
Hash Tables 1

Hash Tables

© 2015 Goodrich and Tamassia

Presentation for use with the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

xkcd. http://xkcd.com/221/. “Random Number.” Used with permission under Creative Commons 2.5 License.

Hash Tables 2

Recall the Map Operations
q  get(k): if the map M has an entry with key k,

return its associated value; else, return null
q  put(k, v): insert entry (k, v) into the map M;

if key k is not already in M, then return null;
else, return old value associated with k

q  remove(k): if the map M has an entry with
key k, remove it from M and return its
associated value; else, return null

q  size(), isEmpty()

© 2015 Goodrich and Tamassia

Hash Tables 3

Intuitive Notion of a Map
q  Intuitively, a map M supports the abstraction

of using keys as indices with a syntax such as
M[k].

q  As a mental warm-up, consider a restricted
setting in which a map with n items uses keys
that are known to be integers in a range from
0 to N − 1, for some N ≥ n.

© 2015 Goodrich and Tamassia

More General Kinds of Keys
q  But what should we do if our keys are not

integers in the range from 0 to N – 1?
n  Use a hash function to map general keys to

corresponding indices in a table.
n  For instance, the last four digits of a Social Security

number.

© 2015 Goodrich and Tamassia Hash Tables 4

∅

∅

0
1
2
3
4 451-229-0004

981-101-0002
025-612-0001

…

Hash Tables 5

Hash Functions and
Hash Tables
q  A hash function h maps keys of a given type to

integers in a fixed interval [0, N - 1]
q  Example:

 h(x) = x mod N
is a hash function for integer keys

q  The integer h(x) is called the hash value of key x

q  A hash table for a given key type consists of
n  Hash function h
n  Array (called table) of size N

q  When implementing a map with a hash table, the goal
is to store item (k, o) at index i = h(k)

© 2015 Goodrich and Tamassia

Hash Tables 6

Example

q  We design a hash table for
a map storing entries as
(SSN, Name), where SSN
(social security number) is a
nine-digit positive integer

q  Our hash table uses an
array of size N = 10,000 and
the hash function
h(x) = last four digits of x

∅

∅

∅

∅

0
1
2
3
4

9997
9998
9999

…

451-229-0004

981-101-0002

200-751-9998

025-612-0001

© 2015 Goodrich and Tamassia

Hash Tables 7

Hash Functions

q  A hash function is
usually specified as the
composition of two
functions:
 Hash code:
 h1: keys → integers
 Compression function:
 h2: integers → [0, N - 1]

q  The hash code is
applied first, and the
compression function
is applied next on the
result, i.e.,

 h(x) = h2(h1(x))
q  The goal of the hash

function is to
“disperse” the keys in
an apparently random
way

© 2015 Goodrich and Tamassia

Hash Tables 8

Hash Codes
q  Memory address:

n  We reinterpret the memory
address of the key object as
an integer. Good in general,
except for numeric and string
keys

q  Integer cast:
n  We reinterpret the bits of the

key as an integer
n  Suitable for keys of length

less than or equal to the
number of bits of the integer
type (e.g., byte, short, int
and float)

q  Component sum:
n  We partition the bits of

the key into components
of fixed length (e.g., 16
or 32 bits) and we sum
the components (ignoring
overflows)

n  Suitable for numeric keys
of fixed length greater
than or equal to the
number of bits of the
integer type.

© 2015 Goodrich and Tamassia

Hash Tables 9

Hash Codes (cont.)
q  Polynomial accumulation:

n  We partition the bits of the
key into a sequence of
components of fixed length
(e.g., 8, 16 or 32 bits)
 a0 a1 … an-1

n  We evaluate the polynomial
 p(z) = a0 + a1 z + a2 z2 + …

 … + an-1zn-1

 at a fixed value z, ignoring
overflows

n  Especially suitable for strings
(e.g., the choice z = 33 gives
at most 6 collisions on a set of
50,000 English words)

q  Polynomial p(z) can be
evaluated in O(n) time
using Horner’s rule:
n  The following

polynomials are
successively computed,
each from the previous
one in O(1) time
 p0(z) = an-1

 pi (z) = an-i-1 + zpi-1(z)
 (i = 1, 2, …, n -1)

q  We have p(z) = pn-1(z)

© 2015 Goodrich and Tamassia

Tabulation-Based Hashing
q  Suppose each key can be viewed as a tuple, k = (x1, x2, . . . , xd), for a

fixed d, where each xi is in the range [0,M − 1].
q  There is a class of hash functions we can use, which involve simple

table lookups, known as tabulation-based hashing.
q  We can initialize d tables, T1, T2, . . . , Td, of size M each, so that each

Ti[j] is a uniformly chosen independent random number in the range
[0,N − 1].

q  We then can compute the hash function, h(k), as
 h(k) = T1[x1] ⊕ T2[x2] ⊕ . . . ⊕ Td[xd],

 where “⊕” denotes the bitwise exclusive-or function.
q  Because the values in the tables are themselves chosen at random,

such a function is itself fairly random. For instance, it can be shown that
such a function will cause two distinct keys to collide at the same hash
value with probability 1/N, which is what we would get from a perfectly
random function.

© 2015 Goodrich and Tamassia Hash Tables 10

Hash Tables 11

Compression Functions

q  Division:
n  h2 (y) = y mod N
n  The size N of the

hash table is usually
chosen to be a prime

n  The reason has to do
with number theory
and is beyond the
scope of this course

q  Random linear hash
function:
n  h2 (y) = (ay + b) mod N
n  a and b are random

nonnegative integers
such that
 a mod N ≠ 0

n  Otherwise, every
integer would map to
the same value b

© 2015 Goodrich and Tamassia

Hash Tables 12

Collision Handling

q  Collisions occur when
different elements are
mapped to the same
cell

q  Separate Chaining: let
each cell in the table
point to a linked list of
entries that map there

q  Separate chaining is
simple, but requires
additional memory
outside the table

∅

∅
∅

0
1
2
3
4 451-229-0004 981-101-0004

025-612-0001

© 2015 Goodrich and Tamassia

Hash Tables 13

Map with Separate Chaining
Delegate operations to a list-based map at each cell:

Algorithm get(k):
return A[h(k)].get(k)

Algorithm put(k,v):
t = A[h(k)].put(k,v)
if t = null then {k is a new key}

 n = n + 1
return t

Algorithm remove(k):
t = A[h(k)].remove(k)
if t ≠ null then {k was found}

 n = n - 1
return t

© 2015 Goodrich and Tamassia

Performance of Separate
Chaining
q  Let us assume that our hash function, h, maps keys

to independent uniform random values in the range
[0,N−1].

q  Thus, if we let X be a random variable representing
the number of items that map to a bucket, i, in the
array A, then the expected value of X, E(X) = n/N,
where n is the number of items in the map, since
each of the N locations in A is equally likely for each
item to be placed.

q  This parameter, n/N, which is the ratio of the
number of items in a hash table, n, and the capacity
of the table, N, is called the load factor of the hash
table.

q  If it is O(1), then the above analysis says that the
expected time for hash table operations is O(1)
when collisions are handled with separate chaining.

© 2015 Goodrich and Tamassia Hash Tables 14

Hash Tables 15

Linear Probing
q  Open addressing: the

colliding item is placed in a
different cell of the table

q  Linear probing: handles
collisions by placing the
colliding item in the next
(circularly) available table cell

q  Each table cell inspected is
referred to as a “probe”

q  Colliding items lump together,
causing future collisions to
cause a longer sequence of
probes

q  Example:
n  h(x) = x mod 13
n  Insert keys 18, 41,

22, 44, 59, 32, 31,
73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

 41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12

© 2015 Goodrich and Tamassia

Hash Tables 16

Search with Linear Probing
q  Consider a hash table A

that uses linear probing
q  get(k)

n  We start at cell h(k)
n  We probe consecutive

locations until one of the
following occurs
w  An item with key k is

found, or
w  An empty cell is found,

or
w  N cells have been

unsuccessfully probed

Algorithm get(k)
 i ← h(k)
 p ← 0
 repeat
 c ← A[i]
 if c = ∅

return null
 else if c.getKey () = k
 return c.getValue()
 else
 i ← (i + 1) mod N

 p ← p + 1
until p = N
return null

© 2015 Goodrich and Tamassia

Hash Tables 17

Updates with Linear Probing
q  To handle insertions and

deletions, we introduce
a special object, called
DEFUNCT, which
replaces deleted
elements

q  remove(k)
n  We search for an entry

with key k

n  If such an entry, (k, v), is
found, we move elements
to fill the “hole” created
by its removal.

q  put(k, v)
n  We throw an exception

if the table is full
n  We start at cell h(k)
n  We probe consecutive

cells until a A cell i is
found that is empty.

w  We store (k, v) in cell i

© 2015 Goodrich and Tamassia

Pseudo-code for get and put

© 2015 Goodrich and Tamassia Hash Tables 18

Pseudo-code for remove

© 2015 Goodrich and Tamassia Hash Tables 19

Hash Tables 20

Performance of Linear Probing
q  In the worst case, searches,

insertions and removals on a
hash table take O(n) time

q  The worst case occurs when
all the keys inserted into the
map collide

q  The load factor α = n/N
affects the performance of a
hash table

q  Assuming that the hash
values are like random
numbers, it can be shown
that the expected number of
probes for an insertion with
open addressing is

 1 / (1 - α)

q  The expected running
time of all the dictionary
ADT operations in a
hash table is O(1) with
constant load < 1

q  In practice, hashing is
very fast provided the
load factor is not close
to 100%

q  Applications of hash
tables:
n  small databases
n  compilers
n  browser caches

© 2015 Goodrich and Tamassia

A More Careful Analysis of
Linear Probing
q  Recall that, in the linear-probing scheme for handling collisions,

whenever an insertion at a cell i would cause a collision, then we
instead insert the new item in the first cell of i+1, i+2, and so on,
until we find an empty cell.

q  For this analysis, let us assume that we are storing n items in a hash
table of size N = 2n, that is, our hash table has a load factor of 1/2.

© 2015 Goodrich and Tamassia Hash Tables 21

A More Careful Analysis of
Linear Probing, 2

q  Thus, if we can bound the expected value of the sum of Yi’s, then we
can bound the expected time for a search or update operation in a
linear-probing hashing scheme.

© 2015 Goodrich and Tamassia Hash Tables 22

A More Careful Analysis of
Linear Probing, 2

q  Thus, if we can bound the expected value of the sum of Yi’s, then we
can bound the expected time for a search or update operation in a
linear-probing hashing scheme.

© 2015 Goodrich and Tamassia Hash Tables 23

A More Careful Analysis of
Linear Probing, 3

© 2015 Goodrich and Tamassia Hash Tables 24

A More Careful Analysis of
Linear Probing, 4

© 2015 Goodrich and Tamassia Hash Tables 25

Hash Tables 26

Double Hashing
q  Double hashing uses a

secondary hash function
d(k) and handles collisions
by placing an item in the
first available cell of the
series

 (i + jd(k)) mod N
 for j = 0, 1, … , N - 1

q  The secondary hash
function d(k) cannot have
zero values

q  The table size N must be a
prime to allow probing of
all the cells

q  Common choice of
compression function for
the secondary hash
function:
d2(k) = q - k mod q

 where
n  q < N
n  q is a prime

q  The possible values for
d2(k) are

 1, 2, … , q

© 2015 Goodrich and Tamassia

Hash Tables 27

q  Consider a hash table
storing integer keys
that handles collision
with double hashing
n  N = 13
n  h(k) = k mod 13
n  d(k) = 7 - k mod 7

q  Insert keys 18, 41,
22, 44, 59, 32, 31,
73, in this order

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
0 1 2 3 4 5 6 7 8 9 10 11 12

k h (k) d (k) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8

© 2015 Goodrich and Tamassia

