Estimated Airborne Decay of SARS-CoV-2 (virus that causes COVID-19)
under a range of temperatures, relative humidity, and UV index
Use the sliders to select the UV index, temperature and relative humidity of interest. Information on how long SARS-CoV-2 would be expected to remain stable in aerosols (airborne) will be displayed in the table below. Users can find the environmental conditions for a specific location by accessing general weather resources online.
SARS-CoV-2 Airborne Decay Calculator
0
10
50
86
°F / 21.1 °C
20
70
%
COVID Stability:
% Virus Decay | Minutes | Hours |
---|---|---|
50% (half-life): | 10.21 | 0.17 |
90%: | 33.92 | 0.57 |
99%: | 67.83 | 1.13 |
Background
- Minimizing person-to-person spread of SARS-CoV-2 is one of the main ways to reduce the impact of COVID-19.
- Transmission is believed to occur through respiratory droplets produced by talking, coughing and sneezing. Contact with contaminated surfaces and objects may also contribute to spread.
- Increased temperature and relative humidity cause a minimal increase in SARS-CoV-2 decay, but the addition of simulated sunlight causes rapid decay of the virus in aerosol.
- These data have been used to develop a predictive model to estimate virus decay in aerosols under a limited range of environmental conditions.
- The data that supports the decay of SARS-CoV-2 with simulated sunlight (UV) is published in the Journal of Infectious Diseases and can be found here.
- The data that supports the impact of temperature, humidity and simulated sunlight (UV) on the decay of SARS-CoV-2 is published in the Aerosol Science and Technology Journal and can be found here.
Model Caveats
- It should be noted that in order to fully assess the hazard posed by aerosols containing SARS-CoV-2, additional information is needed, including how much infectious virus is shed by infected individuals into the air, and the amount of virus that needs to be inhaled to cause infection.
- The tool is valid for the following ranges of conditions: 50-86°F, 20-70% relative humidity, and UV indices of 0-10.