
sonarsource Copyright SonarSource S.A., 2018, Switzerland. All content is copyright protected.

By G. Ann Campbell,
Product Owner - SonarSource SA

A new way of measuring understandability

COGNITIVE
COMPLEXITY

10 September 2018, Version 1.4

Abstract
Cyclomatic Complexity was initially formulated as a measurement of the “testability and
maintainability” of the control flow of a module. While it excels at measuring the former, its
underlying mathematical model is unsatisfactory at producing a value that measures the
latter. This white paper describes a new metric that breaks from the use of mathematical
models to evaluate code in order to remedy Cyclomatic Complexity’s shortcomings and
produce a measurement that more accurately reflects the relative difficulty of understanding,
and therefore of maintaining methods, classes, and applications.

A note on terminology

While Cognitive Complexity is a language-neutral metric that applies equally to files and
classes, and to methods, procedures, functions, and so on, the Object-Oriented terms
“class” and “method” are used for convenience.

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 1 -

Table of Contents

Introduction 3

An illustration of the problem 4

Basic criteria and methodology 4

Ignore shorthand 5

Increment for breaks in the linear flow 5

Catches 6

Switches 6

Sequences of logical operators 6

Recursion 7

Jumps to labels 7

Increment for nested flow-break structures 7

The implications 9

Conclusion 10

References 10

Appendix A: Compensating Usages 11

Appendix B: Specification 14

Appendix C: Examples 16

Change log 20

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 2 -

Introduction
Thomas J. McCabe’s Cyclomatic Complexity has long been the de facto standard for
measuring the complexity of a method’s control flow. It was originally intended “to identify
software modules that will be difficult to test or maintain”[1], but while it accurately calculates
the minimum number of test cases required to fully cover a method, it is not a satisfactory
measure of understandability. This is because methods with equal Cyclomatic Complexity do
not necessarily present equal difficulty to the maintainer, leading to a sense that the
measurement “cries wolf” by over-valuing some structures, while under-valuing others.

At the same time, Cyclomatic Complexity is no longer comprehensive. Formulated in a
Fortran environment in 1976, it doesn’t include modern language structures like try/catch,

and lambdas.

And finally, because each method has a minimum Cyclomatic Complexity score of one, it is
impossible to know whether any given class with a high aggregate Cyclomatic Complexity is
a large, easily maintained domain class, or a small class with a complex control flow.
Beyond the class level, it is widely acknowledged that the Cyclomatic Complexity scores of
applications correlate to their lines of code totals. In other words, Cyclomatic Complexity is of
little use above the method level.

As a remedy for these problems, Cognitive Complexity has been formulated to address
modern language structures, and to produce values that are meaningful at the class and
application levels. More importantly, it departs from the practice of evaluating code based on
mathematical models so that it can yield assessments of control flow that correspond to
programmers’ intuitions about the mental, or cognitive effort required to understand those
flows.

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 3 -

An illustration of the problem
It is useful to begin the discussion of Cognitive Complexity with an example of the problem it
is designed to address. The two following methods have equal Cyclomatic Complexity, but
are strikingly different in terms of understandability.

int sumOfPrimes(int max) { // +1
 int total = 0;
 OUT: for (int i = 1; i <= max; ++i) { // +1
 for (int j = 2; j < i; ++j) { // +1
 if (i % j == 0) { // +1
 continue OUT;
 }
 }
 total += i;
 }
 return total;
} // Cyclomatic Complexity 4

String getWords(int number) { // +1
 switch (number) {
 case 1: // +1
 return "one";
 case 2: // +1
 return "a couple";
 case 3: // +1
 return “a few”;
 default:
 return "lots";
 }
 } // Cyclomatic Complexity 4

The mathematical model underlying Cyclomatic Complexity gives these two methods equal
weight, yet it is intuitively obvious that the control flow of sumOfPrimes is more difficult to

understand than that of getWords. This is why Cognitive Complexity abandons the use of

mathematical models for assessing control flow in favor of a set of simple rules for turning
programmer intuition into numbers.

Basic criteria and methodology
A Cognitive Complexity score is assessed according to three basic rules:

1. Ignore structures that allow multiple statements to be readably shorthanded into one
2. Increment (add one) for each break in the linear flow of the code
3. Increment when flow-breaking structures are nested

Additionally, a complexity score is made up of four different types of increments:

A. Nesting - assessed for nesting control flow structures inside each other
B. Structural - assessed on control flow structures that are subject to a nesting

increment, and that increase the nesting count
C. Fundamental - assessed on statements not subject to a nesting increment
D. Hybrid - assessed on control flow structures that are not subject to a nesting

increment, but which do increase the nesting count

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 4 -

While the type of an increment makes no difference in the math - each increment adds one
to the final score - making a distinction among the categories of features being counted
makes it easier to understand where nesting increments do and do not apply.

These rules and the principles behind them are further detailed in the following sections.

Ignore shorthand
A guiding principle in the formulation of Cognitive Complexity has been that it should incent
good coding practices. That is, it should either ignore or discount features that make code
more readable.

The method structure itself is a prime example. Breaking code into methods allows you to
condense multiple statements into a single, evocatively named call, i.e. to “shorthand” it.
Thus, Cognitive Complexity does not increment for methods.

Cognitive Complexity also ignores the null-coalescing operators found in many languages,
again because they allow short-handing multiple lines of code into one. For example, both of
the following code samples do the same thing:

MyObj myObj = null;
if (a != null) {
 myObj = a.myObj;
}

MyObj myObj = a?.myObj;

The meaning of the version on the left takes a moment to process, while the version on the
right is immediately clear once you understand the null-coalescing syntax. For that reason,
Cognitive Complexity ignores null-coalescing operators.

Increment for breaks in the linear flow
Another guiding principle in the formulation of Cognitive Complexity is that structures that
break code’s normal linear flow from top to bottom, left to right require maintainers to work
harder to understand that code. In acknowledgement of this extra effort, Cognitive
Complexity assesses structural increments for:

● Loop structures: for, while, do while, ...

● Conditionals: ternary operators, if, #if, #ifdef, ...

It assesses hybrid increments for:
● else if, elif, else, …

No nesting increment is assessed for these structures because the mental cost has already
been paid when reading the if.

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 5 -

These increment targets will seem familiar to those who are used to Cyclomatic Complexity.
In addition, Cognitive Complexity also increments for:

Catches

A catch represents a kind of branch in the control flow just as much as an if. Therefore,

each catch clause results in a structural increment to Cognitive Complexity. Note that a

catch only adds one point to the Cognitive Complexity score, no matter how many

exception types are caught. try and finally blocks are ignored altogether.

Switches

A switch and all its cases combined incurs a single structural increment.

Under Cyclomatic Complexity, a switch is treated as an analog to an if-else if chain.

That is, each case in the switch causes an increment because it causes a branch in the

mathematical model of the control flow.

But from a maintainer’s point of view, a switch - which compares a single variable to an
explicitly named set of literal values - is much easier to understand than an if-else if

chain because the latter may make any number of comparisons, using any number of
variables and values.

In short, an if-else if chain must be read carefully, while a switch can often be taken

in at a glance.

Sequences of logical operators

For similar reasons, Cognitive Complexity does not increment for each binary logical
operator. Instead, it assesses a fundamental increment for each sequence of binary logical
operators. For instance, consider the following pairs:

a && b
a && b && c && d

a || b
a || b || c || d

Understanding the second line in each pair isn’t that much harder than understanding the
first. On the other hand, there is a marked difference in the effort to understand the following
two lines:

a && b && c && d
a || b && c || d

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 6 -

Because boolean expressions become more difficult to understand with mixed operators,
Cognitive complexity increments for each new sequence of like operators. For instance:

if (a // +1 for `if`

 && b && c // +1

 || d || e // +1

 && f) // +1

if (a // +1 for `if`

 && // +1

 !(b && c)) // +1

While Cognitive Complexity offers a “discount” for like operators relative to Cyclomatic
Complexity, it does increment for all sequences of binary boolean operators such as those in
variable assignments, method invocations, and return statements.

Recursion

Unlike Cyclomatic Complexity, Cognitive Complexity adds a fundamental increment for each
method in a recursion cycle, whether direct or indirect. There are two motivations for this
decision. First, recursion represents a kind of “meta-loop”, and Cognitive Complexity
increments for loops. Second, Cognitive Complexity is about estimating the relative difficulty
of understanding the control flow of a method, and even some seasoned programmers find
recursion difficult to understand.

Jumps to labels

goto, and break or continue to a label add fundamental increments to Cognitive

Complexity. But because an early return can often make code much clearer, no other

jumps or early exits cause an increment.

Increment for nested flow-break structures
It seems intuitively obvious that a linear series of five if and for structures would be easier

to understand than that same five structures successively nested, regardless of the number
of execution paths through each series. Because such nesting increases the mental
demands to understand the code, Cognitive Complexity assesses a nesting increment for it.

Specifically, each time a structure that causes a structural or hybrid increment is nested
inside another such structure, a nesting increment is added for each level of nesting. For
instance, in the following example, there is no nesting increment for the method itself or for
the try because neither structure results in either a structural or a hybrid increment:

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 7 -

void myMethod () {

 try {

 if (condition1) { // +1

 for (int i = 0; i < 10; i++) { // +2 (nesting=1)

 while (condition2) { … } // +3 (nesting=2)

 }

 }

 } catch (ExcepType1 | ExcepType2 e) { // +1

 if (condition2) { … } // +2 (nesting=1)

 }

} // Cognitive Complexity 9

However, the if, for, while, and catch structures are all subject to both structural and

nesting increments.

Additionally, while top-level methods are ignored, and there is no structural increment for
lambdas, nested methods, and similar features, such methods do increment the nesting
level when nested inside other method-like structures:

void myMethod2 () {
 Runnable r = () -> { // +0 (but nesting level is now 1)
 if (condition1) { … } // +2 (nesting=1)
 };
} // Cognitive Complexity 2

#if DEBUG // +1 for if
void myMethod2 () { // +0 (nesting level is still 0)
 Runnable r = () -> { // +0 (but nesting level is now 1)
 if (condition1) { … } // +3 (nesting=2)
 };
} // Cognitive Complexity 4
#endif

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 8 -

The implications
Cognitive Complexity was formulated with the primary goal of calculating method scores that
more accurately reflect methods’ relative understandability, and with secondary goals of
addressing modern language constructs and producing metrics that are valuable above the
method level. Demonstrably, the goal of addressing modern language constructs has been
achieved. The other two goals are examined below.

Intuitively ‘right’ complexity scores

This discussion began with a pair of methods with equal Cyclomatic Complexity but
decidedly unequal understandability. Now it is time to re-examine those methods and
calculate their Cognitive Complexity scores:

int sumOfPrimes(int max) {
 int total = 0;
 OUT: for (int i = 1; i <= max; ++i) { // +1
 for (int j = 2; j < i; ++j) { // +2
 if (i % j == 0) { // +3
 continue OUT; // +1
 }
 }
 total += i;
 }
 return total;
} // Cognitive Complexity 7

String getWords(int number) {
 switch (number) { // +1
 case 1:
 return "one";
 case 2:
 return "a couple";
 case 3:
 return “a few”;
 default:
 return "lots";
 }
 } // Cognitive Complexity 1

The Cognitive Complexity algorithm gives these two methods markedly different scores,
ones that are far more reflective of their relative understandability.

Metrics that are valuable above the method level

Further, because Cognitive Complexity does not increment for the method structure,
aggregate numbers become useful. Now you can tell the difference between a domain class
- one with a large number of simple getters and setters - and one that contains a complex
control flow by simply comparing their metric values. Cognitive Complexity thus becomes a
tool for measuring the relative understandability of classes and applications.

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 9 -

Conclusion
The processes of writing and maintaining code are human processes. Their outputs must
adhere to mathematical models, but they do not fit into mathematical models themselves.
This is why mathematical models are inadequate to assess the effort they require.

Cognitive Complexity breaks from the practice of using mathematical models to assess
software maintainability. It starts from the precedents set by Cyclomatic Complexity, but
uses human judgment to assess how structures should be counted, and to decide what
should be added to the model as a whole. As a result, it yields method complexity scores
which strike programmers as fairer relative assessments of understandability than have
been available with previous models. Further, because Cognitive Complexity charges no
“cost of entry” for a method, it produces those fairer relative assessments not just at the
method level, but also at the class and application levels.

References
[1] Thomas J. McCabe, “A Complexity Measure”, IEEE Transactions on Software
Engineering, Vol. SE-2, No. 4, December 1976

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 10 -

Appendix A: Compensating Usages
Cognitive Complexity is designed to be a language-agnostic measurement, but it cannot be
ignored that different languages offer different features. For instance, there is no else if

structure in COBOL, and until recently JavaScript lacked a class-like structure.
Unfortunately, those deficits don’t prevent developers from needing those structures or from
trying to construct something analogous with the tools at hand. In such cases, a strict
application of Cognitive Complexity’s rules would result in disproportionately high scores.

For that reason, and in order not to penalize the use of one language over another,
exceptions may be made for language deficits, i.e. structures which are commonly used, and
expected in most modern languages, but missing from the language under consideration,
such as COBOL’s missing else if.

On the other hand, when a language innovates to introduce a feature, such as Java 7’s
ability to catch multiple exception types at once, the lack of that innovation in other
languages should not be considered a deficit, and thus there should be no exception.

This implies that if catching multiple exception types at once becomes a commonly-expected
language feature, an exception might be added for “extra” catch clauses in languages that

do not offer the ability. This possibility is not excluded, but evaluations of whether or not to
add such future exceptions should err on the side of conservatism. That is, new exceptions
should come slowly.

On the other hand, if a future version of the COBOL standard adds an “else if” structure, the
tendency should be to drop the COBOL “else … if” exception (described below) as soon as
is practical.

To date, three exceptions have been identified:

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 11 -

COBOL: Missing else if

For COBOL, which lacks an else if structure, an if as the only statement in an else

clause does not incur a nesting penalty. Additionally, there is no increment for the else

itself. That is, an else followed immediately by an if is treated as an else if, even

though syntactically it is not.

For example:
IF condition1 // +1 structure, +0 for nesting
 ...
ELSE
 IF condition2 // +1 structure, +0 for nesting
 ...
 ELSE
 IF condition3 // +1 structure, +0 for nesting
 statement1
 IF condition4 // +1 structure, +1 for nesting
 ...
 END-IF
 END-IF
 ENDIF
ENDIF.

JavaScript: Missing class structures

Despite the recent addition of classes to JavaScript by the ECMAScript 6 specification, the
feature is not yet widely adopted. In fact, many popular frameworks require the continued
use of the compensating idiom: the use of an outer function as a stand-in to create a kind of
namespace or faux class. So as not to penalize JavaScript users, such outer functions are
ignored when they are used purely as a declarative mechanism, that is when they contain
only declarations at the top level.

However, the presence at the top level of a function (i.e. not nested inside a sub-function) of
statements subject to structural increments indicates something other than a pure
declarative usage. Consequently, such functions should receive a standard treatment.

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 12 -

For example:
function(...) { // declarative; ignored
 var foo;

 bar.myFun = function(…) { // nesting = 0
 if(condition) { // +1
 ...
 }
 }
} // total complexity = 1

function(...) { // non-declarative; not ignored
 var foo;
 if (condition) { // +1; top-level structural increment
 ...
 }

 bar.myFun = function(…) { // nesting = 1
 if(condition) { // +2
 ...
 }
 }
} // total complexity = 3

Python: Decorators

Python’s decorator idiom allows additional behavior to be added to an existing function
without modifying the function itself. This addition is accomplished with the use of nested
functions in the decorator providing the additional behavior. In order not to penalize Python
coders for the use of a common feature of their language, an exception has been added.
However, an attempt has been made to define the exception narrowly. Specifically, to be
eligible for the exception, a function may contain only a nested function and a return
statement.

For example:
def a_decorator(a, b):
 def inner(func): # nesting = 0
 if condition: # +1
 print(b)
 func()
 return inner # total = 1

def not_a_decorator(a, b):

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 13 -

 my_var = a*b
 def inner(func): # nesting = 1
 if condition: # +1 structure, +1 nesting
 print(b)
 func()
 return inner # total = 2

def decorator_generator(a):
 def generator(func):
 def decorator(func): # nesting = 0
 if condition: # +1
 print(b)
 return func()
 return decorator
 return generator # total = 1

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 14 -

Appendix B: Specification
The purpose of this section is to give a concise enumeration of the structures and
circumstances that increment Cognitive Comlexity, subject to the exceptions listed in
Appendix A. This is meant to be a comprehensive listing without being language-exhaustive.
That is, if a language has an atypical spelling for a key word, such as elif for else if, its

omission here is not intended to omit it from the specification.

B1. Increments

There is an increment for each of the following:
 if, else if, else, ternary operator
 switch
 for, foreach

 while, do while
 catch
 goto LABEL, break LABEL, continue LABEL

 sequences of binary logical operators
 each method in a recursion cycle

B2. Nesting level

The following structures increment the nesting level:

 if, else if, else, ternary operator
 switch
 for, foreach

 while, do while
 catch
 nested methods and method-like structures such as lambdas

B3. Nesting increments

The following structures receive a nesting increment commensurate with their nested depth
inside B2 structures:

 if, ternary operator
 switch
 for, foreach

 while, do while
 catch

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 15 -

Appendix C: Examples

From org.sonar.java.resolve.JavaSymbol.java in the SonarJava analyzer:

@Nullable
private MethodJavaSymbol overriddenSymbolFrom(ClassJavaType classType) {
 if (classType.isUnknown()) { // +1
 return Symbols.unknownMethodSymbol;
 }

 boolean unknownFound = false;
 List<JavaSymbol> symbols = classType.getSymbol().members().lookup(name);
 for (JavaSymbol overrideSymbol : symbols) { // +1
 if (overrideSymbol.isKind(JavaSymbol.MTH) // +2 (nesting = 1)

&& !overrideSymbol.isStatic()) { // +1

 MethodJavaSymbol methodJavaSymbol = (MethodJavaSymbol)overrideSymbol;
 if (canOverride(methodJavaSymbol)) { // +3 (nesting = 2)
 Boolean overriding = checkOverridingParameters(methodJavaSymbol,

 classType);
 if (overriding == null) { // +4 (nesting = 3)
 if (!unknownFound) { // +5 (nesting = 4)
 unknownFound = true;
 }
 } else if (overriding) { // +1
 return methodJavaSymbol;
 }
 }
 }
 }

 if (unknownFound) { // +1
 return Symbols.unknownMethodSymbol;
 }

 return null;
} // total complexity = 19

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 16 -

From com.persistit.TimelyResource.java in sonar-persistit:

private void addVersion(final Entry entry, final Transaction txn)
throws PersistitInterruptedException, RollbackException {

 final TransactionIndex ti = _persistit.getTransactionIndex();
 while (true) { // +1
 try {
 synchronized (this) {
 if (frst != null) { // +2 (nesting = 1)
 if (frst.getVersion() > entry.getVersion()) { // +3 (nesting = 2)
 throw new RollbackException();
 }
 if (txn.isActive()) { // +3 (nesting = 2)
 for // +4 (nesting = 3)
 (Entry e = frst; e != null; e = e.getPrevious()) {
 final long version = e.getVersion();
 final long depends = ti.wwDependency(version,

 txn.getTransactionStatus(), 0);
 if (depends == TIMED_OUT) { // +5 (nesting = 4)
 throw new WWRetryException(version);
 }
 if (depends != 0 // +5 (nesting = 4)

&& depends != ABORTED) { // +1
 throw new RollbackException();
 }
 }
 }
 }
 entry.setPrevious(frst);
 frst = entry;
 break;
 }
 } catch (final WWRetryException re) { // +2 (nesting = 1)
 try {
 final long depends = _persistit.getTransactionIndex()

.wwDependency(re.getVersionHandle(),txn.getTransactionStatus(),
SharedResource.DEFAULT_MAX_WAIT_TIME);

 if (depends != 0 // +3 (nesting = 2)
&& depends != ABORTED) { // +1

 throw new RollbackException();
 }
 } catch (final InterruptedException ie) { // +3 (nesting = 2)
 throw new PersistitInterruptedException(ie);
 }
 } catch (final InterruptedException ie) { // +2 (nesting = 1)
 throw new PersistitInterruptedException(ie);
 }
 }
} // total complexity = 35

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 17 -

From org.sonar.api.utils.WildcardPattern.java in SonarQube:

private static String toRegexp(String antPattern,
String directorySeparator) {

 final String escapedDirectorySeparator = '\\' + directorySeparator;
 final StringBuilder sb = new StringBuilder(antPattern.length());
 sb.append('^');
 int i = antPattern.startsWith("/") || // +1

antPattern.startsWith("\\") ? 1 : 0; // +1

 while (i < antPattern.length()) { // +1

 final char ch = antPattern.charAt(i);
 if (SPECIAL_CHARS.indexOf(ch) != -1) { // +2 (nesting = 1)
 sb.append('\\').append(ch);
 } else if (ch == '*') { // +1
 if (i + 1 < antPattern.length() // +3 (nesting = 2)

&& antPattern.charAt(i + 1) == '*') { // +1

 if (i + 2 < antPattern.length() // +4 (nesting = 3)
&& isSlash(antPattern.charAt(i + 2))) { // +1

 sb.append("(?:.*")
.append(escapedDirectorySeparator).append("|)");

 i += 2;
 } else { // +1
 sb.append(".*");
 i += 1;
 }
 } else { // +1
 sb.append("[^").append(escapedDirectorySeparator).append("]*?");
 }
 } else if (ch == '?') { // +1
 sb.append("[^").append(escapedDirectorySeparator).append("]");
 } else if (isSlash(ch)) { // +1
 sb.append(escapedDirectorySeparator);
 } else { // +1
 sb.append(ch);
 }
 i++;
 }

 sb.append('$');
 return sb.toString();
} // total complexity = 20

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 18 -

From model.js in YUI

save: function (options, callback) {
 var self = this;

 if (typeof options === 'function') { // +1
 callback = options;
 options = {};
 }

 options || (options = {}); // +1

 self._validate(self.toJSON(), function (err) {
 if (err) { // +2 (nesting = 1)
 callback && callback.call(null, err); // +1
 return;
 }

 self.sync(self.isNew() ? 'create' : 'update', // +2 (nesting = 1)

options, function (err, response) {
 var facade = {
 options : options,
 response: response
 },
 parsed;

 if (err) { // +3 (nesting = 2)
 facade.error = err;
 facade.src = 'save';
 self.fire(EVT_ERROR, facade);

 } else { // +1
 if (!self._saveEvent) { // +4 (nesting = 3)
 self._saveEvent = self.publish(EVT_SAVE, {
 preventable: false
 });
 }

 if (response) { // +4 (nesting = 3)
 parsed = facade.parsed = self._parse(response);
 self.setAttrs(parsed, options);
 }

 self.changed = {};
 self.fire(EVT_SAVE, facade);
 }

 callback && callback.apply(null, arguments); // +1
 });
 });
 return self;
} // total complexity = 20

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 19 -

Change log
Version 1.1
6 February 2017

 Update the section on recursion to include indirect recursion
 Add the “Hybrid” increment type and use it to clarify the handling of else and else

if; they are not subject to a nesting increment, but do increase the nesting level

 Clarify that Cognitive Complexity is only concerned with binary boolean operators
 Correct getWords to truly have a Cyclomatic Complexity of 4

 Add Appendix A: Compensating Usages
 Update the copyright
 Initiate Change log

Version 1.2
19 April 2017

 Textual adjustments and corrections, such as the use of the word "understandability"
instead of "maintainability".

 Add explanation for why a hybrid increment is assessed on else if and else

instead of a structural increment.
 Add Appendix B: Specification
 Add Appendix C: Examples

Version 1.3
15 March 2018

 Extend Appendix A to include a compensating usage for Python decorators
 Update the copyright

Version 1.4
10 Sept 2018

 Clarify what type of method nesting increments the nesting level

Copyright SonarSource S.A., 2016-2018, Switzerland. All content is copyright protected.

- 20 -

	Abstract
	A note on terminology

	Table of Contents
	Introduction
	An illustration of the problem
	Basic criteria and methodology
	Ignore shorthand
	Increment for breaks in the linear flow
	Catches
	Switches
	Sequences of logical operators
	Recursion
	Jumps to labels

	Increment for nested flow-break structures
	
	The implications
	Intuitively ‘right’ complexity scores
	Metrics that are valuable above the method level

	Conclusion
	References
	Appendix A: Compensating Usages
	COBOL: Missing else if
	JavaScript: Missing class structures
	Python: Decorators

	Appendix B: Specification
	B1. Increments
	B2. Nesting level
	B3. Nesting increments

	Appendix C: Examples
	Change log

