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Abstract In this article we present a new approach to topo-
logical design for steady-state heat conduction. The method
capitalizes on the use of a generative algorithm to represent
topology, resulting in a decrease in the number of variables
in the design description. Using a generative algorithm as a
design abstraction, the optimization technique is targeted to
dendritic topologies that are known to perform well for heat
conduction. Specifically, a traditional topology optimiza-
tion technique (SIMP) is confirmed to produce branching
characteristics in optimal designs. The Space Colonization
Algorithm, which can generate similar topological patterns,
is selected for in-depth investigation. A genetic algorithm
drives generation of design candidates, providing a highly
diversified search of the target design space. Finally, several
synthesized optimal designs for steady-state heat conduc-
tion, derived using the described algorithms, are compared
using commercial finite element software.
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1 Introduction

Topology optimization has developed into an established
research topic since the inception of the homogenization
approach (Bendsoe and Kikuchi 1988). Though originally
developed for structural mechanics applications, researchers
have adapted the technique to steady-state heat conduc-
tion; see for example Bendsoe and Sigmund (2004), where
a branching, ‘tree-like,” structure is obtained using a two-
dimensional (2-D) finite element framework. Gersborg-
Hansen et al. (2006) used the finite volume method in
conjunction with topology optimization to solve a similar
planar heat conduction problem and observed that topology
optimization for heat conduction produced designs similar
to branching, ‘five-finger’ plans for optimal traffic patterns,
where constant population density mimicked constant volu-
metric heating in a domain. Similar branching or dendritic
characteristics still arise in 2-D structural design problems
involving multiple objectives when a greater emphasis is
placed on heat conduction, as demonstrated by de Kruijf
et al. (2007). The planar heat conduction problem may
also be solved using the level set method coupled with
topological derivatives as in Zhuang et al. (2007), where
multiple load cases were considered. Alternatively, evolu-
tionary algorithms may be adopted for 2-D topology design
of heat conducting fields, as discussed by Li et al. (2004).
Extensions to three-dimensional (3-D) design for heat con-
duction, (Dede 2009; Chen et al. 2010; Burger FH et al.
2013), reveal that tree-like characteristics are not limited by
the dimension of the solution space. In addition to isolated
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heat conduction, heat conduction problems with convective
boundary conditions have also been solved, (Bruns 2007;
Iga et al. 2009; Yoon 2010; Dede et al. 2015). The combined
conduction and convection problem also favors designs with
tree-like structure. Thus, topology optimization has been
successfully used to solve the steady-state heat conduction
problem using an array of different computational algo-
rithms, and the majority of studies confirm that dendritic
topologies represent a class of optimal designs.

Regardless of the tendency of the reviewed methods to
produce similar designs, it is well known that the efficiency
and accuracy of structural topology optimization methods
may be heavily dependent on the assumed starting mate-
rial distribution, analysis mesh, and filtering techniques
that are employed (Svanberg and Svard 2013; Sigmund
and Maute 2013). Recent survey papers have presented
comprehensive reviews of topology optimization develop-
ments, including an assessment of strengths and weaknesses
across methodologies (Sigmund and Maute 2013; Deaton
and RV 2014). Here an alternative approach to topology
design is proposed through the use of generative algo-
rithms. This approach is independent of the starting material
distribution and mesh, and requires no filtering. Instead,
generative algorithms are a class of recursive algorithms
in which a low-dimension rule set can be followed itera-
tively to produce designs of higher dimension. Generative
algorithms have shown promise in the topology optimiza-
tion of truss structures (Khetan et al. 2015; Kicinger et al.
2005) through the efficient representation of large-scale
topologies. By representing complex topologies efficiently,
developing and evaluating complex designs becomes com-
putationally efficient in an optimization procedure. This is
possible since the design parameters are independent of the
analysis mesh. This independence is a critical feature since
computational expense is often dependent on the number of
design variables, which scales linearly with mesh size for
homogenization methods.

The specific contributions of this paper involve the
demonstration of the generative design methodology from
beginning to end. In doing so several key contributions are
made, including: 1) selection criteria for choosing gener-
ative algorithms, 2) a novel method for rapid creation of
unstructured body-fitted meshes, and 3) an investigation
comparing topology optimization results with structured
and unstructured meshes.

After introducing the problem formulation, results from a
benchmark 2-D steady-state heat conduction topology opti-
mization problem are presented to motivate the use of gen-
erative algorithms. A survey of generative algorithms is then
provided. A specific algorithm is then selected for investi-
gation via a series of studies that demonstrate its effective-
ness for optimization under steady-state heat conduction.
Optimal topologies are post-processed and corresponding
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final designs are synthesized for performance evaluation
using commercial finite element analysis software. Find-
ings and opportunities for future work are discussed in the
conclusion.

2 Problem formulation

Here we consider the design of topology for steady-state,
isotropic, heat conduction exclusively. This type of engi-
neering system is relevant in modern electronics, where
controlling the flow of heat through enhanced conduction
to a predetermined heat sink location is critical to device
temperature regulation. Consider a homogeneously heated
design domain, as shown in Fig. 1. The design domain, €2,
is bounded by the solid black line. The temperature is fixed
at zero on the Dirichlet boundary, I'p, represented by the
dashed line. The Neumann boundary, I'y, is adiabatic and
restricts heat flux out of the domain. The steady-state con-
ductive heat transfer across the domain is represented by the
following governing equations

V.- «VT)+ f =0o0nK, (1
T =0onTlp, (2
«VT)-n=0onTy, 3)

where T is the temperature state variable, f is the heat gen-
erated, and « is the thermal conductivity of the material in
the domain, 2.

The benchmark design optimization problem considered
here is to minimize the thermal compliance

min.  C(x) = [ VT (VT)dA @)
s t. Vx) =V, (5)
R(X) = Rmin, (6)

where the amount of conductive material, V (x), is con-
strained to a prescribed value, V), and the radius of the
conductive path, R(x), must be larger than a prescribed
value, Rmin. This constraint is used to enforce a minimum
spacing constraint between thermally conductive sections
to make the design manufacturable. The design vector, X,

'

)

Fig. 1 Homogeneously heated design domain
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consists of the design description, which is represented
differently by the various algorithms implemented herein.

3 Optimal conductive heat transfer topological
structure

Established topology optimization methods such as the
Solid Isotropic Material with Penalization (SIMP) method
(Bendsoe 1989; Bendsoe and Sigmund 2004) are capable
of producing optimal designs without engineering intu-
ition. The SIMP algorithm uses a design domain discretized
into finite elements. Each element is assigned a continuous
material amount, y, that ranges from 0 to 1, representing
void and solid material properties for the element, respec-
tively. Singularities are avoided in solving the finite element
problem by imposing a minimum material amount, often set
to be Ymin = 0.001, in each element. For the purpose of
this study, each element is initialized with an equal amount
of material such that the sum of the material on the domain
equals Vp. A penalization factor of 2 is used to drive the
material amount of each element towards a binary 0-1 dis-
tribution of material across the domain, and a density filter is
used to enforce the minimum radius constraint equivalent to
1/20th of the domain width. The design algorithm is driven
by the Method of Moving Asymptotes (MMA) optimizer,
Svanberg (1987), which is compared with the Optimality
Criteria (OC) algorithm. When using the SIMP method
to solve the heat conduction problem, dendritic topologies
such as the one presented in Fig. 2 (left side) typically result.

The optimal topology for steady-state heat conduction
resembles the naturally occurring phenomena of venation,
the arrangement of veins in a leaf; refer to the right-side
image in Fig. 2. In heat transfer applications, numerous
researchers have recognized the tendency of optimal topolo-
gies to resemble dendritic patterns that minimize the thermal
resistance between heat source and heat sink, and they have
capitalized on this basic principle in the development of
optimization routines. Analogical design strategies (Lindsey

et al. 2010; Chan et al. 2011) have been used to con-
duct more targeted design space searches. As a well-known
example, Bejan et al. (2004) uses an approach similar to
Lindenmayer-systems to develop tree-like structures that
are optimal for conductive heat transfer. Bejan and Lorente
(2006) also use similar observations from nature in devel-
oping algorithms that produce topologies for fluid flow
systems. Salakij S et al. (2013) and Heymann et al. (2012)
solve the topology design for convective heat transfer using
an algorithm that generates fractal-like patterns directly. By
developing a deep understanding about the physics underly-
ing a given phenomenon, researchers are able use heuristics
to develop targeted optimization tools. The focus of the
remainder of this study is to identify and investigate a gen-
erative algorithm that may be used to generate topologies
for steady-state conductive heat transfer as a basis for an
efficient and flexible topology optimization method.

4 Generative algorithms

To perform a targeted search of the design space, a genera-
tive algorithm—also referred to as a generative design algo-
rithm (GDA)—that efficiently produces complex dendritic
structures must be identified. In this section, algorithms
that have been developed to produce dendritic structures are
explored.

4.1 Survey of generative algorithms

Several researchers in the computer graphics field have
worked to efficiently and accurately reproduce leaf struc-
tures. Lindenmayer (1975) produced biological patterns
using L-systems. Meinhardt (1976) produced dendritic
structures using reaction diffusion models. Rodkaew et al.
(2002) developed an algorithm based on particle systems
which grew dendritic structures to an origin point. Runions
et al. (2005) then adapted this algorithm to grow dendritic
structures away from an origin point. Bejan and Lorente

Fig. 2 Optimal heat conduction
topology obtained using SIMP
(left); note: dark colored regions
= solid; light colored regions =
void. Typical leaf vein patterns
(right)
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Table 1 Generative algorithm assessment

Basis Generative algorithm Design vars Overlap Boundary con. Score key
Grammar L-System; (Lindenmayer 1975) A X X O = Best
Constructal Theory; (Bejan and Lorente 2006) A X X A
Interaction Reaction Diffusion; (Meinhardt 1976) O O O x = Worst
Particle System; (Rodkaew et al. 2002) O O O
Space Colonization; (Runions et al. 2005) O O O
Physics Erosion Model; (Errera and Bejan 1998) X O O
SIMP; (Bendsoe 1989) X O O

(2006) developed constructal theory to produce dendritic
structures for heat and mass transfer problems. Table 1
summarizes candidate algorithms for use in topology opti-
mization of heat conduction systems. The algorithms have
been divided into three groups based on common themes.
The L-System and Constructal Theory algorithms are
‘Grammar-Based’ and use rules to both define components
and guide their assembly. The Reaction Diffusion, Particle
System, and Space Colonization algorithms are consid-
ered ‘Interaction-Based,” where only the rules governing
interactions are controlled. The Erosion Model (Errera and
Bejan 1998) and SIMP (Bendsoe 1989) techniques may
also be considered ‘Physics-Based’ generative algorithms
as they evolve parameters over time based on their respec-
tive physics-based criteria. Material distribution strategy is
the core distinction between these two methods; the Erosion
Model adds material to the domain, whereas the SIMP pro-
cedure redistributes a given amount of material across the
domain. The groupings of the algorithms are set according
to the specific form of each algorithm, and it is noted that
modifications may be made to address the weakness of each
algorithm.

The algorithms are assessed qualitatively based on cri-
teria that correlate to efficient use in structural topology
optimization, including: the number of design variables,
whether topology overlaps, and whether the algorithm pro-
duces a topology that is restricted to the feasible design
domain. The scoring system is based on relative differences

Fig. 3 Space colonization
algorithm growth procedure.
Note: blue colored open circles
indicate auxins; green fully

Initialize Algorithm

between the alternate algorithms. At a glance, the ‘Gram-
mar’ based algorithms seem to require additional rules to
satisfy the design requirements for the heat conduction
problem. The ‘Interaction’ based algorithms have the lowest
number of design variables and represent designs efficiently
with a limited number of parameters. Both the ‘Interaction’
and ‘Physics’ based algorithms inherently prevent topology
overlap and satisfy boundary conditions; although with the
latter category, the number of design variables may quickly
become excessive due to the design variable representa-
tion. Thus, using the selected criteria, the ‘Interaction’ based
algorithms appear to most easily satisfy the requirements
for a compact, realistic, and feasible model. Between the
three interaction based algorithms, the Space Colonization
algorithm is selected for use based on the explanation in the
following section.

4.2 Space colonization algorithm

The Space Colonization algorithm follows the canaliza-
tion hypothesis, (Sachs 1981), which suggests that leaf
veins grow towards hormone centers, called auxins, located
throughout the leaf. The space colonization algorithm mir-
rors this procedure to produce realistic looking leaves and
other dendritic structures efficiently (Runions et al. 2005).
The algorithm begins from a source node or initial stem, v,
shown in green, Fig. 3. A set of auxins, S, are then intro-
duced on the design domain, shown in blue. Each auxin, s,

Recursively Grow Complete Growth

colored circles indicate vein
nodes
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Fig. 4 Space colonization

Identify Branches

Set Thickness Final Topology

algorithm thickness assignment
procedure. In this example, the 1
thickness is defined by the
radius of the circle. Note: green
fully-colored circles indicate
vein nodes
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is then paired with the nearest vein node. The vein node pro-
ceeds to grow in the average direction, n, of its paired auxins
by a fixed step, D.

n
vV =v+D——, wheren =
||

s—V
Z lls — vl @

seS(v)

The algorithm grows recursively until all auxins have
been reached by a vein node. Upon completion of growth,
the branches are identified and ordered from longest to
shortest. The extremities of each branch are then set to a
minimum thickness and the vein nodes linearly increase in
size from extremity to source node. Note that other non-
linear sizing approaches may also be implemented. The
final node location and thickness information can be used
along with graphical tools to generate 2-D and 3-D leaf-
like branching patterns; refer to Fig. 4 for a graphical
description.

The process whereby the algorithm grows towards aux-
ins intuitively translates to a heat transfer framework where
cooling passages would grow towards heating elements.
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Fig. 5 Space colonization algorithm in 3D. The thickness parameter
here is defined by the radius of a uniform sphere

For this reason, the Space Colonization algorithm was cho-
sen for further development. When scaling the algorithm
to three dimensions, the design vector increases in size by
one half the length of the original design vector (Runions
et al. 2007). This small increase in design vector size allows
for an efficient search of three-dimensional designs. One
such three-dimensional structure is presented in Fig. 5. The
complexity of the final design may be increased by vari-
ous methods. One strategy is to introduce additional auxins
on the design domain. Another is to introduce the auxins
at different intervals during the algorithm growth. This pro-
motes the development of secondary and tertiary branching
structures, as shown in Fig. 6. Highly dendritic structures
may then be produced using as few as two dozen design
variables.

4.3 Space colonization in optimization

With the goal of performing a diversified search for opti-
mal designs, a genetic algorithm (GA) is used to drive the
optimization procedure. The GA was implemented using
the MATLAB® global optimization toolbox. The conduc-
tive material topology is represented as a vector, a, of real
numbers, the genotype, which correspond to the x and y
coordinates of the n auxins:

a= [alxy Aaly, d2x, A2y, * -+, dpx, any]- 3

By operating on the indirect representation of the topol-
ogy, the dimension of the design problem is reduced sig-
nificantly, thus increasing the efficiency of design space
exploration. The genotype is converted to the phenotype
representation, i.e. the topology, through the space coloniza-
tion algorithm, after which design performance can be eval-
uated (Fig. 7). Due to the population-based nature of GAs,
multiple design evaluations may be performed in parallel
to improve computational efficiency. Other gradient-free
optimization algorithms may be viable. Using a generative
design algorithm (GDA) as a design abstraction to map
low-dimension optimization variables to a detailed design
representation, in conjunction with an outer-loop optimiza-
tion algorithm, will be referred to here as a generative design
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Fig. 6 Branching topology
created using 20 auxins (left).
Branching topology created
using 20 auxins introduced at
intervals (right)

methodology (GDM). A flowchart of a GDM based on a GA
outer loop is illustrated in Fig. 8.

To explore the effect of design complexity on perfor-
mance, a study was conducted that varied the number of
auxins and development stages. The compliance objective
was evaluated across a regular 400x400 mesh. The GA was
initialized with a random population (size 10) for 100 gener-
ations. The results reported in Fig. 9 are the best of 10 trials
using the GA.

From this initial study several observations can be
made. Analyzing the first development stage experiments,
the objective function decreases towards 30 auxins, then
increases as auxins number increases. Analyzing the opti-
mized topological structures from this study, it was observed
that highly dendritic structures result in a greater aver-
age temperature across the domain, hence increasing the
compliance objective. A similar trend was seen using the
SIMP method when varying the minimum radius constraint
between optimization routines. When observing the perfor-
mance of the 2- and 3-development stage curves, the optimal
designs saturate near a compliance value of 2000. This is
due to the ability of the multi-stage approach to place auxins
on top of each other and hence produce less dendritic struc-
tures that satisfy all constraints (similar to those with 30
auxins). To produce designs similar to those achieved with
SIMP, 20 auxins will be used in all subsequent studies.

S Meshing and analysis independence of design
representation

One important motivation for using a GDA as a design
abstraction is to separate design representation from analy-
sis mesh. In addition to providing a low-dimension parame-
terization, this abstraction supports more efficient and accu-
rate analysis meshes (but requires mesh construction for
each new design candidate). This section presents a method
for evaluating designs obtained via the GDA with an empha-
sis on understanding computational expense. To compare
fairly the GDM with SIMP, both algorithms are evaluated
using the same finite element solver. In each case, the square
design domain from Fig. 1 is discretized using a regularized
mesh (RM) with equally sized quadrilateral finite elements.
The space colonization algorithm is modified slightly to
produce designs comparable to those obtained using the
SIMP method. Specifically, each node at an extremity of
the topology is set to the same Rpj, value used in the
SIMP algorithm to satisfy the minimum radius constraint.
To satisfy the solid material volume constraint, an optimiza-
tion routine is executed to uniformly scale the thickness of
all nodes. From there, the space colonization algorithm is
mapped onto the discretized design domain via projection
using the locations of the discretized nodes and their respec-
tive node thickness, as illustrated in Fig. 10. Solid material

Fig. 7 Genotype to phenotype
mapping o) O ce, h
° ®
O
@) oo .
Space Colonization
®) Algorithm ‘o0
Genotype Phenotype
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Initial Population

Y
> Update Auxins
Y Space Colonization
Algorithm
Topology
Y Mesh
Evaluation
Compliance
GA

Best Design

Fig. 8 Flowchart of computations for generative design methodology
(GDM)

properties are assigned to finite elements whose element
centers lie within the prescribed radius of a vein node.

For straightforward comparison with the GDM, a sim-
ple threshold is applied to the final output of the SIMP
algorithm to obtain a domain with similarly-well defined,
i.e., 0-1, material properties. If the material amount, y, is
above a given threshold, mr, the finite element property
is set to unity. Otherwise, the material property is set to
zero. To ensure the solid material volume fraction is satis-
fied within tolerance, Newton’s Method is used to determine
the proper threshold, m 7, value. Figure 11 demonstrates the
change in the topology obtained using SIMP when applying
a threshold filter.

Though the topology on the right in Fig. 11 does not sat-
isfy the minimum radius constraint, it consists of only void
and solid material. The grayscale topology on the left in
Fig. 11 has an objective function (i.e. thermal compliance)
value of 1706, while the threshold filtered topology on the
right in Fig. 11 has a thermal compliance value of 2320.

5.1 Numerical results

To compare the computational expense of the algorithms
with respect to analysis mesh size, both algorithms are set to
terminate by convergence, specified as a change of compli-
ance less than 1 %, or a 100 function evaluation limit. The
GDM is set to use a GA population size of 10 with nine gen-
erations to result in a total of 100 evaluations. Similarly, the

4500 1
1 Development Stage
] ® 2 Development Stages
4000 B 3 Development Stages
3500

Compliance
w
o
o
o

o
m O
2500 |
[ ]
=g = m H
m f
2000 F ° i ° [ ]
1500 1 1 1 1 |
0 20 40 60 80 100

Total Number of Auxins

Fig. 9 Design complexity experiments

SIMP algorithm is set to perform up to 100 evaluations. The
results of this numerical study are presented in Fig. 12.

The GDM is observed to perform well when increas-
ing the analysis mesh resolution. By using a gradient-free
method to drive the optimization, the expensive task of cal-
culating sensitivities for a dense mesh is avoided. However,
achieving convergence using the GA requires many more
iterations. Figure 13 demonstrates the convergence of the
GDM fitness value as a function of GA generation. Given
that the topology is an approximation which needs manual
post processing, complete convergence may not necessarily
represent the final design, (Brackett et al. 2011). An alter-
native strategy for using topology optimization in design
efforts is to generate and evaluate different topologies for
brainstorming purposes (convergence is not necessary in
this case).

6 Design space exploration results

The generative nature of the space colonization algorithm
supports a diverse search of the design space. A small per-
turbation in design variables may cause drastic changes in
the resultant topology as the auxin locations do not directly
define where the vein will grow from the base. By using
this indirect design representation with a small number of
design variables, a limited number of experiments may pro-
duce a large variety of designs. Figure 14 demonstrates the
variety of topologies that are explored within 100 compu-
tational iterations using both the SIMP (left image) and the
GDM (right image) algorithm. In this example, the SIMP
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Fig. 10 Generative algorithm

mapping demonstration. The
image on the left shows the node

locations as green fully-colored o

circles with associated material | @ !

diameter as concentric dashed -~ 1-

circles. The image on the right T

~

shows the mapped topology, =

1
|®

where gray colored elements
indicate solid material and white 4 3

[ L)
colored elements indicate void Q| @ [®

e o @

algorithm begins with a uniform material distribution
throughout the domain. The material is then iteratively
redistributed throughout the structure until convergence to
an optimal design. The SIMP algorithm initially evalu-
ates designs that are not well defined (i.e. have significant
amounts of gray material), and near convergence samples
nearly identical designs. This is due to the homogeneous
material distribution at the start, and decrease in optimiza-
tion step size near the optimal solution.

SIMP is a powerful tool in terms of rapid convergence
toward a local optimum, but exhibits limited design space
coverage. In contrast, the GDM takes a different approach
where convergence or optimality will not likely be achieved
within the 100 function evaluation limit. The generative
design algorithm, however, evaluates 100 distinctly differ-
ent designs during the optimization routine. This is done by
sampling 10 unique designs within the dendritic structure
design space to evaluate and modify within the maximum
number of function evaluations. As a result, the GDM
exhibits broader design space coverage than SIMP.

It is clear from Fig. 14 that the GDM tests a wide variety
of dendritic structures through the use of the space coloniza-
tion algorithm. For the purpose of numerical comparison,
two structures have been selected for further investigation,
as shown in Fig. 15. The GDM RM 1 structure was observed

to have a thermal compliance value of 1687, while the GDM
RM 2 design has a thermal compliance value of 1850.

Though both the SIMP and GDM strategies are effi-
cient at searching for candidate optimal topologies, the
design algorithms are restricted by the resolution of the
candidate mesh. To obtain a more accurate evaluation of
a given candidate topology, strategies for obtaining and
evaluating topological designs using an explicit boundary

representation are explored.

7 Body-fitted mesh

The GDM outputs node locations that are interpolated to
obtain an explicit representation of the topology. To capi-
talize on the availability of an explicit boundary representa-
tion, a body-fitted (BF) meshing technique must be adopted.
Given such an intricate topology, meshing for use with a
finite element solver becomes a challenge. This is due to the
requirement of meshing two discrete bodies together. Mesh
generation techniques such as Polygonal meshing, (Talischi
et al. 2012), are capable of producing meshes within a
closed body. This technique, however, falls short of require-
ments when the two bodies must be combined, resulting in

a non-conforming mesh, shown in Fig. 16.

Fig. 11 Application of
threshold filter to obtain pure
0-1 designs from the SIMP
result. Note: dark colored
regions = solid; light colored
regions = void
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Fig. 12 Computational expense comparison using a 3.47 GHz proces-
sor with 48 GB RAM running Windows XP

A solution to this issue is to combine the two meshes
together, but this technique is computationally expensive.
For this reason, attention is turned to mesh refinement tech-
niques. Mesh refinement techniques that start with a square
grid, such as a ‘cookie’ cutter approach (Biabanaki and
Khoei 2012; Biabanaki et al. 2014), or element-wise mesh
refinement (Sarhangi Fard et al. 2012), demonstrate a capa-
bility for meshing the dendritic topology. Though these
techniques are effective in approximating a geometry, they
still rely heavily on a grid of square finite elements. An alter-
native approach for explicit representation of topology using
triangular elements was successfully proposed for topol-
ogy optimization by Christiansen et al. (2014). The authors
noted, however, that when used with topology optimization,
the meshing technique is computationally expensive. These

2800 T T

2600

2400

2200

Fitness Value

2000

1800

1600 ! !
0 50 100 150

Generations

Fig. 13 Convergence of GDM as a function of GA generation

SIMP

Fig. 14 Design diversity via alternative algorithms

GDM

challenges motivated the development of a new meshing
strategy.
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Fig. 15 Candidate optimal
designs from GDM on a regular
mesh (RM)

(a) GDM RM 1

The meshing technique is inspired by force-directed
graph drawing, which was first developed by Fruchter-
man and Reingold (1991). Force-directed layout has been
used to untangle existing meshes (Bowmick and Shontz
2010; Nitin 2012), but to the authors’ knowledge, never for
mesh generation. The proposed algorithm combines force
direction with particle generation to produce point clouds
with a high density near domain boundaries, thereby reduc-
ing the need to iterate for accuracy. Details describing the
implementation of the algorithm follow.

7.1 Force-directed meshing

The force-directed meshing algorithm uses discrete infor-
mation from the space colonization algorithm output as a
basis for the mesh. The meshing procedure begins by intro-
ducing particles, shown in red, placed uniformly across the
design domain (Fig. 17a). Each particle is paired with its
nearest vein boundary node, shown in black. Each parti-
cle experiences a force directing it towards its paired vein
boundary node:

1 i — b,
¥, ( Pi n > )
IPi — byl \Ipi — by]

Fig. 16 Body combination resulting in a non-conforming mesh
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(b) GDM RM 2

where the magnitude of the force experienced by a mesh
particle node, p;, is proportional to the inverse of the
distance between the given particle node and its nearest vein
boundary node, b,. The particles are simulated for a few
time steps using forward Euler method allowing them to
tend towards the domain and topology boundary:

Pltr+1] = plte] + hFpl] (10)

where k is the current time step and & is a discrete step
in time. Particles that are within a tolerance radius of the
boundary are ‘frozen’ from motion (Fig. 17b). ‘Freezing’
particles promotes a high particle distribution near bound-
aries and reduces the computational expense of the simula-
tion by removing the particles from calculation. At the final
time step, a new set of particles are introduced uniformly
across the domain (Fig. 17c¢). This enforces a minimum ele-
ment size when creating a mesh. After a specified number
of particle generation phases, the point cloud information is
then passed to a Delaunay triangulation function in MAT-
LAB®), delaunay, to produce a triangular mesh, as shown
in Fig. 17d.

With an explicit boundary defined for the topology, mate-
rial properties are assigned to each element via projection
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Fig. 17 Force-directed BF
meshing sequence

(b) Physics simulation.
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(c) Final particle generation.

on a triangular grid (Fig. 18). If a node of a triangular ele-
ment lies within a radius defined by the thickness of the vein
node, the triangular element is assigned conductive material
properties.

7.2 Numerical results

Using a BF mesh requires re-meshing, which increases
computational cost. Yet, due to approximately smooth
boundaries, this design is closer to a manufacturable part.
Using a GA with 100 evaluations, a population size of 10,
iterated over nine generations, the topologies in Fig. 19 were
produced.

The topologies presented were obtained by the same
optimization routine performed twice. The topology on

Fig. 18 Nodes that lie within 7;

are identified in red (left). o -®
Material properties are assigned P >
to all elements adjacent to red O] \
nodes (center). Material T, ® b
assignment fully carried out )
(right)

CS3

e

(d) Meshed design.

the left had a thermal compliance value of 2049 and the
topology on the right had a thermal compliance of 2345.
Though one topology has a clear advantage in compli-
ance, both topologies are presented as they are distinct
in their structure. These two designs are presented as an
example of the GDM’s ability to explore a wide variety of
topologies.

8 Comparison via high-fidelity analysis

To compare fairly the SIMP OC, SIMP MMA, GDM RM,
and GDM BF design algorithms (binary material distribu-
tion, smooth boundaries, equal volume fraction), the respec-
tive topologies were imported into an open-source vector

@ Springer
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Fig. 19 Body-fitted mesh

topology

(a) GDM BF 1

graphics editor, Inkscape,' where standard image process-
ing tools were used to create explicit vector representations
of each design. The spline representations were imported
into a commercial finite element analysis (FEA) package,
COMSOL Multiphysics, to evaluate conductive heat trans-
fer performance. Uniform heat of 20 W/m? is applied on
a l m x 1 m square domain, where the conductive and
non-conductive material thermal conductivity is given by 1
W/(m-K) and 0.001 W/(m-K), respectively. The results of
this study are presented in Table 2. The topology of the
GDM RM 1 design resulted in the best compliance value.

The resultant topologies and heat maps are presented in
Fig. 20. The normalized temperature maps share a com-
mon color scale to facilitate visual analysis. Observe that
the performance of all of the topologies changed after
conversion to an explicit boundary and evaluation using
commercial analysis tools. When observing the designs pro-
duced from the optimization procedures, conclusions can
be drawn to explain the corresponding performance values.
The poorly defined material boundaries of the homoge-
nization approaches improve the compliance values of their
respective topologies by decreasing the temperature on the
domain where material is partially defined. The regular
mesh designs produced by the generative algorithms also
have low compliance values, but these are due to the poor
capability of the coarse mesh to accurately represent the
topology in a way that satisfies the volume fraction con-
straint. The body-fitted mesh designs have the worst com-
pliance values, but are the most accurate when compared
to the high fidelity model. Since the design representation
and analysis mesh are separated, the accuracy of the FEA
solution can be adjusted easily without increasing optimiza-
tion problem size. A comprehensive comparison of accuracy
and computational expense between all design strategies is
a topic of ongoing investigation.

'www.inkscape.org.
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(b) GDM BF 2

Commercial FEA results can be used to compare fairly
each of the design strategies. The GDM RM 1 design
resulted in the best compliance value with a small mar-
gin over SIMP MMA design. Though these designs have
similar compliance values, their respective structures and
temperature distributions are different. While they have low
compliance values, neither of these topologies result in the
lowest temperature domain. A study of design objectives
other than compliance, such as power density or temperature
change, may reveal a different class of optimal topologies.
An investigation of new topology optimization formula-
tions, including those with temperature constraints and new
objective functions, is a subject of ongoing work. While
GDMs cannot exploit problem structure in the same way as
established topology optimization methods such as SIMP, it
is anticipated that the flexibility and targeted design explo-
ration abilities of GDA design abstractions will enable the
efficient solution of completely new problem types.

It is important to note that the space colonization GDA
was specifically selected and tailored here to perform
well for a specific target application. Similar results can
be seen in other applications domains where generative
algorithms were specifically selected to perform well for

Table 2 Compliance and maximum temperature results

Strategy Standard COMSOL
c Tnax [K] c Tnax [K]

SIMP OC 1709 253 2650 431
Threshold 2320 335 2650 431
SIMP MMA 1857 200 2119 445
GDMRM 1 1687 325 2109 310
GDM RM 2 1850 308 2146 315
GDM BF 1 2049 257 2128 292
GDM BF 2 2341 402 2395 427
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Fig. 20 Topology optimization

comparison. Normalized Topology

From Optimization Procedure

Heat Map

k
=

Trnaz = 253 (+26%)

Tmaz = 200 (best)

&
=

3
8
8
Il

325 (+62%)

&

temperatures presented are in K,
and temperature maps share a
common color scale
SIMP OC
C = 1709 (+0.13%)
SIMP MMA
C = 1857 (+10%)
GDM RM 1
C = 1687 (best)
GDM RM 2
1850 (+9.6%)
GDM BF 1
C = 2049 (+21%)
GDM BF 2

2341 (+38%)

specific design problems. These applications are reviewed
by Khetan et al. (2015). A fundamentally different class
of thermal system designs may arise, however, from using
new objective functions, which in turn may necessitate a
new GDA. Current examples of successful GDMs in the
literature take advantage of intuitively obvious connections
between outputs of existing GDAs and engineering design
problems (e.g., dendritic patterns and thermal or fluid flow
problems). More general application of GDMs might be
achieved through construction of custom GDAs to meet the

Trmaz = 308 (+54%)
" »

Trmaz = 257 (+28%)

1

&

[N A

Tonax = 402 (+101%)

From Commercial FEA

Topology

C = 2650 (+25%)

=

C = 2119 (+0.4%)

C = 2109 (best)

%

C = 2146 (+1.7%)

A2

C = 2128 (+0.9%)

C = 2395 (+13%)

Heat Map

=

Tonae = 431 (+47%)

=

Trmax = 445 (+52%)
N N

Trnaz = 310 (+6.1%)

Tonaz = 315 (+7.8%)

|

Tmaz = 292 (best)

h

Tonaw = 427 (+46%)

needs of design problems for which there is no obvious
connection to an existing GDA. This is a topic of ongoing

study.

9 Conclusion

A method for generating dendritic topologies for heat con-
duction systems was presented as a design abstraction for
optimization. Using a specific generative algorithm, the

@ Springer
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space colonization algorithm, in conjunction with a genetic
algorithm supported an effective search of the design space.
Designs presented in Section 6 demonstrated significant
variations in the dendritic structure class. Strategies for
evaluating the topology using both a regularized mesh and
body-fitted mesh demonstrated tradeoffs in searching for
an optimal topology. The body-fitted mesh increased the
computational expense of the GDM, but resulted in a more
accurate solution. Six unique topologies that were generated
by four different methods were evaluated using a commer-
cial finite element solver to validate the performance of
each candidate design. Both compliance values and tem-
perature distributions were analyzed. The generative design
methodology was found to produce the design with the best
(lowest) thermal compliance value. The GDM BF 1 design
was found to produce the design with the lowest maximum
temperature. Recognizing that the least thermally-compliant
structure does not result in the ‘coolest’ domain, several
areas of future work have been identified. Specifically,
an investigation is ongoing of other design formulations
more closely related to electronics design, a comparison of
different generative algorithms in engineering design, and
the construction of custom generative algorithms for more
general engineering design problems.
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