Presentation for use with the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Hash Tables

int get RondomNumber ()

return 4. // chosen by foir dice roll.
// Quaranteed to be random.

xked. http://xkcd.com/221/. “Random Number.” Used with permission under Creative Commons 2.5 License.

(1,
N

© 2015 Goodrich and Tamassia Hash Tables

Recall the Map Operations E%

a get(k): if the map M has an entry with key Kk,
return its associated value; else, return null

a put(k, v): insert entry (k, v) into the map M;
if key k is not already in M, then return null;
else, return old value associated with k

a remove(k): if the map M has an entry with
key k, remove it from M and return its
associated value; else, return null

a size(), isEmpty()

N

© 2015 Goodrich and Tamassia Hash Tables 2

Intuitive Notion of a Map E%

a Intuitively, a map M supports the abstraction
of using keys as indices with a syntax such as
MI[K].

a As a mental warm-up, consider a restricted
setting in which a map with n items uses keys
that are known to be integers in a range from
OtoN -1, forsome N = n.

N

0o 1 2 3 4 5 6 7 8 9 10
o[Jz[[Jefeol T]

© 2015 Goodrich and Tamassia Hash Tables 3

More General Kinds of Keys

"o But what should we do if our keys are not
integers in the range from 0 to N —1?

= Use a hash function to map general keys to
corresponding indices in a table.

= For instance, the last four digits of a Social Security
number.

N

%)
*1—1025-612-0001
*——981-101-0002
%)

S W= O

*451-229-0004

© 2015 Goodrich and Tamassia Hash Tables 4

A

Hash Functions and .
_Hash Tables f

a A hash function 2 maps keys of a given type to
integers in a fixed interval [0, NV — 1]

o Example:
h(x) =x mod ¥V
is @ hash function for integer keys

a The integer h(x) is called the hash value of key x

a A hash table for a given key type consists of
= Hash function A

= Array (called table) of size N

o When implementing a map with a hash table, the goal
is to store item (%, o) at index i = h(k)

© 2015 Goodrich and Tamassia Hash Tables

Example

N

a We design a hash table for
a map storing entries as
(SSN, Name), where SSN
(social security number) is a
nine-digit positive integer

a Our hash table uses an
array of size N = 10,000 and
the hash function
h(x) = last four digits of x

© 2015 Goodrich and Tamassia Hash Tables

AW —=O

9997
9998
9999

%)
*1—1025-612-0001
*——|981-101-0002
%)
*1—1451-229-0004
%)
1 200-751-9998
%)

Hash Functions

N

a A hash function is a0 The hash code is
usually specified as the ~ applied first, and the
composition of two compression function
functi . IS applied next on the

UNETONS, result, i.e.,
Hash code: h(x) = hy(h,(x))
h,: keys — integers o The goal of the hash

function is to
“disperse” the keys in
an apparently random
way

Compression function:
h,: integers — [0, N — 1]

© 2015 Goodrich and Tamassia Hash Tables 7

Hash Codes

p
\J
a Memory address: a Component sum:
= We reinterpret the memory = We partition the bits of
address of the key object as the key into components
an integer. Good in general, of fixed length (e.g., 16
except for numeric and string or 32 bits) and we sum
keys the components (ignoring
a Integer cast: overflows)

= Suitable for numeric keys
of fixed length greater
than or equal to the
number of bits of the
integer type.

= We reinterpret the bits of the
key as an integer

= Suitable for keys of length
less than or equal to the
number of bits of the integer
type (e.g., byte, short, int
and float)

© 2015 Goodrich and Tamassia Hash Tables 8

Hash Codes (cont.)

N

a Polynomial accumulation: a Polynomial p(z) can be
= We partition the bits of the evaluated in O(n) time
key into a sequence of : ’ :
components of fixed length Usiig Home_r S rule:

(e.g., 8, 16 or 32 bits) = The following
a,a, ... a, polynomials are
= We evaluate the polynomial successively computed,
pR)=a,+a,z +a,7*+ ... each from the previous
ot a, 7! one in O(1) time
at a fixed value z, ignoring po(2) =a,_
overflows

, . : Ppi®)=a,;,+2zp;(2)
m Especially suitable for strings (i=1,2,...,n-1)
(e.qg., the choice z = 33 gives
at most 6 collisions on a set of @ We have p(z) = p,,(2)
50,000 English words)

© 2015 Goodrich and Tamassia Hash Tables 9

Tabulation-Based Hashing

o Suppose each key can be viewed as a tuple, k = (xq, X5, . . ., Xy), for a
fixed d, where each x; is in the range [0,M — 1].

o There is a class of hash functions we can use, which involve simple
table lookups, known as tabulation-based hashing.

o We can initialize d tables, T,, T,, . . ., T4, of size M each, so that each
T.[j] is a uniformly chosen independent random number in the range
[O,N — 1].

o We then can compute the hash function, h(k), as

h(k) = Ti[x;] @ To[x] @ . .v @ Tylxql,
where “e” denotes the bitwise exclusive-or function.

o Because the values in the tables are themselves chosen at random,
such a function is itself fairly random. For instance, it can be shown that
such a function will cause two distinct keys to collide at the same hash
value with probability 1/N, which is what we would get from a perfectly
random function.

N

© 2015 Goodrich and Tamassia Hash Tables 10

Compression Functions

a Division: a Random linear hash
» h,(y)=ymod N function:
= The size N of the s h,(y)=(ay + b) mod N
hash table is usually s ¢ and » are random
chosen to be a prime nonnegative integers
= The reason has to do such that
with number theory amodN =0
and is beyond the = Otherwise, every
scope of this course integer would map to

the same value b

© 2015 Goodrich and Tamassia Hash Tables 11

\,,
A WA w “ s

Collision Handling SN
a Collisions occur when 0(g eeiaaa

different elements are ; = e

mapped to the same 3[2

Ce” 4 | *1451-229-0004 981-101-0004

a Separate Chaining: let
each cell in the table o Separate chaining is
point to a linked list of simple, but requires
entries that map there additional memory
outside the table

© 2015 Goodrich and Tamassia Hash Tables 12

Map with Separate Chaining

Delegate operations to a list-based map at each cell:

Algorithm get(k):
return A[h(k)].get(k)

N

L/

Algorithm put(k,v):

t = A[h(k)].put(k,v)

if t = null then {k is a new key}
nN=n+1

returnt

Algorithm remove(k):

t = A[h(k)].remove(k)

if t # null then {k was found}
n=n-1

return t

© 2015 Goodrich and Tamassia Hash Tables

Performance of Separate
Chaining

o Let us assume that our hash function, h, maps keys

N

to independent uniform random values in the range
[O,N—1].
o Thus, if we let X be a random variable representing A
the number of items that map to a bucket, i, inthe °
array A, then the expected value of X, E(X) = n/N, -
wheZe nis the numbper of items in the m(ap), sinc/e Z’ .--’\]
each of the N locations in A is equally likely for each
item to be placed. 5 o——»
a This parameter, n/N, which is the ratio of the °
number of items in a hash table, n, and the capacity ;

of the table, N, is called the load factor of the hash

table. IR
o Ifitis O(1), then the above analysis says that the | 0:0:0]

expected time for hash table operations is O(1)
when collisions are handled with separate chaining.

© 2015 Goodrich and Tamassia Hash Tables 14

Linear Probing

p
\J
o Open addressing: the 0 Example:
colliding item is placed in a
different cell of the table » h(x) =xmod 13
a Linear probing: handles = Insert keys 18, 41,
collisions by placing the 22,44, 59, 32, 31,
lliding item in th t : :
colliding item in the nex 73, in this order

(circularly) available table cell
o Each table cell inspected is

referred to as a “probe”

a Colliding items lump together, 0 1 2 3 4 5 6 7 8 9 101112

causing future collisions to ﬂ
cause a longer sequence of
probes 41 18|44|59|32(22|31|73

01 23456 7289101112

© 2015 Goodrich and Tamassia Hash Tables 15

Search with Linear Probing

p
\J
o Consider a hash table 4 | Algorithm get(k)
that uses linear probing i < h(k)
p<0
o get(k) repeat
s We start at cell a(k) ¢ < A[i]
= We probe consecutive ife= 0O

locations until one of the
following occurs

+ An item with key k is

return null
else if c.getKey () = k
return c.getValue()

found, or ,
+ An empty cell is found, ¢ S‘?’]
or i< ({+1)modN
+ N cells have been p<p+1
unsuccessfully probed until p=N

return null
© 2015 Goodrich and Tamassia Hash Tables 16

Updates with Linear Probing

a To handle insertions and
deletions, we introduce - put(k, v)
a special object, called = We throw an exception
DEFUNCT, which if the table is full
replaces deleted = We start at cell h(k)
elements = We probe consecutive
o remove(k) cellsuntila Acelliis
= We search for an entry found that is empty.
with key k . We store (k, v) in cell i

» If such an entry, (k, v), is
found, we move elements
to fill the “hole” created
by its removal.

© 2015 Goodrich and Tamassia Hash Tables 17

Pseudo-code for get and put

o get(k):
i < h(k)
while A[i] ## NULL do
if A[i].key = k then
return A|i]
i+ (i4+1) mod N
return NULL
e put(k,v):
i < h(k)
while A[i] # NULL do
if A[i].key = k then
Ali] < (k,v) // replace the old (k,v")
i+ (i+1) mod N
Alt] « (k,v)

N

© 2015 Goodrich and Tamassia Hash Tables

18

N

e remove(k):
i < h(k)
while A[i] # NULL do
if Ai].key = k then
temp < Ali]
Ali] + NULL

return temp
i< (i+1) mod N

return NULL
e Shift(i):
s+ 1 // the current shift amount

while A[(7 + s) mod N] # NULL do
j < h(A[(i + s) mod N].key)
if j € (1,7 + s mod N then
Ali] < A[(i 4+ s) mod N
A[(i + s) mod N] <— NULL
i ¢ (i+ s) mod N
s+ 1
else
s+ s+1
© 2015 Goodrich and Tamassia Hash Tables

Pseudo-code for remove

Call Shift(7) to restore A to a stable state without k

/I preferred index for this item

// fill in the “hole”
// move the “hole”

19

~ Performance of Linear Probing

o In the worst case, searches, h :
insertions and removalsona 2 The expected running

N

hash table take O(n) time time of all the dictionary
a The worst case occurs when ADT operations in a
all the keys inserted into the hash table is O(1) with
map collide constant load < 1
o The load factor a = n/N - N
affects the performance of a = 1N Practice, hashing is
hash table very fast provided the
o Assuming that the hash load factor is not close
values are like random to 100%
numbers, it can be shown PNE
that the expected number of - gpbﬁgg:dtlons of hash
probes for an insertion with '
open addressing is = small databases
1/(1-a = compilers

© 2015 Goodrich and Tamassia Hash Tables = browser caches 20

A More Careful Analysis of
Linear Probing

= Recall that, in the linear-probing scheme for handling collisions,
whenever an insertion at a cell i would cause a collision, then we
instead insert the new item in the first cell of i+1, i+2, and so on,
until we find an empty cell.

N

Let X1, Xo,...,X,, be a set of mutually independent indicator random vari-
ables, such that each X is 1 with some probability p; > 0 and 0 otherwise. Let
X = Z?zl X; be the sum of these random variables, and let ;z denote the mean of
X, thatis, p = EF(X) = Z;’zl p;| The following bound, which is due to Chernoff
(and which we derive in Section 19.5), establishes that, for 6 > 0,

)

e H
Pr(X > (14+)p) < [(1+5)(1+5)] :

o For this analysis, let us assume that we are storing n items in a hash
table of size N = 2n, that is, our hash table has a load factor of 1/2.

© 2015 Goodrich and Tamassia Hash Tables 21

A More Careful Analysis of
Llnear Probing, 2

Let X denote a random variable equal to the number of probes that we would
perform in doing a search or update operation in our hash table for some key, k.
Furthermore, let X; be a 0/1 indicator random variable that is 1 if and only if
i = h(k), and let Y; be a random variable that is equal to the length of a run of
contiguous nonempty cells that begins at position z, wrapping around the end of the
table if necessary. By the way that linear probing works, and because we assume
that our hash function h(k) is random,

N-1
X =) Xi(Y;+1),
i=0

f\

which implies that
N-1

E(X) = ZQL
=0

= 1+ (1/2n)E (Z Y)

o Thus, if we can bound the expected value of the sum of Y,'s, then we
can bound the expected time for a search or update operation in a

linear-probing hashing scheme.
© 2015 Goodrich and Tamassia Hash Tables 22

A More Careful Analysis of
Llnear Probing, 2

Let X denote a random variable equal to the number of probes that we would
perform in doing a search or update operation in our hash table for some key, k.
Furthermore, let X; be a 0/1 indicator random variable that is 1 if and only if
i = h(k), and let Y; be a random variable that is equal to the length of a run of
contiguous nonempty cells that begins at position z, wrapping around the end of the
table if necessary. By the way that linear probing works, and because we assume
that our hash function h(k) is random,

N-1
X =) Xi(Y;+1),
i=0

f\

which implies that
N-1

E(X) = ZQL
=0

= 1+ (1/2n)E (Z Y)

o Thus, if we can bound the expected value of the sum of Y,'s, then we
can bound the expected time for a search or update operation in a

linear-probing hashing scheme.
© 2015 Goodrich and Tamassia Hash Tables 23

A More Careful Analysis of
Linear Probing, 3

N
\J

Consider, then, a maximal contiguous sequence, .S, of £ nonempty table cells,
that is, a contiguous group of occupied cells that has empty cells next to its opposite
ends. Any search or update operation that lands in S will, in the worst case, march
all the way to the end of S. That is, if a search lands in the first cell of .S, it would
make k& wasted probes, if it lands in the second cell of .S, it would make k£ — 1
wasted probes, and so on. So the total cost of all the searches that land in .S can be
at most k2. Thus, if we let Z; 1, be a 0/1 indicator random variable for the existence
of a maximal sequence of nonempty cells of length k, then

N—-1 2n

ZY<ZZ’9 i

i=0 k=1

Put another wayj, it is as if we are “charging” each maximal sequence of nonempty
cells for all the searches that land in that sequence.

© 2015 Goodrich and Tamassia Hash Tables 24

A More Careful Analysis of
Linear Probing,

So, to bound the expected value of the sum of the Y;’s, we need to bound
the probability that Z;x is 1, which is something we can do using the Chernoff
bound given above. Let Z; denote the number of items that are mapped to a given
sequence of k cells in our table. Then,

Because the load factor of our table is 1/2, E(Z;) = k/2. Thus, by the above
Chernoff bound,

N
\J

Pr(Zy 2 k) = Pr(Zp > 2(k/2)

< (e/4)k?
27K/,

<

Therefore, putting all the above pieces together,

N-1
E(X) = 14 (1/2n)E <Z }q)

=0
N—-1 2n
< 14+ (1/2n) Z k2 27k/A
i=0 k=1
< 1+Zk22_k/4

= 0(1).

That is, the expected running time for doing a search or update operation with linear
probing is O(1), so long as the load factor in our hash table is at most 1/2.

© 2015 Goodrich and Tamassia Hash Tables

25

Double Hashing

a Double hashing uses a .
secondary hash function o Common choice of
d(k) and handles collisions compression function for
by placing an item in the the secondary hash
first available cell of the function:
serle(s. d()) mod N d,(k) = q— kmod ¢q
[+] mo
forj=0, 1,...N-1 where
m g<N

a The secondary hash

function d(k) cannot have " 415aprime

zero values a The possible values for
2 The table size N must be a d,(k) are

prime to allow probing of 1,2,...,¢q

all the cells

© 2015 Goodrich and Tamassia Hash Tables 26

Example of Double Hashing

)
\J
: k h(k) d(k) Probes
o Consider a hash table 8 (5) (3) :
storing integer keys 4 2 1 [2
o 2 9 6 [9
th_at handles coII|_5|on 4 = o [10
with double hashing 59 7 4 [7
2 6 3|6
= N=13 31 5 4[5 9 0
m h(k)=kmod 13 73 8 4 | 8
m dlk)=7—-kmod?7

o Insertkeys 18,41, 7 23456 7 8 9101112
22,44, 59, 32, 31, ﬂ'

/3, in this order
31| |41 18]32(59|73(22/44

0123456 78 9101112

© 2015 Goodrich and Tamassia Hash Tables

