to alter this file to tailor it to your needs.

174 APPENDIX B. CONVERTING FILES TO LATEXINFO

Appendix C

Obtaining LaTEX

TEX is freely redistributable. You can obtain TEX for Unix systems from the University of
Washington for a distribution fee. LaTEX is included with TEX

To order a full distribution, send $140.00 for a 1/2-inch 9-track 1600 bpi (tar or cpio) tape
reel, or $165.00 for a 1/4-inch 4-track QIC-24 (tar or cpio) cartridge, to:

Northwest Computing Support Center
DR-10, Thomson Hall 35
University of Washington
Seattle, Washington 98195

Please make checks payable to the University of Washington.
Prepaid orders are preferred but purchase orders are acceptable; however, purchase orders

carry an extra charge of $10.00, to pay for processing.
Overseas sites: please add to the base cost $20.00 for shipment via air parcel post, or $30.00

for shipment via courier.
Please check with the Northwest Computing Support Center at the University of Washing-

ton for current prices and formats:

telephone: (206) 543-6259
email: elisabet@max.u.washington.edu

175

176 APPENDIX C. OBTAINING LaTEX

Appendix D

Command List

Here is an alphabetical list of the \-commands in LaTEXinfo. The alphabetical order ignores
the \begin{} and \end{} of environment commands.

* Force a line break. Do not end a paragraph that uses * with an \refill command. See
section 7.2.1 [Line Breaks], page 67.

\\ Force a line break in the LaTEX file. See section 7.2.1 [Line Breaks], page 67.

\. Stands for a period that really does end a sentence. See section 4.3.1.3 [Controlling Spacing],
page 45.

\: Indicate to LaTEX that an immediately preceding period, question mark, exclamation mark,
or colon does not end a sentence. Prevent LaTEX from inserting extra whitespace as it
does at the end of a sentence. The command has no effect on the Info file output. See
section 4.3.1.3 [Controlling Spacing], page 45.

\{ Stands for a left-hand brace, ‘{’. See section Braces Atsigns Periods in Inserting \braces
and periods.

\} Stands for a right-hand brace, ‘}’. See section Braces Atsigns Periods in Inserting \braces
and periods.

\appendix Begin the appendices. All chapters and sections after this command will be treated
as appendices, and marked with alphabetical chapter numbers.

\author{author} Typeset author according to the current documentstyles. See section 2.5.1
[Titlepage], page 21.

\b{text} Print text in bold font. No effect in Info. See section 4.2.3 [Fonts], page 43.

\back Stands for ‘\’. See section Braces Atsigns Periods in Inserting ‘\’.

\BibTeX{} Insert the logo BibTEX.

177

178 APPENDIX D. COMMAND LIST

\bullet{} Generate a large round dot, or the closest possible thing to one. See section 4.3.3
[Dots Bullets], page 46.

\c comment Begin a comment in Texinfo. The rest of the line does not appear in either the
Info file or the printed manual. A synonym for \comment. See section Conventions in
General Syntactic Conventions.

\cartouche Highlight an example or quotation by drawing a box with rounded corners around
it. Pair with \end{cartouche}. No effect in Info. See section cartouche in Drawing
Cartouches Around Examples.)

\begin{center} Center the text following. See section 5.2.1.1 [Center Environment], page 51.

\chapter{title} Begin a chapter. The chapter title appears in the table of contents of a printed
manual. In Info, the title is underlined with asterisks. See section 3.3 [Chapter], page 33.

\cindex{entry} Add entry to the index of concepts. See section Index Entries in Defining the
Entries of an Index.

\cite{reference} Refer to a BibTEX bibliography item. See section 8.2 [Citations], page 74.

\clearpage Start a new page in a printed manual. No effect in Info. See section page in Start
a New Page.

\code{sample-code} Highlight text that is an expression, a syntactically complete token of a
program, or a program name. See section code in \code.

\comment comment Begin a comment in LaTEXinfo. The rest of the line does not appear
in either the Info file or the printed manual, nor does following whitespace. See section
Conventions in General Syntactic Conventions.

\copyright{} Generate a copyright symbol. See section 4.3.4 [LaTeX and copyright], page 46.

\defcv{category}{class}{name} Format a description for a variable associated with a class
in object-oriented programming. Takes three arguments: the category of thing being
defined, the class to which it belongs, and its name. See section 10 [Definition Commands],
page 79.

\deffn{category}{name}{arguments. . .} Format a description for a function, interactive com-
mand, or similar entity that may take arguments. \deffn takes as arguments the category
of entity being described, the name of this particular entity, and its arguments, if any.
See section 10 [Definition Commands], page 79.

\defivar{class}{instance-variable-name} Format a description for an instance variable in
object-oriented programming. The command is equivalent to ‘\defcv{Instance Vari-
able} . . .’. See section 10 [Definition Commands], page 79.

179

\defmac{macro-name}{arguments. . .} Format a description for a macro. The command is
equivalent to ‘\deffn{Macro}. . .’. See section 10 [Definition Commands], page 79.

\defmethod{class}{method-name}{arguments. . .} Format a description for a method in
object-oriented programming. The command is equivalent to ‘\defop{Method} . . .’.
Takes as arguments the name of the class of the method, the name of the method, and
its arguments, if any. See section 10 [Definition Commands], page 79.

\defop{category}{class}{name}{arguments. . .} Format a description for an operation in
object-oriented programming. \defop takes as arguments the overall name of the cate-
gory of operation, the name of the class of the operation, the name of the operation, and
its arguments, if any. See section 10 [Definition Commands], page 79.

\defopt{option-name} Format a description for a user option. The command is equivalent to
‘\defvr{User Option} . . .’. See section 10 [Definition Commands], page 79.

\defspec{special-form-name}{arguments}. . . Format a description for a special form. The
command is equivalent to ‘\deffn{Special Form}. . .’. See section 10 [Definition Com-
mands], page 79.

\deftp{category}{name-of-type}{attributes. . .} Format a description for a data type. \deftp
takes as arguments the category, the name of the type (which is a word like ‘int’ or ‘float’),
and then the names of attributes of objects of that type. See section 10 [Definition
Commands], page 79.

\deftypefn{classification}{data-type}{name}{arguments. . .} Format a description for a
function or similar entity that may take arguments and that is typed. \deftypefn takes
as arguments the classification of entity being described, the type, the name of the entity,
and its arguments See section 10 [Definition Commands], page 79.

\deftypefun{data-type}{function-name}{arguments. . .} Format a description for a function
in a typed language. The command is equivalent to ‘\deftypefn{Function}. . .’. See
section 10 [Definition Commands], page 79.

\deftypevr{classification}{data-type}{name} Format a description for something like a vari-
able in a typed language—an entity that records a value. Takes as arguments the clas-
sification of entity being described, the type, and the name of the entity. See section 10
[Definition Commands], page 79.

\deftypevar{data-type}{variable-name} Format a description for a variable in a typed lan-
guage. The command is equivalent to ‘\deftypevr{Variable}. . .’. See section 10 [Defi-
nition Commands], page 79.

\defun{function-name}{arguments. . .} Format a description for functions. The command is
equivalent to ‘\deffn{Function}. . .’. See section 10 [Definition Commands], page 79.

\defvar{variable-name} Format a description for variables. The command is equivalent to
‘\defvr{Variable}. . .’. See section 10 [Definition Commands], page 79.

180 APPENDIX D. COMMAND LIST

\defvr{category}{name} Format a description for any kind of variable.
\defvr takes as arguments the category of the entity and the name of the entity. See
section 10 [Definition Commands], page 79.

\begin{description} Begin a description, using \item for each entry. Write each first column
entry as \item[entry]. See section 6.3 [Description Environment], page 63.

\dfn{term} Highlight the introductory or defining use of a term. See section dfn in \dfn.

\begin{display} Begin a kind of example. Indent text, do not fill, do not select a new font.
Pair with \end{display}. See section display in \begin{display}.

\dmn{dimension} Format a dimension. Causes LaTEX to insert a narrow space before dimen-
sion. Has no effect in Info. Used for writing a number followed by an abbreviation of
a dimension name, such as ‘12 pt’, written as ‘12\dmn{pt}’, with no space between the
number and the \dmn command. See section dmn in \dmn.

\end{document} Terminate LaTEX processing on the file. LaTEX does not see any of the
contents of the file following the \end{document} command. See section 2.9 [Ending a
File], page 27.

\dots{} Insert an ellipsis: ‘. . .’. See section 4.3.3 [Dots Bullets], page 46.

\emph{text} Highlight text. See section Emphasis in Emphasizing Text.

\begin{enumerate} Begin a numbered list, using \item for each entry. Pair with
\end{enumerate}. See section enumerate in \begin{enumerate}.

\equiv{} Indicate the exact equivalence of two forms to the reader with a special glyph: ‘≡ ’.
See section 5.7.5 [Equivalence], page 58.

\error{} Indicate to the reader with a special glyph that the following text is an error message:
‘ error ’. See section 5.7.4 [Error Special Glyph], page 58.

\begin{example} Begin an example. Indent text, do not fill, select fixed-width font. Pair
with \end{example}. See section example in \begin{example}.

\exdent line-of-text Remove any indentation a line might have. See section exdent in Undoing
the Indentation of a Line.

\expansion{} Indicate the result of a macro expansion to the reader with a special glyph:
‘7→’. See section 5.7.2 [expansion], page 57.

\file{filename} Highlight the name of a file or directory. See section file in \file.

\finalout Prevent LaTEX from printing large black warning rectangles beside over-wide lines.
See section 16.6 [Overfull Hboxes], page 145.

\findex{entry} Add entry to the index of functions. See section Index Entries in Defining the
Entries of an Index.

181

\begin{flushleft} Left justify every line but leave the right end ragged. Leave font as is.
Pair with \end{flushleft}. See section flushleft & flushright in \begin{flushleft}
and \begin{flushright}.

\begin{flushright} Right justify every line but leave the left end ragged. Leave font as is.
Pair with \end{flushright}. See section flushleft & flushright in \begin{flushleft}
and \begin{flushright}.

\footnote{text-of-footnote} Enter a footnote. Footnote text is printed at the bottom of the
page by LaTEX; Info may format in either ‘End Node’ or ‘Make Node’ style. See section
8.1 [Footnotes], page 73.

\footnotestyle{style} Specify an Info file’s footnote style, either ‘end’ for the end node style
or ‘separate’ for the separate node style. See section 8.1 [Footnotes], page 73.

\begin{format} Begin a kind of example. Like \begin{example} or \begin{display},
but do not narrow the margins and do not select the fixed-width font. Pair with
\end{format}. See section example in \begin{example}.

\i{text} Print text in italic font. No effect in Info. See section 4.2.3 [Fonts], page 43.

\begin{ifinfo} Begin a stretch of text that will be ignored by LaTEX when it typesets the
printed manual. The text appears only in the Info file. Pair with \end{ifinfo}. See
section Conditionals in Conditionally Visible Text.

\begin{iftex} Begin a stretch of text that will not appear in the Info file, but will be processed
only by LaTEX. Pair with \end{iftex}. See section Conditionals in Conditionally Visible
Text.

\begin{ignore} Begin a stretch of text that will not appear in either the Info file or the printed
output. Pair with \end{ignore}. See section Comments in Comments and Ignored Text.

\include{filename} Incorporate the contents of the file filename into the Info file or printed
document. See section 9.2 [Include Files], page 75.

\inforef{node-name, [entry-name , info-file-name}] Make a cross reference to an Info file for
which there is no printed manual. See section inforef in Cross references using \inforef.

\input{filename} Input the contents of the file filename into the Info file or printed document.
See section 9.1 [Input Files], page 75.

\item Indicate the beginning of a marked paragraph for \begin{itemize} and
\begin{enumerate} and \begin{description} environments.

\begin{itemize} Produce a sequence of indented paragraphs, with a mark inside the left
margin at the beginning of each paragraph. Pair with \end{itemize}. See section 6.1
[Itemize Environment], page 62.

182 APPENDIX D. COMMAND LIST

\kbd{keyboard-characters} Indicate text that consists of characters of input to be typed by
users. See section kbd in \kbd.

\key{key-name} Highlight key-name, a conventional name for a key on a keyboard. See
section key in \key.

\kindex{entry} Add entry to the index of keys. See section Index Entries in Defining the
Entries of an Index.

\LaTeX{} Insert the logo LaTEX.

\begin{lisp} Begin an example of Lisp code. Indent text, do not fill, select fixed-width font.
Pair with \end{lisp}. See section Lisp Example in \begin{lisp}.

\begin{menu} Mark the beginning of a menu of nodes in Info. No effect in a printed manual.
Pair with \end{menu}. See section 11.3 [Menu Environment], page 98.

\minus{} Generate a minus sign. See section minus in \minus.

\need{n} Start a new page in a printed manual if fewer than n mils (thousandths of an inch)
remain on the current page. See section need in \need.

\node name, next, previous, up Define the beginning of a new node in Info, and serve as a
locator for references for LaTEX. See section node in \node.

\noindent Prevent text from being indented as if it were a new paragraph. See section
noindent in \noindent.

\nxref{node-name, [entry], [topic], [info-file], [manual]} Make a reference. In a printed man-
ual, the reference does not start with a ‘See’. Follow command with a punctuation mark.
Only the first argument is mandatory. See section ref in \nxref.

\paragraphindent{indent} Indent paragraphs by indent number of spaces; delete indenta-
tion if the value of indent is 0; and do not change indentation if indent is asis. See
section paragraphindent in Paragraph Indenting.

\pindex{entry} Add entry to the index of programs. See section Index Entries in Defining
the Entries of an Index.

\point{} Indicate the position of point in a buffer to the reader with a special glyph: ‘?’. See
section Point Special Glyph in Indicating Point in a Buffer.

\print{} Indicate printed output to the reader with a special glyph: ‘a ’. See section 5.7.3
[Print Special Glyph], page 57.

\printindex{index-name} Print an alphabetized two-column index in a printed manual or
generate an alphabetized menu of index entries for Info. See section 2.9.2 [Printing an
Index and Generating Menus], page 28.

183

\pxref{node-name, [entry], [topic], [info-file], [manual]} Make a reference that starts with a
lower case ‘see’ in a printed manual. Use within parentheses only. Do not follow com-
mand with a punctuation mark. The Info formatting commands automatically insert
terminating punctuation as needed, which is why you do not need to insert punctuation.
Only the first argument is mandatory. See section pxref in \pxref.

\begin{quotation} Narrow the margins to indicate text that is quoted from another real or
imaginary work, and indent following text. Write command on a line of its own. Pair
with \end{quotation}. See section 5.1 [Quotations], page 50.

\begin{quote} Narrow the margins to indicate text that is quoted from another real or
imaginary work. Write command on a line of its own. Pair with \end{quote}. See
section 5.1 [Quotations], page 50.

\r{text} Print text in roman font. No effect in Info. See section 4.2.3 [Fonts], page 43.

\refill In Info, refill and indent the paragraph after all the other processing has been done. No
effect on LaTEX, which always refills. See section 7.4 [Refilling Paragraphs], page 70.

\result{} Indicate the result of an expression to the reader with a special glyph: ‘⇒’. See
section result in \result.

\samp{text} Highlight text that is a literal example of a sequence of characters. Used for
single characters, for statements and often for entire shell commands. See section samp
in \code.

\scap{text} Set text in a printed output in the small caps font and set text in the Info
file in uppercase letters. See section 4.2.2 [Smallcaps], page 42.

\setfilename{info-file-name} Provide a name for the Info file. See section Conventions in
General Syntactic Conventions.

\begin{smalllisp} Begin an example of Lisp code. Indent text, do not fill, select a small
fixed-width font. Pair with \end{lisp}. See section Lisp Example in \begin{lisp}.

\title{title} Provide a title for page headers in a printed manual, and for the titlepage. See
section Conventions in General Syntactic Conventions.

\begin{same} Hold text together that must appear on one printed page. Pair with
\end{same}. Not relevant to Info. See section group in \begin{same}.

\begin{smallexample} Indent text to indicate an example. Do not fill, select fixed-width
font. In \smallbook format, print text in a smaller font than with \begin{example}.
Pair with \end{smallexample}. See section 5.4 [Examples and Verbatim], page 52.

\smalllisp Begin an example of Lisp code. Indent text, do not fill, select fixed-width font.
In \smallbook format, print text in a smaller font. Pair with \end{smalllisp}. See
section 5.4 [Examples and Verbatim], page 52.

184 APPENDIX D. COMMAND LIST

\sp{n} Skip n blank lines. See section sp in \sp.

\strong{text} Emphasize text by typesetting it in a bold font for the printed manual and by
surrounding it with asterisks for Info. See section emph & strong in Emphasizing Text.

\subsection{title} Begin a subsection within a section. In a printed manual, the subsection
title is numbered and appears in the table of contents. In Info, the title is underlined
with hyphens. See section 3.6 [Subsection], page 34.

\subsubsection{title} Begin a subsubsection within a subsection. In a printed manual, the
subsubsection title is numbered and appears in the table of contents. In Info, the title is
underlined with periods. See section 3.7 [Subsubsection], page 34.

\syncodeindex{from-index}{into-index} Merge the index named in the first argument into
the index named in the second argument, printing the entries from the first index in
\code font. See section 13.3 [Combining Indices], page 118.

\synindex{from-index}{into-index} Merge the index named in the first argument into the
index named in the second argument. Do not change the font of from-index entries. See
section 13.3 [Combining Indices], page 118.

\t{text} Print text in a fixed-width font. No effect in Info. See section 4.2.3 [Fonts], page 43.

\tableofcontents Print a complete table of contents. Has no effect in Info, which uses menus
instead. See section 2.6 [Generating a Table of Contents], page 23.

\TeX{} Insert the logo TEX.

\begin{tex} Enter LaTEX completely. Pair with \end{tex}. See section 5.8.1 [Using Ordinary
LaTeX Commands], page 60.

\tindex{entry} Add entry to the index of data types. See section Index Entries in Defining
the Entries of an Index.

\title{title} In a printed manual, set a title in a larger than normal font and underline it with
a black rule. See section 2.5.1 [Titlepage], page 21.

\today{} Insert the current date. See section 2.4.4 [Custom Headings], page 20.

\unnumbered{title} In a printed manual, begin a chapter that appears without chapter
numbers of any kind. The title appears in the table of contents of a printed manual. In
Info, the title is underlined with asterisks. See section 3.3 [Chapter], page 33.

\unnumberedsec{title} In a printed manual, begin a section that appears without section
numbers of any kind. The title appears in the table of contents of a printed manual. In
Info, the title is underlined with equal signs. See section 3.5 [Section], page 34.

185

\unnumberedsubsec{title} In a printed manual, begin an unnumbered subsection within a
chapter. The title appears in the table of contents of a printed manual. In Info, the title
is underlined with hyphens. See section 3.6 [Subsection], page 34.

\unnumberedsubsubsec{title} In a printed manual, begin an unnumbered subsubsection
within a chapter. The title appears in the table of contents of a printed manual. In Info,
the title is underlined with periods. See section 3.7 [Subsubsection], page 34.

\var{metasyntactic-variable} Highlight a metasyntactic variable, which is something that
stands for another piece of text. Thus, in this entry, the word metasyntactic-variable
is highlighted with \var. See section var in Indicating Metasyntactic Variables.

\vindex{entry} Add entry to the index of variables. See section Index Entries in Defining
the Entries of an Index.

\vspace{amount} In a printed manual, insert whitespace so as to push text on the remainder
of the page towards the bottom of the page. Used in formatting the copyright page with
the argument ‘0pt plus 1filll’. (Note spelling of ‘filll’.) \vspace is ignored for Info.
See section 2.5.2 [The Copyright Page and Printed Permissions], page 22.

\w{text} Prevent text from being split across two lines. Do not end a paragraph that uses \w
with an \refill command. In the LaTEXinfo file, keep text on one line. See section w in
\w.

\xref{node-name, [entry], [topic], [info-file], [manual]} Make a reference that starts with
‘See’ in a printed manual. Follow command with a punctuation mark. Only the first
argument is mandatory. See section xref in \xref.

186 APPENDIX D. COMMAND LIST

Bibliography

[Lam86] Leslie Lamport. LaTeX: A Document Preparation System. Addison-Wesley, Reading,
MA, 1986.

[Sta86] Richard Stallman. The GNU Emacs Manual. The Free Software Foundation, 675
Massachusetts Ave., Cambridge MA, 02139, 1986.

[Ste90] Guy˜L. Steele. Common Lisp - the Language II. Addison–Wesley, Reading, MA,
1990.

187

188 BIBLIOGRAPHY

Command Index

This is an alphabetical list of all the \-
commands and several variables. To make
the list easier to use, the commands are listed
without their preceding ‘\’.

’
’ 159

*
* (force line break) 67

.

. (true end of sentence) 45

:
: (suppress widening) 45

\

\(single ‘\’) 44

ˆ
ˆ 159

‘
‘ 159

A
alwaysrefill 71
appendix 33
apply 90
author 21

B
b 159
b (bold font) 43
bibliographystyle 27
buffer-end 81
bullet 46
bye 29

C
c 16, 159
c (comment) 16
caption 65
cartouche 55
center 51
chapter 33
chapter* 33
cindex 117
cite 74
clearpage 22
clisp 156
code 36
comment 16
copyright 22, 46
cpindexbold 118
cpsubindex 118
ctrl 39

D
date 21
defconstx 158
defcv 87
deffn 82
deffnx 158
deffunx 158
defivar 88
defmac 83
defmacx 158
defmethod 89
defop 88
defopt 90
defspec 83
defspecx 158
deftp 89
deftypefn 84
deftypefun 85
deftypevar 87
deftypevr 86

189

190 COMMAND INDEX

defun 83
defvar 84
defvarx 158
defvr 83
defvrx 158
description 63
dfn 41
display 52
dmn 45
dots 46

E
emph 42
end 49, 61
enumerate 62
evenfoot 20
example 52
exdent 55

F
figure 65
file 41
filll 22
finalout 146
findex 117
flushleft 51
flushright 51
fnindexbold 118
foobar 81, 85, 86
footnote 73
footnotestyle 20, 74
format 52
forward-word 80

H
hline 64

I
i 159
i (italic font) 43
ifinfo 59
iftex 59, 60
ignore 16
include 76
Info-validate 151
inforef 112
input 75
item 62, 63

itemize 62

K
kbd 37
key 38
kindex 117
kyindexbold 118

L
LaTeX 46
latex2dvi (shell script) 142
latexindex 141
latexinfo-all-menus-update 133
latexinfo-every-node-update 132
latexinfo-format-buffer 121, 136
latexinfo-format-region 121, 136
latexinfo-indent-menu-description 135
latexinfo-insert-braces 130
latexinfo-insert-code 130
latexinfo-insert-dfn 130
latexinfo-insert-end 130
latexinfo-insert-example 130
latexinfo-insert-item 130
latexinfo-insert-kbd 130
latexinfo-insert-node 130
latexinfo-insert-node-lines 134
latexinfo-insert-noindent 130
latexinfo-insert-samp 130
latexinfo-insert-var 130
latexinfo-latex-buffer 137
latexinfo-latex-print 137
latexinfo-latex-region 137
latexinfo-make-menu 132
latexinfo-master-menu 132
latexinfo-multiple-files-update 134, 135
latexinfo-sequential-node-update 135
latexinfo-show-structure 131, 149
latexinfo-update-node 132
lisp 54
lpr (dvi print command) 143

M
maketitle 21
markboth 20
markright 20
menu 98
minus 47

COMMAND INDEX 191

N
n (normalsize font) 43
need 69
newindex 19
noindent 53

O
occur 150
occur-mode-goto-occurrence 131
oddfoot 20
onecolumn 29

P
page 69
pagenumbering 20
pagestyle 20, 22
paragraphindent 20
pgindexbold 118
pindex 117
printindex 28
pxref 111

Q
quotation 50
quote 50

R
r (Roman font) 43
ref 110
refill 70

S
same 69
samp 39
scap (small caps font) 42
section 34
section* 34
setfilename 19
smallverbatim 54
sp (line spacing) 68
strong 42
subsection 34
subsection* 34
subsubsection 34
subsubsection* 34
syncodeindex 118
synindex 119

T
t (typewriter font) 43
table 65
tabular 64
tex 60
thispagestyle 22
tindex 117
title 21
tpindexbold 118
twocolumn 29

U
unnumbered 33
unnumberedsec 34
unnumberedsubsec 34
unnumberedsubsubsec 34
up-list 130

V
var 40
verb 47
verbatim 54
verbatimfile 54
vindex 117
vrindexbold 118
vspace 22
vspace* 22

W
w (prevent line break) 68

X
xref 105

192 COMMAND INDEX

Concept Index

\

.login initialization file . 124, 145, 167

.profile initialization file . 145
\-commands . 7
TEXINPUTS environment variable . 145, 167
‘dir’ directory for Info installation . 123
‘dir’ file listing . 124
dvi file . 141

A
A Short Sample LaTeXinfo File . 9
Abbreviations for keys . 38
Adding a new info file . 124
Advantages of LaTeXinfo over TeXinfo . 4
Alphabetical \-command list . 177
Always Refilling Paragraphs . 71
Another Info directory . 124
Appendix . 33
Automatically insert nodes, menus . 131

B
Badly referenced nodes . 151
Beginning a LaTeXinfo file . 15
Beginning line of a LaTeXinfo file . 18
Black rectangle in hardcopy . 146
Box with rounded corners . 55
Braces, inserting . 44
Breaks in a line . 67
Buffer formatting and printing . 137
Bullets, inserting . 46

C
Capitalizing index entries . 116
Catching errors with LaTEX formatting . 148
Catching errors with Info formatting . 147
Catching Formatting Mistakes . 147

193

194 CONCEPT INDEX

Center Environment . 51
Centering a line . 51
Chapter . 33
Chapter structuring . 31
Characteristics of printed manual . 7
Checking for badly referenced nodes . 151
Citations . 74
Cite . 74
Clisp Style . 156
Combining indices . 118
Command definitions . 90
Command Index . 189
Command list . 177
Commands to insert single characters . 44
Commands using ordinary LaTEX . 60
Commands, inserting them . 130
Comments . 16
Compile command for formatting . 144
Concept Index . 193
Conditionally visible text . 59
Conditions for copying LaTeXinfo . 1
Contents, Table of . 23
Contents-like outline of file structure . 131
Conventions, syntactic . 15
Converting TeXinfo Files into LaTeXinfo Files . 171
Copying conditions . 1
Copying permissions . 26
Copying software . 26
Copyright . 22
Copyright page . 21
Correcting mistakes . 147
Create nodes, menus automatically . 131
Creating an Info file . 121
Creating an unsplit file . 152
Creating index entries . 116
Creating indices . 115
Cross reference parts . 104
Cross references . 103
Cross references using \inforef . 112
Cross references using \nxref . 110
Cross references using \pxref . 111
Cross references using \xref . 105
Ctrl . 39

D
Debugging the LaTeXinfo structure . 147
Debugging with LaTEX formatting . 148
Debugging with Info formatting . 147

CONCEPT INDEX 195

Declaring indices . 117
Defining indexing entries . 116
Definition commands . 79
Definition template . 80
Descriptions, making two-column . 63
diacritical marks . 159
Differences from TeXinfo . 171
Different cross reference commands . 103
Dimension formatting . 45
Display formatting . 52
Distribution . 26
Dots, inserting . 46

E
Elisp Style . 79
Ellipsis, inserting . 46
Emacs . 129
Emacs shell, printing from . 143
Emphasizing text . 41
Emphasizing text, font for . 42
End of node footnote style . 73
Ending a LaTeXinfo file . 27
Entries for an index . 116
Entries, making index . 115
Enumeration . 62
environment variable, LATEXINFO . 162
Equivalence, indicating it . 58
Error message, indicating it . 58
Evaluation special glyph . 56
Example menu . 100
Examples . 52
Expansion, indicating it . 57
Extending LaTeXinfo . 155

F
File beginning . 15, 17
File ending . 27
File Header . 18
File section structure, showing it . 131
Filling paragraphs . 70, 71
Final output . 145
Finding badly referenced nodes . 151
First line of a LaTeXinfo file . 18
Fonts for indices . 119
Fonts for printing, not Info . 43
Footnotes . 73
Format a dimension . 45
Format and print in LaTeXinfo mode . 143

196 CONCEPT INDEX

Format with the compile command . 144
Formatting a file for Info . 121
Formatting commands . 7
Formatting examples . 52
Formatting for Info . 136
Formatting for printing . 137
Frequently used commands, inserting . 130
Function definitions . 90

G
General syntactic conventions . 15
Generating a Table of Contents . 23
Generating menus with indices . 28
Glyphs for examples . 56
GNU Emacs . 129
GNU Emacs shell, printing from . 143

H
Hardcopy, printing it . 141
Hboxes, overfull . 145
Header for LaTeXinfo files . 18
Highlighting . 35
Holding text together vertically . 69

I
If text conditionally visible . 59
Ignored text . 16
Include files . 75
Including text verbatim . 54
Indentation undoing . 55
Indenting paragraphs . 20
Index entries . 116
Index entries, making . 115
Index entry capitalization . 116
Index font types . 117
Indicating commands, definitions, etc. 35
Indicating evaluation . 56
Indices . 115
Indices, combining them . 118
Indices, declaring . 117
Indices, printing and menus . 28
Indices, sorting . 141
Indices, two letter names . 119
Indirect subfiles . 121
Info file installation . 123
Info file requires \setfilename . 19
Info file, listing new one . 124
Info file, splitting manually . 153

CONCEPT INDEX 197

Info files . 5
Info formatting . 136
Info installed in another directory . 124
Info validating a large file . 151
Info, creating an on-line file . 121
Initialization file for LaTEX input . 145
Input and Include Files . 75
Input Files . 75
Insert nodes, menus automatically . 131
Inserting \, braces, and periods . 44
Inserting dots . 46
Inserting ellipsis . 46
Inserting frequently used commands . 130
Inserting special characters and symbols . 44
Installing an Info file . 123
Installing Info in another directory . 124
Itemization . 62

K
Keys, recommended names . 38

L
LaTeX index sorting . 141
LaTeX input initialization . 145
LATEXINFO environment variable . 162
LaTeXinfo file beginning . 15, 17
LaTeXinfo file ending . 27
LaTeXinfo file header . 18
LaTeXinfo file minimum . 16
LaTeXinfo file section structure, showing it . 131
LaTeXinfo mode . 129
LaTeXinfo Mode

Summary . 138
LaTeXinfo overview . 3
License agreement . 26
Line breaks . 67
Line breaks, preventing . 68
Line spacing . 68
Lisp example . 54
List of \-Commands . 177
Listing a new info file . 124
Lists and tables, making them . 61
Local variables . 144
Location of menus . 98
Looking for badly referenced nodes . 151

M
Macro definitions . 90

198 CONCEPT INDEX

Making a Bibliography . 27
Making a printed manual . 141
Making a tag table manually . 152
Making breaks . 67
Making cross references . 103
Making Lists Tables and Descriptions . 61
Manual characteristics, printed . 7
Marking text within a paragraph . 35
Marking words and phrases . 35
Master menu . 24
Master menu parts . 24
Menu example . 100
Menu item writing . 99
Menu location . 98
Menus . 98
Menus generated with indices . 28
META key . 38
Meta-syntactic chars for optional parameters . 81
Minimal LaTeXinfo file . 16
Mistakes, catching . 147
Mode, using Latexinfo . 129
Must have in LaTeXinfo file . 16

N
Names for indices . 119
Names recommended for keys . 38
Naming a ‘Top’ Node in references . 110
Need space at page bottom . 69
New info file, listing it . 124
Node line writing . 97
Node, Top . 24
Nodes for menus are short . 98
Nodes in other Info files . 101
Nodes, Catching Formatting Mistakes . 147
Nodes, checking for badly referenced . 151

O
Occurrences, listing with \occur . 150
Optional and repeated parameters . 81
Ordinary LaTEX commands, using . 60
Other Info files’ nodes . 101
Outline of file structure, showing it . 131
Overfull “Hboxes” . 145
Overview of LaTeXinfo . 3

P
Page breaks . 69
Page delimiter in LaTeXinfo mode . 131

CONCEPT INDEX 199

Paragraph indentation . 20
Paragraph, marking text within . 35
Parameters, optional and repeated . 81
Part of file formatting and printing . 137
Parts of a cross reference . 104
Parts of a master menu . 24
Periods, inserting . 44
Permissions . 26
Permissions, printed . 22
Point, indicating it in a buffer . 59
Preface . 26
Preparing for use of LaTEX . 145
Preventing breaks . 67
Print and format in LaTeXinfo mode . 143
Printed manual characteristics . 7
Printed output, indicating it . 57
Printed permissions . 22
Printing a region or buffer . 137
Printing an index . 28
Printing from an Emacs shell . 143
Printing hardcopy . 141
Problems, catching . 147

Q
Quotations . 50

R
Recommended names for keys . 38
Rectangle, ugly, black in hardcopy . 146
References . 103
References using \inforef . 112
References using \nxref . 110
References using \pxref . 111
References using \xref . 105
Referring to other Info files . 101
Refilling paragraphs . 70
Region formatting and printing . 137
Region printing in LaTeXinfo mode . 143
Repeated and optional parameters . 81
Requirements for updating commands . 134
Result of an expression . 56
Running Info-validate . 151
Running an Info formatter . 136

S
Same . 69
Sample function definition . 90
Sample LaTeXinfo file . 9, 18

200 CONCEPT INDEX

Section . 34
Section structure of a file, showing it . 131
Separate footnote style . 74
Shell, printing from . 143
Short nodes for menus . 98
Showing the section structure of a file . 131
Showing the structure of a file . 149
Single characters, commands to insert . 44
Small caps font . 42
Software copying conditions . 26
Sorting indices . 141
Spaces from line to line . 68
Special glyphs . 56
Special insertions . 44
Special typesetting commands . 46
Specifying index entries . 116
Splitting an Info file manually . 153
Structure of a file, showing it . 131
Structure, Catching Formatting Mistakes in . 147
Structuring of chapters . 31
styles

clisp . 156
elisp . 79
fvpindex . 155

Subsection . 34
Subsubsection . 34
Syntactic conventions . 15
Syntax of optional and repeated parameters . 81

T
Table of contents . 23
Tables and lists, making them . 61
Tabs; don’t use! . 15
Tabular environment . 64
Tag table, making manually . 152
Template for a definition . 80
TeX commands, using ordinary . 60
Text conditionally visible . 59
Thin space between number and dimension . 45
Titlepage . 21
Titlepage permissions . 26
Top node . 24
Top node naming for references . 110
Tree structuring . 31
Two letter names for indices . 119
Typesetting commands for dots, etc. 46

U

CONCEPT INDEX 201

Unprocessed text . 16
Unsplit file creation . 152
Updating nodes and menus . 131
Updating requirements . 134

V
Validating a large file . 151
Value of an expression, indicating . 56
Verbatim Environment . 54
Vertically holding text together . 69
Visibility of conditional text . 59

W
Words and phrases, marking them . 35
Writing a menu item . 99
Writing a node Line . 97

