ECOLE DE TECHNOLOGIE S’UPERIEURE
UNIVERSITE DU QUEBEC

THESIS PRESENTED TO
ECOLE DE TECHNOLOGIE SUPERIEURE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
PH.D.

BY
AL QUTAISH, Rafa

SPQ™: A SOFTWARE PRODUCT QUALITY MATURITY MODEL
USING ISO/IEEE STANDARDS, METROLOGY,
AND SIGMA CONCEPTS

MONTREAL, JUNE 21, 2007

© Rafa Al Qutaish, 2007

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Alain Abran, PhD, Thesis Supervisor
Department of Software Engineering and IT at the Ecole de Technologie Supérieure

Mr. Witold Suryn, PhD, President of the Board of Examiners
Department of Software Engineering and IT at the Ecole de Technologie Supérieure

Mr. Frangois Coallier, PhD, Examiner
Department of Software Engineering and IT at the Ecole de Technologie Supérieure

Mr. Luigi Buglione, PhD, External Examiner
Atos Origin Company, Rome, Italy

Mr. Houari A. Sahraoui, PhD, External Examiner
Department of Computer Science and Operational Research at the University of
Montréal

THIS THESIS WAS PRESENTED AND DEFENDED
BEFORE A BOARD OF EXAMINERS AND PUBLIC
JUNE 12,2007

AT ECOLE DE TECHNOLOGIE SUPERIEURE

ACKNOWLEDGEMENTS

I would like to seize this opportunity to convey my sincere thanks and deepest gratitude
to my great supervisor Prof. Dr. Alain Abran for his support, guidance, encouragement,
and assistance at so many levels throughout my study at the Ecole de Technologie
Supérieure. Also, I would like to thank everyone in the Software Engineering Research

Laboratory (GELOG) and the Department of Software Engineering and IT.

I am deeply indebted to my committee members Prof. Dr. Witold Suryn, Dr. Frangois
Coallier, Dr. Luigi Buglione and Dr. Houari A. Sahraoui for their time and effort in

reviewing this work.

Where would I be without my family? My parents deserve special mention for their
inseparable support. My Father, in the first place is the person who put the foundations
of my learning character, showing me the joy of intellectual pursuit ever since I was a
child. My Mother, is the one who sincerely raised me with her caring and gently love.
Khaled, Jamil, Haifa, Mohammad, Ali, Ahmad, Wafa, and Abdullah, thanks for being

supportive and caring as siblings.

Words fail me to express my appreciation to my wife Lana and my small daughters
Leen, Tala, and Sara for their moral support, encouragement, and caring during the

writing of my thesis and during my study in the ETS.

Finally, I would like to thank everybody who was important to the successful realization
of this thesis, as well as expressing my apologies that I could not mention personally one

by one.

SPQ™: A SOFTWARE PRODUCT QUALITY MATURITY MODEL
USING ISO/IEEE STANDARDS, METROLOGY,
AND SIGMA CONCEPTS

AL QUTAISH, Rafa

ABSTRACT

In the software engineering literature, there are numerous maturity models for assessing
and evaluating a set of software processes. By contrast, there is no corresponding
maturity model for assessing the quality of a software product. The design of such a
model to assess the quality of a software product therefore represents a new research
challenge in software engineering.

Our main goal is to make available to industry (and consumers) a maturity model for
assessing and improving the quality of the software product. This Software Product
Quality Maturity Model (SPQ™™) consists of three quality maturity submodels
(viewpoints) that can be used not only once the software product has been delivered, but
also throughout the life-cycle:

e Software Product Internal Quality Maturity Model — SPIQ™™,

e Software Product External Quality Maturity Model — SPEQ™™, and

e Software Product Quality-in-Use Maturity Model — SPQiUM™.

In this thesis, we introduce the Software Product Quality Maturity Model (SPQ™™),
which could be used from three different viewpoints: the software product internal
quality, the software product external quality, and the software product quality in-use.
This quality maturity model is a quantitative model, and it based on the ISO 9126
(software product quality measures), ISO 15026 (software integrity levels), IEEE Std.
1012 (software verification and validation) and on six-sigma concepts.

To build such a quality maturity model, we have combined the set of quality measures
into a single number for each quality characteristic by assuming that all the measures for
a single quality characteristic have an equal weight in the computation of a single value
for that quality characteristic (they all make an equal contribution), yielding a quality
level for that quality characteristic. The resulting quality level is then transformed based
on the software integrity level into a sigma value positioned within a quality maturity
level.

Keywords: ISO Standards, IEEE Standards, Software Measurement, Software Quality,
Software Integrity Levels, Six Sigma, Quality Maturity Model, Metrology, SQuaRE.

SPQ"™: UN MODELE DE LA MATURITE DE LA QUALITE DU PRODUIT
LOGICIEL UTILISANT STANDARDS ISO/IEEE, METROLOGIE,
ET CONCEPTS SIGMA

AL QUTAISH, Rafa

RESUME

Le logiciel est maintenant souvent essential pour donner un avantage concurrentiel a
beaucoup d'organisations, et il devient progressivement un composant clé des systémes
d'entreprise, de leurs produits et de leurs services. La qualité de produits logiciels est
donc maintenant souvent considérée un €lément essentiel pour un succes commercial.
L'industrie du logiciel a depuis plusieurs années consacré des efforts considérables pour
essayer d'améliorer la qualité de leurs produits et le focus principal a porté jusqu'a
maintenant sur I’amélioration du processus logiciel comme une approche indirecte pour
atteindre cette qualité.

Dans la littérature du génie logiciel, il y a maintenant des nombreux mode¢les de maturité
pour évaluer un ensemble de processus logiciels : par exemple, le CMMi, le modele de
la maturité¢ de la maintenance de logiciel (S*™) et le modéle de la maturité de la test
(TMM). Par contraste, il n'y avait aucun modele de maturité pour évaluer la qualité du
produit logiciel. Par conséquent, la conception d'un tel modéle d’évaluation de la qualité
d'un produit logiciel représentait un nouveau défi pour la recherche en génie logiciel.

Dans la littérature, il y a beaucoup de modéles de qualité et des centaines de mesures
pour le produit logiciel. Sélectionner lesquels utiliser pour évaluer la qualit¢ du produit
logiciel est un défi. L'ISO a donc développé un consensus sur un modele de la qualité et
un inventaire de mesures pour évaluer la qualité d'un produit logiciel (ISO 9126).
Cependant, méme [’utilisation d'ISO 9126 et de ses mesures pour évaluer la qualité d'un
produit logiciel représente un défi qui produit un ensemble de valeurs qui reflétent le
niveau de la qualité de chaque mesure pour chaque caractéristique de la qualité. De plus,
il est difficile d'interpréter ces nombres et de les intégrer dans un modele de prise de
décisions.

Le but principal dans cette thése est rendre disponible a 1’industrie (et éventuellement
aux consommateurs) un modele de la maturité pour évaluer et améliorer la qualité du
produit logiciel en un utilisant un mod¢le de niveaux de la maturité de la qualité. Le
modele congu et présenté dans cette thése comprend une structure du modele de la
maturité de la qualité qui tient compte de trois points de vue distincts:

e Le produit logiciel entier,

e L'étape du cycle de la vie du produit logiciel (interne, externe et en-service), et

e La qualité du produit logiciel.

VI

Du point de vue de I'étape du cycle de la vie du produit logiciel, cela consiste en trois
sous-modeles de la maturité de la qualité qui peuvent étre utilisés non seulement lorsque
le produit logiciel a été délivré, mais aussi partout dans le vie cycle:

e Modeéle de la maturité de la qualité interne du produit logiciel — SPIQ™™,

e Modéle de la maturité de la qualité externe du produit logiciel — SPEQ™™, et

e Modéle de la maturité de la qualité en service du produit logiciel — SPQIUMM,

Une difficulté principale dans la conception d’un modele de la qualité c’est la diversité
des modeles décrits dans la littérature, la variété des vues sur qualité et les techniques
détaillées : par exemple, le modele de la qualité de McCall, le modele de la qualité de
Boehm, le mode¢le de la qualité de Dromey et le modéle de qualité FURPS. De plus, des
centaines de mesures du logiciel -ou ce qui est appelé communément “métrique logiciel”
- ont été proposées pour évaluer la qualité du logiciel, mais, malheureusement, sans
consensus international large sur l'usage et les interprétations de ces modéeles de la
qualité et des mesures du logiciel.

Le développement d'un consensus dans les organisations de normalisation du génie
logiciel (ISO et IEEE) a mené a quelques consensus sur le contenu du mod¢le de la
qualité contenu ainsi que sur inventaires de mesures correspondantes.

Notre stratégie a été de construire un modele de la maturité qui ne soit pas basé pas sur

nos propres vue de la qualit¢ du logiciel, mais sur le nouveau consensus dans la

communauté dans les normes en génie logiciel. Par conséquent, le modéle de la maturité

proposé est basé sur les documents suivants de 1'I[SO et de I'EEE:

e ISO 9126-Partie 1: Modgele de la qualité,

e ISO 9126-Partie 2: Mesures internes,

e SO 9126-Partie 3: Mesures externes,

e [SO 9126-Partie 4: Qualité en-service Mesure,

e [SO 15026: Systéeme et Niveaux de 1'Intégrité du Logiciel,

e Std IEEE. 1012: Standard pour Vérification du Logiciel et Validation,

e [ISO VIM: Vocabulaire International des termes fondamentaux et généraux de
Métrologie, et

e ISO 15939: Processus de la Mesure du logiciel.

En plus des sources précitées, les concepts six-sigma sont utilisés pour aligner la
projection topographique entre le niveau de la qualité nivelle et niveau de la maturité de
la qualité du produit logiciel.

La structure du Modéle de la Maturité de la Qualité du Produit logiciel (SPQ™™) proposé
dans cette thése est basée sur deux ensembles de concepts qui existent dans industrie
dans général qui est:

e Une approche quantitative a qualité du produit, et

e Les niveaux de qualité d'un produit.

VII

Pour une approche quantitative a la qualit¢é du produit, 1’approche six-sigma a été
sélectionnée pour construire le modele de la maturité de la qualité présenté¢ dans ce
chapitre.

Pour les niveaux de qualité¢ d'un produit, les cinq niveaux suivants de la maturité¢ de la
qualité ont été identifiés de l'observation d'industrie générale pratique a l'extérieur du
domaine du logiciel:

e Garanti.

o Certifié.

e Neutre.

e Insatisfait.

e Complétement insatisfait.

Notre Modele de la Maturité de la Qualité du Produit logiciel peut étre utilisé pour
déterminer la maturité¢ de la qualité d'un produit logiciel. Spécifiquement, il peut étre
utilisé pour:

e Certifier un niveau de la maturité de la qualité pour un nouveau produit logiciel qui
pourrait aider a I’encourager sur le marché;

e Repérer les produits logiciels existants aider de faire une sélection basée sur leur
niveau de la maturité de la qualité;

e Répartir la qualité¢ du produit logiciel pendant le cycle de la vie du développement
(c.-a-d. intérieurement, extérieurement et en-service) enquéter sur les rapports entre
les trois étapes et trouver toutes faiblesses pour améliorer le produit logiciel,

e Répartir la maturité de la qualité interne d'un produit logiciel qui peut étre réutilisé
dans les autres produits logiciels.

e Comparer les niveaux de la maturité¢ de la vie cycle étape qualité (c.-a-d. interne,
externe et en-service).

Le mode¢le de la maturité de la qualité du produit logiciel discuté dans cette recherche est
actuellement limité au modele de la qualité d’ISO 9126 (et SQuaRE dans la prochaine
¢dition SIO) ainsi qu’a leurs ensembles des mesures que nous avons analysé de la
perspective de la métrologie et les améliorations proposées au groupe ISO pour appuyer
ces documents. Une autre limitation actuelle du modele présenté est I’attribution de
poids égaux pour toutes les mesures, toutes les caractéristiques et toutes les sous-
caractéristiques. Pour lever cette contrainte, une organisation pourrait utiliser par
exemple la technique statistique de 1’analyse par composantes principales (PCA) pour
déterminer un poids correspondant pour chaque mesure, caractéristique ou sous-
caractéristique.

Mots-clés : Standards ISO, Standards IEEE, Mesure du Logiciel, Qualité¢ du Logiciel,
Niveaux de 1'Intégrité du Logiciel, Mod¢le de la Maturité de la Qualité¢, Métrologie
SQuaRE.

TABLE OF CONTENTS

Page
INTRODUCTION ..ottt sttt sttt sttt ettt et st be e 1
CHAPTER 1 SOFTWATRE MEASUREMENT: AN OVERVIEW 10
1.1 INErOAUCHION ..ottt sttt et 10
1.2 Software measurement benefitsccoocueeiiiiiiiiiiiiiiee e 12
1.3 Classifications of the software measurement.............cceeeueeviercieeniencieenieenieenen. 13
1.4 Software product MeasUreMeNt..........cccveeeuieeriieeiiieerieeeieeeiree e eree e aee e 14
1.5 Examples on software product measurescccceereeeeieenieeniieeneeeieeee e 16
L.5.1 DESIZN MEASUIES.vveeeerreeeiireeriieeesreeenreeessseeessseeessseessseesssseessseeessseeenns 16
1.5.2 SoUICE COAE MEASUIESeoveeuririieiieiiniienieeteeite et siee sttt sre e saeens 19
CHAPTER 2 SOFTWARE PRODUCT QUALITY MEASUREMENT IN ISO
STANDARDS ...ttt sttt et st b e e be e 22
2.1 INEEOAUCTION ...t st 22
2.2 ISO 9126: software product qUAlItYccceeviieiiieririiieie e 24
2.3 ISO 14598: software product evaluationcccccueeeriieeiiieecieeeieeeee e 28
2.4 SQuaRE series of standardsccceeevviiiiiiiiiiiieeeeee e 31
2.5 ISO 25051: requirements for quality of Commercial Off-The-Shelf (COTS)
software product and instructions for teSting............ccceevuieviieniieenienieeieeieenen. 34
2.6 ISO 15939: software measuremMent PrOCESScuveerrreervreerreeerreeeireesseeeseseeenns 35
2.7 ISO VIM: international vocabulary of basic and general terms in metrology.... 39
2.8 Identification of the strengths and weaknessesccoccuveeeiieeiiieeciieccieeeeees 44

CHAPTER 3 CAPABILITY AND MATURITY MODELS IN THE SOFTWARE

ENGINEERING LITERATUREcooiiiiiieeeeeeeee e 46
3.1 INtrOAUCHION ..ottt sttt 46
3.2 Process maturity MOAEIScceeiieeiiieiiiiieciie e 46
3.2.1 Capability maturity model integration for software engineering.......... 47
3.2.2 Testing maturity modelccceeeviiiiiiiiniiieieeee e 49
3.2.3 ISO 15504: software process asseSSMENL........cccueerurerveerreerveerueenveenees 49
33 Product maturity modelsccccuiieiiieiiiieciccce e 54
3.3.1 Open source maturity modelc.cccceeviiiiiiiniiieiiiiiieee . 54
3.3.2 Software product maturity model.............cceevviiieriiiieniie e 57
3.4 Identification of the strengths and weaknessesccecveriierienieeniienieeieenne, 58
341 OSSM MOAEL....oiiiiiiiiiiiieieee et 58
3.4.2 Nastro MOEl.....cc.eeiiiiiiiiiiiiieiiee e 58

CHAPTER 4 RELATED CONCEPTS TO THE DEVELOPMENT OF THE
SOFTWARE PRODUCT QUALITY MATURITY MODEL - SPQ™™............ 60
4.1 | F3TngeYe i Te1n 1) s WUUTETUTT U RT 60

IX

4.2 Software quality MOdEIS.........ccceieiiiiiiiiiieciie e 60
4.2.1 McCall’s quality MOdE......cccueeruieriieiieiiieiieeie ettt 61
4.2.2 Boehm’s quality modelc.cooouvieiiiieiiieeieeceeee e 63
4.2.3 Dromey's quality modelcccoeiieiiiiiiiiniiiieeieee e 67
4.2.4 FURPS quality modelccccoeeviiieeiiieiie et 69
4.2.5 ISO 9126 quality modelccceeeiieiiiiiieiieieeieee e 70
4.3 STZMA CONCEPLS...eeeeuiiieeiiieeiiieeiieeeieeesreeestreeetreeessaeeersreeesseesseeesssaeesseeessseeennnes 73
4.3.1 What iS SIX-SIZMAT ...ccvieiiiiiiieiieeie et etee et eee et esreeseesiaeenseenens 73
4.3.2 Six-sigma in software engineering.........c.ccceeveeevveeerveeesveesireeesireeesneens 75
4.3.3 Uncertainty of applying six-sigma in software engineering................. 79
4.4 ISO 15026: software integrity [eVels.........cocvieeiieeeiieeiie e 81
4.5 IEEE Std. 1012: software verification and validation............c.ccccccvevevvenienieenen. 84
4.6 SUMMATY .ottt e et e e e et e e e e satr e e e ennsaeeeesnnneeens 85
CHAPTER 5 RESEARCH OBJECTIVES AND METHODOLOGY 86
5.1 ReSEarCh ODJECHIVES .. .uiiiiiiiciie et eree e 86
5.2 Research methodologycccooiiiiiiiiiiiieiecee e 86
5.2.1 Phase-A: Verification of software measures...........cceceeveerieeneeniennnen. 87
5.2.2 Phase-B: Building a Software Product Quality Maturity Model —
SR O M ettt enaees 88
CHAPTER 6 AN ANALYSIS OF THE DESIGN AND DEFINITIONS OF
HALSTEAD’S MEASURES ..ottt 91
6.1 INErOAUCHION ..ottt sttt 91
6.2 Analysis framework: an OVETVIEWccccecveeeiiiieriiieeniieesieeeseeeeeeeesveeeevee e 92
6.3 Halstead’s Mmeasures: an OVEIVIEWcc.eeeieeruienuieeriienieeiieseieeseeseeenseesnseenseennns 96
6.4 Defining the CONtEXt......cccuiiiiiieiiiecieece e e 101
6.5 Designing the MeasuremMentcccveeeuieriiriiienienie et eie et eiee e eieeseeeens 101
6.5.1 The empirical and numerical worlds and their mapping..................... 101
6.5.2 The measurement methodcccceeviiiiiiiniiiinieniieeee e 102
6.6 Discussion and CONCIUSIONScccueeiiiiiiiiiiiiiieiiierie et 107
6.7 SUMMATY .ttt ettt sttt e st e e st e e sabeeesabeeees 109
CHAPTER 7 AN ANALYSIS OF ISO THE 9126-4 FROM THE METROLOGY
PERSPECTIVE ...ttt 111
7.1 INErOAUCTION ...t e 111
7.2 ISO 9126-4: Quality iN-USE MEASUIESccveerrreerirerrrerienreerieenreeseesneenseeneeens 112
7.3 Analysis of ISO 9126-4 Effectiveness measuresccoccveeeveveeeeeveeniveeenineeennnes 113
7.3.1 System of quantities for Effectiveness.........c.ccccevcuierienciiinienireienne, 113
7.3.2 Dimension of a quantity for Effectiveness.........cccceevveevviiieecieencnnnens 114
7.3.3 Units of measurement for Effectivenesscccoceeveeriienienieeninenne. 116
7.3.4 Value of a quantity for Effectiveness.........ccccovveeveiieeriiecniiiecieecieens 117
7.4 Analysis of ISO 9126-4 Productivity Measurescceecueerveerveerieesveerieennneans 118

7.4.1 System of quantities for Productivity.........ccccccveevviieiiieciiieeieeceeene 120

7.5
7.6
7.7

7.4.2 Dimension of a quantity for Productivity..........ccccceeviieiviieniiieeienns 120
7.4.3 Units of measurement for Productivity..........ccccceeevieviieniiinienireienne, 120
Analysis of ISO 9126-4 Safety Mmeasuresccccveeevveeerveeeiieeeieeeeeeevee e 122
Analysis of ISO 9126-4 Satisfaction MeaSUIES.........cccuerverriereeneerierienieeieninne 123
CONCIUSION ..ttt ettt ettt e st e bee e ens 123

CHAPTER 8 AN ISO-BASED INFORMATION MODEL TO ADDRESS THE

8.1
8.2

8.3
8.4
8.5

HARMONIZATION ISSUES IN THE NEW ISO 25020 AND ISO 25021

STANDARDS ...ttt ettt et sttt be s 126
INErOAUCTION ..ottt e 126
Outstanding harmonization ISSUESccceerveeriieriieerienieesieesieeieeseeenseesneens 127
8.2.1 TermiNOIOZY ...ueeeeiiieeiiieeiie ettt e sae e e e seree e 127
8.2.2 Limited coverage of the ISO quality models and corresponding
TNCASUTES c...teeeuieeeaiteeeuteeeeiteeenuteeesuteeessteeenbeeebbeeebteesanaeesanaeesneeennneeens 131
8.2.3 RedundancCy ISSUESccccueeiiierieeiieiie ettt 132
Mapping the quality model to the Measurement Information Model............... 133
EXAMIPIES ..ottt st saae e 138
Summary and diSCUSSION........cccuviiriieeiiieerieeeriee et e ereeeeeeeereeesaeeeeveeessreeenes 141

CHAPTER 9 THE STRUCTURE OF THE QUALITY MATURITY MODEL.. 145

9.1
9.2

9.3

9.4

INErOAUCTION ..ottt e 145
Quality maturity model: an architectural VIeW.........ccccoceviieriininiiiniineiienne 147
9.2.1 Quality maturity 1eVels.......ccceeviiiiiiieeieeiie et 147
9.2.2 A Quantitative approach to product quality..........ccceeeuierieniiieniennnnne 149
The Software Product Quality Maturity Model — SPQ™™oooovvoiien. 153
9.3.1 The whole software product quality maturity model.......................... 155
9.3.2 The life-cycle stages quality maturity model............ccceeveviercnveennenn. 156
9.3.3 The characteristics quality maturity modelscccceevieriiienienncnne 157
SUMMATY .o e e et e e et e e e e nnreeeeenneees 157

CHAPTER 10 DETERMINING THE QUALITY MATURITY LEVELS USING

10.1
10.2
10.3
10.4

10.5

10.6
10.7

THE SOFTWARE PRODUCT QUALITY MATURITY MODEL-SPQY™... 159

INErOAUCHION ..ottt e 159
Software Integrity Level determinationc.ceeecveeeeieeeiiieecieecie e 159
Selection of the required characteristics, subcharacteristics and measures 161
Identification of the required Base Measures for each of the selected
CRATACTETISEICS ..ottt et 162
Computing the Quality Levels of the selected software product quality
CRATACTETISEICS ..ottt sttt e 162
Identifying the sigma value and the maturity level...........cccceevvvieiiiieicieennen. 166
DISCUSSION ...ttt ettt ettt sttt satesaeenesieens 167

CONCLUSION AND FUTURE WORKccooiiiiiiiiieeeceeeeceee e 170

XI

ANNEX I ‘QUANTITIES AND UNITS” METROLOGY CONCEPTS IN THE
SAFETY MEASUREScciiiiiiiicccee e 179
ANNEX II ‘QUANTITIES AND UNITS” METROLOGY CONCEPTS IN THE
SATISFACTION MEASURESccciiiiiiiiiiiiiieeceeeee 180
ANNEX III INTERNAL QUALITY, EXTERNAL QUALITY, AND QUALITY
IN-USE MEASURES IN THE ISO THE 9126 AND ISO 25021 181
ANNEX IV LISTS OF THE ISO 9126 BASE MEASURESc.ccciiiiiniie. 189
ANNEX V CROSS-REFERENCE TABLE OF THE BASE MEASURE
USAGES . . et 194

BIBLIOGRAPHY ... 199

Table 2.1
Table 2.2
Table 3.1
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 7.1

Table 7.2

Table 7.3

Table 8.1
Table 8.2
Table 8.3

Table 9.1

Table 9.2
Table 10.1
Table 10.2

Table 10.3

LIST OF TABLES

Page
Detailed structure of the ‘quantities and units’ categoryc.ccccveennnee. 41
Definitions of some metrology termsccceecveeviierieeriieniieieeeieeiee e 42
Recommended minimum OSMM SCOTES.......cccueriiinieeiiienieiieenieeeeee 56
The content of McCall’s quality modelccooceieiiiiiiiiiieiiieieieees 64
The content of Boehm’s quality model...........c.ccoovviviiiiniiiiniicee e 66
Example of @ risk MatriX.......cceevuieriieiiiinieeiieie et 82
Mapping risk class to its integrity levelcccceevviienciieicieeeiieecee e, 83
Assignment of software integrity levelscccooveeiieniiiiiienieciieeee, 84
ISO 9126 Quality in-use characteristics and their measures 112
The ‘quantities and units’ metrology concepts in the Effectiveness
TNCASUTES ..ceneteeeniteeeiteeeiteeeitee ettt e ettt e eabteesabteesabeeesabeeesabeeeaabeeesnbeeenneesanee 115
The ‘quantities and units’ metrology concepts in the Productivity
TICASUTES ..cenetteenitteeiteeeiteeettee ettt e ettt e eabeeesabteesabeeesabeeenabeeeaabeeeenbeesneeesanee 119
The fifteen categories of Quality Measure Elementc.ccccuvenneneee. 129
Examples of Base Measures in ISO 9126-4cccoovvvvieiiiecieecieee, 134
Examples of the use of Base Measures in ISO 9126-2..........c.cccevuenee. 135
The sigma ranges based on the Quality Level and the Software Integrity
LEVEL o 150
Example of a Quality Level with its different Maturity Levels.............. 152
Definitions of expanded CONSEqUENCES..........cevveervieriierieerieeeieeieeeeeeenn 160
Indicative frequency for each 0CCUITENCEeeeevveeeiiieeiieeeiie e, 160

Determination of the Software Integrity Level using the consequences and
theIr OCCUITEICEeeuiiiieiiieiicieeteeet ettt 161

Figure 2.1

Figure 2.2

Figure 2.3
Figure 2.4

Figure 2.5

Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9

Figure 2.10

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5

Figure 3.6

Figure 3.7
Figure 4.1

Figure 4.2

LIST OF FIGURES

Page
Quality in the 1ife-CYCIec.uveviiieiieeeeeeee e 25
ISO 9126 quality model for external and internal quality (characteristics
and SUDChAraCteTISTICS) ...eevvrreriiieriieeeiieeriee ettt etee e eree e vee e e 26
ISO 9126 quality model for quality in-use (characteristics)............c........ 26
The quality during the software lifecycleccocvvveeeiiieiiienciiiieeiee 27
The relationship between the evaluation process and the evaluation
01 0] 10 o FE PSPPSR 29
Organization of the ISO SQuaRE series of standardsc.cccceevuennenee. 32
Structure of the measurement division (ISO 2502n)cceevevveeecvveeeneennee. 33
Measurement information model from ISO 15939........c.ccccceviiiiiinnenn. 37

ISO 15939 measurement information model — three different sections ...38

Logical relationships among metrology concepts in standardizing

TNEASUTEINIETIES 1...eeeeieeitee ettt e et eit e et e st e e st e e s bt e e sab e e e sabeeesateeseaeeesneees 43
CMMI-SW maturity [EVELSccvieiiieiiieiiecieeiieee e 48
CMMI-SW COMPONENLS....cceiriirieiiiiieeeiiieeeeesireeeeeaeee e e e e eaeeeeesneeeeas 48
Testing Maturity IeVElS.......cooveeiiiiiiiiieieeeeee e 49
A potential roadmap for the users of ISO 15504ccoevvvveeiieeniieenen. 50
Process assessment model relationshipsccoeeceeviievienciiinieniieeeee, 51

The relationships between the process attributes, their ratings and the

corresponding capability levels..........ccooiiiiiiiiiniiicie e 52
The OSMM three-phase evaluation proCess.........ccceeeveereveercieeencieeenneens 55
The structure of McCall’s quality model............ccoevieiiieiiiiiiiiieiieeens 62

The structure of Boehm’s quality modelccccoeveiiiniiiiiniiieiieeiee 65

Figure 4.3
Figure 4.4
Figure 4.5
Figure 5.1
Figure 6.1
Figure 6.2

Figure 8.1

Figure 8.2
Figure 9.1
Figure 9.2
Figure 9.3

Figure 9.4

Figure 9.5

Figure 9.6

Figure 10.1

Figure 10.2

XV

The structure of Dromey’s quality model..........cccccoeveiiiviiiiniiiiiieeiee 68
The content of Dromey’s quality modelccccoevieniiiinieniiiiiecieees 68
The contents of FURPS quality modelcccoeveiieniiiieiciiiiieeiee e, 69
The related key references for building the SPQ™™cocoviiiiivinnn, 90
The four phases of the analysis framework of measurement.................... 94
Explanation of the measurement unit produced by 10g;ccoeevveennen.e. 104

Quality measure elements concept in the ‘Software Product Quality

Measurement Reference Model’...........cocoovieviiiiniiniinenieniiienieneee, 128
Mapping to the Measurement Information Model.............c.cccecvveennennnne. 137
Sigma Shift....oooiiiiiiieii e 148
Quality maturity 1eVelS......ccueeeiviieiiiieiie e 148
The contents of the Software Product Quality Maturity Model 154

The components of the Quality Maturity Level for the whole software
PIOAUCE .ttt ettt ettt et seae bt e st e eteessaeenseesnneenseens 155

Components of the Quality Maturity Levels from the life-cycle-stages
VICWPOINE.cevtieiieeiie ettt eiteete et et e et e aeeteesete e bt e seaeenseesaseenseessseenseesnseenne 156

Components of the Quality Maturity Levels from the internal, external
and in-use characteristics viewpoint of the software product................. 157

Computation of the Quality Level for each of the ISO 9126 internal and
external CharaCteriStICSuiiuiiriieiieiieeiee et 163

Computation of the Quality Level for each of the software product quality
1N-USE CharaCteriStICS . cuvviiuiieiieeiieeiieeiie ettt 164

ANSI
BIPM
CMM
CMMI
CMMI-SW
COTS
CQL
DFSS
DMAIC
DPMO
EQL
ESA
ESLOC
GDE
IEC
IEEE
IFreq
IQL
ISO

IT

IUPAC

LISTE OF ABBREVIATIONS

American National Standards Institute

Bureau International des Poids et Mesures
Capability Maturity Model

Capability Maturity Model Integration
Capability Maturity Model Integration for Software engineering
Commercial Off-The-Shelf

Characteristic Quality Level

Design For Six Sigma

Design, Measure, Analyse, Improve, and Control
Defects Per Million Opportunities

External Quality level

European Space Agency

Executable Source Lines of Code

Global software Development Environment
International Electrotechnical Commission
Institute of Electrical and Electronics Engineers
Indicative Frequency

Internal Quality Level

International Organization for Standardization
Information Technology

International Union of Pure and Applied Chemistry

[UPAP
LOC
ML
NORMSINV
OIML
OOP
OSMM
OSV
PCA
QL
QM

R6S

SEI
SPDQ™M
SPEE™
SPEF™™
SPEiUMM
SPEQ'™
SPEM™M

SPEPMM

XVI

International Union of Pure and Applied Physics

Line of Code

Maturity Level

Inverse Standard Normal Cumulative Distribution
Organisation Internationale de Métrologie Légale
Object-Oriented Programming

Open Source Maturity Model

Original Sigma Value

Principal Component Analysis

Quality Level

Quality Measure

Rytheon Six Sigma

Sigma

Software Maintenance Maturity Model

Software Engineering Institute

Software Product Documentation Quality Maturity Model
Software Product External Efficiency Maturity Model
Software Product External Functionality Maturity Model
Software Product Effectiveness in-Use Maturity Model
Software Product External Quality Maturity Model
Software Product External Maintainability Maturity Model

Software Product External Portability Maturity Model

XVII

SPER™M Software Product External Reliability Maturity Model
SPEUMM Software Product External Usability Maturity Model
SPIEMM Software Product Internal Efficiency Maturity Model
SPIFMM Software Product Internal Functionality Maturity Model
SPIQM™ Software Product Internal Quality Maturity Model
spiM™™ Software Product Internal Maintainability Maturity Model
SPIntegQ™™ Software Product Integration Quality Maturity Model
spip™™ Software Product Internal Portability Maturity Model
SPIRMM Software Product Internal Reliability Maturity Model
spruMM Software Product Internal Usability Maturity Model
SppiU™ Software Product Productivity in-Use Maturity Model
SPQiUMM Software Product Quality in-Use Maturity Model
spQM™ Software Product Quality Maturity Model

SpSiu™ Software Product Satisfaction in-Use Maturity Model
SPSQ'™ Software Product Supporting Quality Maturity Model

SPTQ™ Software Product Training Quality Maturity Model

SC7 Subcommittee Seven

SQL Subcharacteristic Quality Level

SQuaRE Software Quality Requirements and Evaluation
SSV Sigma Shift Value

TSLOC Total Source Lines of Code

TMM Testing Maturity Model

XVIII

VIM Vocabulaire International des termes fondamentaux et généraux de
Meétrologie — International Vocabulary of Basic and General Terms in
Metrology

WG6 Working Group Six

WQL Whole software product Quality Level

INTRODUCTION

Software is critical in providing a competitive edge to a great number of organizations
and is progressively becoming a key component in business systems, products and
services. The quality of software products is now considered to be a critical business
success factor (Veenendaal and McMullan, 1997). The software industry is putting
considerable effort in trying to improve the quality of their products; its main focus has
been on software process improvement as an indirect approach to achieve software

product quality (Veenendaal and McMullan, 1997).

Problem Statement

For the software product, in literature, there are hundreds of software measures — or
what is commonly called ‘software metrics’ — proposed to assess and evaluate its
quality, but unfortunately, without wide international consensus on their use and their
interpretations. Furthermore, some of those measures do not meet key design criteria of
measures in engineering and the physical sciences (Abran, Lopez and Habra, 2004).
However, from 2001 to 2004, ISO came up with a set of documents referred to as the
ISO 9126 series which consists of four parts: that is, one international standard and three
technical reports. The first part of ISO 9126 (ISO, 2001b) describes in some details a
software product quality model which should be used with the other three parts. The
other three parts (ISO, 2003c; 2003d; 2004f) can be used to measure and evaluate the

internal quality, external quality, and quality in-use attributes of a software product.

The ISO has recognized a need for further enhancement of ISO 9126, primarily as a
result of advances in the information technologies (IT field) and changes in the IT
environment. Consequently, the ISO is now working on the next generation of software

product quality standards, which will be referred to as Software Product Quality

Requirements and Evaluation (SQuaRE — ISO 25000). Once completed, this series of
standards will replace the current ISO 9126 and ISO 14598 series of standards.

One of the main objectives of the SQuaRE series and the current ISO 9126 series (which
also constitutes the difference between them) is the coordination and harmonization of
its contents with the ISO standard on software measurement process — ISO 15939 —
which is based itself on the ISO International Vocabulary of Basic and General Terms in

Metrology (VIM).

Within the ISO 9126, there are six characteristics and twenty seven subcharacteristics
for the internal and external software product, and four characteristics for the in-use
software product. For each of these subcharacteristics (and characteristics in case of
quality in-use), there is a number of measures which could be used to assess and
evaluate the software product from different points of view (i.e. internal functionality,
external efficiency, in-use productivity, etc.). Thus, each characteristic/subcharacteristic

is represented by a set of numbers.

In contrast, sometimes decision makers do not want to work with a set of numbers which
reflect a specific quality characteristic or subcharacteristic of a particular software
product. Instead, they prefer to deal with a single number to identify the quality level of
such quality characteristic of that software product, and then to make an appropriate
decision based on this single number. Such technique is already used in the evaluation of

some of the software processes using capability and/or maturity models.

In the literature, there are many capability and maturity models to assess and evaluate a
specific process to produce an equivalent maturity level (a single value to reflect the
maturity of that process); generally speaking, industry and researchers use a five-scale
level for their maturity models. Examples of such maturity levels are:

e (apability and Maturity Model — CMM (SEI, 2002a; 2002b).

e Software Maintenance Maturity Model — S*™ (April, Abran and Dumke, 2004; April
et al., 2005).

e Testing Maturity Model — TMM (Burnstein, Suwanassart and Carlson, 1996a;
1996b).

However, these assessment models are about ‘process’ while we are interested in
developing ‘product quality’ assessment model. The design of a software product
maturity model to assess the quality of a software product, therefore, represents a new

research challenge in software engineering.

Goals of the Research

The first goal of our research lies in the building of an understanding of the designs and
definition of the current proposed measures for software product quality to determine
their strengths and weaknesses. In particular, we need to verify the ISO 9126 measures
against the metrology concepts, and to build an ISO-based information model to address

the harmonization issues in the ISO 25020 and ISO 25021 new standards.

While the second goal of this research project aims at building a maturity model based
on software engineering standards rather than individual models of software product
quality, in particular, it will be based on:

1. Measures based on sound metrological foundations.

2. Industry consensus on base measures for software product quality.

3. Industry consensus on software product quality models.

4. Industry consensus on software integrity levels.

The research objectives of the research described in this thesis are the verification of the

ISO 9126 software product quality measures against the metrology concepts and the

building of a software product quality maturity model to assess the quality of the

software product. These objectives are presented in more details in Chapter 5.

Such a maturity model has to assess the quality of the software product in order to
produce quality maturity levels form each of the following three different views:

1. The ISO 9126 software product quality characteristics view.

2. Life-cycle stages (internal, external and in-use) view.

3. The whole software product view.

To get into the above research objectives, we have a two-phase research methodology.
The first phase consists of three steps, that is, verifying the usability of the metrology
concepts in the software measurement, verifying the ISO 9126 measures against the
metrology concepts, and building an ISO-based information model to address
harmonization issues in the ISO 25020 and ISO 25021 standards. While, the second
phase consists of ten steps which are used to build the software product maturity model.

Chapter 5 describes in more details this research methodology.

Contributions of the Research

The research contributions of this PhD thesis are:

e Verification of the applicability of using metrology concepts to software measures to
investigate their design and definition. For instance, we verified the ISO 9126
measures against the metrology concepts. We noted that the metrology concepts
could be applied to the available software measures to verify their consensus with
the classical measurement in other engineering disciplines.

e Identification of some of the harmonization issues arising with the addition of new
documents like the ISO 25020 and ISO 25021, in particular, with respect to
previously published measurement standards for software engineering, such as ISO

9126, ISO 15939, ISO 14143-1 and ISO 19761.

e Identification of a list of base measures needed to evaluate the ISO 9126 part-2, part-
3, and part-4 derived measures. For each of these base measures, the measurement
unit has been identified. In addition, a cross-reference list between the base measure
and the related characteristics/subcharacteristics has been built.

e Applying the sigma concepts to the measured quality levels of the software product,
by mapping the quality level to the corresponding sigma value; this sigma value can
then be used to derive the maturity level.

e Building of a maturity model to assess the maturity level of the software product
quality from different views (the characteristic view, the life cycle stage view, and
the whole software product view) based on a set of ISO and IEEE standards. For this
quantitative maturity model, the sigma concepts have been incorporated into the
software integrity levels to obtain the appropriate values of the quality maturity
levels of different types of software products (real-time software, application

software, etc.)

A number of outcomes of this thesis have been published/accepted/submitted in the
following journals, books or conferences.
e Published:

1. Al-Qutaish, Rafa E. and Alain Abran. 2005. "An Analysis of the Design and
Definitions of Halstead’s Metrics", 15th International Workshop on Software
Measurement - IWSM'2005. (Montreal (Que), Canada, 12-14 Sept. 2005), p.
337-352. Aachen, Germany: Shaker Verlag.

2. Abran, Alain; Rafa E. Al-Qutaish and J. M. Desharnais. 2005. "Harmonization
Issues in the Updating of the ISO Standards on Software Product Quality",
Metrics News Journal, vol. 10, no 2, p. 35-44.

3. Abran, Alain; Rafa E. Al-Qutaish; Jean-Marc Desharnais and Naji Habra.
2005. "An Information Model for Software Quality Measurement with ISO

Standards", International Conference on Software Development - SWDC-

REK. (Reykjavik, Iceland, 27 May - 1 Jun. 2005), p. 104-116. Reykjavik,
Iceland: University of Iceland Press.

Abran, Alain; Rafa E. Al-Qutaish and Juan J. Cuadrado-Gallego. 2006.
"Investigation of the Metrology Concepts within ISO 9126 on Software
Product Quality Evaluation", 10th WSEAS International Conference on
Computers - [CComp'2006. (Vouliagmeni (Athens), Greece, 13-15 Jul. 20006),
p. 864-872. Athens, Greece: WSEAS Press.

Abran, Alain; Rafa E. Al Qutaish and Juan J. Cuadrado-Gallego. 2006.
"Analysis of the ISO 9126 on Software Product Quality Evaluation from the
Metrology and ISO 15939 Perspectives", WSEAS Transactions on Computers,
vol. 5,no 11, p. 2778-2786.

e Accepted:

6.

Abran, Alain; Al-Qutaish, Rafa. E.; Desharnais, Jean-Marc and Habra, Naji.
2007. "ISO-Based Models to Measure Software Product Quality", Accepted
as a Chapter in "Software Quality Measurement" — a book to be Edited by G.
Vijay, FCAI - the Institute of Chartered Financial Analysts of India,
Hyderabad, India: FCAI University Press.

. Submitted:

7.

Al-Qutaish, Rafa E. and Abran, Alain. 2007. “Assessment of Software Product
Quality: Determining the Maturity Levels”, Submitted to the ASQ Software
Quality Professional Journal, American Society of Quality, USA.

Organization of the Thesis

This thesis consists of twelve chapters (including the introduction and the conclusion)

and five appendices. The current chapter outlines the problem, the research goals, and a

summary of the main contributions of this thesis.

Chapter one gives an overview of the field of software measurement, different
definitions of the software measures (or as some times called metrics) and software
quality, and a brief explanation of the potential benefits of using the software
measurements. In addition, it shows the different classifications of the software
measures and describes the software product quality measurement. Finally, at the end of

this chapter some examples of software product quality measures are presented.

Chapter two presents a general overview of the ISO related standards on software
product quality measurement. Then, it shows what the standard is and gives a brief list
of its benefits. In addition, it contains a general description of the contents of the ISO
9126, ISO 14598, ISO 25020, ISO 25021, ISO 25051, ISO 15939, and the ISO guide on
the international vocabulary of basic and general terms in metrology (VIM). Finally, it

identifies the strengths and weaknesses of those ISO standards.

Chapter three presents a classification of the maturity models and describes a number of
the software engineering maturity models. In particular, it discusses three of the maturity
models used to assess the quality of the software process and introduces the only two
maturity models which we have found in the literature for the software product. Finally,

it illustrates strengths and weakness of the discussed product maturity models.

Chapter four gives a brief overview of the concepts to be used to build the proposed
quality maturity models. Particularly, it explains the contents of five quality models
from the software engineering literature, sigma concepts, and software integrity levels

standards.

Chapter five presents the research objectives and research methodology. The research
methodology is divided into four phases. In this chapter, the details of each phase are

presented.

Chapter six firstly presents a brief overview of the Halstead’s measures (as a case study
for other measures in ISO 9126) and the analysis framework which we will use to
analyze these measures. In addition, it presents the details of our analysis of the design
and definitions of Halstead’s measures. Finally, at the end of this chapter, a discussion

on this analysis and a summary of our observations are described.

Chapter seven presents the analysis of the ISO 9126-4 on the quality in-use measures
from the metrology and ISO 15939 perspectives. Specifically, it presents the analysis of
the effectiveness, productivity, safety and satisfaction measures, respectively. Finally, a
set of comments and suggestions for a potential improvement of the ISO 9126-4 are

presented.

Chapter eight presents some of the harmonization issues arising from introducing the
ISO 25020 and ISO 25021 new standards with respect to previously published
measurement standards for software engineering, and proposes ways to address them
using the measurement information model of ISO 15939 on software measurement

process.

Chapter nine shows the structure of our proposed software product quality maturity
model. More specifically, it presents the used quality maturity levels and the quantitative
approach to the product quality. In addition, it describes the contents of the different

views of the software product quality maturity model.

Chapter ten illustrates the different steps which should be followed to get the quality

maturity level from any of the different views.

Finally, this thesis contains five appendices. The first two, Annex I and Annex II
describe the quantities and units metrology concepts in the quality in-use safety

measures and satisfaction measures, respectively. The third one, Annex III provides a

comparison between ISO 9126 and ISO 25021 with respect to the availability of the
characteristics, subcharacteristic and measures in both. The fourth one, Annex IV gives a
list of the base measures from ISO 9126 parts 2, 3 and 4. The last one, Annex V presents
a cross-reference table between the base measures and the characteristic /

subcharacteristic in which they could be used.

CHAPTER 1

SOFTWATRE MEASUREMENT: AN OVERVIEW
1.1 Introduction

Measurements have a long tradition in natural sciences. At the end of the 19" century,

the physicist, Lord Kelvin, formulated the following about measurement:

“When you can measure what you are speaking about, and express it into
numbers, you know some thing about it. But when you can not measure it,
when you can not express it in numbers, your knowledge is of a meager and
unsatisfactory kind: It may be the beginning of knowledge, but you have
scarcely in your thoughts advanced to stage of science.” (Pressman, 2004, p.
79)

In addition, Roberts (1979, p. 1) points out in his book about measurement theory that:
“A major difference between ‘well-developed’ sciences such as physics and some of the
less ‘well-developed’ sciences such as psychology or sociology is the degree to which

things are measured.”

In the area of software engineering, the concept of software measurement (or what is
commonly called software ‘metrics’) is not new. Since 1972, a number of so-called
software ‘metrics’, or measures, have been developed. From the wide range of software
measures, four basic theories have been the source of the majority of the research
conducted on software measurement. Some of these measures have been defined by

McCabe (1976), Halstead (1972; 1977), Albrecht (1979), and DeMarco (1986).

The importance of the costs involved in software development and maintenance

increases the need of a scientific foundation to support programming principles and

11

management decisions by measurement. Already in 1980, Curtis (1980, p. 1144) pointed
out that:

“Rigorous scientific procedure must be applied to studying the development
of software systems if we are to transform programming into an engineering
discipline. At the core of these procedures is the development of
measurement techniques and the determination of cause-effect relationships.”

In the software engineering literature, some researches use the term ‘metrics’ while

others use the term ‘measures’ to refer to the same concept.

The definition of a ‘measure’ is “an empirical objective assignment of a number or a
symbol to an entity to characterize a specific attribute” (Fenton and Pfleeger, 1997, p.
28). Moreover, Ince et al. (1993, p. 22) have defined the software ‘metrics’ as
“numerical values of quality which can be used to characterize how good or bad that the
product is in terms of properties such as its proneness to error”’. In addition, ‘metrics’ is
defined in (IEEE, 1990, p. 47) as “quantitative measures of the degree to which a
system, component or process possesses a given attribute”, while within the ISO 15939,
the term ‘measure’ was defined as a “variable to which a value is assigned as a result of
measurements” (ISO, 2002, p. 3). Finally, it has been defined in ISO 14598-1 as “the
number or category assigned to an attribute of an entity by making a measurement”

(ISO, 1999a, p. 3)

In 2002, ISO produced the ISO 15939 international standard (ISO, 2002), that contains
the definitions of the terms to be used in the software measurement process, including
the term ‘measure’ instead of the term ‘metrics’. Therefore, in this thesis, we will use the
term ‘measure’ — whenever it is possible — in order to be aligned with this international

standard.

12

Essentially, the software measures are used to measure the quality of the software
product or process. However, there are several definitions for the ‘software Quality’
expression. For example, it is defined by the IEEE (1990, p. 60) as “the degree to which
a system, component or process meets specified requirements and customer (user) needs
(expectations)”. Pressman (2004, p. 199) defines it as “conformance to explicitly stated
functional and performance requirements, explicitly documented development standards,
and implicit characteristics that are expected of all professionally developed software”.
By contrast, the ISO defines ‘quality’ in ISO 14598-1 (ISO, 1999a, p. 4) as “the totality
of characteristics of an entity that bear on its ability to satisfy stated and implied needs”,
and Petrasch (1999, p. 2) defines it as “the existence of characteristics of a product

which can be assigned to requirements”.

The rest of this chapter is organized as follows: Section 1.2 presents the general benefits
of the use of the software measurement. Section 1.3 shows the different classification of
the software measures, and particularly, the software product measures. Section 1.4
gives an overview of the software product measurement. Finally, section 1.5 illustrates
some examples from the literature on software product measures from the design and

coding perspectives.

1.2 Software measurement benefits

Software measurement helps in two ways. First, it helps individual developers
understand what they are doing and provides insight into areas that they might improve.
For example, the measurement of code complexity gives information about which code
is overly complex and might be improved by additional modularisation, and the
measurement of numbers and types of bugs gives information on what errors a developer
is prone to make and thus what he should be watching out for. Second, software
measurement gives an organisation information about where it is, and about the effect of

things it is trying to use (Sharp, 1993).

13

Grady and Caswell (1987) have summarised the advantages of the software

measurement. They determined that software measurement helps the developers to:

1.3

Understanding the software development process better.

Measuring progress.

Providing common terminology for key controlling elements of the process.
Identifying complex software elements.

Making software management more objective and less subjective.

Estimating and scheduling better.

Evaluating the competitive position better.

Understanding where automation is needed.

Identifying engineering practices which lead to the highest quality and productivity.
Making critical decisions earlier in the development process.

Eliminating fundamental causes of defects.

Encouraging the use of software engineering techniques.

Encouraging the definition of long-term software development strategy based upon

a measured understanding of current practices and needs.

Classifications of the software measurement

Fenton and Pfleeger (1997) have classified the software measures into three classes:

product measures, process measures, and resource measures. In more details, they based

their classification on the following definitions:

Products: any outcomes, deliverable, or documents that are emerged from the
processes.
Processes: any activities which are related to the software itself.

Resources: the items that are input to the processes.

14

Anything we are likely need to measure or predict in software is an attribute of some

entity of the three classes (product, process or resource). Fenton and Pfleeger (1997)

have made a distinction between these attributes, which are internal or external:

e Internal attributes of a product, process, or resource are those that can be measured
totally in terms of the product, process, or resource itself.

e External attributes of a product, process, or resource are those which can only be
measured with respect to how the product, process, or resource relates to its

environment, that is, during the execution.

In addition, the measures could be classified to be either direct or indirect measures

based on their dependability on other measures or not (Fenton and Pfleeger, 1997):

e Direct measures: are the measures which could be calculated based on the attribute
itself and without using any other measures.

e Indirect Measures: are the measures which could be evaluated based only on other

measurcs.

14 Software product measurement

The ‘product’” measures are one of the three classes of the software measures as
classified by Fenton and Pfleeger (1997). The other two classes are ‘process’ measures
and ‘resource’ measures. The product measures are the measures related to the software
product itself (Conte, Dunsmore and Shen, 1986), and are divided into the following
three types:

1. Specification measures.

2. Design measures.

3. Source-code measures.

On the other hand, Kafura and Canning (1985) have divided the product measures into
three types:

15

1. Code measures: are based on implementation details.
2. Design measures: are based on an analysis of the software’s design structure.

3. Hybrid measures: are the combination of the above two measures.

For example, the design measures are the measures which address the design
deliverables in the software lifecycle. Thus, these measures can give the developer early
information about the software project at much earlier stage than source code measures.
Most of the design measures are used for dividing a system into modules and the
interrelation between these modules. Design measures can be derived either from the
source code or from a system design documents. Examples of design measures are the
information-flow measures (Kafura and Canning, 1985) and the call graph measures

(Yin and Winchester, 1978).

Whereas, the source code measures are the measures which address the source code
itself. These measures can be applied and collected during the coding (implementation)
phase of the software lifecycle. Examples of source-code measures are Lines of Code —
LOC - measures, McCabe’s measure (McCabe, 1976), and Halstead’s measures

(Halstead, 1977).

Moreover, Dumke and Foltin (1998) have classified the software product measures into
five types:

1. Size measures.

Architecture measures.

Structure measures.

Quality measures.

A

Complexity measures.

Finally, Andersson (1990) has classified the software product measures into the

following five classes:

16

1. Productivity measures, such as the Lines of Code (LOC) and Halstead’s measures.

2. Complexity measures, such as the McCabe’s and Information Flow measures.

3. Reliability measures, such as the Mean Time between Failures (MTBF) and
availability measures.

4. Readability measures, such as Fog-Index measure.

5. Error prediction measures.

1.5 Examples on software product measures

In this subsection, we provide some examples of the software product measures based
on the classification introduced by Kafura and Canning (1985) in which they classified
the software product measures into three classes, that is, design, code and hybrid

measurcs.

1.5.1 Design measures

The design measures can give the developer information about the software product
much earlier than the source code measures. Most of the design measures are used for
dividing a system into modules and the interrelation between these modules. The design
measures can be derived either from source code or from a system design documents. In
this section, we discuss two of the design measures, that is, information-flow measures

and call-graph measures.

1.5.1.1 Information-flow measures

The information-flow measures were first suggested by Henry and Kafura (1981). Their
measures are derived from the following direct measures of specific information-flow
attributes:

e Fan-in of a module 4 is the number of local flows that terminate at 4, plus the

number of data structures from which information is read by 4.

17

e Fan-out of a module 4 is the number of local flows that emanated from 4, plus the

number of data structures that are updated by A.

Moreover, Henry and Kafura (1981) measures depend on the complexity of the module
code and the complexity of the modules’ connections to their environment. The
complexity of a module code is simply a length of a module in which it is the number of
lines in source code for the module. The value of the complexity of each module is

defined as:

Length x (Fan-in x Fan-out)® (1.1)

Regarding the calculation of the information-flow measures (finding the fan-in and fan-

out), the information flows need to be identified and then may be classified as a direct

local flow, an indirect local flow, or a global flow. The definitions of these classes are as
the following:

1. Direct local flow is defined to exist if a module invokes a second module and
passes information to it, or the invoked module returns a result to the caller module.
For example, module 4 calls module B and passes parameters to it.

2. Indirect local flow is defined to exist if the invoked module returns information,
which is subsequently passed, to a second invoked module. For example, module C
calls module 4 and module B and passes the return value from module 4 to module
B.

3. Global flow is defined to exist if there is a flow of information from one module to
another via a global data structure. For example, module A4 writes to a data structure

and module B reads from the data structure.

Ince and Shepperd (1989), and Shepperd (1990) illustrate that there are a number of
problems with these measures. The problems can be summarized as follow:

e Henry and Kafura do not formally describe the connection between two modules.

18

e The definition would seem only to cover indirect local flow over the scope of two
levels, without giving a reason why indirect local flows with more than two levels
should not covered.

e The indirect local flow between two called modules B and C can not be detected
without having the internal functionality of the calling module A4.

e A module that is used many times will receive a high value of complexity.

e The non-availability of the length of the module during the design phase.

The information-flow measures are difficult to be obtained, partly because a large-scale

software requires a large amount of calculations, and because many of Henry and

Kafura’s definitions are not clear. To solve those difficulties, Ince and Shepperd (1989)

make a number of assumptions, which are:

e Recursive module calls treated as normal calls.

e Any variable shared by two or more modules treated as a global data structure.

e Compiler and library modules ignored.

e Indirect local flow only counted across one hierarchical level.

e Indirect local flow ignored, unless the same variable is both imported and exported
by the controlling module.

e No attempt made to make dynamic analysis of module calls.

e Duplicate flows ignored.

1.5.1.2 Call-graph measure

The call-graph measures are derived from the module call graph. The call graph is
usually modeled by representing modules as nodes, and calls as edges in the graph. The
graph impurity (Yin and Winchester, 1978) is one of the measures that can be derived
from the module call-graph. This measure determines how the graph departs from a pure

tree. If e is the total number of edges and 7 is the total number of nodes for a given call

19

graph, then the complexity of the connections within the design can be measured by the

definition of the graph impurity, which is:

(1.2)

Berg and Broek (1995) have classified the call-graphs. Hence, the following four classes

of call graphs are distinguished:

e General call-graph: the customary graph with calls between the three types of
modules (locals, globals, and library modules).

e Global call-graph: calls between top level modules and library modules (directly
and indirectly via local modules).

e Local call-graph: for each top level module, the calls between this module and
other top level modules, library modules, and local modules which are in scope of
the top level modules in the root.

e Include call-graph: in this call graph, there are no module dependencies, but calls

between scripts (via the include construct).

1.5.2 Source code measures

The source code measures are the measures which are concerned with the source code.
These measures can be applied and collected during the coding (implementation) phase
of the software life-cycle. In this section, we will discuss three various measures of this
type, which are Source Lines of Code (SLOC) measures, McCabe’s measure (McCabe,
1976), and Halstead’s measures (Halstead, 1977).

1.5.2.1 Source lines of code measures

The most familiar software measure and the simplest is the count of the source lines of

code (LOC). It is used for measuring the program size or length. The LOC measure can

20

be used as a predictor for productivity, quality, and effort. Unfortunately, there are many
ways to measure the source lines of code for a particular piece of source code; one may
count the total number of lines, including comments and blank lines, or one may ignore

comments and blank lines, and one may or may not count declaration lines.

1.5.2.2 McCabe’s measure

McCabe's measure or 'cyclomatic complexity' (McCabe, 1976) is a measure of the
number of linearly independent paths through a program. The number of paths can be
infinite if the program has a backward branch. Therefore, the cyclomatic measure is built

on the number of basic paths through the program.

The cyclomatic complexity (V(G)) is derived from a control graph, which is modeled
from a source code, and is mathematically computed using graph theory. In the control
graph, edges represent the flow of control and nodes represent the statements. For a
control graph G with e edges, n nodes, and p connected components, the cyclomatic

complexity (V(G)) is calculated from:

[V(G)=e-n+2p] (1.3)

Simply speaking (as McCabe has observed), cyclomatic complexity is found by
determining the number of decision statements in a program, and is calculated as the

following (McCabe, 1976):

(14)

where N is the number of decisions statements in a program.

21

By counting the decision statements, the complexity of a program can be calculated.
However, many decision statements contain compound conditions. An example is a

compound ‘/F” statement, that is, /FF A=B AND C=D THEN.

If the decision statements are counted in this example, cyclomatic complexity is equal to
two (one /F statement plus one). If compound conditions are counted, the statement
could be interpreted as: IFF A= B THEN IFF C= D THEN. Therefore, the cyclomatic
complexity would be three (two /F statements plus one). Cyclomatic complexity makes
the assumption that compound decision statements increase program complexity and
integrates individual conditions in order to calculate V(G). An upper limit of ten for
program complexity is proposed because grater complexity would be less manageable

and testable (McCabe and Butler, 1989).

1.5.2.3 Halstead’s measures

In Halstead’s measures, commonly called ‘software science’ (Halstead, 1977), a
computer program is considered to be a collection of tokens that can be classified as
either operators or operands. A program can be thought of as a sequence of operators
and their associated operands. All Halstead’s measures are functions of the counts of

these tokens.

The design and definition of the Halstead’s measures are described and analysed in

details through Chapter 6 of this thesis.

CHAPTER 2

SOFTWARE PRODUCT QUALITY MEASUREMENT IN ISO STANDARDS

2.1 Introduction

Many organizations are developing standards for software engineering; for example, the
European Space Agency (ESA), the Institute of Electrical and Electronic Engineers
(IEEE), the American National Standards Institute (ANSI), and the International
Organization for Standardization (ISO). In particular, the ISO organization represents
the international consensus and agreement from a number of member countries from
around the world. Many of these countries might participate in the editing process of the
standards and they must participate in the ballot of each stage of the standards

development.

A ‘standard’ may be defined as an agreement between a number of — not necessarily all
— players within a certain area of technology. That is to say, the word ‘standard’ is only

used in cases where recognition has been granted by one or more standardisation bodies.

Schmidt (2000) has summarised the following benefits of the use of the software

engineering standards:

1. Help in achieving greater conformance to software requirements, reduce the
number of software defects, mitigate risks associated with the software, and
decrease software maintenance costs.

2. Provide a framework for systematic, incremental software process improvements,
and help to reduce the number of defects introduced during early project phases.
This reduces the cost and schedule of the testing, installation, and maintenance
phases.

3. Help in satisfying governmental regulations and industry quality standards as they

relate to software, and is essential for passing audits and achieving certification.

23

The need to achieve compliance is a hard business reality for companies in a
number of industries.
4. Provide enhanced accuracy of project planning, detailed means of tracking projects,

early measures of software quality, and improved repeatability of success stories.

In addition to the above-mentioned benefits, standards are designed to promote the
efficient use of technology, and can be seen as structured and pre-packaged, agreed-

upon best practices for specific technologies (Abran, 1996).

In this chapter, we present in some details the contents of the ISO standards which are
related to the software product quality. In particular, the following standards are
discussed:

1. ISO 9126 on software product quality.

ISO 14598 on software product evaluation.

ISO 25020 on measurement reference model and guise (as a part of the SQuaRE).
ISO 25021 on quality measure elements (as a part of the SQuaRE).

wok wD

ISO 25051 on requirements for quality of commercial off-the-shelf (COTS)
software product and instructions for testing.

6. ISO 15939 on software measurement process.

In addition to the above-mentioned standards, the ISO VIM (on international vocabulary
of basic and general terms in metrology) is discussed since this standard will be used —
in Chapters 6 and 7 — along with ISO 15939 as a guide to investigate the availability of
the metrology concepts within the ISO 9126 standards.

This chapter is structured as follows: Section 2.2 describes the contents of the ISO 9126
on software product quality. Section 2.3 presents the ISO 14598 on software product
evaluation. Section 2.4 introduces the SQuaRE series of standards, in particular, it

explains the ISO 25020 and ISO 25021 new standards. Section 2.5 presents the ISO

24

25051 on the requirements for quality of Commercial Off-The-Shelf (COTS) software
product and instruction for testing. Section 2.6 gives a brief description of the contents
of the ISO guide on the international vocabulary of basic and general terms in metrology
(VIM). Finally, strengths and weakness of these ISO standards are identified and

discussed.

2.2 ISO 9126: software product quality

In 1991, the ISO published its first international consensus on the terminology for the
quality characteristics for software product evaluation. This standard was called
Software Product Evaluation — Quality Characteristics and Guidelines for Their Use
(ISO, 1991). From 2001 to 2004, the ISO published an expanded version, containing
both the ISO quality models and the inventories of proposed measures for these models.
The current version of the ISO 9126 series now consists of one International Standard
and three Technical Reports:

1. ISO 9126 — Part 1: Quality Model (ISO, 2001Db).

2. ISO TR 9126 — Part 2: External Measures (ISO, 2003c¢).

3. ISO TR 9126 — Part 3: Internal Measures (ISO, 2003d).

4. ISO TR 9126 — Part 4: Quality in-Use Measures (ISO, 2004f).

Within ISO 9126, there are six quality characteristics and twenty-seven quality
subcharacteristics for the internal and external software product, and four quality
characteristics for the in-use software product. For each of these subcharacteristics (and
characteristics in the case of quality in-use), there are a number of measures that could
be used to assess and evaluate software product quality from different viewpoints (e.g.

internal functionality, external efficiency, in-use productivity, etc.).

The first part of ISO 9126 (ISO, 2001b) describes in some details a software product
quality model which should be used with the other three parts. It is defined as a

25

framework which explains the relationship between different approaches to quality (ISO,

2001b), and considers software product quality from three distinct viewpoints (stages);

that is, internal quality, external quality and quality in-use:

e Internal quality is “the totality of the characteristics of the software product from an
internal view” (ISO, 2001b, p. 5). It can be realized by measuring the internal
properties of the software product without executing it.

e External quality is “the totality of the characteristics of the software product from
an external view” (ISO, 2001b, p. 5), that is, measuring the external quality
properties of the software product during its execution.

e Quality in-use is “the user’s view of the quality of the software product when it is
used in a specific environment and a specific context of use” (ISO, 2001b, p. 5). It
is related to the quality of the in-use software product, that is, during the operation

and maintenance phases.

Figure 2.1 shows the ISO view of the expected relationships between internal quality,
external quality and quality in-use attributes. The internal quality attributes influence the
external quality attributes, while the external attributes influence the quality in-use
attributes. Furthermore, quality in-use depends on external quality, while the external

quality depends on the internal quality (ISO, 2001Db).

Software Product Effect of Software Product

influences

Internal External Quality in

Quality Quality use
Attributes /¢ ------ Attributes /«¢----- Attributes

depends on depends on

f !

Internal Measures External Measures Quality in use Measures

TContext of use

Figure 2.1 Quality in the life-cycle
(1SO, 2001b)

26

Moreover, this document (ISO 9126-1) — Quality Model — contains a two-part quality
model for software product quality (ISO, 2001b), that is:
1. Internal and external quality model;

2. Quality in-use model.

The first part of the two-part quality model determines six characteristics in which they
are subdivided into twenty-seven subcharacteristics for internal and external quality, as
in Figure 2.2 (ISO, 2001b). These subcharacteristics are a result of internal software
attributes and are noticeable externally when the software is used as a part of a computer
system. The second part of the two-part model indicates four quality in-use

characteristics, as in Figure 2.3 (ISO, 2001Db).

(ISO, 2001b)

External and Internal Quality .
| | | | | I
Functionality Reliability Usability Efficiency | |Maintainability| | Portability
1 1 1 1 1 1
-Suitability -Maturity -Understandability | | -Time -Analyzability -Adaptability
-Accuracy -Fault Tolerance -Learnability Behavior -Changeability -Installability
-Interoperability| |-Recoverability -Operability -Resource -Stability -Co-existence
-Security -Reliability -Attractiveness Utilization -Testability -Replaceability
-Functionality Compliance -Usability -Efficiency -Maintainability -Portability
Compliance Compliance Compliance Compliance Compliance
Figure 2.2 ISO 9126 quality model for external and internal quality
(characteristics and subcharacteristics)
(ISO, 2001b)
| Quality in-use .
| | | |
Effectiveness Productivity Safety Satisfaction
Figure 2.3 ISO 9126 quality model for quality in-use (characteristics)

27

In addition, Figure 2.4 shows the different views of product quality and associated

measures at different stages in the software lifecycle (ISO, 2001b).

User Quality Use and feedback

................................ uality in-use
Needs Quality
Contribute to specifying Indicates

Validation External
Quality

*

Contribute to specifying Indicates

\ 4 I

Internal Quality Verification Internal

External Quality
Requirement

Requirement Quality

Figure 2.4 The quality during the software lifecycle
(IS0, 2001b)

The second document of the ISO 9126 series — external measures — contains a basic set
of measures for each external quality subcharacteristic, explanations of how to apply and
use software external quality measures, and examples of how to apply these measures
during the software product lifecycle (ISO, 2003c). The external measures are classified

according to the characteristics and the subcharacteristics defined in ISO 9126-1.

The third document of the ISO 9126 series — internal measures — contains an inventory
of measures for each internal quality subcharacteristic, explanations of the application of
these measures, and examples of how to use these measures in the software product
lifecycle (ISO, 2003d). Also, the internal measures are classified according to the

characteristics and the subcharacteristics defined in ISO 9126-1.

28

Finally, the fourth document of the ISO 9126 series — quality in-use measures — contains
a basic set of measures for each quality in-use characteristic, explanations of how to
apply them, and examples of how to use them in the software product lifecycle (ISO,
2004f). The quality in-use measures are classified by the characteristics defined in ISO
9126-1.

Furthermore, this set of ISO standards could be used by the following intended users
during the software development life cycle (ISO, 2001b):

Developers.

Quality managers.

Maintainers.

Evaluators.

Acquirers.

Suppliers.

S A U I S e

Users.

2.3 ISO 14598: software product evaluation

In addition to the four documents of the ISO 9126 series, the ISO also published a set of
documents for guidelines on how to apply ISO 9126, which is called ISO 14598 and
named as software product evaluation. The ISO 14598 series of standards consists of six
parts:

1. ISO 14598 — Part 1: General Overview (ISO, 1999a).

ISO 14598 — Part 2: Planning and Management (ISO, 2000a).

ISO 14598 — Part 3: Process for Developers (ISO, 2000b).

ISO 14598 — Part 4: Process for Acquirers (ISO, 1999b).

ISO 14598 — Part 5: Process for Evaluators (ISO, 1998a).

ISO 14598 — Part 6: Documentation of Evaluation Modules (ISO, 2001a).

A

29

The part-1 of the ISO 14598 series of standards — general overview — contains an
overview of the contents and the objectives of the other parts, defines a number of terms
used in the other parts, and illustrates the relationship between the other five parts (ISO,
1999a). In addition, it clarifies the relationship between the quality model in the ISO
9126 part-1 and the ISO 14598 series of standards, includes the general requirements for
the specification and the evaluation of the software quality, and presents a framework to

evaluate the quality of all types of software product (ISO, 1999a).

Figure 2.5 illustrates the relationship between the parts 3, 4, and 5 (evaluation process)
and the parts 2 and 6 (evaluation support) of the ISO 14598 series of standards (ISO,
1999a).

Evaluation Process Evaluation Support
ISO 14598-3 -
Process for Developers
ISO 14598-2 ISO 14598-6
ISO 14598-4 Planning Documentation of
Process for Acquirers and Evaluation
Management Modules
ISO 14598-5]

Process for Evaluators

Figure 2.5 The relationship between the evaluation process and the evaluation
support
(1SO, 1999a)

The ISO 14598 part-2 — planning and management — presents details about the planning
and management requirements that are associated with the software product evaluation,
and it defines the requirements which should be provided by the organization in order to

ensure the success of the evaluation process (ISO, 2000a).

30

The part-3 of the ISO 14598 series of standards — process for developers — may be used
to apply the concepts explained in the ISO 9126 series of standards and the ISO 14598
parts 1, 2, and 6 (ISO, 2000b). It gives recommendations and requirements for the
practical implementation of the software product evaluation, in parallel with the
development, by the developer (ISO, 2000b). This part of the ISO 14598 series of
standards may be used by the following (ISO, 2000b):

1. Project manager.

Software designer.

Quality assurance audit.

Maintainer.

A

Software acquirer.

The part-4 of the ISO 14598 series of standards — process for acquirers — includes
requirements, recommendations and guidelines for the systematic measurement,
assessment and evaluation of the software product quality (ISO, 1999b). The evaluation
process explained in this part of the ISO 14598 series of standards helps to meet the
objectives and the goals of deciding on the acceptance of a single product or for
selecting a product (ISO, 1999b). This part-4 of the ISO 14598 series may be used by
(ISO, 1999b):

1. Project manager.

2. System engineers.

3. Software engineering staff.

4. End users.

The ISO 14598 part-5 — process for evaluators — may be used to apply the concepts
explained in ISO 9126 series of standards by providing requirements and
recommendations for the practical implementation of the software product evaluation
when several parties need to understand, accept, and trust the evaluation results (ISO,

1998a). The evaluation process explained in this part of the ISO 14598 series defines the

31

activities needed to analyze the evaluation requirements, to specify, design, and perform
the evaluation actions and to conclude the evaluation of any kind of software product
(ISO, 1998a). This part of the ISO 14598 series may be used by (ISO, 1998a):

1. Testing laboratory evaluators.

Software suppliers.

Software acquirer.

Software users.

A T

Certification bodies.

Finally, the part-6 of the ISO 14598 series of standards — documentation of evaluation
modules — clarifies and defines the contents, the formation, and the structure of the
documentation to be used to illustrate an evaluation module (ISO, 2001a). This part of
the ISO 14598 series may be used by testing laboratories, research institutions and

organizations, and any others who need to produce new evaluation modules (ISO,

2001a).

24 SQuaRE series of standards

The ISO has now recognized a need for further enhancement of ISO 9126 and ISO
14598 series of standards, primarily as a result of advances in the fields of information
technologies and changes in environment (Azuma, 2001). Therefore, the ISO is now
working on the next generation of software product quality standards (Suryn, Abran and
April, 2003), which will be referred to as Software Product Quality Requirements and
Evaluation (ISO SQuaRE — ISO 25000 series). This series of standards will replace the
current ISO 9126 and ISO 14598 series of standards. The ISO SQuaRE series consists of
five divisions, as in Figure 2.6 (ISO, 2005):

1. ISO 2500n: Quality Management Division.

2. ISO 2501n: Quality Model Division.

3. ISO 2502n: Quality Measurement Division.

32

4. ISO 2503n: Quality Requirements Division.
5. ISO 2504n: Quality Evaluation Division.

Quality
Model Division
ISO 2501n

Quality Quality Quality
Requirements Division | Management Division | Evaluation Division
ISO 2503n ISO 2500n ISO 2504n
Quality
Measurement Division
ISO 2502n

Figure 2.6 Organization of the ISO SQuaRFE series of standards
(IS0, 2005)

One of the main objectives of (and differences between) the ISO SQuaRE series of
standards and the current ISO 9126 series of standards is the coordination and
harmonization of its contents with ISO 15939 (ISO, 2005). Figure 2.7 shows the
structure of the quality measurement division (ISO 2502n) series that is to replace the
current four-part ISO 9126 series of standards (ISO, 2007a). This quality measurement
division (ISO 2502n) consists of five standards (ISO, 2007a):

1. ISO 25020: Measurement Reference Model and Guide.

ISO 25021: Quality Measure Elements.

ISO 25022: Measurement of Internal Quality.

ISO 25023: Measurement of External Quality.

ISO 25024: Measurement of Quality in-Use.

A

In particular, ISO has recently finalized two documents from the quality measurement
division standards, that is, ISO 25020 and ISO 25021. These two new standards will be

analyzed in details in Chapter 7.

33

Measurement Reference Model and Guide

(ISO 25020)
I
Measurement of Measurement of Measurement of
Internal Quality External Quality Quality in-Use
(ISO 25022) (IS0 25023) (IS0 25024)

Quality Measure Elements
(ISO 25021)

Figure 2.7 Structure of the measurement division (ISO 2502n)
(ISO, 2007a)

The ISO 25020 and ISO 25021 introduced the following new terms to be used in all of
the related SQuaRE standards (i.e. ISO 25022, ISO 25023 and ISO 25024) (ISO, 2007a;
2007b):

1. Quality measure element category.

2. Quality measure element.

3. Quality measure.

In ISO 25020, the quality measure is defined as the measure of internal software quality,
external software quality or software quality in-use, and the quality measure element is
defined to be a base or derived measure which is used to construct the software quality
measures (ISO, 2007a). Although, the quality measure element categories are introduced
in ISO 25021, they are never defined nor mentioned in ISO 25020 which is the guide for
the users of the quality measurement division standards. In addition, the list of quality
measures in ISO 25021 arises from a set of surveys involving several commercial and

academic institutions (ISO, 2007b).

These two standards may be used by the following intended users to evaluate the quality

of a specific software product (ISO, 2007a):

34

1. Developers.
2. Acquirers.

3. Independent evaluators.

2.5 ISO 25051: requirements for quality of Commercial Off-The-Shelf (COTS)
software product and instructions for testing

This standard was initially published in 1994 as ISO 12119 — Software Packages:
Quality Requirements and Testing — (ISO, 1994). In 2006, it was updated and
republished to be a part of the SQuaRE series of standards as ISO 25051: Requirements
for Quality of Commercial Off-The-Shelf (COTS) Software Product and Instructions for
Testing (ISO, 2006b). The ISO 25051 international standard provides requirements for
COTS software product, requirements for test documentation, and instructions for
conformity evaluation, including requirements for product description requirements for
user documentation, and quality requirements for software (ISO, 2006b). In Annex C of
this international standard, it provides guidance and recommendations for safety or

business critical COTS software products (ISO, 2006b).

The quality requirements for the COTS software product itself consist of the following
product quality characteristics (ISO, 2006b):

1. Functionality.

2. Reliability.

3. Usability.

4. Efficiency.

5. Maintainability.
6. Portability.

7. Quality in-use.

In addition, it can be used to assess the software product user documentation through the

following quality requirements (ISO, 2006b):

35

1. Completeness.

2. Correctness.

3. Consistency.

4. Understandability.
5. Learnability.

6. Operability.

Furthermore, it contains a set of requirements for the testing process. These

requirements can be summarised as follows (ISO, 2006b):

1. Requirements for the test plan.
2. Requirements for the testing description.
3. Requirements for the test results.

This international standard could be used by the following potential users to assess the

quality of the COTS software products (ISO, 2006b):
1. Suppliers.

2. Certification bodies.
3. Testing laboratories.
4. Accreditation bodies.
5. Acquirers.

6. End users.

2.6 IS0 15939: software measurement process

The goal of this international standard is to identify the activities and tasks which are

necessary to identify, define, select, apply, and improve the software measurement

successfully. In addition, it contains a set of definitions for the commonly used terms in

the field of software measurement (ISO, 2002).

36

Furthermore, this international standard can be used to implement a measurement

process on an overall project or organizational measurement structure. The following

activities and tasks should be followed for this implementation (ISO, 2002, p. 10):

1. Establish and sustain measurement commitment, it consists of the following tasks:

a.

b.

Accept the requirements for measurement.

Assign resources.

2. Plan the measurement process, it includes the following tasks:

a.
b.

C.

d.

f.

g.

Characterise organisational unit.

Identify information needs.

Select measures.

Define data collection, analysis, and reporting procedures.

Define criteria for evaluating the information products and the measurement
process.

Review, approve, and provide resources for measurement tasks.

Acquire and deploy supporting technologies.

3. Perform the measurement process.

a.

b.

C.

d.

Integrate procedures.
Collect data.
Analyse data and develop information products.

Communicate results.

4. Evaluate the measurement process.

a.

b.

Evaluate information products and the measurement process.

Identify potential improvements.

Within ISO 15939, ISO produced an information model — as in Figure 2.8 — to help in

determining what has to be specified during measurement planning, performance and

evaluation (ISO, 2002).

37

1
! Information Product :
1
1

| A — _% ___
Interpretation

Indicator

(Analysis) Model

Derived Measure Derived Measure

Measurable @urement F un@
Concept P <
A Base Measure Base Measure

Figure 2.8 Measurement information model from ISO 15939
(ISO, 2002)

Figure 2.8 shows that a specific measurement method is used to collect a base measure
for a specific attribute. Then, the values of two or more base measures can be used
within a computational formula (by means of a measurement function) to produce and
construct a specific derived measure. These derived measures are then used in the
context of an analysis model to achieve an indicator which is a value, and to interpret the
indicator’s value to explain the relationship between it and the information needed, in
the language of the measurement user, to produce an Information Product for his

Information Needs (ISO, 2002).

38

Abran et al. (2005) have divided the ISO 15939 Measurement Information Model into
three sections, that is, ‘Data Collection’, ‘Data Preparation’, and ‘Data Analysis’

sections, as described in Figure 2.9.

Information Product

Data Analysis
Interpretation

A

i Indicator

Analysis Model

Data Preparation

Derived Measure

Measurement Function

Data Collection

Base Measure

A

Measurement Method

A

Attributes

Figure 2.9 ISO 15939 measurement information model — three different sections

39

2.7 ISO VIM: international vocabulary of basic and general terms in metrology

Metrology is the basis of all measurement related concepts in natural sciences and
engineering, and to each of the different interpretations of a software ‘metrics’ is
associated a related distinct metrology term with related metrology criteria and
relationship to other measurement concepts. In 1984, the ISO with other participating
organizations (BIPM, IEC, and OIML) published their first edition of the international
consensus on the basic and general terms in metrology (ISO VIM) (ISO, 1984). Later
on, in 1993, this publication was reviewed, and then the ISO in collaboration with six
participating organizations (BIPM, IEC, OIML, IUPAC, IUPAP, and IFCC) published
the second edition of this document (ISO, 1993). ISO is now working on its third edition
of this document to integrate — in particular — concepts related to measurement

uncertainty and measurement traceability.

The term ‘metrology’ is defined in the ISO International Vocabulary of Basic and
General Terms in Metrology as the field of knowledge dealing with measurement (ISO,
1993). More specifically, it has been defined by Simpson (1981) as the portion of
measurement science used to provide, maintain, and disseminate a consistent set of
units; to provide support for the enforcement of equity in trade by weights and

measurement laws; or to provide data for quality control in manufacturing.

This ISO document consists of 120 terms classified into six categories (in parentheses,
the number of terms within each category):

1. Quantities and Units (22 terms).

Measurements (9 terms).

Measurement Results (16 terms).

Measuring Instruments (31 terms).

Characteristics of the Measuring Instruments (28 terms).

S

Measurement Standards — Etalon (14 terms).

40

The ISO VIM standard on metrology presents its terms, within each category, in
increasing order of complexity and describes in textual format each term individually.
To facilitate understanding of these more than hundred related terms, Abran and Sellami
(2002a) proposed a modeling of all the sets of measurement concepts documented in this

ISO document.

Two of the categories of terms in the VIM deal with some aspects of the design of
measurement methods, that is, ‘quantities and units’ and ‘measurement standards —
etalon’. The other four categories are related to the application of a measurement design
with a measuring instrument and to the quality characteristics of the measurement results
provided by this measuring instrument (Abran and Sellami, 2002a). In this thesis, we use
the modeling proposed by Abran and Sellami (2002a) of the measurement concepts in
the ISO vocabulary of terms in metrology. In particular, we will use the first category
which deals with the design of the measurement methods, that is, ‘quantities and units’

to analyse ISO 9126 (see Chapter 7 for this analysis).

Table 2.1, shows the detailed structure of the ‘quantities and units’ category; in
particular, the system of quantities consists of two types of quantities, that is, base and
derived quantities (in ISO 15939, the ‘base quantities’ and ‘derived quantities’ terms
were replaced by the following two equivalent terms: ‘base measures’ and ‘derived

measures’.)

Table 2.1

Detailed structure of the ‘quantities and units’ category
(Abran and Sellami, 2002a)

41

Quantities and Units

System of | Dimensions of Units of Value of a
Quantities Quantities Measurement Quantity
- Base - Quantity of - Symbol of a Unit - True Value
Quantity Dimension one | - System of Units - Conventional
- Derived (Dimensionless | - Coherent (Derived) Unit True Value
Quantity Quantity) - Coherent System of Units | - Numerical
- International System of Value
Units (SI) - Conventional
- Base Unit Reference Scale
- Derived Unit (Reference-
- Off-System Unit Value Scale)
- Multiple of a Unit
- Submultiple of a Unit

Table 2.2 presents the related terms along with their definitions adopted in this thesis

(particularly, in Chapter 7) from the ‘quantities and units’ category of the ISO VIM on

International Vocabulary of Basic and General Terms in Metrology (ISO, 1993).

While metrology has a long tradition of use in physics and chemistry, it is rarely referred

to in the software engineering literature. Carnahan et al. (1997) are amongst the first

authors to identify this gap in what they referred to as ‘IT metrology’ and to discuss the

challenges and opportunities arising from the application of the metrology concepts to

information technology. In addition, they proposed logical relationships between

metrology concepts, as in Figure 2.10. Moreover, Gray (1999) discussed the

applicability of metrology to information technology form the software measurement

point of view.

42

Table 2.2

Definitions of some metrology terms
(ISO, 1993)

Term

Definition

Quantity

Attribute of a phenomenon, body or substance that may be distinguished
qualitatively and determined quantitatively.

System of Quantities

A set of quantities, in the general sense, among which defined relationships
exist.

Unit (of Measurement)

A particular quantity defined and adopted by convention, with which other
quantities of the same kind are compared in order to express their
magnitudes relative to that quantity.

Base Quantity

One of the quantities that, in a system of quantities, are conventionally
accepted as functionally independent of one another.

Derived Quantity

A quantity defined, in a system of quantities, as a function of base quantities
of that system.

Quantity of Dimension
one (Dimensionless
Quantity)

A quantity in the dimensional expression of which all the exponents of the
dimensions of the base quantities reduce to zero.

System of Units

A set of base units, together with derived units, defined in accordance with
given rules, for a given system of quantities.

Coherent (Derived)
Unit

A derived unit of measurement that may be expressed as a product of
powers of base units with the proportionality factor one.

Coherent System of
Units

A system of units of measurement in which all of the derived units are
coherent.

International System

The coherent system of units adopted and recommended by the General

of Units (SI) Conference on Weights and Measures (CGPM).

Base Unit A unit of measurement of a base quantity in a given system of quantities.

Derived Unit A unit of measurement of a derived quantity in a given system of quantities.

Off-System Unit A unit of measurement that does not belong to a given system of units.

Multiple of a Unit A larger unit of measurement that is formed from a given unit according to
scaling conventions.

Submultiple of a Unit | A smaller unit of measurement that is formed from a given unit according to
scaling conventions.

Value of a Quantity Magnitude of a particular quantity generally expressed as a unit of
measurement multiplied by a number.

True Value A value consistent with the definition of a given particular quantity.

Conventional True
Value

A value attributed to a particular quantity and accepted, sometimes by
convention, as having an uncertainty appropriate for a given purpose.

Numerical Value

A quotient of the value of a quantity and the unit used in its expression.

Conventional
Reference Scale

For particular quantities of a given kind, an ordered set of values,
continuous or discrete, defined by convention as a reference for arranging
quantities of that kind in order of magnitude.

43

\4

Units and Scales |
Methods of Realization i

Methods of Calibration

Primary Reference i
and Testing '

1
1
i Measurement ! Y

Secondary References
Methods of

1
1
1
1
' Measurement
1
1
1
1
1

Measured Values

Figure 2.10 Logical relationships among metrology concepts in standardizing
measurements
(Carnahan et al., 1997)

Abran (1998) highlighted some high-level ambiguities in the domain of software
measurement and proposed to substitute the appropriate metrology terms to the current
ambiguous and peculiar ‘software metrics’ terminology unique to the domain of
software engineering. In addition, the availability of the metrology concepts in software
engineering has been investigated in (Abran and Sellami, 2002b; Abran, Sellami and
Suryn, 2003; Bourque et al., 2004). Abran and Sellami (2004) documented the
metrology concepts addressed in the ISO 19761 (COSMIC-FFP), both in the design of
this measurement method and in some of its practical use. Moreover, Sellami and Abran
(2003) investigated the contribution of metrology concepts to understand and clarify a

framework for software measurement validation proposed by Kitchenham et al. (1995).

44

2.8 Identification of the strengths and weaknesses

The ISO 9126 series of standards on software product quality evaluation proposes a set
of 197 metrics (measures) for measuring the various characteristics and
subcharacteristics of software quality (ISO, 2003c; 2003d; 2004f). However, as it is
typical in the software engineering literature, the set of so-called metrics in ISO 9126
refers to multiple distinct concepts which, in metrology, would have distinct labels (or
naming conventions, e.g. terms) to avoid ambiguities. Therefore, to help in
understanding and clarifying the nature of the ‘metrics’ proposed in ISO TR 9126, each
needs to be analysed from a metrology perspective and mapped to the relevant
metrology concepts. Such a mapping will also contribute to identifying the measurement
concepts that have not yet been tackled in the ISO 9126 series of documents. Each of
these gaps represents an opportunity for improvement in the design and documentation

of the measures proposed in ISO 9126.

Recently, the ISO has come up with the ISO 25020 and ISO 25021 documents as apart
of the quality measurement division of the SQuaRE series of standards (ISO, 2007a;
2007b). Within these two documents, the associated working group (WG6) of software
engineering subcommittee seven (SC7) has introduced three new terms namely: quality
measure elements, quality measure element categories and quality measures. However,
there already exists a very mature measurement terminology, and it is well documented
in the ISO International Vocabulary of Basic and General terms in Metrology (ISO
VIM) (ISO, 1993). This terminology is widely accepted and used in most fields of
science, and has been adopted in ISO 15939 (ISO, 2002) as the agreed upon
measurement terminology for software and system engineering related ISO standards.
Thus, using well-defined terms — such as in ISO 15939 and ISO VIM - is more efficient
and usable than adding of new terms for the new SQuaRE series of standards — such as
in ISO 25020 and ISO 25021. In addition, as a main goal of the new ISO 25020 and ISO

25021 to be aligned with the ISO 15939 international standard, thus, an investigation is

45

needed to ensure that the ISO 15939 is completely and correctly mapped to the new two

standards.

The ISO 25051 — which is a part of the SQuaRE series of standard — is completely
dedicated to the COTS software product (ISO, 2006b). However, since the COTS is a
type of software product, thus, some of contents of this standard are already included in
the other SQuaRE documents. In addition, the ISO 25051 contains some materials that is
related to the requirement for user documentation which is already available as a single

ISO standard, as in ISO 18019 (ISO, 2004d).

CHAPTER 3

CAPABILITY AND MATURITY MODELS IN THE SOFTWARE
ENGINEERING LITERATURE

3.1 Introduction

A maturity model is a structured collection of elements that describe the characteristics
of effective processes or products. In addition, a maturity model can be used as a

benchmark for assessing different processes or products for equivalent comparison.

In the software engineering literature, there are many capability and maturity models.
These capability and maturity models could be classified into process or product
capability and maturity models based on what aspect of the software they could be

applied.

This chapter is structured as follows: Section 3.2 presents some examples of the many
available process maturity models related to software engineering. By contrast, only two
maturity models are identified as dealing with the software product. In Section 3.3, we
discuss these two product maturity models, that is: the Open Source Maturity Model
(OSMM) (Golden, 2004) and the Software product Maturity Model (Nastro, 1997). At
the end of this chapter — in Section 3.4 — we discuss the strengths and weaknesses of
maturity models which are related to the software product rather than to the software

process.

3.2 Process maturity models

The maturity models of software development processes are useful because they indicate

different levels of process performance and, consequently, the direction in which a

47

software process should improve (McBride, Henderson-Sellers and Zowghi, 2004). In
this section we discuss the following process capability and maturity models:

1. Capability Maturity Model Integration for Software Engineering — CMMI-SW.

2. Testing Maturity Model — TMM.

3. ISO Process Assessment Model — ISO 15504.

3.2.1 Capability maturity model integration for software engineering

The Capability Maturity Model (CMM) was developed by the Software Engineering
Institute (SEI) of Carnegie Mellon University in response to a request to provide the
U.S. Department of Defense with a method for assessing its software contractors (SEI,
1993). Within the updated Capability Maturity Model Integration (CMMI) version are
currently embedded four bodies of knowledge (disciplines) (SEI, 2002a; 2002b):

1. System Engineering.

2. Software Engineering.

3. Integrated Product and Process Development.

4. Supplier Sourcing.

In this subsection, we provide an overview of only the Capability Maturity Model

Integration for Software Engineering (CMMI-SW).

The components of the CMMI-SW are process areas, specific goals, specific practices,
generic goals, generic practices, typical work products, subpractices, notes, discipline
amplifications, generic practice elaborations and references (SEI, 2002b). The CMMI-
SW can organize process areas in a staged or a continuous representation. The staged
representation includes five maturity levels to support and guide process improvement;
in addition, it groups process areas by maturity level, indicating which process areas to
implement to achieve each maturity level (SEI, 2002b). Figure 3.1 presents the CMMI-

SW maturity level architecture.

48

Defined ©)
Managed @
Initial Q)

Figure 3.1 CMMI-SW maturity levels
(SEL 2002b)

Furthermore, Figure 3.2 shows the CMMI-SW model components in a staged

representation, and illustrates the relationships between those components (SEI, 2002b).

Maturity Levels
Process Area 1 Process Area 2 Process Area n

Specific Goals

Common Features
v v v v

Commitment to Ability to Directing Verifying
Perform Perform Implementation Implementation

N 4

Figure 3.2 CMMI-SW components
(SEL 2002b)

Generic Goals

49

3.2.2 Testing maturity model

In addition to the SEI maturity model (CMMI-SW), there are a number of maturity
models in the literature dealing with the software process. For example, the Testing
Maturity Model (TMM) (Burnstein, Suwanassart and Carlson, 1996a; 1996b) which is
related to the software testing process. This maturity model is a quantitative model, that
is, it is based on measurements. It was developed by Burnstein ez al. (1996a; 1996b) at
the Illinois Institute of Technology. The TMM consists of five levels of testing maturity
(see Figure 3.3), each with maturity goals identifying testing improvements that should
be addressed to achieve the next level of maturity (Burnstein, Suwanassart and Carlson,

1996a).

Integration ©]
Phase Definition @
Initial Q)

Figure 3.3 Testing maturity levels

3.2.3 ISO 15504: software process assessment

ISO 15504 consists of a set of documents related to Software Process Assessment. It was
first published in 1998 as a series of 9 Technical Reports. During 2003 to 2005, ISO has
re-published this international standard as a 5-part series:

1. ISO 15504-1: Concepts and Vocabulary (ISO, 2004a).

2. ISO 15504-2: Performing an Assessment (ISO, 2003a).

3. ISO 15504-3: Guidance on Performing an Assessment (ISO, 2004b).

50

4. ISO 15504-4: Guidance on use for Process Improvement and Process Capability
Determination (ISO, 2004c).
5. ISO 15504-5: An Exemplar Process Assessment Model (ISO, 2006a).

The first Part — Concepts and Vocabulary — is an entry point into ISO 15504. It gives an
introduction to the concepts of this international standard, and defines a number of
related terms (ISO, 2004a). In addition, this part describes how the other four parts fit
together, and provides guidance for their selection and use (ISO, 2004a). Figure 3.4

shows a potential roadmap for users of this international standard (ISO, 2004a).

Part 1: Concepts and Vocabulary

Part 4: Guidance on use for Process Improvement
and Process Capability Determination

/ Part 3: Guidance on Performing an Assessment

Part 2: Performing an

Assessment \

Part 5: An Exemplar Process Assessment Model

Figure 3.4 A potential roadmap for the users of ISO 15504
(ISO, 2004a)

The second Part — Performing an Assessment — of this international standard contains
normative requirements for process assessment and for process models in an assessment,
and defines a measurement framework for evaluating process capability. The
measurement framework defines nine process attributes that are grouped into six process

capability levels that define an ordinal scale of capability that is applicable across all

51

selected processes. In addition, this part describes the relationships between the

components of the process assessment model, as in Figure 3.5 (ISO, 2003a).

Figure 3.6 illustrates the relationships between the process attributes and their ratings
and the corresponding capability levels. In this figure 3.6, the capability levels start at
level one, that is, level zero is excluded since it indicates that the process is not

implemented, or fails to achieve its process purpose.

}

5
Measurement Framework 4| & Process
- Capability Levels § 5: Assessment
- Process Attributes =8 3 ® Model
- Rating Scale i 2 ;T
—
1 2 3 R (| >
/ Process Entities \

RN

mapping \

Process Reference Model
- Domain and Scope
- Processes with Purpose and Outcomes

Figure 3.5 Process assessment model relationships
(ISO, 2003a)

Furthermore, this Part 2 — Performing an Assessment — of the ISO 15504 introduces the
following rating categories to be used in order to rate each of the process attributes (ISO,
2003a):

e N: Not achieved (0% - 15% achievement).

e P: Partially achieved (15% - 50% achievement).

52

e L: Largely achieved (50% - 85% achievement).
e F: Fully achieved (85% - 100% achievement).

Mapping of the selected process
Processes Process Attributes attributes with their required ratings
to a specific capability level
1 Process Performance
—>) —> Level
2 Performance e (1)
S Management —> g 1
3 | @) g
Work Product o)
Ed Management > ,E’: (1,2,)
3 % :
—> Process Definition > g
@ = | (1),2).0).*),) % 3
Process Deployment =4
—> 5) > 3
N| P> Process Measurement | 5 §
6 = | (1),(2), (3), (%), (5),
(6) = 4
Process Control 2. | (6),(7)
> ™ > 3
Process Innovation g (1), (2), 3), (4), (5),
> (¢)) > 3 % 5
L3 | Process Optimization | (6), (7). (8), (9)
(&)

Figure 3.6 The relationships between the process attributes, their ratings and the
corresponding capability levels

The third Part — Guidance on Performing an Assessment — provides guidance on how to
meet the minimum set of requirements for performing an assessment contained in the
second part — Performing an Assessment — of this standard (ISO, 2004b). It provides an
overview of process assessment and interprets the requirements through the provision of
guidance on (ISO, 2004b):

1. Performing an assessment.

53

Measurement framework for process capability.
Process reference models and process assessment models.
Selecting and using assessment tools.

Competency of assessors.

S

Verification of conformity.

In addition, this part also provides an exemplar documented assessment process in its

Annex A (ISO, 2004b).

The fourth Part — Guidance on use for Process Improvement and Process Capability
Determination — provides guidance on how to utilize a conformant process assessment
within a process improvement program or for process capability determination (ISO,
2004c¢). Within a process improvement context, process assessment provides a means of
characterizing an organizational unit in terms of the capability of selected processes.
Analysis of the output of a conformant process assessment against an organizational
unit's business goals identifies strengths, weaknesses and risks related to the processes.
In addition, this can help determine whether the processes are effective in achieving
business goals, and provide the drivers for making improvements. Process capability
determination is concerned with analyzing the output of one or more conformant process
assessments to identify the strengths, weaknesses and risks involved in undertaking a
specific project using the selected processes within a given organizational unit (ISO,

2004c).

Finally, the fifth Part — An Exemplar Process Assessment Model — provides an exemplar
model for performing process assessments that is based upon and directly compatible
with the Process Reference Model in ISO 12207 Amendment 1 and Amendment 2 (ISO,
2006a). The process dimension is provided by an external Process Reference Model,
which defines a set of processes, characterized by statements of process purpose and

process outcomes (ISO, 2006a). The capability dimension is based upon the

54

Measurement Framework defined in Part 2 — Performing an Assessment — of this
standard. The assessment model(s) extend the Process Reference Model and the
Measurement Framework through the inclusion of a comprehensive set of indicators of

process performance and capability (ISO, 2006a).

The potential users of this set of standards are the following (ISO, 2004a):
I- Assessors.
2- Acquirers.

3- Suppliers.

3.3 Product maturity models

In the software engineering literature, we find only the following two maturity models
which are related to the software product:

e Open Source Maturity Model — OSMM (Golden, 2004).

e Software Product Maturity Model (Nastro, 1997).

It must be noted, however, that these two models of software product do not address the

quality of these products.

Within this section, we provide a brief description for these two models.

3.3.1 Open source maturity model

The Open Source Maturity Model (OSMM) (Golden, 2004) is designed to help
organizations successfully implement open-source software. The OSMM is a three-

phase process, and performs the following tasks, as in Figure 3.7:

1.

Assessment of the maturity element.

2. Assignment of the weighting factor.

3. Calculation of the product maturity score.

55

Phase 1: Assess Maturity Element Phase 2 Phase 3
Define Locate Assess Assign Ass.lgn. Calculate
et || Reseiess Element || Element || Weighting || Product
Maturity (| Score Factor Maturity Score
Product
Software
Support
Documentation
Training
Product
Integration
Professional
Services
Figure 3.7 The OSMM three-phase evaluation process

(Golden, 2004)

The first phase consists of the following steps:

1.

2
3.
4

Define the requirements,

Locate the resources,

Assess the element maturity

Assign the element score.

The second phase involves assigning the objective weighting factors that are provided as

default weightings and that can be changed by individual organizations to reflect their

particular needs (Golden, 2004).

56

The last phase involves calculating the product maturity score by multiplying the score
of each element by its weight, and then summing the results to obtain the output of the
OSMM assessment as a numeric score between zero and 100. This score may be
compared against recommended levels for different purposes, which vary according to
whether an organization is an early adopter or a pragmatic user of information
technology (Golden, 2004), see Table 3.1 for the recommended minimum OSMM

SCOrcs.

Table 3.1

Recommended minimum OSMM scores
(Golden, 2004)

Purpose of Use Type of User

Early Adopter Pragmatist
Experimentation 25 40
Pilot 40 60
Production 60 70

Using the key software concept of maturity (i.e., how far along a product is in the
software lifecycle, which dictates what type of use may be made of the product), the
OSMM assesses the maturity level of the following key product elements (Golden,
2004):

Software.

Support.

Documentation.

Training.

Product integration.

A e

Professional Services.

57

The OSMM is designed to be a lightweight process which can evaluate an open-source

product’s maturity in two weeks or less (Golden, 2004).

3.3.2 Software product maturity model

In addition to the OSMM, Nastro (1997) developed a maturity model for the software
product. His maturity model consists of three core elements and two sub-elements, the

sub-elements may be applied to specific software applications (Nastro, 1997).

The core elements of Nastro’s (1997) model are the following:
1. Product capability.
2. Product stability.

3. Product maintainability

And the sub-elements are:
1. Product repeatability.
2. Product compatibility.

Based on the computed maturity level of each of the core and sub-elements, Nastro
(1997) proposed the following equation to calculate the product maturity level of an

embedded, real-time or signal processing system (Nastro, 1997):

|PC * (PS+ PR+ PM) /3| (3.1)

where:

e PC is the Product Capability maturity level,

e PSis the Product Stability maturity level,

e PR is the Product Repeatability maturity level, and

e PM is the Product Maintainability maturity level.

58

In the above equation, PC has the highest weight among all the core and sub-elements,

because of its criticality for this application (Nastro, 1997).

3.4 Identification of the strengths and weaknesses

In this thesis, we are interested in the development of maturity models to assess the
quality of software product rather than the process. Therefore, in this section, we focus
on the strengths and weakness of the two product-related maturity models; we did not

find any other maturity models related to the software product.

3.4.1 OSSM model

When the OSMM is used to assess the maturity of open source software, it takes into
account other elements rather than only the software product itself, that is: the support,
documentation, training, product integration and professional services. Indeed, these
elements can affect the quality of the software product since — for example — a high
quality software with low quality documentation might be interpreted as a poor quality

software product from the customer point of view.

The OSMM is designed to be used with the open source software products when they
are completed, i.e. they are ready for the release. In addition, it is mostly useful when an
organization or an individual needs to choose between a variety of open source software

products. Furthermore, it is not based on any quality model.

3.4.2 Nastro model

The second product maturity model — the Nastro software product maturity model — has

the following limitations:

59

It is for an executable software product. Therefore, it can only be used with an
incremental life-cycle which provides multiple releases (versions) of an executable
software product.

It is not based on any comprehensive quality model, but only on a small number of
product quality characteristics (there are five of them).

It is designed for the software product itself, rather than the quality of the software
product.

For each element (core or sub-), there is only one measure.

It has been built to track and report the software development effort during an

incremental life-cycle.

CHAPTER 4

RELATED CONCEPTS TO THE DEVELOPMENT OF THE SOFTWARE
PRODUCT QUALITY MATURITY MODEL - SPQ™"

4.1 Introduction

In this chapter, we introduce the concepts which will be used to build the quality
maturity model. In particular, we presents the selected software quality model, the sigma
concepts, ISO 15026 on software integrity levels, and IEEE Std. 1012 on software

verification and validation.

This chapter is structured as follows: Section 4.2 presents five quality models from the
software engineering literature. Section 4.3 introduces the sigma concepts. Section 4.4
gives a general description of the contents of the ISO 15026 on software integrity levels.
Finally, Section 4.5 presents some information about the IEEE Std. 1012 on the software

verification and validation.

4.2 Software quality models

There are a number of quality models in software engineering literature, each one of
these quality models consists of a number of quality characteristics (or factors, as called
in some models). These quality characteristics could be used to evaluate the quality of
the software product from the view of that characteristic. Selecting which one of the
quality models to use is a real challenge. In this subsection, we present the contents of
the following quality models:
1. McCall’s Quality Mode.
2. Boehm’s Quality Model.

61

3. Dromey's Quality Model.
4. FURPS Quality Model.
5. ISO 9126 Quality Model.

4.2.1 McCall’s quality mode

McCall quality model (also known as the General Electrics Model of 1977) is one of the
most quoted quality models in the software engineering literature. It has been presented
in 1977 by Jim McCall et al. (1977). This model originates from the US military and is
primarily aimed towards the system developers and the system development process
(McCall, Richards and Walters, 1977). Using this model, McCall attempts to bridge the
gap between users and developers by focusing on a number of software quality factors
that reflect both the users’ views and the developers’ priorities (McCall, Richards and

Walters, 1977).

The structure of the McCall quality model consists of three major perspectives (types of
quality characteristics) for defining and identifying the quality of a software product, and
each of these major perspectives consists of a number of quality factors. Each of these
quality factors has a set of quality criteria, and each quality criteria could be reflected by
one ore more metrics, as in Figure 4.1. The three major perspectives and their related
factors are the following (McCall, Richards and Walters, 1977):
1. Product Revision: it is about the ability of the product to undergo changes, and it
includes:
a. Maintainability: the effort required to locate and fix a fault in the program
within its operating environment.
b. Flexibility: the ease of making changes required by changes in the operating
environment.
c. Testability: the ease of testing the program, to ensure that it is error-free and

meets its specification.

62

McCall’s Quality Model

v v v

Major Perspective 1 Major Perspective 2 Major Perspective 3

! ! !

Quality Factor 1 Quality Factor 2 C Quality Factor N

v ! v

Quality Criteria 1 Quality Criteria 2 .. .| Quality Criteria M

! ! !

Metric 1 Metric 2 <o Metric L

Figure 4.1 The structure of McCall’s quality model

Product Operations: it is about the characteristics of the product operation. The

quality of the product operations depends on:

a.
b.

C.

Correctness: the extent to which a program fulfils its specification.

Reliability: the systems ability not to fail.

Efficiency: it is further categorized into execution efficiency and storage
efficiency and generally meaning the use of resources, e.g. processor time,
storage.

Integrity: the protection of the program from unauthorized access.

Usability: the ease of the use of the software.

63

3. Product Transition: it is about the adaptability of the product to new environments.
It is all about:
a. Portability: the effort required to transfer a program from one environment to
another.
b. Reusability: the ease of reusing software in a different context.

c. Interoperability: the effort required to couple the system to another system.

In more details, McCall’s quality model consists of 11 quality factors to describe the
external view of the software (from the users’ view), 23 quality criteria to describe the
internal view of the software (from the developer’s view) and a set of ‘metrics’ which
are defined and used to provide a scale and method for measurement. Table 4.1 presents

the three major perspectives and their corresponding quality factors and quality criteria.

The main objective of the McCall’s quality model is that the quality factors structure
should provide a complete software quality view (Kitchenham and Pfleeger, 1996). The

actual quality metric is computed by answering ‘yes’ and “no” questions.

4.2.2 Boehm’s quality model

Boehm’s quality model (Boehm et al., 1978; Boehm, Brown and Lipow, 1976) is
introduced to quantitatively evaluate the quality of software. This model attempts to
qualitatively define the quality of software by a predefined set of attributes and metrics.
It consists of high-level characteristics, intermediate-level characteristics and lowest-
level (primitive) characteristics which contribute to the overall quality level (see Figure

4.2).

Table 4.1

The content of McCall’s quality model

Major Perspectives | Quality Factors Quality Criteria

Product revision Maintainability | Simplicity

Conciseness

Self-descriptiveness

Modularity

Flexibility Self-descriptiveness

Expandability

Generality

Testability Simplicity

Instrumentation

Self-descriptiveness

Modularity

Product operations Correctness Traceability

Completeness

Consistency

Efficiency Execution efficiency

Storage efficiency

Reliability Consistency

Accuracy

Error tolerance

Integrity Access control

Access audit

Usability Operability

Training

Communicativeness

Product transition Portability Self-descriptiveness

Software-system independence

Machine independence

Reusability Self-descriptiveness

Generality

Modularity

Software-system independence

Machine independence

Interoperability | Modularity

Communication commonality

Data commonality

3 Perspectives 11 Factors 23 Distinct Criteria

64

65

Boehm’s Quality Model
I
\ 2 \Z Y
High-Level High-Level High-Level
Characteristic 1 Characteristic 2 Characteristic 3
\ 2 v Y
Intermediate-Level Intermediate-Level Intermediate-Level
Characteristic 1 Characteristic 2 T Characteristic N
2 \Z Y
Lowest-Level Lowest-Level Lowest-Level
Characteristic 1 Characteristic 2 * * * | Characteristic M
A 2 Y N4
| Metricl | [Metric2 |...| MetricL |

Figure 4.2 The structure of Boehm’s quality model

In this model, the high-level characteristics represent basic high-level requirements of

actual use to which evaluation of software quality could be put. In its high-level, there

are three characteristics, that is (Boehm et al., 1978; Boehm, Brown and Lipow, 1976):

As-is utility: to address how well, easily, reliably and efficiently can I use the

software product as-is?

Maintainability: to address how easy is it to understand, modify and retest the

software product?

Portability: to address if the software product can still be used when the

environment has been changed?

Table 4.2 shows the contents of the Boehm’s quality model in the three levels, high-

level, intermediate-level and lowest-level characteristics. In addition, it is noted that

there is a number of the lowest-level characteristics which can be related to more than

66

one intermediate-level characteristics, for example, the ‘Self Containedness’ primitive
characteristic could be related to the ‘reliability’ and ‘portability’ primitive

characteristics.

Table 4.2

The content of Boehm’s quality model

High-Level Intermediate-Level Primitive

Characteristics Characteristics Characteristics
As-is Utility Reliability Self Containedness
Accuracy
Completeness
Robustness/Integrity
Consistency
Efficiency Accountability
Device Efficiency
Accessibility
Human Engineering Robustness/Integrity
Accessibility
Communicativeness
Portability Device Independence
Self Containedness
Maintainability Testability Accountability
Communicativeness
Self Descriptiveness
Structuredness
Understandability Consistency
Structuredness
Conciseness
Legibility
Modifiability Structuredness
Augmentability
3 High-Level 7 Intermediate-Level 15 Distinct Primitive
Characteristics Characteristics Characteristics

67

In the intermediate level characteristic, there are seven quality characteristics that

together represent the qualities anticipated from a software system (Boehm et al., 1978;

Boehm, Brown and Lipow, 1976):

e Portability: the software can be operated easily and well on computer
configurations other than its current one.

e Reliability: the software can be expected to perform its intended functions
satisfactorily.

e Efficiency: the software fulfills its purpose without waste of resources.

e Usability: the software is reliable, efficient and human-engineered.

e Testability: the software facilitates the establishment of verification criteria and
supports evaluation of its performance.

e Understandability: the software purpose is clear to the inspector.

e Flexibility: the software facilitates the incorporation of changes, once the nature of

the desired change has been determined.

The primitive characteristics can be used to provide the foundation for defining quality
metrics; this use is one of the most important goals established by Boehm when he has
constructed his quality model; one or more metrics are supposed to measure a given
primitive characteristic. Boehm et al. (1978, p. 13) defined the ‘metric’ as “a measure of
extent or degree to which a product possesses and exhibits a certain (quality)

characteristic.”

4.2.3 Dromey's quality model

This quality model has been presented by Dromey (1995; 1996). It is a product based
quality model that recognizes that quality evaluation differs for each product and that a
more dynamic idea for modeling the process is needed to be wide enough to be applied

to different systems (Dromey, 1995).

68

Dromey’s Quality Model

v

Software Product

2

N2

N4

Product Property 1 Product Property 2 Product Property 4
I
2 \2 A2
Quality Attribute 1 Quality Attribute 2 Quality Attribute N

Figure 4.3 The structure of Dromey’s quality model
Furthermore, Figure 4.3 shows that it consists of four software product properties and
for each property there is a number of quality attributes. Figure 4.4 shows the contents of

the Dromey's quality model.

Implementation
I
v \Z \Z 4
Correctness Internal Contextual Descriptive
1 — 1 — 1 1
—>»| Functionality| [Maintainability | | Maintainability| [P{Maintainability
—>»| Reliability | F>»{ Efficiency |[>» Reusability | P Efficiency
—>| Reliability |[*| Portability | [Reliability
—>»| Reliability | 2 Usability
Figure 4.4 The content of Dromey’s quality model

69

4.2.4 FURPS quality model

The FURPS model was originally presented by Robert Grady (Grady, 1992); it has been

later extended by IBM Rational Software (Jacobson, Booch and Rumbaugh, 1999;

Kruchten, 2000) into FURPS+, where the ‘+’ indicates such requirements as design

constraints, implementation requirements, interface requirements and physical

requirements (Jacobson, Booch and Rumbaugh, 1999). In this quality model, the FURPS

stands for (Grady, 1992), as in Figure 4.5:

e Functionality: it may include feature sets, capabilities, and security.

e Usability: it may include human factors, aesthetics, consistency in the user
interface, online and context sensitive help, wizards and agents, user
documentation, and training materials.

e Reliability: it may include frequency and severity of failure, recoverability,
predictability, accuracy, and mean time between failures (MTBF).

e Performance: it imposes conditions on functional requirements such as speed,
efficiency, availability, accuracy, throughput, response time, recovery time, and
resource usage.

e Supportability: it may include testability, extensibility, adaptability, maintainability,

compatibility, configurability, serviceability, installability, and localizability.

Supportability
Functionality:. Performance
FURPS
Usability Reliability

Figure 4.5 The contents of FURPS quality model

70

4.2.5 1ISO 9126 quality model

As mentioned in Chapter 2, the first document of the ISO 9126 series — quality model —

contains two-parts quality model for software product quality (ISO, 2001b):

1. Internal and external quality model.

2. Quality in-use model.

Each internal and external quality characteristic and its corresponding subcharacteristics

are defined in ISO 9126-1 (ISO, 2001b, p. 7) as follows:

e Functionality: “the capability of the software product to provide functions which

meet stated and implied needs when the software is used under specified

conditions”. It contains the following subcharacteristics:

©)

Suitability: “the capability of the software product to provide an appropriate
set of functions for specified tasks and user objectives”.

Accuracy: “the capability of the software product to provide the right or
agreed results or effects with the needed degree of precision”.

Security: “the capability of the software product to protect information and
data so that unauthorised persons or systems cannot read or modify them and
authorised persons or systems are not denied access to them”.

Interoperability: “the capability of the software product to interact with one or
more specified systems”.

Functionality Compliance: “the capability of the software product to adhere to
standards, conventions or regulations in laws and similar prescriptions relating

to functionality”.

e Reliability: “The capability of the software product to maintain a specified level of

performance when used under specified conditions”. It includes the following

subcharacteristics:

©)

Maturity: “the capability of the software product to avoid failure as a result of

faults in the software”.

71

Fault tolerance: “the capability of the software product to maintain a specified
level of performance in cases of software faults or of infringement of its
specified interface”.

Recoverability: “the capability of the software product to re-establish a
specified level of performance and recover the data directly affected in the
case of a failure”.

Reliability Compliance: “the capability of the software product to adhere to

standards, conventions or regulations relating to reliability”.

Usability: “the capability of the software product to be understood, learned, used

and attractive to the user, when used under specified conditions”. It contains the

following subcharacteristics:

©)

Understandability: “the capability of the software product to enable the user to
understand whether the software is suitable, and how it can be used for
particular tasks and conditions of use”.

Learnability: “the capability of the software product to enable the user to learn
its application”.

Operability: “the capability of the software product to enable the user to
operate and control it”.

Attractiveness: “the capability of the software product to be attractive to the
user”.

Usability Compliance: “the capability of the software product to adhere to

standards, conventions, style guides or regulations relating to usability”.

Efficiency: “the capability of the software product to provide appropriate

performance, relative to the amount of resources used, under stated conditions”. It

includes the following subcharacteristics:

o

Time behaviour: “the capability of the software product to provide appropriate
response and processing times and throughput rates when performing its

function, under stated conditions”.

72

Resource behaviour: “the capability of the software product to use appropriate
amounts and types of resources when the software performs its function under
stated conditions”.

Efficiency Compliance: “the capability of the software product to adhere to

standards or conventions relating to efficiency”.

Maintainability: “the capability of the software product to be modified.

Modifications may include corrections, improvements or adaptation of the software

to changes in environment, and in requirements and functional specifications”. It

contains the following subcharacteristics:

O

Analyzability: “the capability of the software product to be diagnosed for
deficiencies or causes of failures in the software, or for the parts to be
modified to be identified”.

Changeability: “the capability of the software product to enable a specified
modification to be implemented”.

Stability: “the capability of the software product to avoid unexpected effects
from modifications of the software”.

Testability: “the capability of the software product to enable modified
software to be validated”.

Maintainability Compliance: “the capability of the software product to adhere

to standards or conventions relating to maintainability”.

Portability: “the capability of the software product to be transferred from one

environment to another”. It includes the following subcharacteristics:

©)

Adaptability: “the capability of the software product to be adapted for different
specified environments without applying actions or means other than those
provided for this purpose for the software considered”.

Installability: “the capability of the software product to be installed in a
specified environment”.

Co-existence: “the capability of the software product to co-exist with other

independent software in a common environment sharing common resources’.

73

o Replaceability: “the capability of the software product to be used in place of
another specified software product for the same purpose in the same
environment”.

o Portability Compliance: “the capability of the software product to adhere to

standards or conventions relating to portability”.

Furthermore, each of the quality in-use characteristic is also defined in ISO 9126-1 as

follows (ISO, 2001b, p. 12):

e Effectiveness: it is “the capability of the software product to enable users to achieve
specified goals with accuracy and completeness in a specified context of use.”

e Productivity: it is “the capability of the software product to enable users to expend
appropriate amounts of resources in relation to the effectiveness achieved in a
specified context of use.”

e Safety: it is “the capability of the software product to achieve acceptable levels of
risk of harm to people, business, software, property or the environment in a
specified context of use.”

e Satisfaction: it is “the capability of the software product to satisfy users in a

specified context of use.”

4.3 Sigma concepts

4.3.1 What is six-sigma?

The six-sigma (6-c) approach has been designed by Motorola Company in 1986 and
defined as a measure of the defects to improve the quality (Motorola, 2007). The term
six-sigma has its origins in statistical process control, and recently, it has become better
known as the name of a wide ranging set of data based process improvement techniques
(Shelley, 2003). In more details, six-sigma means six standard deviations. A standard

deviation is a parameter that characterizes a set of measurements, just as the average can

74

characterize such a set. One standard deviation is a value such that roughly two thirds of
all values in a set fall within the range from one standard deviation below average to one
standard deviation above average. Sets of values that can be characterized by the
average and standard deviation can be modeled by the normal distribution, also known
as the ‘bell-shaped curve’. With a larger coefficient for sigma (1-o, 2-0, 3-0, 4-G, 5-G,
or 6-c) more of the set is included, corresponding to a larger area under the bell curve
(Breyfogle, 2003). Moreover, six-sigma is about measuring defects in a value chain
process in order to systematically reduce them and, therefore, the corresponding cost
factors; where a process that executes on 66 level will yield results within the tolerance
interval with 99.99966% probability, this means that we could have only 3.4 defects per
one million defect opportunities (DPMO) (Fehlmann, 2004).

In the literature, there are many definitions of six-sigma. For example, Brue (2005)
defines it as a method for improving productivity and profitability; and it is a disciplined
application of statistical problem solving tools to identify and quantify waste and
indicate steps for improvement. In other words, six-sigma focuses on executive
sponsorship, driving out defects, and measurable improvements (Pickerill, 2005). While,
Hefner and Sturgeon (2002, p. 4) define it as “a management philosophy based on
meeting business objectives by striving for perfection; and it is a disciplined data-driven
methodology for decision making and process improvement”. In addition, they
identified the content of the six-sigma to be five integrated methods, that is:

1. Process management.

Voice of the customer.

Change management.

Tools for measuring variation and change.

A

Business metrics.

Kumar (2005, p. 1) defines six-sigma as “a compelling method for breakthrough

improvements for delivering world class processes with a defect rate of less than 3.4

75

parts per million”. Whereas, Schofield (2006) defines it as a disciplined, structured, and

data-driven methodology to solving problems.

However, Motorola (2004) identified six reasons why leaders love six-sigma, that is:
It impacts the bottom line:

It drives strategy execution.

It generates robust and flexible business processes.

It improves human performance across the enterprise.

It is highly scalable.

A e

It is a low risk investment.

Design for six-sigma (DFSS) is a rigorous approach to designing products and services
to meet customer expectations. Companies implementing six-sigma find that many
defects are actually created during the design process. DFSS facilitates redesign of
processes and ensures that end products are producible using existing technology. In
addition, DFSS makes engineering or process designer aware of the need for concurrent
product and process design, thereby eliminating defects before they can occur. In
addition, DFSS can be seen as a subset of six-sigma focusing on preventing problems,

instead of just fixing them (Mazur, 2003).

4.3.2 Six-sigma in software engineering

Six-sigma concepts are entering software engineering literature and practice (Biehl,
2004) and software practitioners and researchers are exploring ways to apply six-sigma
techniques to improve software and systems development (Heinz, 2004). The essence of
six-sigma for software is to prevent software from producing defectiveness in spite of

their defects rather than to build software without defects (Biehl, 2004).

76

Since six-sigma is new in the software and systems development domains, many

organizations are working hard to implement it; common issues raised by organizations

include (Heinz, 2004):

e How does six-sigma compare with other improvement approaches, and how does it
fit with my organization’s other software process improvement initiatives?

e What evidence is there that six-sigma is applicable to software and systems
engineering?

e What will it take for me to implement six-sigma in my organization, and how do |
get started?

e How do I train software engineers in six-sigma methods when six-sigma training is

largely focused on manufacturing?

In software engineering, controls can be implemented to take advantages of the
improvement zone between 3c and 60 process performance; this can be done by
building critical customers measures into software solutions, for example, response
times, cycle times, transaction rates, access frequencies, and user defined thresholds.
Then, these measures can make the applications self-correcting by enabling specific
actions when process defects surface within the improvement zone; these actions do not
always need sophisticated technical solutions to be beneficial (Biehl, 2004). Controls
can be as simple as an email notifying support personnel of defects above the 36 level or

a periodic report-highlighting activity in the 36 to 66 zone (Biehl, 2004).

Fehlmann (2004) identifies a six-sigma approach (DMAIC) to software development (by
software development, he does not mean only writing new software, but also software
integration, deployment, and maintenance), the DMAIC stands for:

1. Define: Set the goal.

2. Measure: Define the measures.

3. Analyze: Measure where you go.

77

4. Improve: Improve your processes while you go.

5. Control: Act immediately if going the wrong path.

In addition, Fehlmann (2004) mentions three principles based on the experience of

implementing six-sigma for software:

e Principle 1: Evaluate customer related measures only (use combinatory metrics to
cover all topics).

e Principle 2: Adjust to moving targets (your goals may need change; accept change
and manage it accordingly).

e Principle 3: Enforce measurement (do not enforce meeting targets).

Siviy and Forrester (2004) conducted a research project to investigate the use of six-

sigma to accelerate the adoption of CMMI. They concluded the following:

e Six-sigma helps integrate multiple improvement approaches to create a seamless,
single solution.

e Rollouts of process improvement by six-sigma adopters are mission-focused as
well as flexible and adaptive to changing organizational and technical situations.

e Six-sigma is frequently used as a mechanism to help sustain (and sometimes
improve) performance in the midst of reorganizations and organizational
acquisitions.

e Six-sigma adopters have a high comfort level with a variety of measurement and
analysis methods.

e Six-sigma can accelerate the transition of CMMI:

o Moving from CMMI Maturity Level (ML) three to five in nine months, or
from CMMI-SW ML one to five in three years (the typical move taking 12-18
months per level)

o Underlying reasons are strategic and tactical

78

e When six-sigma is used in an enabling, accelerating, or integrating capacity for
improvement technologies, adopters report quantitative performance benefits, using

measures they know are meaningful for their organizations and clients.

VanHilst et al. (2005) proposed that the Global software Development Environments
(GDEs) can be extended with a DMAIC framework (methodology) to interactively

provide required metrics and analyses.

In the course of its work with hundreds of six-sigma companies and through its own
experience, Microsoft has identified six key steps to ensure six-sigma success
(Microsoft, 2006), that is:

1. Establish Leadership Support and Engagement.

Align Goals with six-sigma Activities.

Establish six-sigma Infrastructures.

Identify Opportunities to Improve.

Match People with Projects.

A

Ensure Execution and Accountability.

Raytheon started its six-sigma (also called R6S) in early 1999; as a result of their
process improvement, they reported $1.8 billion in gross financial benefits, $500 million
improvement in operating profit, and generated $865 million in cash flow (Hayes, 2003).
This is an example of what other organizations got by implementing six-sigma to

software process improvement (Hayes, 2003).

Furthermore, Head (1994) used the cleanroom software engineering technique as a
methodology to implement six-sigma to software in order to produce six-sigma quality

software.

79

4.3.3 Uncertainty of applying six-sigma in software engineering

The success stories of applying six-sigma in manufacturing during the last years have
encouraged the practitioners and researchers to explore the applicability of six-sigma in
software industry. Based on the results of this exploration, the researchers have been
divided into two groups, that is, for or against this idea. In particular, some researchers
came up with a number of uncertainties on applying six-sigma to software. Throughout

this subsection, we present some of these uncertainties.

Binder (1997; 2001) stated that six-sigma does not make sense for software based on the

following reasons:

1. Software processes are fuzzy. Every part of the software is produced by a process
that defies the predictable mechanization assumed for physical parts.

2. Software characteristics of merit cannot be expressed accurately as ordinal
tolerance; that which makes software correct or incorrect cannot usually be
measured as simple distances, weights, or other physical units.

3. Software is not mass produced. Even if software components could be designed to

ordinal tolerance, they would still be one-off artifacts.

The six-sigma software process could be interpreted as 3.4 failures per million lines of
code, that is, 0.0034 failures per thousand lines of code; this would require a software
process which is twice better than the current best practices (Binder, 2001). It is difficult
to imagine how this could be achieved since the average cost of such low rate of failures

in the source code is reported to be $1000 per line (Joyce, 1989).

Jacowski (2006) mentioned that the big question is whether six-sigma can indeed be
applied in the software industry as successfully as it was applied to manufacturing; this

is still being argued. The real challenge is to see if it can be implemented to the software

80

process without reinventing the wheel. There is also disagreement among leaders in the

software industry about the need for six-sigma.

In addition, a software development process - which is defined as a set of software

engineering activities to transform user requirements into software product — is

completely different than other types of processes such as manufacturing. The

distinctiveness attributes for a software development process which are not available for

other types of processes are as follows (Hong and Goh, 2003):

1.

Unlike other types of processes such as manufacturing, the software development
process is not repetitiveness. However, each software product needs its own
process. In addition, the software process produces one software product which
could be duplicated with high precision. Then, once the software is duplicated, it
produces the exact functionality as the original copy.

The inputs and outputs of the software development process are different in each
instance of the process. It does not make sense to produce exactly the same piece of
software twice. Therefore each instance of software process deals with one
different set of user requirements, and outputs of different software modules form
part of the final software product.

In contrast to a manufacturing process, each transformation of a user requirement to
a software module is cognition intensive; while, most of the manufacturing
activities are targeted to minimize cognition.

As a result, software development is an intellectual process that needs visualization
(e.g., documentation) before six-sigma implementation (Card, 2000). In software
development, data relationships can be discovered via documentations, interviews
and process mappings. Data flow diagrams, entity relationship diagrams, and object
models are tools commonly used to represent the data relationship that the six-
sigma approach needs for problem definition.

Software development is an intellectual process that needs visualization (e.g.,

documentation) before six-sigma implementation

81

6. Different sets of external factors affect the software development process, such as
changes of developers, knowledge level, programming skills, and so on. This is
unlike the manufacturing process which is affected by many sources of variation
such as temperature, raw materials, equipment wear, and human interaction; these

factors are hardly valid for software process.

Moreover, Hong and Goh (2003) stated that a misuse of six-sigma at the other extreme
would be emphasizing the unique features of software process and never attempt to
manage and improve the existing process. Some software engineering activities, such as
the process life cycle models and quality measurements, are evidence of effort towards

producing stable software processes.

4.4 ISO 15026: software integrity levels

The ISO 15026 international standard on system and software integrity levels establishes
the requirements for determining the level of system and software integrity. By
identifying the requirements for determining the system and software level, the software
integrity requirements can be determined (ISO, 1998b). This international standard
defines the concepts associated with integrity levels, defines the processes for
determining integrity level requirements and imposes requirements on each process
(ISO, 1998b). It is a standard that can only be applied to software. Moreover, the
integrity level of the system and the integrity levels of the hardware components are
only required in this international standard to determine the integrity levels of the

software components (ISO, 1998b).

The software integrity level is an assignment of either a degree of reliability of providing
a mitigating function, or a limit on the frequency of failure that could result in a threat,

that is, the degree of confidence that the overall system will not fail (ISO, 1998b). In

82

addition, a software integrity level refers to a range of values of a software property

necessary to maintain system risks within acceptable limits (ISO, 1998b).

More specifically, this ISO standard provides an example of a risk matrix (see Table 4.3)
which could be used to calculate the risk associated with each threat. This calculation
relates the frequency of occurrence of an initiating event to the severity of the
consequences of that initiating event. The result will be the risk class, which could be
one of the following: high, intermediate, low or trivial (ISO, 1998b). Using this result,
the system integrity level could be determined by mapping the risk class to the

corresponding system integrity level using Table 4.4.

Table 4.3

Example of a risk matrix
(ISO, 1998b)

Frequency Indicative Severity of Consequences
of Frequency

Occurrence (per year) | Catastrophic | Major Severe Minor
Frequent >1 High High High Intermediate
Probable 1-10" High High Intermediate |Low
Occasional 10" - 10* |High High Low Low
Remote 10°-10* |High High Low Low
Improbable 10°-10° [High Intermediate Low Trivial
Incredible <10° Intermediate Intermediate | Trivial Trivial

83

Table 4.4

Mapping risk class to its integrity level
(ISO, 1998b)

Risk Class Integrity Level
High A
Intermediate B
Low C
Trivial D

In addition, a software integrity level refers to a range of values of a software property

necessary to maintain system risks within acceptable limits (ISO, 1998b).

The software integrity level represents a portion of the system integrity level, and this
portion is associated with a subsystem consisting of software as a component or of
software only. According to the ISO, the software integrity level for a subsystem and the
overall system integrity level shall be identical (ISO, 1998b). However, there are a
number of assumptions to be taken into account when determining the integrity level of
the software, as follows (ISO, 1998b):
1. For the system, there exists a system integrity level assignment.
2. The architectural features of the system should be defined.
3. The inputs include:

— the system integrity level,;

— a list of threats, and for each threat:

— the initiating events that may lead to the threat, and

— the expected frequency or probability of occurrence of each initiating event;

— a system architecture definition in sufficient detail.

4. The output is the software integrity level.

84

4.5 IEEE Std. 1012: software verification and validation

To determine the criticality of the software, the IEEE Standard for Software Verification
and Validation — IEEE Std. 1012 (IEEE, 1998) — defines four software integrity levels
which vary from high integrity to low integrity.

Software products have different criticalities, and these are based on their proposed use
and whether the system will be applied to critical or non-critical uses. Some software
systems support critical, life-sustaining systems, while others do not. Software criticality
is a description of the intended use and application of a system. Software integrity levels
denote a range of software criticality values necessary to maintain risks within

acceptable limits (IEEE, 1998).

In this IEEE standard, the assignment of the integrity level of any particular software
product will be completely based on the error consequences and their estimated
occurrence (IEEE, 1998). Table 4.5 shows the assignment of the software integrity
levels using the possible error consequences and their occurrences. For example, if the
error consequences for specific software are critical and their occurrence is occasional,

then the integrity level for this software will be three.

Table 4.5

Assignment of software integrity levels
(IEEE, 1998)

Likelihood of occurrence of an operating state
Error that contributes to the error
consequences | Reasonable | Probable | Occasional | Infrequent
Catastrophic 4 4 4or3 3
Critical 4 4or3 3 20orl
Marginal 3 Jor2 2orl 1
Negligible 2 20orl 1 1

85

4.6 Summary

In this chapter, we have introduced the concepts which will be used to build the software
product quality maturity model (in Chapter 9 and 10). In particular, we have introduced
the following:

1. Software quality models.

2. Sigma concepts.

3. ISO 15026 on software integrity levels.

4. IEEE Std. 1012 on the software verification and validation.

CHAPTER 5

RESEARCH OBJECTIVES AND METHODOLOGY

In this chapter, we present the objectives of this research and show the different research

steps, which together will formulate the research methodology to reach the objectives.

5.1 Research objectives

The following are the objectives of this research:

1. Verification of the ISO 9126 measures against the metrology concepts. These
measures will be an essential part of our quality maturity model.

2. Building a maturity model to assess the quality of the software product, that is, a
maturity model for each of the ISO 9126 software product quality characteristics,
life-cycle stages (internal, external and in-use) and the whole software product.
Such a maturity model has to produce maturity levels for one or all the three points

of view quality.

5.2 Research methodology

The research methodology is divided into two phases based on the three sections of
Figure 2.9 in Chapter 2 (i.e. Data Collection, Data Preparation, and Data Analysis
sections). Phase-A belongs to the ‘Data Collection’ and ‘Data Preparation’ section,
while phase-B belongs to the ‘Data Analysis’ section. These two phases are described in

this section.

87

5.2.1 Phase-A: Verification of software measures

Step 1: Verification of the analysis framework

In this step, we will verify the usefulness of applying the Habra et al. (2004) software
measurement analysis framework — from the metrology perspective — on the software
measurement, in particular, on the Halstead’s measures as an example of the measures
which do not meet key design criteria of measures in engineering and the physical
sciences, and as some of his measures (i.e. program vocabulary and program length)
have been mentioned in Annex C of the ISO 9126 parts 2, 3 and 4. After ensuring that
the metrology concepts could be applied to analyse the Halstead’s measures, we will go

through to apply these concepts into the ISO 9126 measures, see next phase.

Step 2: Verification of the ISO 9126 measures against the metrology concepts and
ISO 15939 International Standard

In this step, we will analyse the ISO 9126 measures against the metrology concepts and

ISO 15939 (the ISO VIM metrology concepts have been adopted in the ISO 15939 on

software measurement process); as a case study, we will analyse the quality in-use

measures of the ISO 9126 part-4. This step is composed of the following sub-steps:

1. Identifying which metrology category could be applied to the ISO 9126-4 (quality
in-use) measures.

2. Analysing the quality in-use measures based on the ‘quantities and units’ category
contents.

3. Classifying the quality in-use measures into base and derived measures.

4. Identifying the dimensionless quantities (quantities of dimension one) of the
derived measures.

5. Identifying the units of measurement for both the base and derived measures.

6. Drawing up suggestions for improvements.

88

Step 3: Building an ISO-based Information Model to address harmonization issues

in the ISO 25020 and ISO 25021 standards

This step consists of the following sub-steps:

1.

Identifying the harmonization issues arising from the new ISO 25020 and 25021
standards.

Analysing the three new terms in ISO 25020 and ISO 25021 (i.e. quality measures,
quality measure elements and quality measure element categories).

Identifying the terms that are already exist in the metrology concepts and ISO
15939 to replace the ones introduced in the ISO 25020 and ISO 25021, that is: base
and derived measures terms.

Based on the outcomes of step 2 above, we will classify the ISO 9126 parts 2, 3,
and 4 measures into base and derived measures to align them with the ones
introduced in ISO 25020 and ISO 25021 as quality measures and quality measure
elements.

Identify the limited coverage of ISO quality models and their corresponding
measures in the ISO 25020 and ISO 25021.

Based on the classification of the ISO 9126 parts 2, 3, and 4 measures, we will use
the base measures to build a cross-reference table to facilitate which base measures
need to be collected in order to measure a specific characteristic or
subcharacteristic.

Drawing up a set of comments on the weaknesses of the new ISO 25020 and ISO
25021.

Building an information model based on ISO 15939 to address the ISO 25020 and
ISO 25021 weaknesses.

5.2.2 Phase-B: Building a Software Product Quality Maturity Model — spQ™™

From the outcomes of Phase-A in which we have verified the ISO 9126 measures to get:

a set of measures based on sound metrological foundations, industry consensus on base

89

measures for software product, and industry consensus on software product quality

models. In addition, using a set of measures to represent — for example — a characteristic

quality is not feasible for the decision makers; instead, making a decision based on a

single value will be more efficient. To make this available, there is a need to build a

maturity model to assess the quality of software product using the following steps:

1.

10.

Reviewing the literature to identify the related key references (see Figure 5.1)
which can assist in the building of the proposed Software Product Quality Maturity
Model (SPQ™™).

Identifying the quality model to be used.

Identifying the contents of the quality maturity model based on the characteristics
of the quality model which has been identified.

Constructing a set of five maturity levels.

Customizing the software Product failure consequences based on what is available
in the ISO 15026 and IEEE Std. 1012 standards.

Customizing the software integrity levels to six levels (from zero to five as in ISO
15504) instead of four (as specified in the ISO 15026 and IEEE Std. 1012) to be
aligned with the identified six failure consequences for the different software
product types (e.g. embedded software, real-time software, application software,
etc...)

Review the sigma concept in order to identify how it could be used with the quality
levels, and customizing the sigma values with sigma shift.

Mapping the sigma and sigma shift concepts to the quality levels to produce a
sigma range in order to facilitate the interpretation of the measured quality level.
Mapping the sigma ranges to the maturity levels.

Draw up a detailed formulas and procedures to be followed in order to get a quality

maturity level.

90

ISO/IEC 9126: Parts-1, 2, 3, & 4
Software Product Quality Measurement

IEEE Std. 1012

Software Verification and Validation

CMMi-SW
Capability Maturity Model

Integration for Software

ISO/IEC 15026

System and Software Integrity Levels

Engineering

ISO 15939
Software Measurement Process

VIM
Metrology Concepts

Sigma Concepts

SPQMM

Software Product Quality Maturity Models

Figure 5.1 The related key references for building the SPQ™™

CHAPTER 6

AN ANALYSIS OF THE DESIGN AND DEFINITIONS OF HALSTEAD’S
MEASURES

6.1 Introduction

A number of software measures widely used in the software industry are still not well
understood (Abran, Lopez and Habra, 2004). Some of these measures were proposed
over thirty years ago and, like many measures proposed later, they were defined mostly
in an intuitive and heuristic manner by their designers. Moreover, authors describe their
proposed measures in their own terms and structure since there is not yet a consensus on
how to describe and document the design of a software measure. Of course, the lack of a

common design approach has made it difficult for practitioners to assess these measures.

In 2004, Abran et al. (2004) revised the McCabe cyclomatic complexity number,
illustrating that there is still ambiguity in its design and interpretation. In their study,
Abran et al. (2004) used the software measurement analysis framework proposed in

(Habra et al., 2004).

Halstead’s measures — or what is commonly referred to collectively as ‘software
science’ (Halstead, 1977) — are among the most widely quoted software measures. For
example, researchers have used Halstead’s measures to evaluate student programs
(Leach, 1995) and query languages (Chuan et al., 1994), to measure software written for
a real-time switching system (Bailey and Dingee, 1981), to measure functional programs
(Booth and Jones, 1996), to incorporate software measurements into a compiler (Al

Qutaish, 1998) and to measure open source software (Samoladas et al., 2004).

92

In this chapter, we investigate the usefulness of applying the software measurement
analysis framework — which has been introduced in (Habra et al., 2004) — on various

elements of the design and definitions of Halstead’s measures.

We have selected the Habra ef al. (2004) measurement framework among the other
measurement frameworks because it has some of the metrology concepts. In contrast,
the other measurement frameworks - such as Zuse (1998) and Morasca (1997)
measurement frameworks - are limited to the measurement theory in its measurement

aspects.

This chapter is structured as follows: section 6.2 presents a brief overview of the
analysis framework used to analyze Halstead’s measures. Section 6.3 presents an
overview of Halstead’s measures. Section 6.4 defines the context of Halstead’s
measures. In Section 6.5 the Halstead’s measures design has been discussed. Finally,

Section 6.6 contains a discussion on this analysis and a summary of our observations.

6.2 Analysis framework: an overview

Definitions of the terms that will be used in this chapter are provided first; these

definitions have been adopted from ISO 15939 (ISO, 2002) and the ISO guide on

international vocabulary of basic and general terms in metrology (ISO, 1993):

e Entity: is an object that is to be characterized by measuring its attributes (ISO,
2002).

e Attribute: is a property or characteristic of an entity that can be distinguished
quantitatively or qualitatively by human or automated means (ISO, 2002).

e Measurement method: is a logical sequence of operations, described generically,
used in quantifying an attribute with respect to a specified scale (ISO, 2002).

e Measurement procedure: is a set of operations, described specifically, used in the

performance of a particular measurement according to a given method (ISO, 2002).

93

Base measure: is a measure defined in terms of an attribute and the method for
quantifying it (ISO, 2002).

Derived measure: is a measure defined as a function of two or more values of base
measures (ISO, 2002).

Unit of measurement: is a scalar quantity defined and adopted by convention, with
which other quantities of the same kind are compared in order to express their
magnitude (ISO, 1993).

Scale: is an ordered set of values, continuous or discrete, or a set of categories to
which the attribute is mapped (ISO, 2002).

Scale type: it depends on the nature of the relationship between values on the scale.

Nominal, ordinal, interval and ratio are the four types of scale defined and

identified in ISO 15939 (ISO, 2002).

The analysis framework of measurement proposed by Habra et al. (2004) is based on

work by Jacquet and Abran (1997). This analysis framework consists of four phases of

the software measurement life cycle, as in Figure 6.1 (Habra et al., 2004):

1.

2
3.
4

Defining the context.
Designing the measurement.
Applying the measurement method.

Exploring the measurement results.

This measurement framework can be used to investigate and verify existing software

measures. To analyze the design and definitions of Halstead’s measures, we need to

apply the first two phases of this analysis framework.

The two phases that will be used in this chapter are summarized here. The first phase is

defining the context in order to state the goals of the measurement that need to be

investigated in more detail. In this phase, we have to select the objectives of the

94

measurement in terms of the characteristics to be measured for a specific entity type

(Habra et al., 2004).

Phase 1

Defining the
Context

!

Phase 2

Designing the
Measurement

!

Phase 3

Applying the Measurement
Method

!

Phase 4

Exploring the Measurement
Results

Figure 6.1 The four phases of the analysis framework of measurement
(Habra et al., 2004)

95

The second phase, designing the measurement, is studied from three different points of
view: activities, product and verification criteria. From the verification criteria

viewpoint, this phase consists of three sub-phases (Habra et al., 2004):

1. The empirical and numerical worlds and their mapping:
In order to define the empirical world, we need to determine the entities and their
attributes to be measured. These attributes have to be ensured that they defined
clearly and accurately, so that they are unambiguously characterized (Habra et al.,
2004). Then — for the numerical world defined — the selected mathematical
structure should conserve the properties of that empirical world. This means that
the mapping between the mathematical structure and the empirical world must
produce the same form (Habra et al., 2004).

2. The measurement method:
Confirming and validating the numerical assignment rules (formulas) involve
different activities, depending on the way those rules are expressed (Habra et al.,
2004). These formulas will be used to produce measurement values for the
attributes to be measured. In addition, the scale types of the measures and the units
of measurement produced from the formulas based on the units of their operands
have to be validated.

3. The measurement procedure:
Verification of the measurement procedure to ensure that it constitutes a correct
implementation of the measurement method. This verification should be achieved
in accordance with the goals set out in the defining the context phase (Habra et al.,

2004).

96

6.3 Halstead’s measures: an overview

According to Halstead, a computer program is an implementation of an algorithm
considered to be a collection of tokens that can be classified as either operators or
operands. In other words, a program can be thought of as a sequence of operators and
their associated operands. All Halstead’s measures are functions of the counts of these
tokens (Henry and Kafura, 1981). By counting the tokens and determining which are
operators and which are operands based on a counting strategy, the following base
measures can be collected (Halstead, 1977):

e nl: Number of distinct operators.

e n2: Number of distinct operands.

N1I: Total number of occurrences of operators.

N2: Total number of occurrences of operands.

In addition to the above, Halstead (1977) defines:
e nl* Number of potential operators.

e n2* Number of potential operands.

Halstead refers to n/* and n2* as the minimum possible number of operators and
operands for a module or a program respectively. This minimum number would occur in
a programming language itself, in which the required operation already existed (for
example, in C language, any program must contain at least the definition of the function
main()), possibly as a function or as a procedure; in such a case, n/*=2, since at least
two operators must appear for any function or procedure: one for the name of the
function and one to serve as an assignment or grouping symbol. Next, n2* represents the
number of parameters, without repetition, which would need to be passed on to the

function or the procedure (Menzies et al., 2002).

97

All of the Halstead's so called ‘Software Science’ measures are defined based on the

above collective measures (n/, n2, NI, N2, nl1* and n2*).

Halstead defines the following measures (Halstead, 1977):

e The length (N) of a program P is:

N=N,+N, (6.1)

e The vocabulary (n) of a program P is:

n = n+n, (6.2)

e Program volume (V) is defined by Halstead in his book as:
a) “a suitable metric for the size of any implementation of any algorithm”
(Halstead, 1977, p. 19);
b) “a count of the number of mental comparisons required to generate a program”

(Halstead, 1977, p. 49).

V' can be computed using the following equation:

V=N *log,n (6.3)

The length, vocabulary and volume of a program are considered as reflecting

different views of program size (Fenton, 1994).

e Program potential (minimal) volume (7*), which is the volume of the minimal size
(no objective evidence documented in (Halstead, 1977) that this is indeed a

minimal implementation) implementation of a program P, is defined as:

98

V' =(2+n) log, (2+n;) (6.4)

Program level (L) of a program P with volume V is:

V*
L=_— 6.5
V (6.5)

The program level emphasizes that an increase in the volume leads to a lower level
of program, and conversely. The largest value for L is one. In addition, this value is
interpreted as referring to the most ideally written program and as measuring how
well written a program is. Thus, programs with L values close to one are considered

to be well written, in general L<1 (Chuan et al., 1994).

Program difficulty (D) is defined as the inverse of program level L:

D=— (6.6)

The program level estimator (ﬁ) of L is defined by Halstead as:

=2l (6.7)
n N,
and interpreted by Menzies et al. (2002) and by Fenton and Pfleeger (1997) as:
~ 1 2
[=—==x"2 (6.7-1)
D n N,

99

The intelligent content (/) of a program P is a measure of the information content of

program P, and is defined as:

I= L*V (6.8)

Programming effort (£) is a measure of the mental activity required to reduce a
preconceived algorithm to a program P. The E is defined as the total number of

elementary mental discriminations required to generate a program:

n, N, N log, n
2 n,

r
E=— (6.9)

In the effort definition, the unit of measurement of £ is claimed by Halstead to be

an elementary mental discrimination.

The required programming time (7)) for a program P of effort E is defined as:

T:

E _ nN,Nlog, n
S

6.10
2n,S (6.10)

where S is the Stroud number (in 1967, a psychologist, John M. Stroud, suggested
that the human mind is capable of making a limited number of mental
discrimination per second (Stroud Number), in the range of five to 20 (Halstead,
1977)), defined as the number of elementary discriminations performed by the
human brain per second. The § value for software scientists is set to 18 (Hamer and

Frewin, 1982). The unit of measurement of 7 is the second.

100

All the above ten equations are based on the results of n/, n2, NI, N2, nl* and n2*,
which themselves are based on a counting strategy to classify the program tokens as

operators or operands.

Unfortunately, there is a problem in distinguishing between operators and operands. This
problem occurs because Halstead has provided an example with specific illustrations of
operators and operands, but without generic definitions applicable to any program
context. That is, Halstead has not explicitly described the generic measurable concepts
of operators and operands. He has asserted only that — in the example he provides — their
description is intuitively obvious and requires no further explanation. In practice, for
measurement purposes, intuition is insufficient to obtain accurate, repeatable and

reproducible measurement results.

Therefore, it is important that the counting strategy should be clearly defined and
consistent, since all Halstead’s software science depends on counts of operators and
operands (Lister, 1982). However, there is no general agreement among researchers on
the most meaningful way to classify and count these tokens (Shen, Conte and Dunsmore,
1983). Hence, individual researchers (and practitioners as well) must state their own
interpretation or, alternatively, use one of the available counting strategies proposed by
other researchers, such as in (Abd Ghani and Hunter, 1996; Conte, Dunsmore and Shen,
1986; Salt, 1982; Szentes, 1986). Furthermore, Li ef al. (2004) have proposed rules for
identifying operators and operands in the object-oriented programming (OOP)

languages.

Of course, it is to be expected that different counting strategies will produce different
values of nl, n2, NI and N2, and, consequently, different values for the above ten

equations.

101

6.4 Defining the context

The objective of Halstead’s measures is to measure the following characteristics of a
program: length, vocabulary, volume, level, difficulty and intelligence content. In
addition, they are used to measure what is referred to as ‘other characteristics’ of the
developer: programming effort and required programming time. All these measures are
based only on the number of operators and the number of operands the given program or

algorithm contains.

The last two attributes, which refer to a developer’s attributes (programming effort and
required programming time), seem to be identical, since ‘effort to write a program’ is

similar to ‘required programming time’.

6.5 Designing the measurement

6.5.1 The empirical and numerical worlds and their mapping

The entities that can be used to apply Halstead’s measures are the source-code itself or
the algorithm of that source code. However, applying Halstead’s measures to these two
entities will produce different values for the same base measures. For example, in Java
language, the number of operators in the source code is different from the number of
operators in the equivalent algorithm for that source code, since — as an example — in

Java source code, each statement must be end with a semicolon (;), which is an operator.

Halstead’s measures are based on two attributes: the number of operators and the
number of operands. As mentioned in section 6.3, there is no agreement on how to
distinguish between operators and operands. Therefore, different counting strategies will
produce different numbers of operators and operands for the same program or algorithm.

The two attributes can be easily mapped to a mathematical structure by counting the

102

number of operators and operands in the program source code or the equivalent

algorithm.

Furthermore, Kiricenko and Ormandjieva (2005) investigated the validation of the

representation condition for Halstead’s program length measure.

6.5.2 The measurement method

To obtain a value for each of Halstead’s measures, ten equations have to be computed
(see section 6.3). It is to be noted that all of these equations (equations 6.1 to 6.10)
correspond to a ‘derived measure’, as defined by the international vocabulary of basic

and general terms in metrology (VIM) and the ISO 15939.

Equation (6.3) is of a ratio scale type, while equation (6.5) is of an ordinal scale type, as

noted by Fenton and Pfleeger (1997). By contrast, Zuse (1998) maintains that equation
(6.1) is of the ratio scale type and equations (6.2), (6.3), (6.6) and (6.9) are of an ordinal
scale type. Moreover, it can be observed that equation (6.4) is also of the ratio scale
type. However, it is not clear to which scale type equations (6.7), (6.8) and (6.10)
belong.

These conclusions on the scale types of Halstead’s measures need to be revisited when

the units of measurement in Halstead’s equations are taken into consideration.

For instance, in equation (6.1), the program length (N) is calculated by the addition of
the total number of occurrences of operators and the total number of occurrences of
operands. However, since their units are different, operators and operands cannot be
directly added together unless the concept common to them (and its related unit) is taken

into consideration in the addition of these numbers, that is, ‘occurrences of tokens’: then,

103

the right-hand side of equation (6.1) gives ‘occurrences of tokens’ as a measurement unit

on the ratio scale:

yoccurrences of tokens _ Nloccurrences of operators + Ngccurrences of operands 6.11)

From equation (6.2), the program vocabulary (n) can be constructed by adding the

number of distinct operators and the number of distinct operands:

distinct tokens distinct operators distinct operands
n =m + ny (6.12)

The measurement unit here is ‘distinct tokens’. This measurement unit must then also be
assigned to the left-hand side of this equation, labelled ‘vocabulary’, and associating it to

the related concepts.

It can be noted that, while the concept of ‘length’ is associated with a number, the
concept of ‘vocabulary’ is not. Indeed, the program vocabulary (n) reflects a different
view of program size (Fenton, 1994), and it is a measure of ‘the repertoire of elements
that a programmer must deal with to implement the program’ (Christensen, Fitsos and
Smith, 1981). Most probably, an expression such as ‘size of a vocabulary’ would have

been more appropriate.

From equation (6.3), program volume (V) has been interpreted with two different units
of measurement; ‘the number of bits required to code the program’ (Hamer and Frewin,
1982) and ‘the number of mental comparisons needed to write the program’ (Menzies et

al., 2002) on the left-hand side of the equation:

bits or mental comparisons occurrences of tokens distinct tokens

=N * logy n (6.13)

104

Thus, there is no relationship between the measurement unit on the left-hand side and
those on the right-hand side of this equation. Furthermore, on the right-hand side, the
true meaning of the multiplication of the ‘occurrences of tokens’ and the ‘distinct
tokens’ is not clear. Such a multiplication would normally produce a number without a
measurement unit; see Figure 6.2 which contains an explanation of the measurement unit
produced by log,, we got this explanation in 2005 by a contact with Mr. Richard
Peterson from the Math Forum (Ask Dr. Math) at Drexel University.

In general, in engineering applications we do not take the logarithm of a
dimensioned number, only of dimensionless quantities. For instance, in calculating
decibels, we take the logarithm of a ratio of two quantities. A ratio of quantities
with the same dimensions is itself dimensionless. We can write
log(a/b) = log(a) - log(b)

making it appear that we are taking the /ogs of dimensioned quantities (a) and (b),
but the dimensions come out in the wash: by the time we have finished (subtracting
one /og from the other), we have effectively taken the /og of a dimensionless
quantity, (a/b).

We can regard units as factors in an expression, for instance:
8 meters =8 * [I meter]
800 cm =800 * [1 cm]
=800 *0.01 * [I1 meter]
In these terms, we have:
(8m)*log,(8m) = 8*[Im] *log,(8*[1m])
= 8*[Im]*(log>(8)+log:[Im])
= (8*log,(8)+8*logs[Im])*[1m]

That inconvenient 8*/og,/Im] is an additive term that depends on the units being
used. If it is part of a valid engineering calculation, this term will be cancelled out
somewhere in the process. It may be, for instance, that when we take the /og of §
meters, we are actually taking the /og of a ratio of § meters to a one-meter standard
length.

Figure 6.2 Explanation of the measurement unit produced by log ;

105

Equation (6.4) gives the definition of the program potential volume (V*), which is a

prediction of the program volume:

potential potential potential potential
operators operands operators operands

* * *

Vo=(2 tn,) logs (2 tn,

N

(6.14)

In this equation, the value two was assigned to n/* as seen in section 6.3. The
measurement unit of the left-hand side is the same as in the previous equation (equation
(6.3)), while there is no recognizable measurement unit for the right-hand side. As in
equation (6.3), such a multiplication would also normally produce a number without a

measurement unit, see Figure 6.2.

The program level (L) can be calculated using equation (6.5), in which there is no
measurement unit for the left-hand side, either from Halstead himself or from other
researchers. In the sense that this is the correct structure for a ratio with the same unit in

both numerator and denominator; the end result is therefore a percentage:

« Dits « mental comparisons
|14 |14
L= —— = (6.15)

% bits % mental comparisons

For equation (6.6), the difficulty (D) is a measure of ‘ease of reading’ and can be seen as
a measure of ‘ease of writing’ as well (Christensen, Fitsos and Smith, 1981). The right-
hand side is also a percentage. What the right-hand side of equation (6.6) means is a

riddle, as its associated label on the left-hand side.

106

In Equation (6.7), for the program level estimator (ﬁ), there is no measurement unit for

the left-hand side, while the right-hand side consists of a combination of four distinct

measurement units. The exact meaning is again a riddle:

>

m

potential operators distinct operands
* i)
distinct operators yoceurrences of operands
2

(6.16)

In equation (6.8), referred to as the intelligent content of the program (/), there is no

measurement unit on the left-hand side. For the right-hand side of this equation, the

measurement unit of it — which is not known since it is a combination of units — is

multiplied by the measurement unit of V:

] = L‘*Vbits _ i*Vmental comparisons

(6.17)

As for equations (6.6) and (6.7), the exact meaning of the left-hand side of equation (6.8)

is a riddle if we attempt to interpret this number with measurement units.

Equation (6.9) is used by Halstead to compute the effort (£) required to generate a

program:
occurrences OCCUITENcCes
distinct of of distinct
clementary operators operands tokens tokens
mental n Ny N log > n
g discriminations _
potential distinct
operators operands
n)

(6.18)

The measurement unit of the left-hand side of this equation, referred to as ‘effort’, would

be expected to be something such as ‘hours’ or ‘days’. Halstead, however, referred to

‘the number of elementary mental discriminations’ as the unit of measurement for the

107

left-hand side. Next, in the sense that the ‘distinct operators’, the ‘distinct operands’ and
the ‘occurrences of operands’ are, in a generic sense, ‘tokens’, then it can be concluded
that the measurement unit of the right-hand side of this equation is a combination of
measurement units. Therefore, there is no relationship between the units of measurement

of the left-hand and the right-hand sides in equation (6.9).

Finally, equation (6.10) is used to compute the required programming time (7)) for the

program:
occurrences occurrences
distinct of of distinct
operators operands tokens tokens
seconds _ | N2 N log 21
T = . (6.19)
psychological
moments
potential per distinct
operators second operands
n

Again, the measurement unit of the left-hand side, that is, seconds, does not in any way
imply the measurement unit of the right-hand side, that is, a combination of many
different measurement units. In view of the fact that, Halstead refers to the ‘moments’ in
this equations as “the time required by the human brain to perform the most elementary

discrimination” (Halstead, 1977, p. 48).

6.6 Discussion and conclusions

In this chapter, we have investigated a well-known set of measures — Halstead’s
measures — by focusing on their design and, in particular, on their measurement units.

The following comments can be made about Halstead’s measures:

108

Based on ISO 15939 (ISO, 2002) and the international vocabulary of basic and
general terms in metrology (VIM) (ISO, 1993), Halstead’s measures can be
classified as six based measures (n;, ny, N;, N,, n;* and n,*) and ten derived

measures (equations (6.1) to (6.10)).

Halstead has not explicitly provided a clear and complete counting strategy to
distinguish between the operators and the operands in a given program or
algorithm. This has led researchers to come up with different counting strategies
and, correspondingly, with different measurement results for the same measures
and for the same program or algorithm.

There are problems with the units of measurement for both the left-hand and the

right-hand sides of most of Halstead’s equations.

The implementation of the measurement functions of Halstead’s measures has been
interpreted in different ways than the goals specified by Halstead in their designs.
For example, the program length (N) has been interpreted as a measure of program

complexity, which is a different characteristic of a program (Fenton, 1994).

Equations (6.6) and (6.7-1), using basic mathematical concepts, lead to i being

identical to L; this point can be clarified as follows:

. 1
L=— (56, D=— (57-1,
5 (5.6) 7 ()
L = 11 : (6.20)
L
L =1

Therefore, using Fenton’s description of L, the program level estimator is

identical to the program level.

109

e Using the previous observation (that is, L = L), and from equations (6.5) and (6.8),

it can be concluded that 7 = ¥ . The clarification of this point is as follows:

I = L* (58),
I = L*V),

V*
I = —x1Y,

V

#*))
=V = sizeunit

*

L=V 55 L=0 511,
%
g Bits

~Sa

Mental comparisons

(6.21)

Therefore, how we can use the same value to measure both ‘intelligent content’ (/)

and ‘program potential volume’ (V'), two different attributes of a program or

algorithm? Also, how do we give different units of measurement to the same value?

e A number of addition issues can be raised such as the following: Equations (6.9)

and (6.10), which give the programming effort (£) and the required programming

time (7) in seconds, do not take into account technology evolution and

characteristics: for instance, new programming languages (i.e. the 4™ generation

programming languages) need less time for programming since most of the

programming effort is expended by means of drag-and-drop processes, as in Visual

Basic.

6.7 Summary

Throughout this chapter, we have verified the Habra ef al. (2004) software measurement

analysis framework, and we have found that the metrology concepts of this analysis

framework are very useful to investigate the designs and definitions of software

110

measures. This verification was carried out on the Halstead’s measures as a case study as
some of his measures (i.e. program vocabulary and program length) are mentioned in
Annex C of the ISO 9126 parts 2, 3 and 4. After ensuring that the metrology concepts
could be applied to analyse the Halstead’s measures, we will go through to apply these

concepts into the ISO 9126 measures.

In the next chapter (Chapter 7), we will analyse the ISO 9126 measures (quality in-use
measures as a case study) to ensure that their design and definitions are follow the
concepts of metrology. This will help us in the building of our proposed software
product quality maturity model (SPQ™™) since we need to use a set of will-defined

measures instead of using of using ill-defined ones.

CHAPTER 7

AN ANALYSIS OF ISO THE 9126-4 FROM THE METROLOGY
PERSPECTIVE

7.1 Introduction

The ISO 9126 series of document on software product quality evaluation proposes a set
of 197 ‘metrics’ or measures for measuring the various -characteristics and
subcharacteristics of software quality. However, as typical in the software engineering
literature, this ISO set of so-called ‘metrics’ or measures in ISO 9126 refer to multiple
distinct concepts that, in metrology, would have distinct ‘labels’ (or naming

conventions, e.g. terms) to avoid ambiguities.

To help understand and clarify the nature of each of these measures proposed in ISO TR
9126-4 (ISO, 2004f), each of them is analyzed in this chapter from a metrology
perspective and is mapped into the relevant metrology concepts. Such a mapping will
also contribute in identifying the measurement concepts that have not yet been tackled in
the ISO 9126 series of documents. Each of these gaps represents opportunities for

improvement in the design and documentation of measures proposed in ISO 9126.

The rest of this chapter is structured as follows:

e Section 7.2 presents an overview of the quality in-use measures as described in ISO
9126-4.

e Sections 7.3, 7.4, 7.5 and 7.6 present the analysis of the effectiveness, productivity,
safety and satisfaction measures, respectively.

e Finally, section 7.7 concludes the chapter and provides a set of comments and

suggestion for a potential improvement.

112

7.2 ISO 9126-4: Quality in-use measures

In ISO 9126-4 (ISO, 2004f), the quality in-use measures have been classified into four
related collections of measures based on the quality in-use characteristics, that is,
effectiveness measures, productivity measures, safety measures, and satisfaction
measures. The names of the fifteen measures proposed by ISO for these four

characteristics of quality in-use are listed in Table 7.1.

Table 7.1
ISO 9126 Quality in-use characteristics and their measures
(ISO, 2004f)
Characteristic Measures
Effectiveness - Task Effectiveness
- Task Completion

- Error Frequency
Productivity - Task Time

- Task Efficiency

- Economic Productivity

- Productive Proportion

- Relative User Efficiency
Safety - User Health and Safety

- Safety of People Affected by Use of the System

- Economic Damage

- Software Damage
Satisfaction - Satisfaction Scale

- Satisfaction Questionnaire

- Discretionary Usage

These fifteen measures are analyzed using metrology concepts structure from ‘quantities
and units’ VIM category (ISO, 1993), based on four characteristics, that is, system of

quantities, dimension of a quantity, unit of measurement and value of a quantity.

113

7.3 Analysis of ISO 9126-4 Effectiveness measures

In ISO 9126-4, the claim is that the three Effectiveness measures assess whether the task
carried out by users reached the specific goals with accuracy and completeness in a
specific context of use (ISO, 2004f). This section presents the outcomes of the mapping
of the set of Quantities and Units metrology concepts to the description of Effectiveness

measures in [SO 9126-4. A summary of this mapping is presented in Table 7.2.

7.3.1 System of quantities for Effectiveness

7.3.1.1 Base quantities

First, it is observed that these three Effectiveness measures are not collected directly by
a measurement system, but are derived from a computation of four base quantities that
are themselves collected directly, that is: task time, number of tasks, number of errors

made by the user and proportional value of each missing or incorrect component.

The first three of these base measures in Table 7.2 refer to terms in common use, but this
leaves much space to interpretation on what is, for example, a ‘task’: it does not ensure
that the measurement results are repeatable and reproducible across measurers, across
groups measuring the same software and, as well, across organizations where a ‘task’
might be interpreted differently and with different levels of granularity. This leeway in
their interpretation makes a rather weak basis for either internal or external

benchmarking.

The third base quantity ‘number of errors made by the user’ is defined in Annex F of the
ISO TR 9126-4, as an “instance where test participants did not complete the task
successfully, or had to attempt portions of the task more than once” (ISO, 2004f, p. 47).
This definition diverges significantly from the one in IEEE Standard Glossary of
Software Engineering Terminology (IEEE, 1990, p. 31) where error has been defined as:

114

“the difference between a computed, observed, or measured value or condition and the
true, specified, or theoretically correct value or condition; for example, a difference of

30 meters between a computed result and the correct result”.

The fourth base quantity, referred to as the ‘proportional value of each missing or
incorrect component’ in the task’s output, is based in turn on another definition whereas
each ‘potential missing or incorrect component’ is given a weighted value 4i based on
the extent to which it detracts from the value of the output to the business or user (ISO,
2004f). These expansive embedded definitions contain a number of subjective
assessment for which no repeatable procedure is provided: value of output to the
business or user, the extent to which it detracts, component of a task and potential

missing or incorrect component.

7.3.1.2 Derived quantities

The proposed three Effectiveness measures which are defined as a prescribed
combination of the above base quantities are therefore derived quantities. The ranges of
the results obtained from implementing the corresponding measurement function are
introduced in the upper-part of Table 7.2 for each of these derived quantities. These
derived quantities inherit the weaknesses of the base quantities from which they are

composed of.

7.3.2 Dimension of a quantity for Effectiveness

Emerson (2005) states that the concept of dimension is applicable particularly to the
derived quantities: two of these derived quantities, that is ‘task effectiveness’ and ‘task
completion’ can have values between zero and one, and would be considered as
dimensionless quantities since, as stated by Emerson (2005), a ratio of quantities with

the same dimensions is itself dimensionless.

115

Table 7.2

The ‘quantities and units’ metrology concepts in the Effectiveness measures

Metrology Concepts

ISO 9126-4 (Effectiveness Measures)

Dimension of a Quantity:

Units of Measurement:

System of Quantities:

- Base Quantities:

- Derived Quantities:

1. Task Time.
2. Number of Tasks.
3. Number of Errors Made by the User.

4. Proportional value of each missing or
__incorrect component.
5. Task Effectiveness. 0<Task Effectiveness<l
6. Task Completion. 0<Task Completion<1
7

. Error Frequency. Error Frequency >0

- Quantities of Dimension
One (Dimensionless
Quantities):

5. Task Effectiveness.
6. Task Completion.

- Symbols of the Units:

- Coherent (Derived)
Units:

- Coherent System of
| Units:]

- International System of
Units (SI):

- s (Second)

1. Second. 2. Task.
3. Error. 4. Non (ill-defined)

5.(1- a given weight). 6. Task/Task =%
7. Error/Task or Error/Second.

|- Off-System Units: | |-Nowme. ________________________
|- Multiple ofa Unit: . _ | |-Nowme.
- Submultiple of a Unit: - None
Value of a Quantity:
| -TrueValues: | {-Nope.
- Conventional True
- None

Values:

- Conventional Reference
Scales (Reference-

Value Scales):

- Results of applying the measurement
functions of the above base and derived

1- Task Time.

116

7.3.3 Units of measurement for Effectiveness

The metrology concepts related with units of measurement are:
e Symbols of the units.

e Systems of units.

e Coherent (derived) units.

e (Coherent system of units.

e International system of units.

e Base units.

e Derived units.

e Off-system units.

e Multiple of a unit.

e Submultiple of a unit.

The mappings of these metrology concepts for Effectiveness measures are presented in
the Table 7.2. Two metrology concepts must be analyzed with more details: Base Units

and Derived Units.

7.3.3.1 Base units

Of the four base quantities, a single one, that is, ‘task time’, has an internationally
recognized standard base unit, that is, a “second”, or a multiple of this unit. It also has a
universally recognized corresponding symbol (second: ‘s’). The next two base units
(‘tasks’ and ‘errors’), do not refer to any international standard of measurement, and
must be locally defined (thereby making them poorly fit for comparison purposes, when
measured by different people, unless local measurement protocols have been clearly
documented, and implemented rigorously in a specific organization). The fourth base

unit, for the ‘Proportional value of each missing or incorrect component’ quantity, is

117

puzzling because it based on a given weighted value (number), and without any means

of measurement unit for this value.

7.3.3.2 Derived units

The ‘task effectiveness’ derived quantity leads to a derived unit that depends on a given
weight (that is (1 — ‘a given weight’)). Therefore, it also has an unclear derived unit of

measurement.

The ‘task completion’ derived quantity is computed by dividing two base quantities

(task/task) with the same unit of measurement.

The definition of the computation of the ‘error frequency’ derived quantity provides two
distinct alternatives for the elements of this computation: thereby it can lead to two
distinct interpretations, that is, ‘Error/Task’ or ‘Error/Second’. Of course, this lead to
two distinct derived quantities; this occurs due to implementing two different
measurement functions (formulas) for the ‘error frequency’ derived quantity. Of course,
this leaves open the possibility of misinterpretations and misuse of measurement results
when combined with other units, for example, measures in centimeters and measures in

inches cannot be added nor multiplied.

The lack of clarity as well as lack of references to international units of measurements
could then explain why there is no attempt to integrate these proposed base and derived
quantities into a system of units, including references to coherent units and a coherent

system of units.

7.3.4 Value of a quantity for Effectiveness

The metrology has four types of the ‘values of a quantity’, that is, true value,

conventional true values, numerical values and conventional reference scales.

118

The ‘numerical values’ are indeed obtained for each base quantities based on the defined
data collection procedure; for each of the derived quantities the ‘numerical values’ are
obtained from applying their respective measurement functions. For instance, the ‘task
effectiveness’ and ‘task completion’ derived quantities are both percentages interpreted

as the effectiveness and completion of a specific task respectively.

For the ‘task effectiveness’ in particular, anybody would be hard press to figure out both
a true value as well as a conventional true value; for the task completion and error
frequency, such true values would depend on locally defined and rigorously applied
measurement procedures, but without reference to universally recognized conventional

true values.

Finally, in terms of the metrological values of a quantity, only the ‘task time’ refers to a
conventional reference scale, that is the international standard-etalon for time of which
the second is derived. None of the other base quantities in these effectiveness measures

refer to conventional reference scales or to locally defined ones.

7.4 Analysis of ISO 9126-4 Productivity measures

In ISO 9126-4, the claim is that the five Productivity measures assess the resources that
users consume in relation to the effectiveness achieved in a specific context of use. In
ISO 9126-4, the time required to complete a task is considered as the main resources to
take into account (ISO, 2004f). This subsection presents the outcomes of the mapping of
the set of Quantities and Units metrology concepts to the 2001 description of
Productivity measures in ISO 9126-4, a summary of this mapping is presented in Table

7.3.

119

Table 7.3

The ‘quantities and units’ metrology concepts in the Productivity measures

Metrology Concepts

ISO 9126-4 (Productivity Measures)

System of Quantities:

- Base Quantities:

- Derived Quantities:

1. Task Time. 2. Cost of the Task.
3. Help Time. 4. Error Time. 5. Search Time.

6. Task Effectiveness. 0 < Task Effectiveness < 1
7. Task Efficiency. Task Efficiency > 0
8. Economic Productivity. Economic Productivity > 0
9. Productive Proportion. O0<Productive Proportion<1
10. Relative User Efficiency.

0 < Relative User Efficiency < 1

Dimension of a Quantity:

- Quantities of Dimension
One (Dimensionless):

6. Task Effectiveness. 7. Task Efficiency.
8. Economic Productivity. 9. Productive
Proportion. 10. Relative User Efficiency.

Units of Measurement:

- Symbols of the Units:

- International System of
Units (SI):

-5 (Second) - Currency Symbol (for example $)

1. Second. 2. Currency Unit. 3. Second.
_4.Second. _5.Second.

6. (1- a given weight). 7. ?/Second.

8. ?/Currency Unit. 9. Second / Second =%

10. ‘Task Efficiency’ Measurement Unit/Task

Efficiency’ Measurement Unit = %.

- Off-System Units: - None
- Multiple of a Unit: | | -None.
- Submultiple of a Unit: | | -None.
Value of a Quantity:
- True Values: - None
- Conventional True - None

Values:

- Conventional Reference
Scales:

- Results of applying the measurement functions of the
above base and derived quantities.

1. Task Time.

120

7.4.1 System of quantities for Productivity

One of the five proposed productivity measures in ISO 9126-4 is a base quantity (Task
time) while the other four ones are derived quantities (task efficiency, economic

productivity, productive portion and relative user efficiency).

In addition, the ‘task efficiency’ refers explicitly to another derived quantity ‘task

effectiveness’ already analyzed in the previous section.

It is to be noted that these derived quantities are themselves based on five base

quantities: Task Time, Cost of the Task, Help Time, Error Time, and Search Time.

7.4.2 Dimension of a quantity for Productivity

All of the productivity metrics are dimensionless quantities except the ‘Task Time’.

7.4.3 Units of measurement for Productivity

In the lower-middle part of Table 7.3, for the base and derived quantities, there are five
base units and no explicit derived units. However, it can be observed that the
measurement unit for the ‘task effectiveness’ is not completely clear since it depends on

an ill-defined ‘given weight’:

"task effectiveness' unit

"task efficiency' unit = (7.1)
second
_ 1-"a given weight' unit (7.2)
second
S 7.3
second (73)

121

Similarly, the measurement unit of the ‘economic productivity’ depends on the

measurement unit of the ‘task effectiveness’ derived quantity which is unknown:

"task effectiveness' unit

'economic productivity' unit = - (7.4)
currency unit
1-'a given weight' unit
==& - (7.5)
currency unit
?
- (7.6)
currency unit

Whereas, there is no measurement unit for the ‘productive proportion’ since it has the
same measurement unit in both numerator and denominator; therefore the result is a

percentage:

. . ., . second
productive proportion' unit =

(7.7)

second

Finally, for the ‘relative user efficiency’ there is no measurement unit since the
measurement units in both the numerator and denominator are the same; that is, the ‘task
efficiency’ measurement unit, the result of this derived quantity also is a percentage.

This point can be clarified as follows:

"task efficiency' unit

'relative user efficiency' unit = (7.8)

"task efficiency unit

"task effectiveness' unit

_ second 79
'task effectiveness' unit (7.9)

second

122

1-'a given weight' unit

= second
1-'a given weight' unit (7.10)

second

?

_ sec;)nd (7.11)

second

7.5 Analysis of ISO 9126-4 Safety measures

In ISO 9126-4, the safety measures claim to assess the level of risk of harm to people,
business, software, property, or the environment in a specific context of use; it includes
the health and safety of both the users and those who affected by use, as well as

unintended physical or economic consequences (ISO, 2004f).

To evaluate the safety characteristic of a software product, four derived quantities must
be quantified (i.e. ‘user health and safety’, ‘software damage’, ‘economic damage’ and
‘safety of people affected by use of the system’). Each of these derived quantities is the
result of a computational formula (function) which consists of a combination of pre-
collected base quantities (i.e. ‘number of usage situations’, ‘number of people’, ‘number
of occurrences of software corruption’, ‘number of occurrences of economic corruption’
and ‘number of users’). It can be observed that the resulting values of all the derived
quantities should be between zero and one. For the detailed analysis of the safety

measures, see Annex .

All the safety measures are dimensionless quantities; there are five base units and two
derived units for these quantities. In addition, two of the derived quantities have no
measurement units since they have the same measurement unit in numerator and
denominator, that is, the ‘user health and safety’ and ‘safety of people affected by use of

the system’ derived quantities; whereas none of the measurement units have a symbol.

123

7.6 Analysis of ISO 9126-4 Satisfaction measures

The satisfaction measures in ISO 9126-4 claim to assess the user’s attitudes towards the

use of the product in a specific context of use (ISO, 2004f).

All the three proposed satisfaction measures are derived quantities (i.e. ‘satisfaction
scale’, ‘satisfaction questionnaire’, and ‘discretionary usage’) which themselves depend
on four base quantities (i.e. ‘population average’, ‘number of responses’, ‘number of
times that specific software function/application/systems are used’, and ‘number of
times that specific software function/application/systems are intended to be used’). Two
of the proposed satisfaction measures are dimensionless quantities, that is, ‘satisfaction
questionnaire’ and ‘discretionary usage’. Annex II contains the analysis of the

satisfaction metrics.

Regarding the measurement units, there are four base units and no derived units;
however, the ‘satisfaction scale’ measurement unit is not clear since it depends on a
‘questionnaire producing psychometric scales’. The clarification of this point is as

follow:

psychometric scale unit (7.12)

'satisfaction scale'unit =
people

7.7 Conclusion

The ISO International Vocabulary of Basic and General Terms in Metrology (VIM)
represents the international consensus on a common and general terminology of
metrology concepts. However, up until recently, it was not usual practice in software
engineering measurement to take into account metrology concepts and criteria neither in
the design of software measures, nor in their use and interpretation of measurement

results.

124

This chapter has presented an analysis of the ISO 9126-4 Technical Report on quality in-

use measures and has investigated to which extent it addresses the metrology criteria

found in classic measurement. Based on the analysis in Sections 7.3, 7.4, 7.5 and 7.6, the
following comments and suggestions can be made:

e Identifying and classifying the quality in-use measures into base and derived
quantities makes it easy to determine which ones should be collected (base
quantities) in order to be used in computing the other quantities (derived quantities).

e Based on equations 7.3, 7.6 and 7.11, some of the derived units are ambiguous since
they depend on other quantities with unknown units.

e None of the quality in-use measures refer to any ‘system of units’, ‘coherent
(derived) unit’, ‘coherent system of units’, ‘international system of units (SI)’, ‘oft-
system units’, ‘multiple of a unit’, ‘submultiple of a unit’, ‘true values’,
‘conventional true values’, and ‘numerical values’.

e Neither the base nor the derived quantities have symbols for their measurement

units, except for the ‘task time’.

It is noted that the ranges of the results of many of the derived measures in ISO 9126-4
are between zero and one. Therefore, it is easy to convert them to be percentage values.
However, from our point of view, it will be more understandable if these results ranked
into qualitative values, for example, for the ‘task completion’, if the percentage result is
100% then the completion of the task is ‘excellent’, if the result is 80% then the

completion of the task is ‘very good’, and so on.

In addition, we noted that each characteristic (subcharacteristic in case of the internal
and external quality of software product) has a number of measures, that is, when we
need to measure such a characteristic we will get a set of numbers which represent that
characteristic. This will be very confusing for the decision makers since taking a

decision based on a single value will be more accurate and reliable.

125

We will employ the above to notes along with our classification of the ISO 9126
measures (into base and derived measures as will be described in the next chapter) in the
building of our proposed software product quality maturity model (SPQ™™), therefore,
the SPQ™™ will be partially based on the ISO 9126 measures taking into account our

suggestions in this chapter.

Using the ISO 9126-4 Technical Report on the measurement of software ‘quality in-use’
as a case study, this chapter has investigated and reported on the extent to which this
ISO series addresses the metrology criteria typical of classic measurement. Areas for
improvement in the design and documentation of measures proposed in ISO 9126 have

been identified.

CHAPTER 8

AN ISO-BASED INFORMATION MODEL TO ADDRESS THE
HARMONIZATION ISSUES IN THE NEW ISO 25020 AND ISO 25021
STANDARDS

8.1 Introduction

The ISO has recognized a need for further enhancement of ISO 9126, primarily as a
result of advances in the fields of information technologies and changes in environment.
Therefore, the ISO is now working on the next generation of software product quality
standards, which will be referred to as Software Product Quality Requirements and
Evaluation (SQuaRE — ISO 25000). Once completed, this series of standards will
replace the current ISO 9126 and ISO 14598 series of standards.

One of the main potential differences between (and objectives) of the SQuaRE series
and the current ISO 9126 series is the coordination and harmonization of its contents
with the ISO standard on software measurement process — ISO 15939 (ISO, 2007a;
2007b).

Recently, ISO has come up with two new standards on software product quality, that is,
ISO 25020 and ISO 25021. However, our analysis illustrates that these new standards
are not entirely conformant to the stated goal of coordinating and harmonizing their

contents to the ISO standard on software measurement process — ISO 15939.

This chapter presents some of the harmonization issues we identified as arising from
introducing the ISO 25020 and ISO 25021 new standards with respect to previously
published measurement standards for software engineering, including ISO 15939, ISO
14143-1 and ISO 19761; in this chapter we also propose ways to address them using the

measurement information model of ISO 15939 on software measurement process.

127

The rest of this chapter is organized as follows: Section 8.2 presents the outstanding
harmonization issues in terminology and coverage in ISO FDIS 25020 and ISO 25021.
Section 8.3 presents our solution for alignment of the ISO models of software product
quality with the measurement information model of ISO 15939. Finally, some examples
are presented in section 8.4, and a discussion and a summary are presented in section

8.5.

8.2 Outstanding harmonization issues

8.2.1 Terminology

The ISO 9126 working group has come up with the introduction of three new
expressions in ISO TR 25021, namely (ISO, 2007a; 2007b):

1. ‘Quality measure element categories’.

2. ‘Quality measure elements’.

3. ‘Quality measures’.

We have identified that the introduction of these new terms raises the following concern:
either the proper mapping to the set of classic metrology terms has not yet been
completed or there are concepts and related terms missing in the metrology vocabulary.
The latter would be surprising, since metrology is a rather mature domain of knowledge
based on centuries of expertise in the field of measurement and related international
standardization. In this section, we revise the new documents ISO FDIS 25020 and ISO
25021 in order to recommend a proper mapping of concepts to the related metrology

terms and to ISO 15939.

In ISO 25021, it is claimed that a ‘quality measure element’ is either a base measure or a
derived measure (ISO, 2007a; 2007b), but then the consensual metrology terms are
ignored in favour of locally defined WG6 measures, thus bypassing the ISO and SC7

harmonization requirements on measurement terminology.

128

The ‘quality measure elements’ are described as an input for the measurement of the
‘software quality measures’ of external quality, internal quality and quality in-use (ISO,
2007a; 2007b). Figure 8.1 shows the relationship between the ‘quality measure
elements’ and the ‘software quality measures’, and between the ‘software quality
measures’ and the quality characteristics and subcharacteristics. In metrology, these
would correspond to base measures and derived measures respectively. It can be
observed as well that these measures, in particular the derived measures, are defined
specifically to measure the subcharacteristics of internal and external quality or the
characteristics of quality in-use. None of these is directly related to the top level of
‘software quality’ (which is itself decomposed into three models, then into 16
characteristics and further into a large number of subcharacteristics). Therefore, the
‘software quality measures’ expression, which has been selected in ISO 25021, is at a
level of abstraction that does not represent the proper mapping of the measures to the

concept being measured.

Software Product Quality Software Quality
Measures

indicate

generates

| \2 Vi

Quality Measurement
Characteristics Function

\ indicate
v\ /

Quality Quality Measure
Subcharacteristics Elements

are applied to

Figure 8.1 Quality measure elements concept in the ‘Software Product Quality

Measurement Reference Model’
(ISO, 2007a; 2007b)

129

For the ‘quality measure element categories’, in ISO FDIS 25021, there are 15
categories (ISO, 2007b), see Table 8.1. It is to be noted that in ISO DIS 25021 there are
no specific quality measure elements proposed within the ‘number of user operations’ or

‘number of system operations’ categories.

Table 8.1

The fifteen categories of Quality Measure Element

Z
=

Category

Data Size
Number of Data Items

Number of Failures

Number of Faults

Number of Functions

Number of I/O Events
Number of Requirements
Number of Restarts

Number of System Operations

O X | R

[a—
S

Number of tasks

— | —
N | —

Number of Test Cases

Number of Trials

—_
(98]

Number of User Operations

._
e

Product Size

,_
e

Time Duration

It can be observed that — in Table 8.1 — a number of the quantities have a label starting
with ‘number of’. However, these do not use a reference scale typical of measures in the
sciences or in engineering, but are rather counts of entities. For any of these proposed
counts, such as the ‘number of functions’, no specific measurement method is proposed
for an identification of the number of functions in a consistent manner across measurers

and organizations; for instance, the definition of the word ‘function’ could differ from

130

one individual to another within the same organization, and more so across
organizations. Therefore, to say in ISO TR 25021 that such numbers are obtained by an
‘objective’ method is an overstatement, since they must be obtained mostly on the basis

of the judgment of the person carrying out the count.

Of the 15 quality measure element categories, only ‘time’ comes from a classic base
measure using, for instance, the international standard unit of the second (or a multiple
or submultiple of it) as its reference scale. There are also measuring instruments to

ensure that time measurements are indeed obtained in an objective manner.

It can also be observed that, of the 15 categories in Table 8.1, at most four are directly
related to the quality of software: number of faults, number of failures, number of
restarts and number of trials. None of the other 11 measures is directly or indirectly
related to the quality of software. In fact, they are strictly independent of it, as they are

often used for normalization purposes, for instance.

For the ‘product size’ category, the ISO TR 25021 lists only one way to measure the
product size, that is, non-comment lines of code. There are also other ways to measure
the product size, such as, function points, modules, classes and visual structures.
Furthermore, there are various methods for counting lines of code and for measuring
function points. Therefore, this quality measure element category could be further split
into different quality measure elements (base measures). Moreover, the ISO has
specified mandatory requirements for functional size measurement methods — ISO
14143-1 (ISO, 1998c), and has recognized four different functional size measurement
methods as ISO standards meeting these requirements, such as COSMIC-FFP (ISO,
2003b). None of these existing ISO software engineering standards, which are
referenced in ISO 90003 (ISO, 2004e), has been mentioned or referenced in ISO TR

25021. Also, the various methods available to obtain those numbers have their strengths

131

and weaknesses, from a measurement perspective, in terms of repeatability,

reproducibility, software domains of applicability and accuracy.

In summary, from our point of view, issuing new terms such as ‘quality measure
element categories’, ‘quality measure elements’ and ‘quality measures’ is not necessary;
the terminology concepts in ISO VIM (ISO, 1993) and in ISO 15939 (ISO, 2002) are

sufficient.

8.2.2 Limited coverage of the ISO quality models and corresponding measures

ISO TR 9126, parts 2 to 4, presents the ISO inventory of measures for the full coverage
of the ISO software product quality models (internal quality, external quality and quality
in-use) for measuring any of their quality characteristics and subcharacteristics. The full
sets of base measures in these three parts of ISO 9126 are presented in Annex IV and

include 82 base measures.

Of these 82 base measures, only 57 are included in ISO 25021; this means that the
coverage in this new ISO document is limited, and the reasons for this are not obvious.
In addition, out of the 197 measures in ISO 9126, only 51 are ‘selected’ in ISO 25021 as
‘quality measures’. The content coverage of this subset of quality measures (derived
measures) is limited and no specific criteria are provided on how they have been
selected. Some generic information is provided in this standard to suggest that these
measures were derived from a questionnaire-based survey; however, it does not provide
the reader with information about the criteria for selection, the size and
representativeness of the sample in the countries where the data were collected, or the
representativeness of this sample outside these countries. Another claim, that “they
represent a default kernel of quality measures, which are proven to be used in common
practice” (ISO, 2007b, p. 47), is not supported by documented evidence, nor is there a

discussion of its generalizability outside its data collection context.

132

Tables III.1, III.2 and II1.3 in Annex III present a detailed analysis of the coverage of the
quality measures in ISO 25021, together with the corresponding availability in ISO
9126. Table III.1 specifically illustrates that 34 measures for the ‘external quality’ of
software product are selected in ISO 25021 out of an inventory of 112 in the
corresponding ISO 9126-2, while 78 measures are excluded, again without a

documented rationale.

Table III.2 provides similar information for the ‘internal quality’ of software product as
selected in ISO 25021; out of 70 measures, only 15 measures have been selected and
cover only four of the six quality characteristics of the ISO model of internal quality,
and only nine of 27 subcharacteristics; again, the rationale for excluding any
characteristic or subcharacteristic is not documented. Similarly in Table II1.3, for the
‘Quality in-Use’ quality measures:

e Included: only two measures of the 15 already available in ISO 9126-4;

e Excluded: two quality in-use characteristics, that is, ‘safety’ and ‘satisfaction’;

e Does not include any quality measure elements related to the ‘Number of User

Operations’ and ‘Number of System Operations’.

8.2.3 Redundancy issues

Some additional information included in ISO 25021 has already been covered in ISO
9126 documents, and will be included in the ISO 25000 series; for instance, information
about the ‘scale types’ is covered through rephrasing information contained in other
documents, once again increasing synchronization and harmonization right away and

over the long term.

Similarly for the narratives about the measures of internal software quality, external
software quality and software quality in-use, as well as for the narratives about the

software measurement methods; this is contrary to the ISO practice of avoiding

133

duplication, redundancy or the rephrasing of information across ISO documents, and
increases the possibility of inconsistencies across documents; it could lead to significant
effort over the long term in maintaining synchronization of documents covering similar

subsets of information.

These examples point to configuration management issues over the long term which will
represent additional cost to the purchasers of these ISO documents, since they will be
required to pay twice for the same information which is a subset of the full inventory.
This could lead to some confusion for standards users as to which of these documents is

most valuable to a standard purchaser, and under what circumstances.

We have illustrated in this section how the issue of ambiguity and redundancy in ISO
FDIS 25020 and ISO 25021 new terms ‘quality measure elements categories’, ‘quality
measure elements’ and ‘quality measures’ can be avoided through the use of the

corresponding metrology concepts and terms.

8.3 Mapping the quality model to the Measurement Information Model

The following two expressions come from the ISO standard on software measurement

process, ISO 15939 (ISO, 2002), which is itself based on the definitions in the ISO

International Vocabulary of Basic and General Terms in Metrology (VIM) (ISO, 1993):

e Base measure: a measure defined in terms of an attribute and the method for
quantifying it. A base measure is functionally independent of other measures.

e Derived measure: a measure defined as a function of two or more values of base
measures. A transformation of a base measure using a mathematical function can

also be considered as a derived measure.

134

Practically, the data collection associated with a property of an object (or concept), and
quantification of it, happens at the base measure level, at which time a measurement unit

is assigned based on the rules of the measurement method used for the quantification.

At the derived measure level, the base measures have been already collected and are
being assembled according to the combination rules (e.g. a computational formula)
defined within each derived measure. A derived measured is, therefore, the product of a
set of measurement units properly combined (through a measurement function). This
combination is then labelled to represent an attribute (of a characteristic or

subcharacteristic of the quality) of a software product.

Table 8.2 shows examples of base measures used in the definitions of the measures
documented in ISO 9126-2, -3 and -4 (see Annex IV for the complete list of base
measures). Table 8.2, shows the name of each base measure and the unit of measurement
that is given to its value. These base measures can then be used to calculate each of the

derived measures (akin to metrics) in ISO 9126-4.

Table 8.2

Examples of Base Measures in ISO 9126-4

Quality in-use Base Measures
Measure Name Unit of Measurement
1 | Task Effectiveness (a given weight)
2 | Total Number of Tasks Task (number of)
3 | Task Time Minute
4 | Cost of the Task Dollar
5 | Help Time Second
6 | Error Time Second
7 | Search Time Second
8 | Number of Users User (number of)
9 Total Number of People Potentially Affected by the Person (number of)
System
10 | Total Number of Usage Situations Situation (number of)

135

Each of these base measures must be collected individually. They can be used at least
once, or multiple times, for obtaining the derived measure required to quantify the
software properties specified in the ISO 9126 quality model. Table 8.3 provides an
example of where some base measures are used throughout ISO 9126-2. For instance,
the base measure, ‘number of inaccurate computations encountered by users’, is used
only once in ‘external functionality - accuracy measures’, while the base measure
‘number of items requiring compliance’ can be used in six subcharacteristics of external
quality (ISO 9126-2). The construction of derived measures is based on a computational
formula consisting of two or more base measures (see Annex V for the complete cross-

reference lists of the base measures usage).

Table 8.3

Examples of the use of Base Measures in ISO 9126-2

External

Measure

Name Functionality Reliability Usability Efficiency | Maintainability Portability

F1|F2 |F3 |F4 | F5 |R1| R2 |R3 | R4 JUI | U2 |U3| U4 |US| El |E2 | E3 |MI| M2 M3 M4 M5] Pl |P2 | P3 |P4 | PS5

1 Number of v vlv v v v

functions

5 | Operation v | v|v v v v v v v viv|v v v
time

Number of
inaccurate
3 | computations v
encountered
by users

Number of 7
data formats

Number of
5| illegal v
operations

Number of

6| items. v v v v v v
requiring

compliance

Number of
7 1nterfa_ces v
requiring

compliance

Number of v 7 | v
faults

136

Such lists of base measures and of the usage cross-references are currently missing from

ISO 9126 and would be helpful to those designing programs for implementing

measurement of the quality of software products using ISO 9126 quality models and

related measures. In particular, these lists can help in:

e Identifying, selecting and collecting a base measure (once), and then using this base
measure to evaluate a number of derived measures.

e Knowledge of which base measures are required to evaluate specific software quality

attributes (characteristics and subcharacteristics).

Next, we present a mapping of both the measures and of the quality models in ISO 9126
to the measurement information model described in ISO 15939. As a first step, we refer
to the bottom section of Figure 8.2 by the term ‘Data Collection’ (e.g. the measurement
methods and the base measures), the middle section by the term ‘Data Preparation’ using
agreed upon mathematical formula and related labels (e.g. measurement functions and
derived measures) and the top section by the term the ‘Data Analysis’ (e.g. analysis

model, indicator and interpretation).

Both data collection and data preparation have already been discussed, we now focus on
the ‘Data Analysis’ section. It is in the ‘Analysis Model’ part of the ISO 15939
measurement information model that the ISO 9126 models of software product quality
are to be put to use. Figures 2.1, 2.2, 2.3 and 2.4 in Chapter 2 present these generic
models of ISO 9126 (ISO, 2001b). These generic ISO models are to be instantiated in
any particular context of measuring the quality of a specific software product. This is

usually performed in a four-step process, as summarized in Figure 8.2.:

137

Comparison of the Values ¢
(Interpretation Model)

0

Generic

I
|
I
|
|
|
|
|
|
Thresholds Targets 1
Values Or Values I
I

|

I

|

|

|

|

|

|

I

|

(Indicator)
Identification of the context of interpretation

Identification of quality
related requirements Measurement Values

Data Preparation

Derived Measure

Measurement
Function

Data Collection

Base Measure Base Measure

Measurement
Method

Measurement
Method

Attributes Attributes

Figure 8.2 Mapping to the Measurement Information Model

1. Identification of quality related requirements, that is, the selection of the parts of
the ISO quality models that are relevant to a particular context of quality

evaluation.

138

2. Identification of the context of interpretation, that is:
e the selection of reference values, such values being either generic or specific
threshold values, or
e the determination of targets specified for a particular context.
3. Use of the derived measures from the data preparation phase to fill out the
instantiated quality model determined in 1.
4. Comparison of the results of step 3 with either the set of reference values or targets

determined in step 2.

8.4 Examples

Some examples are presented next to illustrate the process described in Figure 8.2.
These include some of the ISO 9126 base measures and how they are combined to
construct a derived measure using a computational formula (measurement function):
e Example 1:
e Data Collection:
o Base Measure 1 (B1): Number of inaccurate computations encountered
by users.
o Base Measure 2 (B2): Operation time.
e Data Preparation:
o Derived Measure: B1 / B2
o Name of Derived Measure: Computational accuracy.
e Data Analysis:
o Quality group name: External quality measures.
o Characteristic: Functionality.
o Subcharacteristic: Accuracy.
o Comparison of values obtained with the indicators (generic thresholds

and/or targets).

139

e Example 2:

e Data Collection:

@)

O

Base Measure 1 (B1): Number of detected failures.

Base Measure 2 (B1): Number of performed test cases.

e Data preparation:

o

O

Derived Measure: B1 / B2

Name of Derived Measure: Failure density against test cases.

e Data Analysis:

©)

©)

o

o

Quality group name: External quality measures.

Characteristic: Reliability.

Subcharacteristic: Maturity.

Comparison of values obtained with the indicators (generic thresholds

and/or targets).

e Example 3:

e Data Collection:

o

©)

Base Measure 1 (B1): Number of memory related errors.
Base Measure 2 (B2): Number of lines of code directly related to system

calls.

e Data Preparation:

©)

o

Derived Measure: B1 /B2

Name of Derived Measure: Memory utilization message density.

e Data Analysis:

o

©)

©)

Quality group name: Internal quality measures.

Characteristic: Efficiency.

Subcharacteristic: Resource utilization.

Comparison of values obtained with the indicators (generic thresholds

and/or targets).

140

e Example 4:

e Data Collection:
o Base Measure 1 (B1): Task time.
o Base Measure 2 (B2): Help time.
o Base Measure 3 (B3): Error time.
o Base Measure 4 (B4): Search time.

e Data Preparation:
o Derived Measure: (B1-B2-B3-B4) / Bl
o Name of Derived Measure: Productive proportion.

e Data Analysis:
o Quality group name: Quality in-use measures.
o Characteristic: Productivity.
o Comparison of values obtained with the indicators (generic thresholds

and/or targets).
e Example S:

e Data Collection:
o Base Measure 1 (B1): Number of errors made by user.
o Base Measure 2 (B2): Number of tasks.

e Data Preparation:
o Derived Measure: B1 / B2
o Name of Derived Measure: Error frequency.

e Data Analysis:
o Quality group name: Quality in-use measures.
o Characteristic: Effectiveness.
o Comparison of values obtained with the indicators (generic thresholds

and/or targets).

141

e Example 6:

e Data Collection:
o Base Measure 1 (B1): Task effectiveness.
o Base Measure 2 (B2): Task time.

e Data Preparation:
o Derived Measure: B1 / B2
o Name of Derived Measure: Task efficiency.

e Data Analysis:
o Quality group name: Quality in-use measures.
o Characteristic: Effectiveness.
o Comparison of values obtained with the indicators (generic thresholds

and/or targets).

8.5 Summary and discussion

Within the ISO’s mandate to upgrade its set of technical reports on the measurement of
the quality of software products (ISO 9126), ISO has come up with a new structure for
upgrading the current series of ISO 9126 documents for the measurement of the quality
of software products. This new structure is referred to as ‘Software Product Quality
Requirements and Evaluation — SQuaRE’. In this chapter, we presented an alignment of
the ISO models of software product quality with the measurement information model of
ISO 15939 and how to use them for data collection, data preparation and data analysis;

some examples have also been illustrated.

In addition, in this chapter, some issues have been raised concerning three new concepts
proposed in ISO 25020 and ISO 25021, that is: ‘quality measure element categories’,
‘quality measure elements’ and ‘quality measures’. The following is a summary of the

harmonization issues identified:

142

Terminology in ISO 25021:

What is referred to as a ‘quality measure element’ corresponds to the classic

concept of ‘base measure’ in ISO 15939;

What is referred to as ‘software quality measure’:

o Corresponds to the classic concept of ‘derived measure’ in ISO 15939;

o It is not at the proper level of abstraction for the concept being measured
when mapped to the hierarchy of concepts for software product quality
adopted by the ISO.

In both ISO FDIS 25020 (ISO, 2007a, p. 4) and ISO 25021 (ISO, 2007, p.

11), the ‘measurement method’ is defined as “a logical sequence of operations,

described generically, used in quantifying an attribute with respect to a

specific scale”. But, in ISO 25021, it is used in the ‘set of quality measure

elements’ to represent the type of the measurement method (objective or
subjective). In contrast, a new data field called ‘detail’ is used to represent the

measurement method.

Harmonization with the Information Model of ISO 15939:

Unless the terminology is harmonized with the ISO International Vocabulary
of Basic and General Terms in Metrology, then it is a challenge to align the
older versions of the ISO 9126 and ISO 14598, and it will be even more
challenging with the updates in ISO 25000.

Should the harmonization of terminology proposed in this thesis chapter be
accepted at the ISO level, it would be then easier to map each of these ISO
9126 and ISO 14598 series into the Information Model of ISO 15939.

Description harmonization:

A large number of the base measures proposed in ISO 25021 are counts of
entities rather than measures per se with required metrological characteristics
such as: wunit, scale, dimension, measurement method, measurement

procedures, etc.

143

e In ISO 25021, in some instances, like ‘product size’ for example, there is no
reference to other existing ISO standards for software size, such as ISO 19761,
etc.

e There are a number of claims that the proposed base measures are ‘objective’,
while they are obviously derived from a manual process without precisely
documented measurement procedures, thereby leaving much space to the
measurer’s judgment.

4. Coverage harmonization in ISO 25021:

e The set of base measures documented represents only a limited subset of the
base measures within ISO 9126, parts 2 to 4; the rationale for inclusion or
exclusion is not documented.

e The set of base measures does not allow coverage of the full spectrum of
quality characteristics and subcharacteristics in ISO 9126, parts 2 to 4; again,

the rationale for inclusion or exclusion is not documented.

These concerns can be summarized as follows:

e Quality measure elements categories and quality measure elements: non alignment
with the classic terminology on measurement is puzzling.

e Quality measures: some inconsistencies in the terminology used, and some

ambiguity about which level of the ISO 9126 multi-level standard is being applied.

From the above analysis, the following recommendations are put forward to the ISO
working group dedicated to the improvement of ISO documents on software product
quality:

e Ensure that the terminology on software product quality measurement is fully
aligned with the classic measurement terminology in the sciences and in
engineering;

e Provide full coverage of the base measures for all three ISO models of software

quality;

144

e Provide improved documentation of the base measure using the criteria from
metrology;

e Provide clear mapping and traceability of the new ISO 25000 documents to the ISO
15939 Information Model.

We have analyzed some of the new terms weaknesses and have proposed ways to
address them by using the ISO 15939 measurement information model on software
measurement process. Briefly, using predefined terms such as ‘base measure’ and
‘derived measure’, as well as the proper mapping to the Measurement Information
Model in well-developed standards like ISO 15939 and the International Vocabulary of
Basic and General Terms in Metrology (ISO VIM) is more utile than the introduced

weakly defined terms.

This analysis has been done because the Quality Measurement Division standards of the
SQuaRE series of standards (i.e. ISO 25020, ISO 25021, ISO 25022, ISO 25023, and
ISO 25024) will soon replace the current ISO 9126 standard which will be partially used
as an input (both its quality models and quality measures) to our software product

quality maturity model SPQ™™.

CHAPTER 9

THE STRUCTURE OF THE QUALITY MATURITY MODEL

9.1 Introduction

A key difficulty in choosing a quality model is the diversity of such models described in
the literature, the variety of views on quality and the detailed techniques they embody;
for example, McCall’s quality model (McCall, Richards and Walters, 1977), Boehm’s
quality model (Boehm et al., 1978; Boehm, Brown and Lipow, 1976), Dromey's quality
model (Dromey, 1995; 1996) and the FURPS quality model (Grady, 1992), see Chapter
4 for the details of these quality models. In addition, hundreds of software measures — or
what are commonly called ‘software metrics’ — have been proposed to assess and
evaluate software quality, but, unfortunately, without wide international consensus on

the use and the interpretations of these quality models and their software measures.

The development of a consensus in software engineering standards organizations (ISO
and IEEE) is now leading to some agreement on both the quality model contents and
corresponding measures. Our strategy is to build a maturity model based not on our own
— or any individual — views of software quality, but on the emerging consensus in the
software engineering standards community. Therefore, the proposed maturity model is
based on the following ISO and IEEE standards:

e SO 9126 — Part 1: Quality Model (ISO, 2001b).

e SO 9126 — Part 2: Internal Measures (ISO, 2003c¢).

e SO 9126 — Part 3: External Measures (ISO, 2003d).

e [SO 9126 — Part 4: Quality in-Use Measures (ISO, 2004f).

e ISO 15026: System and Software Integrity Levels (ISO, 1998b).

e IEEE Std. 1012: Standard for Software Verification and Validation (IEEE, 1998).

146

In addition to the above-mentioned standards, the so-called sigma concepts are used to
align the mapping between the quality levels and the maturity levels of the quality of the

software product.

A Software Product Quality Maturity Models (SPQ™™) could be used to determine the

maturity of the quality of a specific software product. More specifically, it could be used

to:

o Certify a quality maturity level for a new software product, which could help
promote it on the market;

e Benchmark existing software products to assist in deciding which of them to select
based on their quality maturity levels;

e Assess the quality of the software product during the development life-cycle to
investigate the relationships between the development stages and to find the

weaknesses of the software product in order to make improvements to it.

This chapter describes the proposed Software Product Quality Maturity Model (SPQ™™),
which consists of three quality maturity submodels (viewpoints) that can be used not
only once the software product has been delivered, but also throughout the life-cycle:

e Software Product Internal Quality Maturity Model — SPIQ™™.

e Software Product External Quality Maturity Model — SPEQM™.,

e Software Product Quality-in-Use Maturity Model — SPQiUM™.

The rest of this chapter is structured as follows: Section 9.2 presents an architectural
view of the quality maturity model and Section 9.3 describes the contents of the software

product quality maturity model.

147

9.2 Quality maturity model: an architectural view

The architecture of the Software Product Quality Maturity Model (SPQ™™) proposed in
this Chapter is based on two sets of concepts which exist in industry in general, which
are:

e The levels of quality of a product, and

e A quantitative approach to product quality.

For a quantitative approach to product quality, the six-sigma approach to software
product quality (Akingbehin, 2005; Head, 1994; Sauro and Kindlund, 2005a) has been
selected to build the quality maturity model presented in this chapter.

9.2.1 Quality maturity levels

For the levels of quality of a product, the following five quality maturity levels have
been identified from the observation of general industry practices outside the software
domain:

e Quaranteed

e Certified

e Neutral

e Dissatisfied

e Completely Dissatisfied

To determine the maturity levels, concepts from the six-sigma approach are used. Sigma
is used in statistics to denote the standard deviation, a statistical measurement of
variation, that is, the exceptions to expected outcomes; the standard deviation can be
considered as a comparison between expected results (or outcomes) in a group of
operations, versus those that fail. Thus, the measurement of standard deviation shows

that the rates of defects, or exceptions, are measurable. The six-sigma is the definition of

148

outcomes as close as possible to perfection; for example, with six sigma (with 1.5 sigma
shift — see Figure 9.1), we achieve 3.4 defects per million opportunities, or 99.9997% of
quality level (Thomsett, 2005).

Sigma Shift

In the six-sigma approach, the value 3.4 DPMO (Defect Per Million of
Opportunities) is followed with a footnote or an asterisk, and the related fine print is
typically ignored by readers. In six-sigma, this 3.4 DPMO is presumed to be the
long-term process performance after the occurrence of a sigma shift. The sigma shift
is a 1.5 sigma difference from 6 to 4.5 sigma performance. This underlying
assumption is that short-term performance (of say 6 sigma) is really 4.5 sigma in the
long-term as entropy sets in (Wheeler, 2004).

It is to be noted that in six-sigma the parts-per-million values are dependent upon the
assumption that there is a 1.5 standard deviation shift.

Figure 9.1 Sigma shift

As a result of applying the proposed quality maturity model, we will have one of five
quality maturity levels based on the sigma values. Figure 9.2 shows the five maturity
levels selected to rank the quality of the software product. This maturity scale can be
applied in turn to the three different viewpoints; that is, not only for the quality of the
whole software product, but also for the life cycle stage quality (i.e. internal quality,
external quality and quality in-use of the software product) and for the software product

quality characteristics.

Neutral ®l4>0623
Dissatisfied @]|3>022
Completely Dissatisfied Dlo<2

Figure 9.2 Quality maturity levels

149

9.2.2 A Quantitative approach to product quality

To make communication with both customers and managers easier, it is more convenient
to refer to a quality characteristic by a single value rather than a number of values (since
each characteristic is represented by a number of related measures). To produce this
single value, an organization needs to assign different weights to the individual quality
views (characteristics, subcharacteristics or measures) on a software product. A number
of techniques exist for combining multiple values. For instance, Sauro and Kindlund
(2005b) have introduced a method to integrate three usability measures (effectiveness,
efficiency and satisfaction) into a single value that measures and communicates usability
as a quality characteristic of a software product; to do so, the principal component
analysis (PCA) technique is used to find the weight of each of the individual usability

measures using historical data.

In our proposed model, in order to produce single values for the life-cycle-stage,
characteristic or subcharacteristic quality levels, we assume initially that all measures
have an equal weight (contribution) in the computation of the subcharacteristic quality
level (and characteristic quality level, in the case of quality in-use), and each

subcharacteristic has an equal weight in the calculation of the characteristic quality level.

This single value could be easily converted to a sigma value using the NORMSINV
function, which is a Microsoft Excel function that delivers the inverse of the cumulative

standardized normal distribution (Sauro and Kindlund, 2005a).

Using a single sigma without shifting is not sufficient for our model since individual
integrity levels do not require the same sigma value for the corresponding quality level

within different integrity levels.

150

The sigma shift is used as a technique to increase or decrease the corresponding quality
levels. In other words, the sigma shift is the value which needs to be added to the sigma
value to make a gap between the quality levels; for instance a higher sigma shift will
produce a higher gap between the quality levels. For example, without sigma shift, the
corresponding quality level for the one sigma is 84.14%, but when the sigma is shifted

by 1.5 the quality level becomes 99.38%.

In Table 9.1, the sigma values have been calculated and shifted based on the quality
levels and on the software integrity levels respectively. Again, the NORMSINV function
is used to produce the sigma values for all the quality levels, and the integrity levels

have been used to determine the value of the sigma shift.

Table 9.1

The sigma ranges based on the Quality Level and the Software Integrity Level

Software Integrity Levels and Risk Classes
5 4 3 2 1 0
Very High High Intermediate Low Trivial None
Quality Levels (QL) for each Sigma Shift Assigned
Zero Sigma | 1.5 Sigma | 2.0 Sigma | 2.5 Sigma | 3.0 Sigma | 3.5 Sigma Sigma
Shift Shift Shift Shift Shift Shift Ranges
QL>99.99997% |QL>99.976%| QL>99.865% | QL>99.379% [QL>97.724% [QL>93.319% 625
QL<99.99997% [QL<99.976%| QL<99.865 [QL<99.379% |QL<97.724% |QL<93.319%
and and and and and and 5>0>4
QL>99.996% |QL>99.379%|QL>97.724% | QL>93.319% [QL>84.134% [QL>69.146%
QL<99.996% [QL<99.379%|QL<97.724% | QL<93.319% [QL<84.134% | QL<69.146%
and and and and and and 4>c>3
QL>99.865% |QL>93.319%|QL>84.134%|QL>69.146%| QL>50% [QL>30.853%
QL<99.865% 93(2311;0/ QL<84.134% [QL<69.146%| QL<50% |QL<30.853%
and .an d 0 and and and and 3>g>2
QL>97.724% QL>69.146% QL>50% [QL>30.853%|QL>15.865%| QL>6.680%
QL<97.724% |QL<69.146%| QL<50% [QL<30.853% |QL<15.865% | QL<6.680% c<2

151

Table 9.1 includes three parts:
e The upper part: the software integrity levels and risk classes.
e The lower part: the quality levels (QL) for each sigma shift.

e The right-hand part: the assigned sigma ranges.

Using the first part and the second part of Table 9.1, we can get the assigned sigma

range value from the third part.

In Table 9.1 we identified six values for the sigma shift (i.e. 0, 1.5, 2.0, 2.5, 3.0 and 3.5)
to determine the various gaps between the quality levels values; the higher sigma shift
will produce a higher gap between the quality levels. For example, we used zero sigma
shift with integrity level five because the software products with this integrity level are
very sensitive to the quality; therefore, the use of this sigma shift (zero sigma shift)
produced ranges of quality levels with small gaps, that is, from 97.724% to 99.99997%
(see Table 9.1 — zero sigma shift column). While the 1.5 sigma shift is used with the
integrity level four because the software products with this integrity level are less
sensitive to the quality than the software products with integrity level five, and the
produced ranges of quality levels have larger gaps, that is, from 69.146% to 99.976%
(see Table 9.1 — 1.5 sigma shift column). Table 9.1 will be used as reference to assess

the product quality maturity level (see later Chapter 10).

Table 9.2 illustrates next an example of a software product with a quality level of 99%
(using the NORMSINYV Excel function, the original sigma (without sigma shift) value
for 99% is 2.36G). However, for evaluating its quality maturity level, we have six cases

based on its integrity level:

Table 9.2

152

Example of a Quality Level with its different Maturity Levels

Quality [Original Sigma| Integrity | Sigma Shift Shifted Sigma Corresponding
Level | Value (OSYVY) Level | Value (SSV) | Value (OSV+SSV) |Maturity Level
5 0.0 (2.32+0.0) =2.32c 2
4 1.5 (2.32+1.5)=3.820c 3
999% ’ 16 3 2.0 (2.32+2.0)=4.32c 4
2 2.5 (2.32+2.5) =4.82c 4
1 3.0 (2.3243.0)=5.320 5
0 3.5 (2.32+3.5) =5.820 5

If the integrity level = 5

Using Table 9.1, the corresponding sigma shift = 0.0 sigma shift.
The shifted sigma value = 2.326 + 0.0 = 2.32G.

Using Figure 9.2, the corresponding maturity level = 2.

If the integrity level = 4

Using Table 9.1, the corresponding sigma shift = 1.5 sigma shift.
The shifted sigma value = 2.326 + 1.56 = 3.82c.

Using Figure 9.2, the corresponding maturity level = 3.

If the integrity level = 3

Using Table 9.1, the corresponding sigma shift = 2.0 sigma shift.

The shifted sigma value =2.32c + 2.0c = 4.320.

Using Figure 9.2, the corresponding maturity level = 4.

If the integrity level = 2

Using Table 9.1, the corresponding sigma shift = 2.5 sigma shift.

The shifted sigma value = 2.32c + 2.56 = 4.820.

Using Figure 9.2, the corresponding maturity level = 4.

153

5. If the integrity level = 1
e Using Table 9.1, the corresponding sigma shift = 3.0 sigma shift.
e The shifted sigma value = 2.326 + 3.06 = 5.320.

e Using Figure 9.2, the corresponding maturity level = 5.

6. If the integrity level =0
e Using Table 9.1, the corresponding sigma shift = 3.5 sigma shift.
e The shifted sigma value = 2.326 + 3.56 = 5.820.

e Using Figure 9.2, the corresponding maturity level = 5.

In other words, Table 9.1 can be directly used to get the assigned sigma range for a
quality level when the integrity level is known for the software product benign assessed.
Therefore, the same quality level for a specific software product could lead to different

maturity levels of that software product based on its integrity level.

9.3 The Software Product Quality Maturity Model — SPQ™"

The quality maturity model of software products is built to be used from three different
viewpoints:

1. The Whole Software Product Quality Maturity Model.

2. The Software Product Life-Cycle-Stage Quality Maturity Models.

3. The Software Product Quality Characteristic Maturity Model.

Figure 9.3 illustrates the relationships between the above-mentioned three viewpoints of

the quality maturity model.

154

The Whole Software Product Quality Maturity Model
i SPIQ™™ SPEQ™™ SPQiU™" i
Software Product Internal Software Product External Software Product Quality
Quality Maturity Model Quality Maturity Model In-Use Maturity Model
S Y S L .
NN, P
! SPIF™ SPEF™™
! ’e Software Pr(-)duct- Software Pr(zduct. SPEiUMM
1 Internal Functionality External Functionality Software Product
I Maturity Model Wy oeE * Effectiveness In-Use
| Maturity Model
; SPIR™" SPER™
. ¢ Software Product Software Product
! Internal Reliability External Reliability
! = Maturity Model Maturity Model SPPiU™M
'O e Software Product
! E spig™ SPEUM™ Productivity In-Use
(N & Software Product Software Product Maturity Model
I 'S Internal Usability External Usability
, =2 Maturity Model Maturity Model
.2
L 2 SPIE™ SPEE™™ MM
1B SPSiU
L2 ’y Software Pro.duct Software PrOfiuct - Software Product
. § Interna! Efficiency Externa! Efficiency Safety In-Use
I Maturity Model Maturity Model Maturity Model
i &
! spim™™ SPEM™V
| Software Product Software Product
I * Internal Maintainability External Maintainability SPSatiu™
" Maturity Model Maturity Model ’q Software Product
i Satisfaction In-Use
; sprp™ SPEP™™ Maturity Model
. & Software Product Software Product
! Internal Portability External Portability
| Maturity Model Maturity Model
L ot o o o o o e i i m —ma— =
Figure 9.3 The contents of the Software Product Quality Maturity Model

155

9.3.1 The whole software product quality maturity model

The whole software product view of our model (Software Product Quality Maturity
Model — SPQ™™) is illustrated in Figure 9.4, and shows the components that should be
computed to achieve the quality maturity level of the whole software product. The
resulting maturity level is derived from the quality levels of the software product stages

(internal, external and in-use).

! !

Software Software Software Product
Product Internal Product External In-Use
Quality Level Quuality Level Quality Level

6 Characteristics _Quality Levels 4 Characteristics Quality Levels
27 Subcharacteristics Quality Levels Measures |
[Measures]

Figure 9.4 The components of the Quality Maturity Level for the whole software
product

156

9.3.2 The life-cycle stages quality maturity model

The following are the three types of Quality Maturity Models from the life-cycle-stage
viewpoint:

1. Software Product Internal Quality Maturity Model — SPIQV™.

2. Software Product External Quality Maturity Model — SPEQ"™.

3. Software Product Quality-in-Use Maturity Model — SPQiUM™.

Each of the above life-cycle stage-view maturity models is based on the selected ISO
9126 software product quality characteristics. The software product quality
characteristics and subcharacteristics should be selected based on the type of software
(e.g. embedded software, real-time software, application software, system software, etc.)
to be evaluated. Figure 9.5 shows the components of the software product life-cycle-

stage quality maturity model.

6 Characteristic Quality Levels 4 Characteristic Quality Levels
ArA A .. A A A ArA A A
27 Subcharacteristic Quality Levels [Measures]
[Measures]

Figure 9.5 Components of the Quality Maturity Levels from the life-cycle-stages
viewpoint

157

9.3.3 The characteristics quality maturity models

The characteristics view of our quality maturity model (e.g. Software Product Internal
Functionality Maturity Level) is partially based on the ISO 9126 quality model; see
Figures 2.2 and 2.3 in Chapter 2 for the complete lists of the ISO 9126 quality
characteristics. Figure 9.6 illustrates the structure of the characteristics-view maturity

models.

Only the quality maturity levels of the required characteristic will be evaluated using
these models, based on the quality level of the selected subcharacteristics in the case of
external and internal software products, and based directly on selected measures in the

case of an in-use software product.

: Software Product Software Product in-use :
; Internal & External Quality Quality Characteristics :
i Characteristics Maturity Levels Maturity Levels i
27 Subcharacteristics Quality Levels [Measures
Measures

Figure 9.6 = Components of the Quality Maturity Levels from the internal, external
and in-use characteristics viewpoint of the software product

9.4 Summary

In this chapter, we have presented the design of the proposed software product quality

maturity model which can be used from three different points of view:

158

1. Software Product Internal Quality Maturity Model — SPIQ"™,
2. Software Product External Quality Maturity Model — SPEQ"™,
3. Software Product Quality-in-Use Maturity Model — SPQiUM™.

In addition, we show the detailed mapping of the related concepts such as the ISO 9126
quality model, the software integrity levels, and the sigma concepts to produce such a

quality maturity model.

In the next chapter, we will draw up the different steps need to be followed in order to

compute a quality maturity level for any software product.

CHAPTER 10

DETERMINING THE QUALITY MATURITY LEVELS USING THE
SOFTWARE PRODUCT QUALITY MATURITY MODEL — SPQ"™

10.1 Introduction

We introduced the structure of our software product quality maturity model in Chapter

9. In this chapter, we describe the detailed steps which should be followed to get the

maturity level of a specific software product. These steps can be summarized as follows:

1. Determine the software integrity level.

2. Select the required characteristics, subcharacteristics, and derived measures.

3. Identify the required base measures for each of the selected subcharacteristics and
characteristics (in the case of in-use quality).

4. Compute the selected derived measures.

5. Compute the quality level of the selected software product quality characteristics.

6. Identify the sigma value and the maturity level.

10.2 Software Integrity Level determination

The software integrity level is used in our models to classify the software products.
Therefore, the software products with high integrity levels are very sensitive to quality.
In order to identify the integrity level of a software product, we first need to know the

consequences of any failure of that software product.

Table 10.1 illustrates the definitions of the consequences that have been expanded into
six consequences instead of the four in the IEEE standard for software verification and

validation (IEEE, 1998).

160

Table 10.1

Definitions of expanded consequences

Consequences Definitions
. Loss of human life, complete mission failure, loss of system security

Catastrophic . . .

and safety, or extensive financial or social loss
Critical Major and permanent injury, partial loss of mission, major system

damage, or major financial or social loss

Severe injury or illness, degradation of secondary mission, or some
Severe . .

financial or social loss
Marginal Minor injury or illness
Minor Minor impact on system performance or operator inconvenience
None No impact

In addition, the occurrence of those consequences is very important for determining the
integrity level. The frequency of their occurrence can be estimated using the indicative

frequency (IFreq) of previous and similar software products (see Table 10.2).

Table 10.2

Indicative frequency for each occurrence
(ISO, 1998b)

Occurrence | Indicative Frequency (IFreq) (per year)
Frequent IFreq>1

Probable 0.1 <IFreq<1

Occasional 0.01 <IFreq<0.1

Remote 0.0001 <IFreq £0.01
Improbable 0.000001 < IFreq <0.0001
Incredible [Freq < 0.000001

161

Based on the consequences and their occurrence, we have classified the software
integrity levels into an ordered scale of ranging from zero to five — see Table 10.3. For
example, if the consequences and their occurrence are ‘severe’ and ‘occasional’

respectively, then the integrity level of that software is three.

Table 10.3

Determination of the Software Integrity Level using the consequences and their

occurrence
Occurrence
Consequence
Frequent | Probable | Occasional | Remote | Improbable | Incredible

Catastrophic 5 5 5 4 3 2
Critical 5 5 4 3 2 1
Severe 4 4 3 2 1 1
Marginal 3 3 2 2 0 0
Minor 2 2 1 1 0 0
None 0 0 0 0 0 0

10.3 Selection of the required characteristics, subcharacteristics and measures

In order to evaluate the maturity level of a software product, it is necessary to identify
which characteristics are most closely related to this software product. Therefore, the
characteristics that must be taken into account should be selected based on the type of
software product (e.g. embedded software, real-time software, etc.). In addition, the
subcharacteristics (in the case of internal and external software products) and the

measures also need to be identified.

162

10.4 Identification of the required Base Measures for each of the selected
characteristics

We have already classified the ISO 9126 measures into base or derived measures based
on the ISO 15939 and ISO VIM, and have provided a list of proposed base measures in
ISO 9126, parts 2, 3 and 4 (see Annex IV). This classification helps in determining
which measures should be collected before starting the measurement process, taking into
account that most of the ISO 9126 measures are derived and could not be computed
without first identifying and collecting the base measures. In addition, a cross-reference
table of base measure usage provided in Annex V, identifies for each subcharacteristic
(or characteristic, in the case of quality in-use), which base measures should be collected
to compute the related derived measures for that subcharacteristic or characteristic. In
particular, these lists can help in:

e Identifying, selecting and collecting a base measure (once), and then reusing this

base measure to evaluate a number of derived measures;

e Learning which base measures are required to evaluate specific software quality

attributes (characteristics and subcharacteristics).

Now the derived measures could be computed easily since we have all the required base

measurcs.

10.5 Computing the Quality Levels of the selected software product quality
characteristics

At this point, the characteristics, subcharacteristics and measures have been selected and
the base measures identified and collected. In order to calculate the quality maturity
level of the software product, the quality levels of the selected characteristics must be

computed.

163

Figure 10.1 shows the steps to be followed to compute the quality level of any of the
selected internal or external characteristics, and, in Figure 10.2, of the quality-in-use

characteristics.

Select the Required Characteristic

--- l oM AENEEEEEEEEEEEEEEEEEEEEEEEEE,
. . .
3 .
E .
.
.

Base Measures Usage) Collect the Required), List of Related
Cross-Reference Table Base Measures i Base Measures

o)

Select the Required
Subcharacteristic

.................................. 2

§List of the Requiredg(__ Select the Required
i Measures Measures

............... V 7 Y

Compute the Selected Measures

v \4

Assumption: All _ | Compute the Weighted _ ﬁ List of]
Measures make an Average of the Measures’ i Measures’ Values
Equal Contrlbutlon g Values e J

...

;List of the Quality Levels for theg
Selected Subcharacteristics

--

... Y _V
] Assumption: All Compute the Weighted iy R ,
i Subcharacteristics make an > Average Quality Levels | ! esen i
Equal Contribution i for the Selected i Process > |
T o Subcharacteristics ! I/O Flow ===) :
v ' {. Inputs/Outputs |
The Quality Level of the Selected Characteristic ' | Process | :

Figure 10.1 Computation of the Quality Level for each of the ISO 9126 internal and
external characteristics

164

Select the Required
Characteristic

--

N2

Collect the Required

Base Measures

--

--

v

)- List of Related
i Base Measures

waat

List of the Required _(Select the Required
Measures Measures :
v v v
Compute the Selected Measures
v M,
Assumption: All Measures _ > Compute the Weighted . List of E
i make an Equal Contribution : Average : Measures’
ST TTN TSI TTOTI J of the Measures’ Values Values

' Legend
. { Inputs/Outputs | Process
i I Process | I/O Flow

— 1,
......)i

.
.
-
------------------ ! AAEEARARESERSEESEESRSEEEEREREEEES,
.
.
.

The Quality Level of the
Selected Characteristic

Figure 10.2 Computation of the Quality Level for each of the software product

quality in-

use characteristics

The following equations can be used to calculate the quality levels of the selected

subcharacteristics, characteristics and internal / external software product (internal /

external life cycle phase):

(10.1)

(10.2)

165

(Zeer

oL ="

(10.3)

where:
e SQL is the Subcharacteristic Quality Level,
e (CQL is the Characteristic Quality Level,
e (L is the Internal/External/in-Use Quality Level,
e gm is the selected Quality Measure,
e 7 is the number of selected measures of that subcharacteristic,
e m is the number of selected subcharacteristics of that characteristic, and
e L is the number of selected internal/external/in-use characteristics of that

software product.

In the case of the in-use software product, there are no subcharacteristics for each
characteristic, but rather a number of related measures. Equation (10.4) can be used to
calculate the quality levels of the characteristics, whereas the quality level of the in-use

software product (in-use stage) can be calculated using equation (10.3):

5]
COL it/

m

(10.4)

where m is the number of selected measures of that characteristic.

For the whole software product, equation (10.5) can be used to achieve a single value of

the quality level of the whole software product:

166

(IQL + EQL +iUQL)
3

WOL = (10.5)

where:

e WOQL is the quality level of the whole software product, including the quality levels
of all three stages of the software product,

e JQL is the internal quality level,

e EQL is the external quality level, and

e [UQL is the in-use quality level of the software product.

For equations 10.1 to 10.5, we have made an assumption that all measures,
subcharacteristics quality levels, characteristics quality levels and stage quality levels
make the same contribution (have the same weight) in the calculation of the
corresponding subcharacteristic quality level, characteristic quality level, life-cycle stage
(internal, external or in-use) quality level and whole software product quality level
respectively. Of course, if an organization wishes to assign different weights, relevant

techniques must be used to integrate them.

10.6 Identifying the sigma value and the maturity level

In the previous sections, instructions have been provided for calculating the quality level
for any of the three viewpoints (characteristic, stage, whole software product), and how

to determine the software integrity level.

It is easy to achieve the corresponding sigma value for the quality level of any of the
three viewpoints. For example, if the following information about a specific software
product is available,

e the Software Integrity Level =2, and

e the Quality Level of the External Software Product = 80%.

167

Then, using Table 9.1, the sigma value will be 4 > ¢ > 3. Moreover, using Figure 9.2,
which illustrates the quality maturity levels, the Software Product External Quality

Maturity level is three (neutral).

10.7 Discussion

Evaluation of the quality of any software product is very important, since poor quality in
a software product (particularly in sensitive systems, such as real-time systems, control
systems, etc.) may lead to loss of human life, permanent injury, mission failure or

financial loss.

Several capability and maturity models have been designed for the software process. For

example, the CMMi, the Software Maintenance Maturity Model (S

) and the Testing
Maturity Model (TMM). Up to now, there had been no corresponding product maturity

model for assessing the quality of software products.

The design of a software product maturity model to assess the quality of a software
product therefore represented a challenge. In Chapter 9 and 10, we presented a product
quality assessment model based on ISO 9126 and ISO 15026. Specifically, we discussed
the structure of the quality maturity model from the following three distinct points of
view:

e The whole software product,

e The software product life-cycle stage (internal, external and in-use), and

e The software product quality.

In the literature, there are many quality models and hundreds of measures that deal with
the software product. Selecting which to use for evaluating the software product quality
is a challenge. To address this diversity of alternatives, the ISO has come up with a

consensus on a quality model and an inventory of measures to evaluate the quality of a

168

software product (ISO 9126). However, using individual ISO 9126 measures to evaluate
the quality of a software product is also a challenge, since we will obtain a set of
numbers that reflects the quality level of each measure for each quality characteristic.
Moreover, it is difficult on the one hand to interpret these numbers, and, on the other
hand, to integrate them into a decision-making model. Therefore, a single number which

will reflect the quality of a characteristic is sorely needed.

Also, we have combined the set of quality measures into a single value for each quality
characteristic by assuming that all the measures for a single quality characteristic have
an equal weight in the computation of a single value for that quality characteristic (they
all make an equal contribution), yielding a quality level for that quality characteristic.
The resulting quality level is then transformed into a sigma value positioned within a

quality maturity level.

Our Software Product Quality Maturity Model can be used to determine the maturity of

the quality of a software product. Specifically, it can be used to:

e Certify a quality maturity level for a new software product, which could help
promote it on the market;

e Benchmark existing software products to assist in making a selection based on their
quality maturity level;

e Assess the quality of the software product during the development life-cycle (i.e.
internally, externally and in-use) to investigate the relationships between the three
stages and to find any weaknesses in order to improve the software product;

e Assess the maturity of the internal quality of a software product to be reused in
other software products.

e Compare the maturity levels of the life-cycle-stage quality (i.e. internal, external

and in-use).

169

The software product quality maturity model discussed in Chapters 9 and 10 are limited
to the ISO 9126 quality model and its set of measures. Another limitation is that the
results yielded by the quality maturity model discussed are initially based on the
assumption of the equal weight of all measures, all characteristics and all
subcharacteristics. To avoid making this assumption, an organization can apply the PCA
(Principal Component Analysis) statistical technique to a large set of historical data to
find a corresponding weight for each measure, characteristic or subcharacteristic.
Alternatively, an organization can assigned its own weights using for instance the
analytical hierarchy process (AHP) (Koscianski and Costa, 1999) technique and then use
relevant techniques to combined them into aggregated values at higher levels, such as
done for example in the QEST multi-dimensional models for quality and performance

(Buglione and Abran, 1999; 2002).

CONCLUSION AND FUTURE WORK

This thesis had two main research objectives: The first objective was the building of an

understanding of the designs and definition of the current proposed measures for

software product quality to determine their strengths and weaknesses. The second

research objective was to build a maturity model based on software engineering

standards rather than individual models of software product quality.

Research objective 1: Key research contributions and limitations

To meet the first research objective, we used the Habra et al (2004) software

measurement analysis framework (which contains some of the metrology concepts) for

the analysis of, some measures quoted in ISO 9126, including the Halstead’s measures.

The key findings of the analysis of the design of Halstead’s measures are:

Halstead has not explicitly provided a clear and complete counting strategy to
distinguish between the operators and the operands in a given program or
algorithm. This has led researchers to come up with different counting strategies
and, correspondingly, with different measurement results for the same measures
and for the same program or algorithm.

There are problems with the units of measurement for both the left-hand and the
right-hand sides of most of Halstead’s equations.

The implementation of the measurement functions of Halstead’s measures has been
interpreted in different ways than the goals specified by Halstead in their designs.
For example, the program length (N) has been interpreted as a measure of program
complexity, which is a different characteristic of a program.

Based on ISO 15939 (ISO, 2002) and the international vocabulary of basic and
general terms in metrology (VIM) (ISO, 1993), Halstead’s measures can be

171

classified as six based measures (n;, n, N;, Ni, n;* and n,*) and ten derived
measures (equations (6.1) to (6.10)).

Halstead has not explicitly provided a clear and complete counting strategy to
distinguish between the operators and the operands in a given program or
algorithm. This has led researchers to come up with different counting strategies
and, correspondingly, with different measurement results for the same measures

and for the same program or algorithm.

This analysis of the Halstead’s measures with the Habra et al. (2004) framework has

demonstrated the usefulness and contributions of this framework.

Next, the ISO 9126-4 measures were analyzed to understand their designs and

definitions since they were to be used in our software product quality maturity model

SPQ™. In addition, since the current ISO 9126 will be soon replaced by the ISO 2502n

series of standards, we have analysed two of these upcoming standards, that is, ISO

25020 and ISO 25021. This analysis demonstrated that some of the ISO 9126 measures

are not well defined. From the analysis of the quality in-use measures (ISO 9126), the

summary of the key findings are:

The ISO 9126 measures need to be classified based on the metrology concepts into
base and derived measures. This classification will make it easy to determine which
measures should be collected (base measures) in order to be used in the computing
of derived measures.

The measurement units of some derived measures are ambiguous since they depend
on other measures with unknown units.

Based on the used metrology concepts, none of the ‘quality in-use’ metrics in ISO
9126-4 refers to any ‘system of units’, ‘coherent (derived) unit’, ‘coherent system
of units’, ‘international system of units (SI)’, ‘off-system units’, ‘multiple of a

unit’, ‘submultiple of a unit’, ‘true values’, ‘conventional true values’, and

172

‘numerical values’. Furthermore, neither of the base nor the derived quantities have
symbols for their measurement units, except for the ‘task time’.

It can be also noticed that the ranges of the results of many of the derived ‘metrics’
in ISO 9126-4 are between zero and one. Therefore, it is easy to convert them into
percentage values. However, from our point of view, it will be more understandable
if these results were ranked into ordinal categories. For example, for the ‘task
completion’, if the percentage result is 100% then the completion of the task could
be categorized as ‘excellent’, if the result is 80% then the completion of the task

could be categorized as ‘very good’, and so on.

From the analyses of the ISO 25020 and ISO 25021, some additional issues have been

raised concerning three new concepts proposed in ISO 25020 and ISO 25021; that is,

‘quality measure element categories’, ‘quality measure elements’ and ‘quality

measures’. The following is a summary of the harmonization issues identified:

What is referred to as a ‘quality measure element’ corresponds to the classic
concept of ‘base measure’ in ISO 15939 and what is referred to as ‘software quality
measure’ corresponds to the classic concept of ‘derived measure’ in ISO 15939.

A large number of the base measures proposed in ISO 25021 are counts of entities
rather than measures per se with required metrological characteristics such as: unit,
scale, dimension, measurement method, measurement procedures, etc.

In ISO 25021, in some instances, like ‘product size’ for example, there is no
reference to other existing ISO standards for software size, such as ISO 19761, etc.
There are a number of claims that the proposed base measures are ‘objective’,
while they are obviously derived from a manual process without precisely
documented measurement procedures, thereby leaving much to the measurer’s
judgment.

The set of quality measures documented in ISO 25021 represents only a limited
subset of the base measures within ISO 9126, parts 2 to 4; the rationale for

inclusion or exclusion is not documented, and this selection of quality measures

173

does not allow coverage of the full spectrum of quality characteristics and
subcharacteristics in ISO 9126, parts 2 to 4; again, the rationale for inclusion or

exclusion is not documented in ISO 25021.

To tackle these shortcomings noted above, the ISO group working on the next version of

the ISO 9126 series should:

Ensure that the terminology on software product quality measurement is fully
aligned with the classic measurement terminology in the sciences and in
engineering;

Provide full coverage of the base measures for all three ISO models of software
quality;

Provide improved documentation of the base measures using criteria from
metrology;

Provide clear mapping and traceability of the new ISO 25000 documents to the ISO
15939 Information Model.

The other research contributions which come from meeting the first research objective

arc:

Verification of the usefulness of the measurement analysis framework which has
been introduced by Habra et al. (2004); this has been illustrated by applying it to
the Halstead’s measures, and the findings of various weaknesses in their designs
from a metrology perspective.

Verification of the ISO 9126-4 measures against the metrology concepts.
Identification of some of the harmonization issues arising with the addition of new
documents like the ISO 25020 and ISO 25021, in particular, with respect to
previously published measurement standards for software engineering, such as ISO
9126, ISO 15939, ISO 14143-1 and ISO 19761.

Identification of the list of base measures which could be used to evaluate the ISO

9126 part-2, part-3, and part-4 derived measures. For each of these base measures,

174

the measurement unit has been identified. In addition, a cross-reference list between

the base measure and the related characteristics/subcharacteristics has been built.

In summary, with respect to the first research goal, the analysis in this thesis has
identified weaknesses in some of the new terms proposed by ISO, and we have proposed
ways to address them by using the ISO 15939 measurement information model on
software measurement process: the use of predefined terms such as ‘base measure’ and
‘derived measure’, as well as the proper mapping to the Measurement Information
Model in well-developed standards like ISO 15939, and the International Vocabulary of
Basic and General Terms in Metrology (ISO VIM) is more useful than the weakly

defined terms introduced in the proposed new version of the ISO 25000 series.

Research objective 2: Key research contributions and limitations

The second research objective was to build a maturity model based on software
engineering standards rather than individual models of software product quality. Thus,
the design of a software product maturity model to assess the quality of a software
product, therefore, represented a new challenge in software engineering. In this thesis,
we presented a product quality maturity model based on a set of ISO/IEEE standards,
metrology, and sigma concepts. Specifically, we built the structure of the quality
maturity model from the following three distinct points of view:

e The whole software product.

e The software product life cycle stage (internal, external and in-use).

e The software product characteristic.

This Software Product Quality Maturity Model can be used to determine the maturity of
the quality of a software product. Specifically, it can be used to:
e Certify a quality maturity level for a new software product, which could help

promote it on the market;

175

Benchmark two existing software products to assist in making a selection based on
their quality maturity level;

Assess the quality of the software product during the development life cycle (i.e.
internally, externally and in-use) to investigate the relationships between the three
stages and to find any weaknesses in order to improve the software product;

Assess the maturity of the internal quality of a software product to be reused in
other software products.

Compare the maturity levels of the life cycle stage quality (i.e. internal, external

and in-use).

The following are the main research contributions which come from meeting the second

research objective, that is, the proposed software product quality maturity model:

The design of a Software Product Quality Maturity Model (SPQ™™) that can be
used from three different viewpoints, that is: the quality characteristic view, the life
cycle stage view, and the whole software product view.

For this quality maturity model, the sigma concepts have been incorporated into the
software integrity levels to obtain the appropriate values of the quality maturity
levels of different types of software products (real-time software, application
software, etc.).

By applying the sigma concepts to the measured quality levels of the software
product, by mapping the quality level to the corresponding sigma value; this sigma
value can then be used to derive the maturity level. The following table shows a
high level comparison between our proposed product quality maturity model and

the other available product maturity models.

176

A Comparison between the software product maturity models

Characteristic OSMM | Nastro Model
Quantitative Model v
Based on a Quality Model
Based on Software Engineering Standards
Implemented during the Development Life-
Cycle
Ranked Maturity levels

For any Software Product v

02!
g
ANENENERN \\\Og
=

Based on the Software Integrity levels

Validation

For the first objective of this thesis, which is about the verification of the software

measures, the findings from the following topics have all been validated by papers

accepted and published at conferences, in journals and more recently by requests for

reprints from the Institute of Chartered Financial Analysts of India (ICFAI) press:

e The measurement analysis framework - see Chapter 6.

e Halstead’s measures referenced in ISO 9126 - see Chapter 6.

e The ISO 9126-4 measures - see Chapter 7.

e The new ISO 25020 and ISO 25021 standards since they will replace ISO 9126 -
see Chapter 8.

For the second objective of this research, the validation of software maturity model is
very time consuming and techniques to do so are not yet well developed and not yet in
general use (Coallier, 2006). The proposed quality maturity model (SPQ™™) itself needs
to be validated over the future years since its validation is time consuming and will
require much further research. For instance, for a partial addition, it would be useful to
apply the SPQ™™ to two software products with known qualities to check if the result of

the SPQ™™ model is aligned with the pre-known qualities or not.

177

Further limitations and future work

The ‘data collection’ and ‘data preparation’ for the proposed software product quality
maturity model discussed in this thesis are currently limited to the ISO 9126 and
SQuaRE quality models and their set of measures. However, since our analysis of these
ISO 9126 measures from a metrology perspective has shown some weaknesses in these
measures, further work will be required to enhance these inputs into our proposed

quality maturity model.

Another current limitation is that the results yielded by the quality maturity models
discussed are initially based on the assumption of the equal weight of all measures, all
characteristics and all subcharacteristics. To avoid making this assumption, an
organization can apply various techniques to taken into account non equal weights, such
as the PCA (Principal Component Analysis) statistical technique to a large set of
historical data to find a corresponding weight for each measure, characteristic or

subcharacteristic.

In addition, the SPQ™ is built to assess the quality maturity level of the software
product itself, but does not include other related elements such as its documentation,

supporting, integration and training.

The quality of a software product depends on many elements. However, sometimes the
quality of the software product itself is high, but the low quality of the other elements
(such as documentation, integration, supporting, or training) may lead to a poor quality
of the whole software product from the customers point of view. Therefore, based on
these elements, the following quality maturity models need to be developed:
e Software Product Documentation Quality Maturity Model — SPDQ™.

e Software Product Integration Quality Maturity Model — SPIntegQ"™.

178

e Software Product Supporting Quality Maturity Model — SPSQ™™.
e Software Product Training Quality Maturity Model — SPTQ™™.

The quality maturity levels to be designed for the above maturity models, should be used
with the ones which we described in this thesis to give a quality maturity model for the
whole software product (which consists of the software itself, its documentation, its
integration with the in-use environment such as the OS, its training, and its support) to
be used with the ones which have been described in this thesis to assess the quality of

the software product from the different elements.

In addition, the software product quality maturity model — which has been developed in
this thesis — along with the above suggested quality maturity models could be
automated, at least partially, by means of web-based tools to make the assessment
procedure of the quality maturity levels faster and easier. Furthermore, the users of these
web-based tools could choose for which elements they need to assess the quality

maturity level or even assess the whole software product quality maturity level.

ANNEX I

‘QUANTITIES AND UNITS’ METROLOGY CONCEPTS IN THE SAFETY

MEASURES

Metrology Concepts

ISO 9126-4 (Safety Measures)

System of Quantities:

- Base Quantities:

- Derived Quantities:

1. Number of Usage Situations.
2. Number of People.
3. Number of Occurrences of Software Corruption.
4. Number of Occurrences of Economic Corruption
5. Number of Users.
6. User Health and Safety.

0 < User Health and Safety < 1
. Software Damage. 0 < Software Damage < 1
. Economic Damage. 0 < Economic Damage < 1
. Safety of People Affected by Use of the System.
0<Safety of People Affected by Use of the System< 1

O 0

Dimension of a Quantity:

- Quantities of Dimension One
(Dimensionless Quantities):

6. User Health and Safety.

7. Software Damage.

8. Economic Damage.

9. Safety of People Affected by Use of the System.

Units of Measurement:

- Symbols of the Units:

6. (1-User/User) = %
7. (1-Software Corruption/Usage Situation).
8. (1-Economic Damage/Usage Situation).

- Conventional Reference Scales:

- Off-System Units: - None
- Multiple of a Unit: | -Nome.
- Submultiple of a Unit: | -Nome.
Value of a Quantity:
- True Values: - None
- Conventional True Values: | -Nomne.

ANNEX II

‘QUANTITIES AND UNITS’ METROLOGY CONCEPTS IN THE
SATISFACTION MEASURES

Metrology Concepts

ISO 9126-4 (Satisfaction Measures)

System of Quantities:

- Base Quantities:

- Derived Quantities:

—_—

. Population Average.

2. Number of Responses.

3. Number of Times that Specific Software function /

application / systems are used.

4. Number of Times that Specific Software function /
_._application / systems are intended to be used. _ _ _ |
5. Satisfaction Scale. Satisfaction Scale > 0
6. Satisfaction Questionnaire.
7

. Discretionary Usage. 0 < Discretionary Usage < 1

Dimension of a Quantity:

- Quantities of Dimension One
(Dimensionless Quantities):

. Satisfaction Questionnaire.
. Discretionary Usage.

~N

Units of Measurement:

- Symbols of the Units:

2. Response.
_3.Occurrence. 4. Occurrence. |
5. Psychometric Scale (produced by
questionnaire)/People.
6. Response/Response = %.

7. Occurrence/Occurrence = %.

"~ Conventional Reference Scales
(Reference-Value Scales):

- Off System Units: - None

- Multiple ofa Unit: | | None.]

- Submultiple of a Unit: | | None.]
Value of a Quantity:

- True Values: - None

;_(-3_()-1;\-/;:-111-1;);2;1_ ﬂﬁé_\}}ifﬁéé __________ “None.]

- Results of applying the measurement functions of the
above base and derived quantities.

ANNEX III

INTERNAL QUALITY, EXTERNAL QUALITY, AND QUALITY IN-USE
MEASURES IN THE ISO THE 9126 AND ISO 25021

Table III.1

External Quality Measures in the ISO 9126-2 and ISO 25021

ualit ualit ISO DTR | ISO
Cha?acterg’stics Subclgractgristics Measure Names 25021 9126-2
Functionality Accuracy 1 Computational accuracy N v
2 | Precision N ~
Accuracy relative to
3 ’ N
expectations
Interoperability 4 Data exchangeability (Data N N
format-based)
5 Data exchangeability (User’s N
success, attempt-based)
Security 6 Access controllability v ~
7 | Access auditability v
8 Data corruption prevention v
Suitability Funcional implementation
9 v v
completeness
10 | Functional adequacy N ~
11 Functional implementation N N
coverage
12 Functional specification N
stability (volatility)
Functionality 13 | Functional compliance v
Compliance 14 Interface standard J
compliance
Reliability Maturity 15 Failure density against test N N
cases
16 | Failure resolution N ~
17 | Fault removal N v
Mean time between failures
18 1 MTBF) \ v
19 | Test maturity v v
20 | Estimated latent fault density N ~
21 Fault density v \/
Test coverage (Specified
22 | operation scenario testing v
coverage)
Recoverability 23 | Restartability v v
24 | Availability ~

182

| 25 | Meandowntime | | Y |
| 27 [Restorability [[N |
| 29 | Breakdownavoidance | | N |

Incorrect operation N

31 avoidance

Effectiveness of the user
33 | documentation and/or help
system

| 35 | Easeof functionlearning | | |

Effectiveness of user
37 | documentation and/or help ~
system in use

| 41 | Erorcorrection | | |

Default value availability in N
use

43

Self-explanatory error
messages

Time between human error
operations in use

| 49 | Customizability [[N |

Understandable input and

Demonstration accessibility N
in use

183

ualit ualit ISO DTR | ISO
Cha?acterg’stics Subclgractgristics Measure Names 25021 9126-2
56 | Demonstration effectiveness v
57 | Evident functions ~
Attractiveness 58 | Attractive interaction v
59 Interface appearance N
customizability
[Cjcs)?rlljllnlllignce 60 | Usability compliance v
Efficiency Resource Utilization | 61 | 1/0 loading limits v v
Maximum memo
62 utilization i v v
Maximum transmission
63 utilization v v
64 Mean occurrence of N N
transmission error
65 | 1I/O device utilization ~
66 | I/O-related errors ~
67 | Mean I/O fulfillment ratio ~
68 User waiting time of I/O N
device utilization
69 Mean occurrence of memory N
errors
70 | Ratio of memory error/time y
Media device utilization
71 . v
balancing
7 Mean transmission error per N
time
Transmission capacit
73 utilization P v
Time Behavior Response time (Mean time
7 VoA
to respond)
Throughput (Mean amount
75 of throgugphpu(t) v v
Turnaround time (Mean time
i for turnaround) \ v
77 | Response time \/
Response time (Worst case
78 . . +
response time ratio)
79 | Throughput v
30 Throughput .(Worst.case N
throughput time ratio)
81 | Turnaround time \
32 Turnaround time .(Worst. N
case turnaround time ratio)
83 | Waiting time +
By 84 | Efficiency compliance v
Compliance
Maintainability | Analyzability 85 | Audit trail capability v v
86 | Diagnostic function support +

184

ualit ualit ISO DTR | ISO
Cha?acterg’stics Subclgractgristics Measure Names 25021 9126-2
87 | Failure analysis capability v
88 | Failure analysis efficiency v
89 | Status monitoring capability y
Changeability Software change control
90 o \ v
capability
91 | Change cycle efficiency v
9 Change implementation N
elapsed time
93 | Modification complexity v
94 | Parameterized modifiability y
Stability 95 | Change success ratio v
Modification impact
96 | localization (Emerging +
failure after change)
Testability Availability of built-in test
97) v
function
98 | Retest efficiency \
99 | Test restartability v
g:g;?;:ﬁghty 100 | Maintainability compliance v
Portability Adaptability lo1 | Adaptability of data N N
structures
Hardware environmental
adaptability (adaptability to
102 hargware dye\(/icef and ¢ v v
network facilities)
System software
environmental adaptability
103 | (adaptability to OS, network v y
software and cooperated
application software)
Organizational environment
104 adaptab%l@ty (O.rganization N
adaptability to infrastructure
of organization)
105 | Porting user-friendliness v
Installability 106 | Ease of installation v v
107 | Ease of setup retry v
Eg;ﬁ:g%ciﬁ ty 108 | Availability coexistence v
Replaceability 109 | Continued use of data v
110 | Function inclusiveness v
11 User' support functional N
consistency
g?)rglljllil;z:e 112 | Portability Compliance v

Table II1.2

Internal Quality Measures in ISO the 9126-3 and ISO 25021

185

uali ualit ISO DTR | ISO
Cha?actegstics Subclgractgristics Measure Names 25021 9126-3
Functionality Accuracy 1 | Computational accuracy N v
2 | Precision N ~
Interoperability 3 Data exchangeability (Data N N
format-based)
4 Interface consistency N
(protocol)
Security 5 | Access controllability N v
6 | Access auditability ~
7 | Data corruption prevention y
8 | Data encryption ~
Suitability 9 Funcional implementation N N
completeness
10 | Functional adequacy N ~
1 Functional implementation N N
coverage
12 Fungt.ional spe.ci.ﬁcation N
stability (volatility)
Functionality 13 | Functional compliance v
Compliance 14 Intersystem standard N
compliance
Reliability Maturity 15 | Fault removal \ v
16 | Fault detection ~
17 | Test adequacy \
Recoverability 18 | Restorability v
19 | Restoration effictiveness v
Fault Tolerance 20 | Failure avoidance v
21 | Incorret operation avoidance y
gzlrf;’fizze 22 | Reliability Compliance N
Usability Learnability Completeness of user
23 | documentation and/or help v ~
facility
Operability 24 | Physical accessibility v v
25 | Input validity checking y
26 | User operation cancellability v
27 | User operation undoability v
28 | Customizability ~
Operation status monitoring
29 . +
capability
30 | Operational consistency y
31 | Message clarity v
32 | Interface element clarity y

186

uali ualit ISO DTR | ISO
Cha?actegstics Subclgractgristics Measure Names 25021 9126-3
Operational error
33 recoverability v
Understandability 34 | Completeness of description v v
35 | Function understandability v ~
36 | Demonstration capability y
37 | Evident functions \
Attractiveness 38 | Attractive interaction v
39 User interface appearance N
customizability
[Cjcs)?rtl):)lllignce 40 | Usability Compliance v
Efficiency Resource 41 | 1/O utilization v
Utilization 42 | 1/O utilization message density v
43 | Memory utilization y
44 Memory utilization message N
density
45 | Transmission utilization +
Time Behavior 46 | Response time \
47 | Throughput time v
48 | Turnaround time ~
g(f)f;lrcﬁ?:li:e 49 | Efficiency compliance v
Maintainability | Analyzability 50 | Activity recording v
51 Readiness of diagnostic N
function
Changeability 52 | Change recordability v
Stability 53 | Change impact \
54 Modi'ﬁca}tion impact N
localization
Testability Completeness of built-in test
55 . v
function
56 | Autonomy of testability y
57 | Test progress observability v
gjg;?;:ﬁ?éhty 58 | Maintainability compliance v
Portability Adaptability 59 | Adaptability of data structures v v
Hardware environmental
60 adaptability (adaptability to N N
hardware devices and network
facilities)
System software
environmental adaptability
61 | (adaptability to OS, network v y
software and cooperated
application software)
62 Organizational environment N

adaptability

187

uali ualit ISO DTR | ISO
Cha?actegstics Subclgractgristics Measure Names 25021 9126-3

63 | Porting user-friendliness \

Installability 64 | Ease of setup retry v

65 | Installation effort ~

66 | Installation flexibility +

Co-existence 67 | Availability of coexistence v

Replaceability 68 | Continued use of data v

69 | Functional inclusiveness v

g(;rr;a;ﬁg;e 70 | Portability compliance v

Table I11.3

Quality in-Use Measures in the ISO TR 9126-4 and ISO TR 25021

188

uali ISO DTR | ISO
o Measure Names 25021 | 9126-4
Effectiveness 1 | Task effectiveness \
2 | Task completion v ~
3 | Error frequency y
Productivity 4 | Task time V \
5 | Task efficiency \
6 | Economic productivity v
7 | Productive proportion y
8 | Relative user efficiency ~
Safety 9 | User health and safety v
10 | Safety of people affected by use of the system v
11 | Economic damage \
12 | Software damage \
Satisfaction 13 | Satisfaction scale \
14 | Satisfaction questionnaire ~
15 | Discretionary usage v

ANNEX IV

LISTS OF THE ISO 9126 BASE MEASURES

Table IV.1

The Base Measures in ISO 9126-2

External Base Measures

Measure Name

Unit of Measurement

1 | Number of Functions Function (number of)

2 | Operation Time Minute

3 Number of Inaccurate Computations Encountered by Case (number of)
Users

4 | Total Number of Data Formats Format (number of)

5 | Number of Illegal Operations Operation (number of)

6 | Number of Items Requiring Compliance Item (number of)

7 | Number of Interfaces Requiring Compliance Interface (number of)

8 | Number of Faults Fault (number of)

9 | Number of Failures Failure (number of)

10 | Product Size Byte

11 | Number of Test Cases Case (number of)

12 | Number of Breakdowns Breakdown (number of)

13 | Time to Repair Minute

14 | Down Time Minute

15 | Number of Restarts Restart (number of)

16 | Number of Restoration Required Restoration (number of)

17 | Number of Tutorials Tutorial (number of)

18 | Number of I/O Data Items Item (number of)

19 | Ease of Function Learning Minute

20 | Number of Tasks Task (number of)

21 | Help Frequency Access (number of)

22 | Error Correction Minute

23 | Number of Screens or Forms Screens (number of)

190

External Base Measures

Measure Name

Unit of Measurement

24

Number of User Errors or Changes

Error (number of)

25

Number of Attempts to Customize

Attempt (number of)

26

Total Number of Usability Compliance Items
Specified

Item (number of)

27

Response Time

Second or Millisecond

28

Number of Evaluations

Evaluation (number of)

29 | Turnaround Time Second or Millisecond
30 | Task Time Minute

31 | Number of I/O Related Errors Error (number of)

32 | User Waiting Time of I/O Device Utilization Second or Millisecond
33 | Number of Memory Related Errors Error (number of)

34 | Number of Transmission Related Errors Error (number of)

35 | Transmission Capacity Byte

36 | Number of Revised Versions Version (number of)
37 | Number of Resolved Failures Failure (number of)
38 | Porting User Friendliness Minute

Table IV.2

The Base Measures in ISO 9126-3

191

Internal Base Measures

Measure Name

Unit of Measurement

1 | Number of Functions Function (number of)

2 | Number of Data Items Item (number of)

3 | Number of Data Formats Formats (number of)

4 | Number of Interface Protocols Protocol (number of)

5 | Number of Access Types Access-Type (number of)
6 | Number of Access Controllability Requirements | Requirement (number of)
7 | Number of Instances of Data Corruption Instance (number of)

8 | Number of Compliance Items Item (number of)

9 | Number of Interface Requiring Compliance Interface (number of)

10 | Number of Faults Fault (number of)

11 | Number of Test Cases Test-Case (number of)

12 | Number of Restoration Requirement (number of)
13 szlimdble)rai)i Input Items Which Could Check for Ttem (number of)

14 | Number of Operations Operation (number of)

15 | Number of Messages Implemented Message (number of)

16 | Number of Interface Elements Element (number of)

17 | Response Time Second or Millisecond

18 | Turnaround Time Second or Millisecond

19 | IVO Utilization (Number of Buffers) Buffer (number of)

20 | Memory Utilization Byte

71 I;;S‘ftne‘tl)ﬁr Coaf1 f;mes of Code Directly Related to Line (number of)

22 | Number of I/O Related Errors Error (number of)

23 | Number of Memory Related Errors Error (number of)

24 | Number of Items Required to be Logged Item (number of)

25 | Number of Modifications Made Modification (number of)
26 | Number of Variables Variable (number of)

27 | Number of Diagnostic Functions Required Function (number of)

28 | Number of Entities Entity (number of)

192

Internal Base Measures

Measure Name

Unit of Measurement

29 | Number of Built-in Test Function Required Function (number of)

30 | Number of Test Dependencies on Other System Dependency (number of)
31 | Number of Diagnostic Checkpoints Checkpoint (number of)

32 | Number of Data Structures Data-Structure (number of)
33 | Total Number of Setup Operations Operation (number of)

34 | Number of Installation Steps Step (number of)

Table IV.3

The Base Measures in ISO 9126-4

193

Quality in-use Base Measures

Measure Name

Unit of Measurement

1 | Task Effectiveness (a given weight)

2 | Total Number of Tasks Task (number of)

3 | Task Time Minute

4 | Cost of the Task Dollar

5 | Help Time Second

6 | Error Time Second

7 | Search Time Second

8 | Number of Users User (number of)

9 | Total Number of People Potentially Affected by the | Person (number of)
10 | Total Number of Usage Situations Situation (number of)

Kauanbasg sy

SRR
Jo Joquiny,

0T

Suiureat
uorung
Jo oseq

6l

SWAT Beq]
OQ/1J0 RqunN

81

s[erojng,
Jo Jaquiny,

L1

UONRIORY
Jo Jaquiny,

91

SHEISIY
Jo Joquiny

ST

auy umoq

14!

Ireday 07 awy,

£l

R R

SUMOpYEAIg
J0 Joquiny

a1

5058))
3], Jo JoquinN

71§ 191poId

01

saInjieq
Jo Joquiny,

Sifeg
Jo Joquiny

ANNEX V

auendwoy)
guinnbay
S9IBJIIUT
Jo Jaquiny,

sauendwog)
gurnnbay st
Jo Joquiny.

suonjelad
Ll
J0 JaquinN

STBIIO]
BT JO Joquinyy

SRS

£q parmunodug
suonejnduwoy)
RINDIRL]

Jo Jaquuiny,

auny, voneledo

suonIUNg
Jo aquiny

CROSS-REFERENCE TABLE OF THE BASE MEASURE USAGES

JUIBN] JINSLITA

195

SjuawaImbay
Aungeiionuo)
Jo IsquinN

v

sad{] $s300y
J0 qunN

810200010
ERIARAI |
Jo JoquunN

(17

SWo)L
BIB(T JO 10NN

6t

SSIUNPUILIT
Iasn Sunlogd

8t

SOINI,]
PpaAjosay
Jo Iquny

LE

SUDISIA A\
POSIADY
Jo qumN

9t

Kaede)
UOISSIWSURL],

g€

I0LIT PRI
UOISSIWSUBI],
Jo BquinN

Tt

s1oLIq pare[ay
Kowapy
J0 BN

£E

uoneziign
ERIIeTg

Ol Jo sl
Suniep Bsn

e

SIOLIT PRI
Q/130 RN

1€

WL L

0€

aung
punoeming,

6T

sUD[TeN[EAH
Jo I3quinN

8T

awi], asuodsay

LT

Sqned
pa1aLI0)
Jo JquinN

9T

ZIWOISN)
01 sydwany
wo il QE:Z

$T

sagueyD sloug
19S[) Jo JoquunN

T

SULIOJ/SUIIG
Jo IaquinN

€

UOTI93.L0D
Joug

T

Sd | ¥d | €d| Td | I | SIAT| 3T €FAT [THT | [IAT) €5 | 2 | T | GLL | v | €0 CO LA | P X | 20 | 1) 64| #d| €| 24 | TLQ6d | +d| €4 | e | [d | SW| #T €30 (20T | 1AL € | S| T | S0 | tad| E0x) SO0 | T | v | €| 2| 1) 62| w2 €4 24 14
PORO[OIO] Amawod | Anmaqeurepurery [Huspryd| Aiqesn Amaeipy | Anpeuopoung Ageriod | Anpqeureuiey [Owpmdl - Amqesn Amqerpy | Anpevopoung

asn

ug iend

[EUREIL | [BUI)XY QUIBN] 2SI

196

SjuawaImbay
Aungeiionuo)
Jo IsquinN

v

sad{] $s300y
J0 qunN

810200010
ERIARAI |
Jo JoquunN

(17

SWo)L
BIB(T JO 10NN

6t

SSIUNPUILIT
Iasn Sunlogd

8t

SOINI,]
PpaAjosay
Jo Iquny

LE

SUDISIA A\
POSIADY
Jo qumN

9t

Kaede)
UOISSIWSURL],

g€

I0LIT PRI
UOISSIWSUBI],
Jo BquinN

Tt

s1oLIq pare[ay
Kowapy
J0 BN

£E

uoneziign
ERIIeTg

Ol Jo sl
Suniep Bsn

e

SIOLIT PRI
Q/130 RN

1€

WL L

0€

aung
punoeming,

6T

sUD[TeN[EAH
Jo I3quinN

8T

awi], asuodsay

LT

Sqned
pa1aLI0)
Jo JquinN

9T

ZIWOISN)
01 sydwany
wo il QE:Z

$T

sagueyD sloug
19S[) Jo JoquunN

T

SULIOJ/SUIIG
Jo IaquinN

€

UOTI93.L0D
Joug

T

Sd | ¥d | €d| Td | I | SIAT| 3T €FAT [THT | [IAT) €5 | 2 | T | GLL | v | €0 CO LA | P X | 20 | 1) 64| #d| €| 24 | TLQ6d | +d| €4 | e | [d | SW| #T €30 (20T | 1AL € | S| T | S0 | tad| E0x) SO0 | T | v | €| 2| 1) 62| w2 €4 24 14
PORO[OIO] Amawod | Anmaqeurepurery [Huspryd| Aiqesn Amaeipy | Anpeuopoung Ageriod | Anpqeureuiey [Owpmdl - Amqesn Amqerpy | Anpevopoung

asn

ug iend

[EUREIL | [BUI)XY QUIBN] 2SI

197

SUOIBIIS
agesn
Jo IDAUAN

89

wasiy

ay £q papagy
Anenwiod
ardoag

J0 pqunN

L9

SIS
70 Ioquuinn

99

U], Y2IESS

59

AWy Joug

9

suny, dioH

£9

o R RS

SeL
a1 Jo 1500

79

SSIUAATILH
JSBL

sda1g
UOIR[[BIsu]
Jo IquinN

09

suoljeledo
dmag
J0 IqUINN

65

soImPNNS
BIEP JO JOqUINN

8¢

JUIEN] 3INSEITA]

198

ouerdwo) Ayqes) | 6

aouerdwo) Amaenod | &4 SSOUDATIOBINY | #0)
Auiqaoedoy | Anpqendo | en
SOURNSTRA-00) || £d AniqeureeT | g0
Amiqesut | Zd Amqepuegszopun | 101
Amqeidepy | 1d soueridwon Aiqeray | 7
oouerdwoyy Aynprqeuteiuiely [g | (ASojouyoo] ssosolseiec]) ANjiqelorooay | €3
Amqeise], [#IA oouBIdo T ned | oo

Aqers | €A (ere]/RiBMjOg RIBMPIRT) AN | 3]
Alqeasusy)) [ZIA ouerdwo)y Apuonouny [<4
AmqezATeuy | TN Armoog | ¢
sougrduro Aouarorys [€5 AyqrqeredoIaur | €9
uonezIn somosey | zH Aoemaoy | zd
JOLABURY SWL], | [H Anpigeyng |14

SONSLIFIRIRYD-QNS [CUWLIIU] PUE [BWLIA)XT Y] JO puaga|

uonoggsizes | #O

Arepeg || €O

Aranonpoid [2O
ssauaAnoaH | 1O

SONSLIAIIEIRYD as() Ul AJI[en() 2y} Jo pud

1

BIBLIOGRAPHY

Abd Ghani, Abdul Azim, and Robin Hunter. 1996. "An Attribute Grammar Approach to
specifying Halstead's Metrics". Malaysian Journal of Computer Science, vol. 9,
n’ 1, p. 56-67.

Abran, Alain. 1996. "Teaching Software Engineering Using ISO Standards".
StandardView, vol. 4, n° 3, p. 139-145.

Abran, Alain. 1998. "Software Metrics Need to Mature into Software Metrology
(Recommendations)". In the NIST Workshop on Advancing Measurements and
Testing for Information Technology. (Gaithersburg (MD), USA, 26-27 Oct.
1998). <http://www.Irgl.ugam.ca/publications/pdf/374.pdf>. Accessed on 28
March 2007.

Abran, Alain, Miguel Lopez and Naji Habra. 2004. "An Analysis of the McCabe
Cyclomatic Complexity Number". In Proceedings of the 14™ International
Workshop on Software Measurement - IWSM'2004. (Berlin (Germany), 2-5 Nov.
2004), p. 391-405. Aachen (Germany): Shaker Verlag.

Abran, Alain, and Asma Sellami. 2002a. "Initial Modeling of the Measurement
Concepts in the ISO Vocabulary of Terms in Metrology". In Proceedings of the
12" International Workshop on Software Measurement - IWSM'2002.
(Magdeburg (Germany), 7-9 Oct. 2002). Aachen (Germany): Shaker Verlag.
<http://www.lrgl.ugam.ca/publications/pdf/756.pdf>. Accessed on 28 March
2007.

Abran, Alain, and Asma Sellami. 2002b. "Measurement and Metrology Requirements
for Empirical Studies in Software Engineering". In Proceedings of the 10"
International Workshop on Software Technology and Engineering Practice -
STEP'2002. (Montreal (Que), Canada, 6-8 Oct. 2002), p. 185-192. Los Alamitos
(CA), USA: IEEE Computer Society Press.

Abran, Alain, and Asma Sellami. 2004. "Analysis of Software Measures Using
Metrology Concepts - ISO 19761 Case Study". In the 6" International
Conference on Enterprise Information Systems - ICEIS'2004. the International
Workshop on Software Audits and Metrics - SAM’2004. (Porto (Portugal), 14-17
Apr. 2004). <http://www.Irgl.ugam.ca/publications/pdf/801.pdf>. Accessed on
28 March 2007.

Abran, Alain, Asma Sellami and Witold Suryn. 2003. "Metrology, Measurement and
Metrics in Software Engineering". In Proceedings of the 9" International

200

Software Metrics Symposium - METRICS'2003. (Sydney (Australia), 22-23 Sept.
2003), p. 2-11. Los Alamitos (CA), USA: IEEE Computer Society Press.

Akingbehin, Kiumi. 2005. "A Quantitative Supplement to the Definition of Software
Quality". In Proceedings of the 3rd ACIS International Conference on Software
Engineering Research Management and Applications - SERA’2005. (Mount
Pleasant (MI), USA, 11-13 Aug. 2005), p. 348- 352. Los Alamitos (CA), USA:
IEEE Computer Society Press.

Al Qutaish, R. E. 1998. "Incorporating Software Measurements into a Compiler". MSc
thesis, Serdang, Malaysia, Department of Computer Science, Putra University,

186 p.

Albrecht, Allan J. 1979. "Measuring Application Development Productivity". In
Proceedings of the Joint SHARE, GUIDE and IBM Application Development
Symposium (Monetary (CA), USA, Oct. 1979), p. 83-92. Armonk (NY), USA:
IBM Corp.

Andersson, Thorbjorn. 1990. "A Survey on Software Quality Metrics". On Line.
<http://citeseer.ist.psu.edu/cache/papers/cs/1381/ftp:zSzzSzftp.abo.fizSzpubzSzc
szSzpaperszSztaanderszSzal20.pdf/andersson90survey.pdf>. Accessed on 26
March 2007.

April, Alain, Alain Abran and Reiner R. Dumke. 2004. "Assessment of Software
Maintenance Capability: A Model and its Architecture". In Proceedings of the 8"
European Conference on Software Maintenance and Reengineering -
CSMR'2004. (Tampere (Finland), 24-26 Mar. 2004), p. 243-248. Los Alamitos
(CA), USA: IEEE Computer Society Press.

April, Alain, Jane Huffman Hayes, Alain Abran and Reiner R. Dumke. 2005. "Software
Maintenance Maturity Model (SMmm): the Software Maintenance Process

Model". Journal of Software Maintenance and FEvolution: Research and
Practice, vol. 17,n° 3, p. 197-223.

Azuma, M. 2001. "SQuaRE: The next Generation of ISO/IEC 9126 and 14598
International Standards Series on Software Product Quality". In Proceedings of
the European Software Control and Metrics Conference - ESCOM'2001.
(London (England), UK, 2-4 Apr. 2001), p. 337-346. Aachen (Germany): Shaker
Verlag.

Bailey, C. T., and W. L. Dingee. 1981. "A Software Study Using Halstead Metrics". In
Proceedings of the 1981 ACM Workshop / Symposium on Measurement and
Evaluation of Software Quality. (College Park (MD), USA, 25-27 Mar. 1981), p.
189-197. New York (NY), USA: ACM Press.

201

Biehl, Richard E. 2004. "Six Sigma for Software". IEEE Software, vol. 21, n° 2, p. 68-
70.

Binder, Robert V. 1997. "Can a Manufacturing Quality Model Work for Software?"
IEEE Software, vol. 14,1n° 5, p. 101-102.

Binder, Robert V. 2001. "Six Sigma: Hardware Si, Software No!" On Line.
<http://www.rbsc.com/pages/sixsig.html>. Accessed on 5 April 2007.

Boehm, B. W., J. R. Brown, H. Kaspar, M. Lipow, G. McLeod and M. Merritt. 1978.
Characteristics of Software Quality. Amsterdam (The Netherlands): North
Holland Publishing, 169 p.

Boehm, Barry W., J. R. Brown and M. Lipow. 1976. "Quantitative evaluation of
software quality". In Proceedings of the 2nd international conference on
Software engineering. (San Francisco (CA), USA, 13-15 Oct. 1976), p. 592-605.
Los Alamitos (CA), USA: IEEE Computer Society.

Booth, Simon P., and Simon B. Jones. 1996. "Are Ours Really Smaller Than Theirs?" In
the Glasgow Workshop on Functional Programming. (Ullapool (Scotland), UK,
Jul. 1996). <http://www.dcs.gla.ac.uk/fp/workshops/fpw96/Booth.pdf>.
Accessed on 28 March 2007.

Bourque, Pierre, Sibylle Wolff, Robert Dupuis, Asma Sellami and Alain Abran. 2004.
"Lack of Consensus on Measurement in Software Engineering: Investigation of
Related Issues". In Proceedings of the 14" International Workshop on Software
Measurement - IWSM'2004. (Berlin (Germany), 2-4 Nov. 2004), p. 321-333.
Aachen (Germany): Shaker Verlag.

Breyfogle, Forrest W. 2003. Implementing Six Sigma: Smarter Solution Using Statistical
Methods. Hoboken (NJ), USA: John Wiley & Sons Inc.

Brue, Greg. 2005. Six Sigma for Managers. New York (NY), USA: McGraw-Hill, 64 p.

Buglione, Luigi, and Alain Abran. 1999. "Geometrical and statistical foundations of a
three-dimensional model of software performance". Advances in Engineering
Software, vol. 30,n° 12, p. 913-919.

Buglione, Luigi, and Alain Abran. 2002. "QEST nD: n-dimensional extension and
generalisation of a software performance measurement model". Advances in
Engineering Software, vol. 33,n° 1, p. 1-7.

202

Burnstein, Ilene, Taratip Suwanassart and C. R. Carlson. 1996a. "Developing a Testing
Maturity Model: Part 1". CrossTalk: the Journal of Defense Software
Engineering, vol. 9,n° 8, p. 21-24.

Burnstein, Ilene, Taratip Suwanassart and C. R. Carlson. 1996b. "Developing a Testing
Maturity Model: Part 1I". CrossTalk: the Journal of Defense Software
Engineering, vol. 9,n° 9, p. 19-26.

Carnahan, Lisa, Gary Carver, Martha Gray, Michael Hogan, Theodore Hopp, Jeffrey
Horlick, Gordon Lyon and Elena Messina. 1997. "Metrology for Information
Technology". StandardView, vol. 5,1n° 3, p. 103-1009.

Christensen, K., G. P. Fitsos and C. P. Smith. 1981. "A perspective on software
science". IBM Systems Journal, vol. 20, n° 4, p. 372-387.

Chuan, Chan Hock, Lim Lin, Lim Liuh Ping and Loh Vee Lian. 1994. "Evaluation of
Query Languages with Software Science Metrics". In Proceedings of the IEEE
Region 10's 9" Annual International Conference on Frontiers of Computer
Technology - TENCON'1994. (Singapore (Singapore), 22-26 Aug. 1994), p. 516-
520. Los Alamitos (CA), USA: IEEE Computer Society Press.

Coallier, Francois. 2006. "Les Pratiques en Informatique d’entreprise un Mod¢le
Intégrateur". PhD thesis, Montréal, Québec, Canada, Département de Génie
Informatique, Ecole Polytechnique de Montréal, 316p.

Conte, Samuel D., H. E. Dunsmore and V. Y. Shen. 1986. Software Engineering Metrics
and Models. Menlo Park (CA), USA: Benjamin Cummings, 396 p.

Curtis, Bill. 1980. "Measurement and Experimentation in Software Engineering".
Proceedings of the IEEE, vol. 68, n° 9, p. 1144-1157.

DeMarco, T. 1986. Controlling Software Projects: Management, measures and
estimation. New York (NY), USA: Prentice Hall PTR, 296 p.

Dromey, R. G. 1995. "A model for software product quality". IEEE Transactions on
Software Engineering, vol. 21,n° 2, p. 146-162.

Dromey, R. G. 1996. "Concerning the Chimera [software quality]". IEEE Software, vol.
13,n° 1, p. 33-43.

Dumke, Reiner R., and Erik Foltin. 1998. "Metrics-Based Evaluation of Object-Oriented
Software Development Methods". In Proceedings of the 2nd Euromicro
Conference on Software Maintenance and Reengineering - CSMR'1998.

203

(Florence (Italy), 8-11 Mar. 1998), p. 163-196. Los Alamitos (CA), USA: IEEE
Computer Society.

Emerson, W. H. 2005. "Short Communication on the Concept of Dimension".
Metrologia, vol. 42,n° 2, p. 21-22.

Fehlmann, Thomas M. 2004. "Six Sigma for Software". In Proceedings of the 1*
Software Measurement European Forum - SMEF'2004. (Rome (Italy), 28-30
Jan. 2004). <http://www.swisma.ch/Meeting18/SixSigmaforSoftware.pdf>.
Accessed on 5 April 2007.

Fenton, N. 1994. "Software Measurement: A Necessary Scientific Basis". [EEE
Transaction on Software Engineering, vol. 20, n° 3, p. 199-206.

Fenton, Norman E., and Shari Lawrence Pfleeger. 1997. Software Metrics: A Rigorous
and Practical Approach, 2" ed. Boston (MA), USA: PWS Publishing Company,
656 p.

Golden, Bernard. 2004. Succeeding with Open Source. Boston (MA), USA: Addison-
Wesley Professional, 272 p.

Grady, Robert B. 1992. Practical Software Metrics for Project Management and
Process Improvement. Englewood Cliffs (NJ), USA: Prentice Hall, 282 p.

Grady, Robert B., and Deborah L. Caswell. 1987. Software Metrics: Establishing a
Company-wide Program. Upper Saddle River (NJ), USA: Prentice Hall PTR,
275 p.

Gray, Martha M. 1999. "Applicability of Metrology to Information Technology".
Journal of Research of the National Institute of Standards and Technology, vol.
104, n° 6, p. 567-578.

Habra, Naji, Alain Abran, Miguel Lopez and Valérie Paulus. 2004. Toward a
Framework for Measurement Lifecycle. Technical Report TR37/04, Namur
(Belgium): University of Namur, 15 p.

Halstead, Maurice. H. 1972. "Natural Laws Controlling Algorithm Structure". ACM
SIGPLAN Notices, vol. 7,1n° 2, p. 19-26.

Halstead, Maurice. H. 1977. Elements of Software Science. New York, NY, USA:
Elsevier North-Holland, 127 p.

Hamer, Peter G., and Gillian D. Frewin. 1982. "M. H. Halstead's Software Science - A
Critical Examination". In Proceedings of the 6™ International Conference on

204

Software Engineering. (Tokyo (Japan), 13-16 Sept. 1982), p. 197-206. Los
Alamitos (CA), USA: IEEE Computer Society Press.

Hayes, Bruce. 2003. "Introduction to Six Sigma for Software: the Third Wave". In the
Six Sigma for Software Development Conference. (Boston (MA), USA, 16-17
Oct. 2003). <http://www.sei.cmu.edu/sema/pdf/sdc/hayes.pdf>. Accessed on 5
April 2007.

Head, G. E. 1994. "Six-Sigma Software Using Cleanroom Software Engineering
Techniques". Hewlett-Packard Journal, vol. 45, n° 3, p. 40-50.

Hefner, Rick, and Michael Sturgeon. 2002. "Optimize Your Solution: Integrating Six
Sigma and CMM/CMMI-Based Process Improvement". In the 14" Annual
Software Technology Conference. (Salt Lake City (UT) USA, 29 Apr.- 2 May
2002). <http://www.sstc-online.org/proceedings/2002/SpkrPDFS/TuesTrac/
pS66.pdf>. Accessed on 5 April 2007.

Heinz, Lauren. 2004. "Using Six Sigma in Software Development". News@SEL n° 1
(November), p. 1-3. On Line. <http://www.sei.cmu.edu/news-at-sei/features/
2004/1/feature-3.htm>. Accessed on 5 April 2007.

Henry, S., and D. Kafura. 1981. "Software Structure Metrics Based on Information
Follow". IEEE Transaction on Software Engineering, vol. 7,1n° 5, p. 510-518.

Hong, G. Y., and T. N. Goh. 2003. "Six Sigma in Software Quality". the TOM
Magazine, vol. 15,n° 6, p. 364-373.

IEEE. 1990. Standard Glossary of Software Engineering Terminology. IEEE Std.
610.12-1990, New York (NY), USA: the Institute of Electrical and Electronics
Engineers, 83 p.

IEEE. 1998. Standard for Software Verification and Validation. IEEE Std. 1012-1998,
New York (NY), USA: The Institute of Electrical and Electronics Engineers, 71

p-

Ince, D. C., and M. J. Shepperd. 1989. "An Empirical and Theoretical Analysis of An
Information-Flow-Based System Design Metrics". In Proceedings of the 2nd
European Software Engineering Conference. (Warwick (Coventry), UK, 11-15
Sept. 1989). <http://portal.acm.org/citation.cfm?1d=168026.168067&coll=
GUIDE&dI=GUIDE&CFID=13880735& CFTOKEN=16648325>. Accessed on
11 December 2006.

Ince,

ISO.

ISO.

ISO.

ISO.

ISO.

ISO.

ISO.

ISO.

ISO.

ISO.

205

Darrel S., Helen Sharp and Mark Woodman. 1993. Introduction to Software
Project Management and Quality Assurance. New York (NY), USA: McGraw-
Hill, 224 p.

1984. International Vocabulary of Basic and General Terms in Metrology (VIM).
Geneva (Switzerland): International Organization for Standardization.

1991. Software Product Evaluation - Quality Characteristics and Guidelines for
their Use. ISO/IEC IS 9126, Geneva (Switzerland): International Organization
for Standardization.

1993. International Vocabulary of Basic and General Terms in Metrology (VIM).
Geneva (Switzerland): International Organization for Standardization.

1994. Information technology - Software packages - Quality Requirements and
Testing. ISO/IEC 12119, Geneva (Switzerland): International Organization for
Standardization.

1998a. Information technology - Software product evaluation - Part 5: Process for
evaluators. ISO/IEC 14598-5, Geneva (Switzerland): International Organization
for Standardization, 35 p.

1998b. Information Technology - System and Software Integrity Levels. ISO/IEC
15026, Geneva (Switzerland): International Organization for Standardization, 12

p.

1998c. Software Measurement - Functional Size Measurement - Part 1: Definition
of Concepts. ISO/IEC 14143-1, Geneva (Switzerland): International
Organization for Standardization.

1999a. Information technology - Software product evaluation - Part 1: General
overview. ISO/IEC 14598-1, Geneva (Switzerland): International Organization
for Standardization, 19 p.

19990b. Software engineering - Product evaluation - Part 4: Process for acquirers.
ISO/IEC 14598-4, Geneva (Switzerland): International Organization for
Standardization, 34 p.

2000a. Software engineering - Product evaluation - Part 2: Planning and
management. ISO/IEC 14598-2, Geneva (Switzerland): International
Organization for Standardization, 12 p.

ISO

ISO

ISO

ISO

ISO

ISO

ISO

ISO

ISO

ISO

ISO

206

. 2000b. Software engineering - Product evaluation - Part 3: Process for developers.
ISO/IEC 14598-3, Geneva (Switzerland): International Organization for
Standardization, 16 p.

. 2001a. Software engineering - Product evaluation - Part 6: Documentation of
evaluation modules. ISO/IEC 14598-6, Geneva (Switzerland): International
Organization for Standardization, 31 p.

. 2001b. Software Engineering - Product Quality - Part 1: Quality Model. ISO/IEC
9126-1, Geneva (Switzerland): International Organization for Standardization, 25

p.

. 2002. Software Engineering - Software Measurement Process. ISO/IEC 15939,
Geneva (Switzerland): International Organization for Standardization, 37 p.

. 2003a. Information Technology - Process assessment - Part 2: Performing an
Assessment. ISO/IEC 15504-2, Geneva (Switzerland): International Organization
for Standardization, 16 p.

. 2003b. ISO/IEC 19761: Software Engineering - COSMIC-FFP - A Functional Size
Measurement Method. Geneva (Switzerland): International Organization for
Standardization, 17 p.

. 2003c. Software Engineering - Product Quality - Part 2: External Metrics.
ISO/IEC TR 9126-2, Geneva (Switzerland): International Organization for
Standardization, 86 p.

. 2003d. Software Engineering - Product Quality - Part 3: Internal Metrics. ISO/IEC
TR 9126-3, Geneva (Switzerland): International Organization for
Standardization, 62 p.

. 2004a. Information Technology - Process Assessment - Part 1: Concepts and
Vocabulary. ISO/IEC 15504-1, Geneva (Switzerland): International Organization
for Standardization, 19 p.

. 2004b. Information Technology - Process Assessment - Part 3: Guidance on
Performing an Assessment. ISO/IEC 15504-3, Geneva (Switzerland):
International Organization for Standardization, 54 p.

. 2004c. Information Technology - Process Assessment - Part 4: Guidance on Use
for Process Improvement and Process Capability Determination. 1SO/IEC
15504-4, Geneva (Switzerland): International Organization for Standardization,
33 p.

207

ISO. 2004d. Software and System Engineering - Guidelines for the Design and
Preparation of User Documentation for Application Software. ISO/IEC 18019,
Geneva (Switzerland): International Organization for Standardization, 146 p.

ISO. 2004e¢. Software Engineering - Guidelines for the Application of ISO 9001:2000 to
Computer Software. ISO/IEC 90003, Geneva (Switzerland): International
Organization for Standardization, 54 p.

ISO. 2004f. Software Engineering - Product Quality - Part 4: Quality in Use Metrics.
ISO/IEC TR 9126-4, Geneva (Switzerland): International Organization for
Standardization, 59 p.

ISO. 2005. Software Engineering - Software Product Quality Requirements and
Evaluation (SQuaRE) - Guide to SQuaRE. ISO/IEC 25000, Geneva
(Switzerland): International Organization for Standardization, 41 p.

ISO. 2006a. Information Technology - Process Assessment - Part 5: An Exemplar
Process Assessment Model, Document Number: N3302 Dated on 14 September
2005. ISO/IEC 15504-5, Geneva (Switzerland): International Organization for
Standardization, 162 p.

ISO. 2006b. Software Engineering - Software Product Quality Requirements and
Evaluation (SQuaRE) - Requirements for Quality of Commercial Off-The-Shelf
(COTS) Software Product and Instructions for Testing. ISO/IEC 25051, Geneva
(Switzerland): International Organization for Standardization, 27 p.

ISO. 2007a. Software Engineering - Software Product Quality Requirements and
Evaluation (SQuaRE) - Measurement Reference Model and Guide. 1ISO/IEC
FDIS 25020, Geneva (Switzerland): International Organization for
Standardization, 15 p.

ISO. 2007b. Software Engineering - Software Product Quality Requirements and
Evaluation (SQuaRE) - Quality Measure Elements. ISO/IEC DTR 25021,
Geneva (Switzerland): International Organization for Standardization, 64 p.

Jacobson, 1., G. Booch and J. Rumbaugh. 1999. The Unified Software Development
Process. Boston (MA), USA: Addison-Wesley Professional. 463 p.

Jacowski, Tony. 2006. "Six Sigma in the Software Industry". On Line.
<http://ezinearticles.com/?Six-Sigma-In-The-Software-Industry&id=198268>.
Accessed on 5 April 2007.

Jacquet, Jean-Philppe, and Alain Abran. 1997. "From Software Metrics to Software
Measurement Methods: A Process Model". In Proceedings of the 3rd

208

International Symposium and Forum on Software Engineering Standards -
ISESS'1997. (Walnut Creek (CA), USA, 1-6 Jun. 1997), p. 128-135. Los
Alamitos (CA), USA: IEEE Computer Society Press.

Joyce, Edward. 1989. "Is Error-Free Software Possible?" Datamation, (February 18).

Kafura, Dennis, and James Canning. 1985. "A Validation of Software Metrics Using
Many Metrics and two Resources". In Proceedings of the 8" International
Conference on Software Engineering. (London (England), UK, 28-30 Aug.
1985), p. 378-385. Los Alamitos (CA), USA: IEEE Computer Society Press.

Kiricenko, Victoria, and Olga Ormandjieva. 2005. "Measurement of OOP Size Based on
Halstead's Software Science". In Proceedings of the 2nd Software Measurement
European Forum - SMEF'2005. (Rome (Italy), 2-4 Mar. 2005), p. 253-259.

Kitchenham, B., S. L. Pfleeger and N. Fenton. 1995. "Towards a Framework for
Software Measurement Validation". IEEE Transaction on Software Engineering,
vol. 21, n° 12, p. 929-944.

Kitchenham, Barbara, and Shari Lawrence Pfleeger. 1996. "Software Quality: the
Elusive Target". IEEE Software, vol. 13,n° 1, p. 12-21.

Koscianski, André, and Jodo Candido Bracarense Costa. 1999. "Combining Analytical
Hierarchical Analysis with ISO/IEC 9126 for a Complete Quality Evaluation
Framework". In Proceedings of the 4™ IEEE International Symposium and
Forum on Software Engineering Standards - ISESS'1999. (Curitiba (Brazil), 17-
22 May 1999), p. 218-226. Los Alamitos (CA), USA: IEEE Computer Society
Press.

Kruchten, P. 2000. The Rational Unified Process: An Introduction, 2" Ed. Boston
(MA), USA: Addison-Wesley Professional. 320 p.

Kumar, Garikapati Pavan. 2005. "Software Process Improvement - TRIZ and Six Sigma
(Using Contradiction Matrix and 40 Principles)". TRIZ Journal, (April). On
Line. < http://www.triz-journal.com/archives/2005/04/07.pdf>. Accessed on 5
April 2007.

Leach, R. J. 1995. "Using Metrics to Evaluate Student Programs". ACM SIGCSE
Bulletin, vol. 27, n° 2, p. 41-48.

Li, Da Yu, Victoria Kiricenko and Olga Ormandjieva. 2004. "Halstead's Software
Science in Today's Object Oriented World". Metrics News, vol. 9, n° 2, p. 33-40.

209

Lister, A. M. 1982. "Software Science - The Emperor's New Clothes". the Australian
Computer Journal, vol. 14, n° 2, p. 66-70.

Mazur, Glenn H. 2003. "QFD in support of design for six sigma". In Proceedings of 8"
International Conference on ISO and TOM. (Montreal (Que.), Canada, Apr.
2003). <http://jobfunctions.bnet.com/whitepaper.aspx?docid=157440>. Accessed
on 5 April 2007.

McBride, Tom, Brian Henderson-Sellers and Didar Zowghi. 2004. "Project Management
Capability Levels: An Empirical Study". In Proceedings of the 11" Asia-Pacific
Software Engineering Conference - APSEC’2004. (Busan (Korea), 30 Nov. - 3
Dec. 2004), p. 56-63. Los Alamitos (CA), USA: IEEE Computer Society Press.

McCabe, T. J., and C. W. Butler. 1989. "Design Complexity Measurement and Testing".
Communication of the ACM, vol. 32, n° 12, p. 1415-1425.

McCabe, Thomas J. 1976. "A Complexity Measure". IEEE Transaction on Software
Engineering, vol. 2, n° 4, p. 308-320.

McCall, J. A., P. K. Richards and G. F. Walters. 1977. Factors in Software Quality,
Volumes I, II, and III. USA: US Rome Air Development Center Reports, US
Department of Commerce.

Menzies, Tim, Justin S. Di Stefano, Mike Chapman and Ken McGill. 2002. "Metrics
That Matter". In Proceedings of the 27" Annual NASA Goddard Software
Engineering Workshop. (Greenbelt (MD), USA, 5-6 Dec. 2002), p. 51-57. Los
Alamitos (CA), USA: IEEE Computer Society Press.

Microsoft. 2006. "Six Sigma: High Quality Can Lower Costs and Raise Customer

Satisfaction". On Line. <http://download.microsoft.com/download/a/1/b/
alb38fdf-efff-4fc1-8813-1ffdeSce0d11/sixsigma.pdf>. Accessed on 5 April
2007.

Morasca, Sandro and Lionel C. Briand. 1997. "Towards a Theoretical Framework for
Measuring Software Attributes". In Proceedings of 4™ International Software
Metrics Symposium. (Albuquerque (NM), USA, 5-7 Nov. 1997), p. 119-126. Los
Alamitos (CA), USA: IEEE Computer Society Press.

Motorola. 2004. "Six Reasons Why Leaders Love Six-Sigma". On Line.
<https://mu.motorola.com/six_sigma_lessons/contemplate/assembler.asp?page=I1
eaders_title>. Accessed on 5 April 2007.

Motorola. 2007. "Six Sigma Dictionary". On line. <http://www.motorola.com/
content.jsp?globalObjectld=3074-5804>. Accessed on 5 April 2007.

210

Nastro, John. 1997. "A Software Product Maturity Model". CrossTalk: the Journal of
Defense Software Engineering, vol. 10, n° 8.

Petrasch, Roland. 1999. "The Definition of 'Software Quality’: A Practical Approach".
In Proceedings of the 10™ International Symposium on Software Reliability
Engineering - ISSRE'1999. (Boca Ralon (FL), USA). <http://www.chillarege.
com/fastabstracts/issre99/99124.pdf>. Accessed on 28 March 2007.

Pickerill, Jay. 2005. "Implementing the CMMI in a Six Sigma World". In the 17"
Software Engineering Process Group Conference - SEPG'2005. (Seattle, (WA),
USA, 7-10 Mar. 2005). <http://www.sei.cmu.edu/cmmi/adoption/pdf/pickerill.
pdf>. Accessed on 5 April 2007.

Pressman, Roger S. 2004. Software Engineering: A Practitioner's Approach, 6™ ed. New
York (NY), USA: McGraw-Hill, 880 p.

Roberts, F. S. 1979. Measurement Theory, with Applications to Decision Making,
Utility, and the Social Sciences. Boston (MA), USA: Addison Wesley.

Salt, N. F. 1982. "Defining Software Science Counting Strategies". ACM SIGPLAN
Notices, vol. 17,n° 3, p. 58-67.

Samoladas, 1., I. Stamelos, L. Angelis and A. Oikonomou. 2004. "Open Source Software
Development Should Strive for Even Greater Code Maintainability".
Communication of ACM, vol. 47, n° 10, p. 83-87.

Sauro, Jeff, and Erika Kindlund. 2005a. "Making Sense of Usability Metrics: Usability
and Six Sigma". In Proceedings of the 14" Annual Conference of the Usability
Professionals Association - UPA'2005. (Montreal (Que.), Canada). <http://www.
measuringusability.com/sauro-kindlund_paper.pdf>. Accessed on 23 March
2007.

Sauro, Jeff, and Erika Kindlund. 2005b. "A Method to Standardize Usability Metrics
into a Single Score". In Proceedings of the Conference in Human Factors in
Computing Systems - CHI'2005. (Portland (OR), USA, 2-7 Apr. 2005), p. 401-
409. New York (NY), USA: ACM Press.

Schmidt, Michael E. C. 2000. Implementing the IEEE Software Engineering Standards.
Indianapolis, IN, USA: Sams Publishing, 256 p.

Schofield, Joe. 2006. "When Did Six Sigma Stop Being a Statistical Measure?"
CrossTalk: the Journal of defense Software Engineering, vol. 19, n° 6, p. 28-29.

SEL. 1993. Capability Maturity Model for Software Engineering (Version 1.1).
CMU/SEI -93-TR024, Pittsburgh (PA), USA: Software Engineering Institute,
Carnegie Mellon University.

211

SEL 2002a. Capability Maturity Model Integration for Software Engineering (CMMI-
SW) - Continuous Representation, Version 1.1. CMU/SEI-2002-TR-028.
Pittsburgh (PA), USA: Software Engineering Institute, Carnegie Mellon
University, 630 p. <http://www.sei.cmu.edu/pub/documents/02.reports/pdf/
02tr028.pdf>. Accessed on 29 March 2007.

SEL 2002b. Capability Maturity Model Integration for Software Engineering (CMMI-
SW) - Staged Representation, Version 1.1. CMU/SEI-2002-TR-029. Pittsburgh
(PA), USA: Software Engineering Institute, Carnegie Mellon University, 624 p.
<http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr029.pdf>. Accessed
on 29 March 2007.

Sellami, Asma, and Alain Abran. 2003. "the Contribution of Metrology Concepts to
Understanding and Clarifying a Proposed Framework for Software Measurement
Validation". In Proceedings of the 13" International Workshop on Software
Measurement - IWSM'2003. (Montreal (Que.), Canada, 23-25 Sept. 2003), p. 18-
40. Aachen (Germany): Shaker Verlag.

Sharp, Alex. 1993. Software Quality and Productivity. New York (NY), USA: Nost
Rand Reinhold, 382 p.

Shelley, C. C. 2003. "Six Sigma and its Application to Software Development". In
Oxford Software Engineering. On Line. <http://www.osel.co.uk/sixsigmapaper.
pdf>. Accessed on 5 April 2007.

Shen, V. Y., S. D. Conte and H. E. Dunsmore. 1983. "Software Science Revisited: A
Critical Analysis of the Theory and its Empirical Support". IEEE Transaction on
Software Engineering, vol. 9,n° 2, p. 155-165.

Shepperd, M. J. 1990. "Design Metrics: An Empirical Analysis". Software Engineering
Journal, vol. 5,n° 1, p. 3-10.

Simpson, John A. 1981. "Foundations of Metrology". Journal of Research of the
National Bureau of Standards, vol. 86, n° 3, p. 36-42.

Siviy, Jeannine M., and Eileen C. Forrester. 2004. "Using Six Sigma to Accelerate the
Adoption of CMMI for Optimal Results". In the Six Sigma for Software
Development Conference. (Boston (MA), USA, 16-17 Oct. 2003).
<http://www.sei.cmu.edu/sema/presentations/optimal.pdf>. Accessed on 5 April
2007.

Suryn, Witold, Alain Abran and Alain April. 2003. "ISO/IEC SQuaRE: The Second
Generation of Standards for Software Product Quality". In Proceedings of the 7"

212

IASTED International Conference on Software Engineering and Applications.
(Marina del Rey (CA), USA, 3-5 Nov. 2003). Calgary (Alb.), Canada: ACTA
Press.

Szentes, S. 1986. QUALIGRAPH User Guide. Budapest (Hungary): Research and
Innovation Center.

Thomsett, Michael C. 2005. Getting Started in Six Sigma. Hoboken (NJ), USA: John
Wiley & Sons, 213 p.

VanHilst, Michael, Pankaj K. Garg and Christopher Lo. 2005. "Repository Mining and
Six Sigma for Process Improvement". ACM SIGSOFT Software Engineering
Notes, vol. 30, n° 4 (July), p. 1-4.

Veenendaal, Erik Van, and Julie McMullan. 1997. Achieving Software Product Quality.
Den Bosch (The Netherlands): UTN Publishers, 208 p.

Wheeler, Donald J. 2004. The Six Sigma Practitioner’s Guide to Data Analysis.
Knoxville (TN), USA: SPC Press, 410 p.

Yin, B. H., and J. W. Winchester. 1978. "The Establishment and Use of Measures to
Evaluate the Quality of Software Design". In Proceedings of the Software

Quality Assurance Workshop on Functional and Performance Issues (San-Diego
(CA), USA), p. 45-52. New York (NY), USA: ACM Press.

Zuse, Horst. 1998. A Framework of Software Measurement. Berlin (Germany): Walter
de Gruyter, 755 p.

	Cover Page
	Board of Examinars
	Acknowledgements
	Abstract
	Résumé
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Problem Statement
	Goals of the Research
	Contributions of the Research
	Organization of the Thesis

	Chapter 1: Software Measurement: An Overview
	1.1 Introduction
	1.2 Software Measurement Benefits
	1.3 Classifications of the Software Measurement
	1.4 Software Product Measurement
	1.5 Examples on Software Product Measures
	1.5.1 Design Measures
	1.5.1.1 Information-Flow Measures
	1.5.1.2 Call-Graph Measures

	1.5.2 Source Code Measures
	1.5.2.1 Source Lines of Code Measures
	1.5.2.2 McCabe's Measures
	1.5.2.3 Halstead's Measures

	Chapter 2: Software Product Quality Measurement in ISO Standards
	2.1 Introduction
	2.2 ISO 9126: Software Product Quality
	2.3 ISO 14598: Software Product Evaluation
	2.4 SQuaRE Series of Standards
	2.5 ISO 25051: Requirements for Quality of Commercial Off-The-Shelf (COTS)
Software Product and Instructions for Testing
	2.6 ISO 15939: Software Measurement Process
	2.7 ISO VIM: International Vocabulary of Basic and General Terms in Metrology
	2.8 Identification of the Strengths and Weaknesses

	Chapter 3: Capability and Maturity Models in the Software Engineering Literature
	3.1 Introduction
	3.2 Process Maturity Models
	3.2.1 capability Maturity Model Integration for Software Engineering
	3.2.2 Testing Maturity Model
	3.2.3 ISO 15504: Software Process Assessment

	3.3 Product Maturity Models
	3.3.1 Open Source Maturity Model
	3.3.2 Software Product Maturity Model

	3.4 Identification of the Strengths and Weaknesses
	3.4.1 OSSM Model
	3.4.2 Nastro Model

	Chapter 4: Related Concepts to the Development of the Software Product Quality Maturity Model - SPQmm
	4.1 Introduction
	4.2 Software Quality Models
	4.2.1 McCall's Quality Model
	4.2.2 Boehm's Quality Model
	4.2.3 Dromey's Quality Model
	4.2.4 FURPS Quality Model
	4.2.5 ISO 9126 Quality Model

	4.3 Sigma Concepts
	4.3.1 What is Six-Sigma?
	4.3.2 Six-Sigma in Software Engineering
	4.3.3 Uncertainty of Applying Six-Sigma in Software Engineering

	4.4 ISO 15026: Software Integrity Levels
	4.5 IEEE Std. 1012: Software Verification and Validation
	4.6 Summary

	Chapter 5: Research Objectives and Methodology
	5.1 Research Objectives
	5.2 Research Methodology
	5.2.1 Phase-A: Verification of Software Measures
	5.2.2 Phase-B: Building a Software Product Quality Maturity Model - SPQmm

	Chapter 6: An Analysis of the Design and Definitions of Halstead's Measures
	6.1 Introduction
	6.2 Analysis Framework: An Overview
	6.3 Halstead's Measures: An Overview
	6.4 Defining the Context
	6.5 Designing the Measurement
	6.5.1 The Empirical and Numerical Worlds and their Mapping
	6.5.2 The Measurement Method

	6.6 Discussion and Conclusions
	6.7 Summary

	Chapter 7: An Analysis of ISO 9126-4 from the Metrology Perspective
	7.1 Introduction
	7.2 ISO 9126-4: Quality in-Use Measures
	7.3 Analysis of ISO 9126-4 Effectiveness Measures
	7.3.1 System of Quantities for Effectiveness
	7.3.1.1 Base Quantities
	7.3.1.2 Derived Quantities

	7.3.2 Dimension of a Quantity for Effectiveness
	7.3.3 Units of Measurement for Effectiveness
	7.3.3.1 Base Units
	7.3.3.2 Derived Units

	7.3.4 Value of a Quantity for Effectiveness

	7.4 Analysis of ISO 9126-4 Productivity Measures
	7.4.1 System of Quantities for Productivity
	7.4.2 Dimension of a Quantity for Productivity
	7.4.3 Units of Measurement for Productivity

	7.5 Analysis of ISO 9126-4 Safety Measures
	7.6 Analysis of ISO 9126-4 Satisfaction Measures
	7.7 Conclusion

	Chapter 8: An ISO-Based Information Model to Address the harmonization Issues in the New ISO 25020 and ISO 25021 Standards
	8.1 Introduction
	8.2 Outsdanding Harmonization Issues
	8.2.1 Terminology
	8.2.2 Limited Coverage of the ISO Quality Models and Corresponding Measures
	8.2.3 Redundancy Issues

	8.3 Mapping the Quality Model to the Measurement Information Model
	8.4 Examples
	8.5 Summary and Discussion

	Chapter 9: The Structure of the Quality Maturity Model
	9.1 Introduction
	9.2 Quality Maturity Model: An Architectural View
	9.2.1 Quality Maturity Levels
	9.2.2 A Quantitative Approach to Product Quality

	9.3 The Software Product Quality Maturity Model - SPQmm
	9.3.1 The Whole Software Product Quality Maturity Model
	9.3.2 The Life-Cycle Stages Quality Maturity Model
	9.3.3 The Characteristics Quality Maturity Models

	9.4 Summary

	Chapter 10: Detrmining the Quality Maturity Levels using the Software Product Quality Maturity Model - SPQmm
	10.1 Introduction
	10.2 Software Integrity Level Determination
	10.3 Selection of the Required Characteristics, Subcharacteristics and Measures
	10.4 Identification of the Required Base Measures for each of the Selected Characteristics
	10.5 Computing the Quality Levels of the Selected Software Product Quality Characteristics
	10.6 Identifying the Sigma Value and the Maturity Level
	10.7 Discussion

	Conclusion and Future Work
	Research Objective 1: Key Research Contributions and Limitations
	Research Objective 2: Key Research Contributions and Limitations
	Validation
	Further Limitations and Future Work

	Annex I: 'Quantities and Units' Metrology Concepts in the Safety Measures
	Annex II: 'Quanitities and Units' Metrology Concepts in the Satisfaction Measures
	Annex III: Internal Quality, External Quality, and Quality in-Use Measures in the ISO 9126 and ISO 25021
	Annex IV: Lists of the ISO 9126 Base Measures
	Annex V: Cross-Reference Table of the Base Measure Usages
	Bibligraphy

