
 

 

 

 

 

 

 

 

 

 

Doctoral Dissertation 

Third Generation Web APIs 
Bridging the Gap between REST and Linked Data 

 

 

 

Markus Lanthaler 
 

 

 

 

 

 

 

 

 

 

 

 

Institute of Information Systems and Computer Media 

Graz University of Technology, Austria 

Supervisor: Dr. techn. Univ.-Doz. Christian Gütl 



 

 

Statutory Declaration 

I declare that I have authored this thesis independently, that I have not 
used other than the declared sources/resources, and that I have explicitly 
marked all material which has been quoted either literally or by content 
from the used sources. 

 

 

Graz, March 2014 



 

 

Abstract 

It is becoming increasingly difficult to cope with the exponentially 
growing amount of data. Thus, systems are progressively being connected 
directly to each other to exchange, analyze, and manipulate humongous 
amounts of data without any human interaction. On the Web, different 
systems typically communicate via Web services with each other. The 
first generation of services was based on the flawed Remote Procedure 
Call (RPC) style, and was difficult to scale and maintain. Consequently, 
service providers started to align their offerings more closely with the 
architecture of the World Wide Web. Creating such services, or Web 
APIs as they are often called, is, however, still more an art than a science. 
Developers have to struggle with a number of complex design decisions 
and important technologies are still missing. 

This dissertation discusses the main issues of current Web services and 
related Semantic Web approaches. It reviews the state of the art and pre-
sents the results of our research. Our first two contributions, namely 
SAPS and SEREDASj, were mainly research prototypes that acted as a 
proof of concept and allowed us to evaluate the main underlying ideas. 
Eventually, these approaches led to the creation of JSON-LD and Hydra. 
JSON-LD is a community effort to serialize Linked Data in JSON that 
resulted in a well-accepted and widely used standard. Hydra, on the other 
hand, is a lightweight vocabulary defining the necessary concepts to 
create Web APIs that fully conform to the Web’s architecture. This thesis 
elucidates how JSON-LD and Hydra can be used for a domain-driven 
design and implementation of Web APIs. To evaluate their practicality 
and demonstrate that they address the issues of current Web APIs, both 
technologies have been integrated in a current Web development 
framework and a completely generic client has been implemented. 
Finally, this dissertation also provides an overview of some early adopters 
and describes how they use the technologies in practice. 
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Chapter 1 

Introduction 

The World Wide Web profoundly changed many aspects of our society. 
It has shaped our lives so rapidly and so effectively that many of us can-
not imagine life without it anymore. The Web brings the world’s infor-
mation to our fingertips and enables frictionless communication across 
continents in fractions of seconds. Never before in human history has 
access to information and its dissemination been easier. The initial hur-
dles to publish content on the Web have long since been eliminated. In 
fact, the Web has become a global, collaborative information space in 
which user-generated content dominates. In its short history, the World 
Wide Web has thus arguably already become an invention as important 
as Gutenberg’s printing press. 

For a long time, data has been a scarce resource but the success of the 
Web resulted in a fundamental shift from information scarcity to surfeit. 
Not only are individuals producing more content than ever before but 
also companies and governments are releasing unprecedented amounts of 
data to the public. While such open data initiatives have been mainly 
motivated by the desire to increase transparency and accountability, they 
also create substantial economic value. According to a recent study [1], 
the more than one million datasets that have already been made public by 
governments worldwide enable an estimated potential annual value of 
more than three trillion dollars. The same study argues that consumers 
will profit most of it, despite the fact that the release of data creates 
opportunities for whole new businesses, which can be best exemplified by 
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the many companies that were established after access to data from the 
Global Positioning System (GPS) became freely available. But govern-
ments themselves also profit by providing free access to their data. Kenya, 
one of the poorest countries in the world, was the first African country to 
launch an open data portal in 2011 and claims [2] that opening up their 
government’s procurement data could save them up to one billion dollar 
each year, more than they get from donors. Thus, it is also not surprising 
that in 2013 President Obama signed an executive order “making open 
and machine readable the new default for government information” [3] 
that does not have to be kept secret for privacy, confidentiality, or 
national security reasons. 

While open data initiatives resulted in vast amounts of data being pub-
lished, only a relatively shrinking proportion of data is being created by 
humans. The vast majority is created by machines or sensors, which in-
cludes our digital exhaust, i.e., the digital trails we leave by interacting 
with various systems. Every day, 2.5 quintillion bytes of new data are 
being created—so much that 90% of all data available today has been 
created in the last two years alone [4]. To make use of this data, simply 
finding it is not enough anymore as there is too much data for a human 
to review, absorb, and act on. We humans have become the bottleneck. 
Machines need to integrate data from various sources, analyze it, and dis-
till actionable insights for us—preferably in real time. Data is thus often 
said to be the new oil; it is valuable but needs to be refined to be usable. 
To achieve that, more and more systems are connected directly to each 
other. They exchange, analyze, and manipulate humongous amounts of 
data without any human interaction. While there are many strategies to 
connect disparate systems, services are arguably the most flexible option 
as they allow systems to remain independent and self-contained. Instead 
of integrating systems directly, they communicate with each other via 
well-defined interfaces and protocols. Each subsystem in such a distrib-
uted architecture represents a service that offers a specific functionality. 

Forward-looking companies soon realized the potential of services and 
began to redesign their systems to form so called service-oriented archi-
tectures (SOA). In a public post, Steve Yegge, a former Amazon em-
ployee, accidentally shared the now famous mandate that Amazon’s CEO 
Jeff Bezos issued around 2002 [5] to aggressively transform all of Ama-
zon’s systems to services. Yegge summarized Bezos’ mandate as follows: 
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▪ All teams will henceforth expose their data and functionality through 
service interfaces. 

▪ Teams must communicate with each other through these interfaces. 

▪ There will be no other form of interprocess communication allowed: No 
direct linking, no direct reads of another team’s data store, no shared-
memory model, no back doors whatsoever. The only communication 
allowed is via service interface calls over the network. 

▪ It doesn’t matter what technology they use. HTTP, Corba, Pubsub, 
custom protocols—doesn’t matter. Bezos doesn’t care. 

▪ All service interfaces, without exception, must be designed from the 
ground up to be externalizable. That is to say, the team must plan and 
design to be able to expose the interface to developers in the outside 
world. No exceptions. 

▪ Anyone who doesn’t do this will be fired 

Amazon and many other companies that followed such a strategy profited 
handsomely. Salesforce.com, e.g., generates nearly 50 percent of its reve-
nue through Web services, i.e., services exposed on the World Wide 
Web; for Expedia, that figure is closer to 90 percent [6].  

The first wave of services has been built according the Remote Procedure 
Call (RPC) style. The aim of RPC-based models is to hide all differences 
between local and remote computing in order to shield developers from 
the complexities arising from distributed architectures. But despite the 
fact that many successful distributed systems were built based on RPC-
oriented technologies such as SOAP [7], it is known for quite some time 
that this approach is fundamentally flawed exactly because it ignores the 
differences between local and remote computing. The major differences 
concern the areas of latency, memory access, partial failure and concur-
rency as described in detail by Waldo et al. [8]. Talking about SOAP-
based services specifically, they face additional problems in practice as 
they abuse HTTP [9] as transport protocol instead of using it as applica-
tion protocol. This breaks intermediaries that rely on HTTP’s 
application-level semantics. In Internet-scale systems, however, interme-
diaries for caching, filtering, monitoring, etc. are necessary to ensure 
good performance, scalability, maintainability, and evolvability. 
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Relatively soon it became apparent that RPC- or SOAP-based services do 
not scale well and are difficult to maintain. Thus, more and more service 
publishers started to better align their implementations with the archi-
tecture of the World Wide Web [10], the Representation State Transfer 
architectural style (REST) [11], to benefit from its superior scalability. 
Fueled by their benefits in terms of scalability and maintainability as well 
as their simplicity, these second generation Web services, which are also 
referred to as RESTful services or Web APIs in order to distinguish them 
from their SOAP-based predecessors, quickly became the prevalent form 
and more and more companies started to retire their first generation Web 
Services. This, however, does not mean that the overall number of Web 
services decreased, quite the contrary. As shown in Figure 1, the advent 
of RESTful Web APIs resulted in an accelerated growth. 
ProgrammableWeb, the most well-known Web service directory, 
announced in 2013 that the number of public services grew over 
10,000 [12]. Public services, however, represent only a small subset of all 
available Web services. There are estimates [13] that private services out-
number public services by as much as 9:1, meaning that the actual total 
number of services would be closer 100,000. This is an astonishing num-
ber considering that most of these Web services are proprietary snow-
flakes, i.e., similar, yet different enough to be not interoperable. Most of 
the current Web APIs violate one or more of REST’s constraints which 
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Figure 1.  Total number of public Web APIs indexed by ProgrammableWeb 
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yields to several problems in practice. This mostly stems from the fact 
that clear guidelines and standardized technologies to implement truly 
RESTful services are still missing. 

While it is possible to alleviate some of the problems by, e.g., creating 
wrapper APIs, i.e., APIs that integrate multiple APIs from a specific verti-
cal into a single interface, standardization is unavoidable in the long 
term. The Web would never have experienced such an exponential 
growth if browsers were to be adapted to every single Web site. Similarly, 
a process in which clients have to be adapted to be usable with different 
APIs does not scale either. As Steve Vinoski argues in an excellent arti-
cle [14], platforms, although efficient for their target use case, often 
inhibit reuse and adaptation by creating highly specialized interfaces, 
even if they stick to industry standards. He argues that “the more specific 
a service interface [is], the less likely it is to be reused, serendipitously or 
otherwise, because the likelihood that an interface will fit what a client 
application requires shrinks as the interface’s specificity increases.” This 
observation undoubtedly also applies to most current Web APIs. 

What would be needed to solve these issues are standardized, Web-based 
technologies for the machine-to-machine communication and processing 
of structured data whose meaning can be understood by machines. Since 
we are still far from human-level artificial intelligence, the intended 
meaning, i.e., the semantics, of the data has to be explicitly described in a 
machine-processable format. Research on knowledge representation and 
reasoning is almost as old as the dream of intelligent machines, but in the 
context of Web, these ideas gained major public attention only after Tim 
Berners-Lee, the inventor of the World Wide Web, and others published 
a seminal article [15] entitled the “Semantic Web” in 2001. Since then, 
the World Wide Web Consortium (W3C) standardized numerous tech-
nologies to build an interoperable Semantic Web. Unfortunately, how-
ever, for a long time the Semantic Web community derailed into the 
artificial intelligence domain instead of concentrating on more practical 
data-oriented applications. Thus, most Semantic Web technologies were 
adopted very reluctantly (if at all) and the Semantic Web got a reputation 
of being overly complex and impractical. It is thus also not really sur-
prising that even experts have quite different opinions of the likely pro-
gress toward achieving the goals of Berners-Lee’s vision of the Semantic 
Web by the year 2020, as a survey [16] of the Pew Research Center and 
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the Elon University revealed. Around 47% of the invited experts asserted 
that, “by 2020, the semantic web envisioned by Tim Berners-Lee will not 
be as fully effective as its creators hoped and average users will not have 
noticed much of a difference.” In contrast, about 41% agreed with the 
opposite statement: “By 2020, the semantic web envisioned by Tim 
Berners-Lee and his allies will have been achieved to a significant degree 
and have clearly made a difference to average internet users.” The 
remaining 12% of the experts did not venture a guess. 

To refocus the Semantic Web community on the importance of the main 
principles of the World Wide Web in order to produce more practical 
solutions, in 2006 Berners-Lee published the so-called Linked Data prin-
ciples [17], a short list of guidelines to publish and interlink data using 
basic Semantic Web technologies. This marked an important turning 
point in the history of the Semantic Web and resulted in the publication 
of numerous datasets according to these principles. Since REST princi-
ples align well with the Linked Data principles it would seem consequent 
to combine the strengths of both, but in practice they still remain largely 
separated. Instead of allowing the modification of data via RESTful ser-
vice interfaces, the vast majority of data published according the Linked 
Data principles is read-only. 

The aim of this dissertation is to bridge the gap between REST and 
Linked Data in order to support developers in the creation, documenta-
tion, and usage of Web APIs. The motivation is to increase developers’ 
productivity and to improve the quality and reusability of the created 
Web APIs and the data they expose. Consequently, we analyze, assess, 
and improve the processes and technologies used to create and access 
RESTful Web services. The work is divided into four phases: theoretical 
research and empirical analysis, design of novel solutions, implementa-
tion of prototypes, and evaluation. The initial phase of theoretical 
research and empirical analysis sheds light onto the potentials, the limita-
tions, and the current situation of creating and using RESTful services 
and Linked Data. Based on these insights, novel approaches to describe 
and implement semantic RESTful services are designed and evaluated in 
an iterative approach. To practically evaluate the final proposed solutions, 
both a prototype integrating them into a popular Web development 
framework and a completely generic API console capable of interacting 
with the resulting services is implemented. The final outcome of this the-
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sis is a set of technologies and a reference model for third generation Web 
APIs, i.e., Web APIs that fully embrace the architectural style of the Web 
and combine it with the expressive power of the Semantic Web. By 
addressing various issues of first and second generation Web APIs, this 
new breed of Web APIs allow the creation of loosely coupled, scalable 
systems and enable the creation of completely generic clients and tooling. 
By standardizing the proposed technologies, we hope to help ignite the 
next stage of Web API growth, similar to how the standardization of the 
basic Web technologies and the advent of graphical browsers led to an 
explosive growth of the Web in the early nineties. 

1.1 Contributions  
The major contributions of this thesis can be summarized as follows: 

▪ Current state-of-the-art research. The review of related work provides a 
comprehensive overview of the state-of-the-art research and development 
in the context of RESTful Web APIs as well as semantic services. Fur-
thermore, we present a number of popular domain application protocols 
and discuss current efforts to add hyperlinks and namespaces to JSON. 

▪ SAPS and SEREDASj. With the creation of SAPS and SEREDASj we 
present novel approaches to combine proven technologies used in current 
Web APIs with Semantic Web technologies. SEREDASj, e.g., allows the 
data exposed by current JSON-based Web APIs to be lifted to RDF, to 
be manipulated with SPARQL, and to eventually be sent back to the 
server. These two approaches were mainly research projects and work on 
them has eventually been discontinued in favor of JSON-LD and Hydra. 

▪ JSON-LD. After having begun the work to improve SEREDASj, we dis-
covered the JSON-LD project and we were among the first to join it. Just 
as SEREDASj, JSON-LD’s goal is to improve JSON-based Web APIs by 
bridging the gap to Linked Data. We made several crucial contributions 
to improve and shape the syntax of JSON-LD as well as its processing 
algorithms and application programming interface. The author of this 
thesis is co-author and co-editor of both specifications that have been 
ratified as official Internet standards by the World Wide Web Consor-
tium (W3C). JSON-LD was well accepted and is already being used by 
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hundreds of millions of people across the globe, most of them without 
knowing it. 

▪ Hydra. Given that JSON-LD is a data interchange format with very lit-
tle semantics by itself, we created Hydra, a lightweight vocabulary speci-
fying a number of frequently needed concepts to create and describe 
hypermedia-driven, RESTful Web APIs. Unlike JSON-LD, which was a 
collaborative effort from the very beginning, the first versions of Hydra 
were developed solely by the author of this dissertation. After the overall 
model stabilized, however, further development was moved to a steadily 
growing W3C Community Group. 

▪ Prototype implementations and evaluations. As a proof of concept, we 
integrated JSON-LD and Hydra into a current Web development 
framework and implemented a completely generic API console. This 
allowed us to evaluate the complexity and usability of these two technol-
ogies in practice—both crucial aspects for their adoption. The complete 
source code has been released into public domain. 

▪ An alternative, domain-driven approach for the design and development 
of Web APIs. The combination of JSON-LD, Hydra, and other RDF-
based vocabularies enables an alternative, domain-driven approach cov-
ering the whole lifecycle of a Web API. By making all the knowledge 
about a Web API available in a reusable, machine-readable, and semanti-
cally-rich form, the approach enables the creation of much smarter clients 
as possible today. 

▪ Improvement and simplification of Semantic Web standards. The stand-
ardization of JSON-LD and the consequent invitation as an expert by the 
W3C allowed the author of this dissertation to directly participate in the 
work of the RDF Working Group. He made several contributions to 
improve the specifications the group was working on. Eventually, the 
author of this thesis became co-editor of the central Semantic Web speci-
fication RDF 1.1 Concepts and Abstract Syntax. He also contributed to 
the new RDF 1.1 Primer to create an accessible introduction to RDF. 

During the work on this doctoral dissertation, we identified a number of 
minor issues or missing pieces in other standardization efforts. Thus, we 
provided feedback for different specifications related to the main topics 
of this dissertation, including the upcoming revision and clarification of 
the HTTP/1.1 [18] and various specifications related to the “profile” link 
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relation [19]. The latter led to the discovery of the fact that an important 
piece was forgotten in RFC6906 [19], namely a central registry of profile 
URIs to decouple clients from servers. To fix that, we requested the 
Internet Assigned Numbers Authority (IANA) to establish a registry for 
profile URIs [20]. By registering a profile URI, its ownership moves from 
the server to a central registry which decouples the client and server. As 
we will discuss in section 2.2, this is one of the main differences of the 
Web compared to other distributed system architectures. 

1.2 Outline 
This chapter provides the motivation behind our research as well as a 
short introduction to our main contributions. The remainder of this dis-
sertation is structured as follows: 

Chapter 2 introduces the reader to a number of basic concepts and tech-
nologies necessary for the understanding of this thesis. It includes a short 
overview of the history and the architecture of the World Wide Web as 
well as an introduction to the vision and the building blocks of the 
Semantic Web and Linked Data. Finally, the chapter discusses services on 
the Web and classifies them into two main categories, namely 
SOAP-based services and RESTful services. 

Chapter 3 distills a number of shortcomings and issues from the current 
best practices for the creation, documentation, and usage of Web APIs. It 
looks at the slow adoption of Semantic Web technologies and discusses 
their (perceived) complexity, their ignorance of fundamental Web prin-
ciples, and the main challenges developers face due to their underlying 
open-world assumption. Lastly, the chapter formalizes the research prob-
lems addressed by this thesis.  

Chapter 4 reviews recent related work and research that have been con-
ducted in the area of interface description languages, data interchange 
formats, and ontologies for Web services. It also presents a number of 
successful domain application protocols that are relevant for this thesis 
and discusses the efforts adding hyperlinks and namespacing support to 
JSON. 
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Chapter 5 describes the four main contributions of this thesis, namely 
SAPS, SEREDASj, JSON-LD, and Hydra. The description of each solu-
tion begins with an explanation of its basic concepts and principles and is 
followed by an illustrative example showing how it might be used in 
practice. Finally, the integration of each solution in the vision of a 
Semantic Web is discussed before a number of lessons learned are dis-
tilled and evaluated. 

Chapter 6 discusses which of the problems identified in Chapter 3 have 
been addressed by the final two solutions JSON-LD and Hydra. It also 
evaluates their practicality by their integration into a current Web devel-
opment framework and the implementation of a completely generic API 
console. Finally, the chapter provides an overview of early adopters from 
academia, industry, and related standardization efforts and describes how 
they leverage the proposed solutions. 

Chapter 7 concludes the thesis by briefly revisiting and summarizing the 
main findings and contributions, identifying limitations of the proposed 
solutions, and discussing future research directions and complementary 
topics. 

All relevant findings and contributions have already been published in 
peer-reviewed scientific journals and conference proceedings or have been 
integrated into ratified Internet standards. Since this thesis is heavily 
based on our previous publications, we enumerate at the beginning of 
each chapter the publications it is it based on. 



 

 

Chapter 2 

Basic Concepts 

and Technologies 

Even though the terms Internet and World Wide Web are often used 
interchangeably in everyday speech, it is technically incorrect. The term 
Internet refers to the global system of interconnected computer networks. 
It is a network of networks using the Internet protocol suite; commonly 
known as TCP/IP due to the Transmission Control Protocol (TCP) [21] 
and the Internet Protocol (IP) [22]—the first two protocols defined back 
in 1981. 

The World Wide Web, or colloquially Web, on the other hand, is just one 
of the many applications running on the Internet. Today it is by far the 
most popular application on the Internet and overtook other applications 
such as file transfer or newsgroups many years ago. The Web is an infor-
mation system of interlinked hypertext documents, so called web pages, 
that Tim Berners-Lee proposed in 1989 to the CERN [23], his employer 
at that time, to build a more efficient internal information system. Luck-
ily, he soon realized that the system could be used globally across organi-
zations and announced the project to the wider world. 

Fast forward a little more than two decades, a world without Internet and 
World Wide Web has become almost unimaginable. According to statis-
tics from the International Telecommunication Union [24], three quar-
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ters of the population of the developed world are active Internet users. In 
total, forty percent of the world’s population is online. Considering its 
sheer size, its often uncoordinated development, and its heterogeneity, 
the Internet and the World Wide Web are the most complex systems 
ever built by humankind.  

In the following sections, which are based on previous work published in 
[25] and [26]–[28], we will have a look at the architecture that enabled 
the Web’s exponential growth and some of the main technologies to 
build websites and Web APIs. We will provide an overview of the vision 
of a “Semantic Web”. In the context of this thesis, the underlying Inter-
net technology is assumed as a given infrastructure and thus not being 
discussed in detail. 

2.1 The Architecture of the World Wide Web 
After getting the approval for his project proposal [23], Tim Berners-Lee 
started the development of what became the World Wide Web in Octo-
ber 1990 [29]. By Christmas the same year, Berners-Lee had not only 
specified the three main technologies which still form the foundation of 

Figure 2.  Internet users by development level (adapted from [24]) 
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today’s Web, namely the Hypertext Transfer Protocol (HTTP), Uni-
versal Document Identifiers (UDIs), which was later renamed to Uni-
form Resource Identifiers (URIs), and the Hypertext Markup Language 
(HTML), but also first running prototypes of a browser and a server. 

An important milestone in the history of the Web was 1993 when the 
CERN released the World Wide Web’s technology into public 
domain [30]. The same year, the University of Minnesota 
announced [31] that it would begin to charge licensing fees for its imple-
mentation of the Gopher protocol [32] (the University of Minnesota is 
the inventor of Gopher) which caused many users to stop using Gopher 
and switch to the World Wide Web instead. Today, Gopher is often 
regarded as the predecessor of the World Wide Web. 

The World Wide Web was conceived as a client-server system. Clients 
access hypertext documents which are identified by Universal Resource 
Identifiers (URI) on servers across the Internet via the Hypertext Transfer 
Protocol (HTTP). The documents themselves are expressed in the 
Hypertext Markup Language (HTML), a simple, text based markup lan-
guage inspired by SGML [33] (more concretely, SGMLguid, a CERN-
internal, SGML-based documentation format). So, historically, the Web 
can be described as a giant, globally distributed collection of hypertext 
documents. Links and the resulting networking effects played a funda-
mental role for the success of the Web. Universal Resource Identifiers 
provide a mechanism to enrich documents with references to other 
relevant documents. 

The key differentiator to other hypertext systems available at the time lies 
in the decision to make links unidirectional instead of requiring them to 
be bidirectional. Practically, this means that it is impossible to prevent 
broken links when documents become unavailable. While link rot is cer-
tainly an undesired consequence of this decision, the advantages clearly 
outweigh this shortcoming. The decision is arguably one of the main rea-
sons for the Web’s superior scalability. As unidirectional links eliminate 
the otherwise necessary referential integrity checks, it is possible to drasti-
cally simplify the implementation of clients and servers. Furthermore, 
unidirectional linkage enables the decentralized, uncoordinated creation 
of documents. This decentralism was the main reason why the Web 
quickly overshadowed all previous hypertext systems and allowed it to 
scale in an unprecedented manner. 
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For a long time, the Web’s architecture and its technologies were not 
properly standardized. The documentation merely consisted of a set of 
informal web pages [34], [35], draft specifications [36], and the source 
code for clients and servers published by the CERN. As those documents 
have not been kept in sync with the deployed implementations, it became 
harder and harder to create interoperable systems. Consequently, the 
pressure from industry asking for standardization of the core technologies 
grew and working groups writing stable specifications were established. 

In 1992 Berners-Lee, Groff, and Cailliau published a paper [37] discuss-
ing “the requirements on a universal naming syntax which can be used to 
refer to documents [emphasis added]”. Furthermore, concrete recommen-
dations for a generic syntax for Universal Document Identifiers were pre-
sented. Somewhere during those initial standardization efforts in the early 
nineties a subtle yet interesting shift in the used terminology can be 
observed. RFC 1630 [38], which in 1994 defined for the first time the 
Uniform Resource Identifier syntax in a stable document, is primarily con-
cerned with “objects” instead of documents. It defines “the syntax used 
by the World-Wide Web initiative to encode the names and addresses of 
objects [emphasis added] on the Internet”. RFC 1738 [39], which was 
published the same year, officially standardized the syntax and replaced 
the term “object” with “resource”. It then took four years till 
RFC 2396 [40] finally defined the term “resource”: 

A resource can be anything that has identity. Familiar examples 
include an electronic document, an image, a service (e.g., “today’s 
weather report for Los Angeles”), and a collection of other resources. 
Not all resources are network “retrievable”; e.g., human beings, corpo-
rations, and bound books in a library can also be considered resources. 
The resource is the conceptual mapping to an entity or set of entities, 
not necessarily the entity which corresponds to that mapping at any 
particular instance in time. Thus, a resource can remain constant even 
when its content—the entities to which it currently corresponds—
changes over time, provided that the conceptual mapping is not 
changed in the process. 

While this appears to be the first trace of what later would become 
Linked Data and the Semantic Web vision (which we will describe later 
in this chapter), the first seeds can in fact already be found in 
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Berners-Lee’s initial proposal [23] to CERN’s management to build the 
World Wide Web. The graph shown in the document (Figure 3) not 
only includes documents but also real-world entities such as organiza-
tions, divisions, and even persons.  

In 1995, HTML 2.0 [41] was the first version of the Hypertext Markup 
Language to be officially standardized and a year later, HTTP/1.0 [42] 
was published non-normatively as it was expected to be replaced soon by 
a standards track document fixing some of HTTP/1.0’s issues. This hap-
pened in 1997 with the publication of HTTP/1.1 [43], the first norma-
tive specification of the Hypertext Transfer Protocol. 

The snippet in Listing 1 shows the Web’s three main technologies in 
action. A client requests the resource identified with the URI 
http://example.com/doc over HTTP/1.1 for which the server returns an 
HTML document linking to http://example.org/doc2. 

In the mid-nineties, Roy T. Fielding, co-author of both the URI and the 
HTTP specification, started working on “an architectural model for how 
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the Web should work, such that it could serve as the guiding framework 
for the Web protocol standards” [11]. The outcome of his work was an 
architectural style that he called Representational State Trans-
fer (REST) [11]. According to him, REST captures all aspects of a dis-
tributed hypermedia system that are considered central to the behavioral 
and performance requirements of the Web. Since REST has been used to 
guide the design and development of the architecture of the modern 
Web [10] we will discuss it in more detail in the next section. 

2.1.1 The Representational State Transfer Architectural Style 

REST [11] is an architectural style that specifies constraints to improve 
performance, scalability, reliability, and resource abstraction within dis-
tributed hypermedia systems. It ignores implementation details and pro-
tocol syntaxes in order to focus on the roles of the various system com-
ponents, their interaction with other components, and the interpretation 
of the exchanged data. The meticulously chosen design trade-offs allow 
the creation of extensible, maintainable, evolvable, and loosely-coupled 
distributed systems at Internet-scale. The fact that the Web—the largest 
and most successful distributed system ever built—is based on REST 
principles should be evidence enough of its superior characteristics. 

REST is based on a traditional client-server architecture in which the 
server offers a number of services which a client can invoke by sending 
requests to the server. The motivation for such an architecture is the clear 

--> Client Request 
GET /doc HTTP/1.1 
Host: example.com 
 
<-- Server Response 
HTTP/1.1 200 OK 
Content-Type: text/html 
 
<html> 
  <head> 
    <title>An Example Page</title> 
  </head> 
  <body> 
    <p>Link to <a href="http://example.org/doc2">document 2</a>.</p> 
  </body> 
</html> 

Listing 1.  An HTTP request returning an HTML document 

http://www.example.com/
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separation of concerns which simplifies the implementation of the two 
components which often has the positive side-effect of improving the 
scalability of the server and enabling the independent evolution of the 
two components (as long as their interfaces do not change). REST adds 
an important constraint to this architectural style, namely that the server 
is stateless, i.e., it does not manage any session state. Consequently, each 
request from a client to the server must contain all the information neces-
sary for the server to understand the request. In other words, a client 
cannot take advantage of any stored context on the server. The server of 
course knows about the state of its resources but does not keep track of 
individual client sessions; all session state is kept entirely on the client. 
This is an important aspect which facilitates tasks like monitoring and 
logging due to the increased visibility of the interactions. It also improves 
reliability because the recovery from partial failures [8] is much simpler if 
all the necessary state information is contained in each request. In addi-
tion, scalability is improved because not having to store state between 
requests allows the server to quickly free resources and further simplifies 
implementation because the server does not have to manage resource 
usage across requests. It is the stateless server constraint which enables the 
for many applications crucial load balancing. The downside of REST’s 
statelessness is a decreased network performance due to repetitive data 
since all the state information has to be transferred in every request 
instead of keeping it on the server between requests. It also reduces the 
server’s control over a consistent application behavior since the applica-
tion is split between the server and multiple clients with potentially dif-
ferent capabilities. 

To mitigate the overhead caused by the statelessness of RESTful systems, 
support for caching has been added. The cache constraint requires that 
the data within responses is implicitly or explicitly labeled as cacheable or 
non-cacheable. This reduces the number of requests or results in much 
smaller responses that simply indicate that the data has not been changed 
since the last request. This has positive effects on the efficiency and scala-
bility of RESTful systems and improves the user-perceived performance 
by reducing latency. The downside is that the system’s reliability may be 
decreased due to potentially stale information. 

REST’s emphasis on a uniform interface between the system components 
is the central feature which distinguishes it from other network-based 
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styles. It simplifies the overall system architecture and improves the visi-
bility of component interactions. By decoupling implementations from 
the services they provide, independent evolvability of the various compo-
nents is improved at the cost of degraded efficiency compared to highly 
specialized interfaces. REST defines four interface constraints to ensure a 
uniform interface: 1) identification of resources, 2) manipulation of 
resources through representations, 3) self-descriptive messages, and 
4) hypermedia as the engine of application state. 

REST is a resource-oriented architecture in the sense that the key 
abstraction of information in REST is a resource. Any concept can be 
thought of as a resource. Fielding defines a resource R as a “temporally 
varying membership function MR(t), which for time t maps to a set of 
entities, or values, which are equivalent.” [11] REST’s identification of 
resources constraint requires that resources are identifiable so that they can 
be accessed and manipulated via generic interfaces. On the Web, 
resources are identified by IRIs [44]. Since a resource may represent con-
cepts which cannot be serialized into a byte stream (e.g., persons or a 
feeling), resources are not manipulated directly. Instead, REST is built on 
the concept of manipulation of resources through representations; i.e., an 
additional layer of indirection in the form of resource representations is 
introduced. A representation is a sequence of bytes plus some metadata. 
Media types standardize the data format of resource representations on 
the Web. Given that the communication between components is stateless 
and that the data format of resource representations is standardized, 
REST enforces self-descriptive messages that can be processed by interme-
diaries without out-of-band knowledge. The last missing piece to com-
plete REST’s uniform interface is the hypermedia as the engine of 
application state constraint (HATEOAS). It refers to the use of hyperlinks 
in resource representations as a way of navigating the state machine of an 
application. Even though it is the hypermedia constraint which allows 
systems to be dynamically composed and loosely coupled, it is one of the 
least understood constraints and thus seldom implemented correctly. 

A lot of systems, regardless of claiming to be RESTful or not, rely heavily 
on implicit state control-flow, which is characteristic for the Remote 
Procedure Call style. The allowed messages and how they are interpreted 
depends on previously exchanged messages and thus in which implicit 
state the system is in. Third parties or intermediaries trying to interpret 
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the conversation need the full state transition table and the initial state to 
understand the communication—something that is rarely available or not 
practical. This also makes it difficult or virtually impossible to recover 
from partial failures in large distributed systems. 

To solve these issues and assure evolvability, the use of hypermedia is a 
core tenet of the REST architectural style. According to Fielding [45], “a 
REST API should be entered with no prior knowledge beyond the initial 
URI (bookmark) and set of standardized media types. […] From that 
point on, all application state transitions must be driven by client selec-
tion of server-provided choices that are present in the received represen-
tations or implied by the user’s manipulation of those representations.” 
The Web leverages this type of interaction and state-control flow where 
very little is known a priori to allow the decentralization. At least humans 
are able to quickly adapt to new control flows that are communicated at 
runtime, e.g. a change in the order sequence or a new login page to access 
a service.  

Parastatidis et al. [46] define the set of legal interactions necessary to 
achieve a specific, application-dependent goal as the domain application 
protocol of a service. The protocol defines the interaction rules between 
the different participants. Consequently, the application state is a snap-
shot of the system at an instant in time. This coincides with Fielding’s 
definition [11] of application state which defines it as the “pending 
requests, the topology of connected components (some of which may be 
filtering buffered data), the active requests on those connectors, the data 
flow of representations in response to those requests, and the processing 
of those representations as they are received by the user agent.” Accord-
ingly, the overall system state consists of the application state and the 
server state. By using the notion of a domain application protocol, the 
phrase “hypermedia as the engine of application state” can now be 
explained as the use of hypermedia controls to advertise valid state tran-
sitions at runtime instead of agreeing on static contracts at design time. 
Changes in the domain application protocol can thus be dynamically 
communicated to clients. This brings some of the human Web’s 
adaptivity to the Web of machines and allows the building of loosely 
coupled and evolvable systems. Rather than requiring an understanding 
of a specific URI structure, clients only need to understand the semantics 
or business context in which a link appears [46]. Unfortunately, however, 
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current Web APIs rarely exhibit such features and thus it is almost 
impossible to achieve a comparable level of adaptivity on the Web of 
machines as we will see in section 3.  

Annoyed by the fact that a lot of services claim to be RESTful regardless 
of violating the hypermedia constraint, Fielding made it very clear that 
hypermedia is a fundamental requirement for a RESTful architec-
ture [45]. Given that the term REST is nonetheless frequently misused, 
there exist efforts in the community to establish alternative terms, such as 
Hypermedia API, to denote services respecting it. 

While the hypermedia constraint is often violated, the layered system con-
straint is almost always implemented correctly and helps to reduce the 
coupling between components. The constraint requires that RESTful 
systems are composed by hierarchical layers in which components on a 
specific layer only provide services to components on the layer above and 
only use services provided by components on the layer below. This limits 
the knowledge of components to a single layer and it could thus be said 
that it lowers the upper bound of the overall system complexity. Fur-
thermore, it allows the introduction of important intermediaries such as 
load balancers, shared caches, firewalls, gateways, or proxies at various 
points to make the system more adaptable to changing requirements 
without having to change the interfaces. Obviously, each additional layer 
increases the processing overhead and therefore latency, which results in 
lower user-perceived performance. That can, however, be partly compen-
sated by adding caches. 

Finally, the Representational State Transfer architectural style has a code-
on-demand constraint which allows client functionality to be extended by 
code that is loaded dynamically at runtime. The constraint’s main benefit 
is the improved extensibility of systems. It is best illustrated by current 
Web applications which depend heavily on dynamically loaded JavaScript 
code to implement functionality that is not generally available in Web 
browsers. It should, however, not be forgotten that loading code on 
demand drastically reduces visibility and may open the door to security 
vulnerabilities. In REST, code-on-demand is thus an optional constraint. 
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2.2 Contracts on the Web 
In any distributed system there has to be an agreement, or more formally, 
a contract prescribing how the various components of the system interact; 
otherwise, communication is impossible. These contracts usually stipulate 
the data model along with its processing model and encodings, i.e., the 
serialization formats, the interaction model consisting of system interfaces 
and coordination protocols, and sometimes various policy assertions. The 
data encodings or formats along with their processing models enable the 
creation and interpretation of messages that are exchanged between the 
various components in order to invoke certain operations. The system 
interfaces and coordination protocols define the mechanisms and the 
order in which messages have to be exchanged to result in the desired 
behavior. Finally, policies may describe non-functional aspects such as 
service-level agreements (SLAs), pricing, security requirements, etc. 

In the traditional Remote Procedure Call (RPC) model, where all differ-
ences between local and distributed computing are hidden, typically 
Interface Description Languages (IDL) are used to define the application-
specific details on top of a standardized communication protocol. This 
allows automatic code generation for both the client and the server side 
but, in most cases, also leads to the undesirable effect of leaking imple-
mentation details from the server, who owns the contract, to the client. 
Given that the client and the server are tightly coupled, such systems 
typically rely heavily on implicit state control-flow. The allowed messages 
and how they have to be interpreted depends on what messages have 
been exchanged before and thus in which implicit state the system is. 
Third parties or intermediaries trying to interpret the conversation need 
the full state transition table and the initial state to understand the com-
munication. This implies that states and transitions between them have 
to identifiable, which in turn suggests the need for (complex) orchestra-
tion technologies. 

The architecture of the Web differs fundamentally from these traditional 
models. On the Web, contracts are based on media types and protocols. 
Applications can thus be built by composing various well-defined build-
ing blocks. Media types define the data and processing models as well as 
the serialization formats. Protocols describe interaction models that 
extend the capabilities of (the more or less generic) media types into the 



 

22 

realm of specific application domains; mostly by defining specific link 
relations. An example illustrating this nicely is the Atom Publishing 
Protocol [47], which, by defining a number of link relations, extends the 
otherwise read-only Atom Syndication format [48] with a protocol that 
allows the addition or manipulation of existing feed entries. 

The main difference of the Web compared to other distributed system 
architectures is that the contracts are centrally owned instead of being 
owned by the server. This allows the independent evolution of clients and 
servers as both are coupled to these central contracts instead of being 
coupled to each other. Instead of relying on upfront agreement of all 
aspects of interaction, parts of the contract can be communicated or 
negotiated at runtime. Furthermore, instead of relying on implicit state 
control-flows as described above, all communication is stateless, meaning 
that each request from the client to the server must contain all the infor-
mation necessary for the server to understand the request. A client cannot 
take advantage of any stored context on the server as the server does not 
keep track of individual client sessions. The session state is kept entirely 
on the client. This transfer of state information paired with centrally 
owned contracts that can be communicated or negotiated at runtime is 
the essence of what Fielding describes as the Representational State 
Transfer (REST) architectural style [11]. 

The challenge in designing RESTful systems is to select the most appro-
priate media type(s) as the core of the application-specific contract. 
Sometimes this requires creating new, specialized media types. Therefore, 
designers of Web APIs have to decide whether to create their own spe-
cialized media type, which reduces interoperability; to use a generic one 
such as XML [49] or JSON [50], which, with a probability bordering on 
certainty, requires out-of-band contracts and thus introduces coupling; or 
to create a specialized media type on top of an existing, generic one. 
Unfortunately, even the specialization of an existing media type is not as 
straightforward as it might seem at first sight as we will see in section 3.1. 
It is also worth noting that media type specifications or media type spe-
cializations are not machine-readable but just described in natural lan-
guage. Software has thus to be manually adapted if new media type 
(specializations) are to be supported. 
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2.2.1 An Alternative Approach 

Both xCard [51] and xCal [52], e.g., are XML-based serializations and, as 
such, use XML’s preferred solution to unambiguously bind elements and 
attributes to the semantics of a specific vocabulary, namely 
XML Namespaces [53]. The idea behind XML Namespaces is simple: 
instead of using arbitrary strings as names for elements and attributes, a 
vocabulary URI is defined which acts as a prefix for all names that are 
part of the said vocabulary. This has the advantage that elements and 
attributes from multiple XML markup vocabularies can be used within a 
single document without risking that names clash. The fact that URIs are 
used as identifiers allows both a centralized and a decentralized creation 
and management of XML namespaces; in fact, the IANA maintains a 
registry specifically for XML namespaces [54]. 

Thus, the question arises why both xCard and xCal have a dedicated 
media type if the semantics are already signaled by a dedicated XML 
namespace. The reason is simple. If HTTP messages are not typed using 
a media type, a processor has to look into the content of the message in 
order to decide how to process it. This is not problematic per se, but the 
real problem lies in the fact that most processors (including browsers) 
have no mechanisms to leverage these extension points. Instead of passing 
the data to the most appropriate application, they simply fall back to the 
basic behavior, which in the case of XML in the browser is to simply dis-
play the XML tree. Another, perhaps bigger, problem is the fact that 
content negotiation is based on media types which makes it impossible 
for a client to express its preferences if no dedicated media type exits. 
This problem has been known for quite some time. 

Inspired by HTML’s profile attribute [55] Toby A. Inkster started an 
effort [56] to register an optional profile parameter for XML’s and 
JSON’s media types to address this issue in 2009. Similar to HTML’s 
profile attribute, the profile parameter was intended to signal that a mes-
sage conforms to some additional constraints or conventions on top of 
the constraints and semantics imposed by the media type or to convey 
some additional semantics. The value of the profile parameter in Inkster’s 
proposal had to be a single absolute URI. If multiple profiles are appli-
cable to the content, a server should choose “the most useful” but “pay 
attention to any of the profiles if found in the Accept header during con-
tent negotiation” [56]. Unfortunately, Inkster’s Internet Draft was not 
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standardized but expired and most Web APIs continued to either use the 
generic media type or to mint their own specialized type. 

In 2012, Erik Wilde started a new initiative to standardize a similar 
mechanism. Instead of trying to change XML’s and JSON’s media type 
registrations, he proposed [19] to standardize the link relation profile to 
signal additional semantics associated with a representation using an 
HTTP Link header [57]. While this enables servers to advertise profiles 
in their responses, it leaves the content negotiation problem unsolved. 
Wilde addressed this shortcoming in a later revision of his draft by rec-
ommending that newly defined media types should define a profile media 
type parameter if appropriate. This allows clients to signal their capabili-
ties and preferences in the content negotiation process allowing the server 
to return the best matching representation. Another notable difference to 
Inkster’s proposal is that Wilde removed the restriction to a single profile 
URI, meaning that multiple profiles can be easily combined. 

In light of these advances, initiatives such as the effort [58] to standardize 
dedicated media types for JSON-based versions of vCard and iCalendar 
should be challenged—especially considering that most required parts 
already exist. The work to create a shared vocabulary has already been 
started a couple of years ago at the W3C [59] and JSON-LD, which is 
presented in detail in section 5.3, provides a way to serialize such data in 
a JSON-based syntax. It also features a profile media type parameter to 
signal the additional semantics and conventions at the HTTP layer. The 
only missing piece is the definition of a profile to specify which field 
names are used and how the data is structured when serialized. This is 
necessary as JSON-only clients depend on the structure and not directly 
on the semantics of the serialization. Since JSON-LD represents graphs, 
most of the time, there exist multiple ways to serialize the same data. 

There are multiple advantages that such profile-based approach offers. 
First of all, the need for micro-types such as xCard would disappear. It is 
true that the information is basically just shifted to the profile parameter 
but the fact that profiles can be easily combined means that the overall 
need for dedicated types or profiles is reduced. This brings us to another 
benefit: due to their simple composability, the scope of profiles can be 
reduced which in turn simplifies their standardization. It is this 
composability which allows the separation of concerns that is often 
missing in media types. Leveraging profiles, generic media types defining 
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a serialization format can be combined with the concrete semantics of a 
profile. Networking effects will ensure that a few well-known and widely 
adopted profiles will emerge. At the same time it becomes easier to boot-
strap new profiles because, unlike newly established media types, they do 
not suffer under a cold start problem. To alleviate the risk of introducing 
tight coupling through the backdoor by the usage of profiles it is 
important that they are centrally owned, just as media types. In practice, 
this means that a central registry of standardized profiles is required. We 
thus requested the Internet Assigned Numbers Authority (IANA) to 
establish such a registry [20]. 

2.3 Linked Data and the Semantic Web 
The early standardization efforts of the Web made it clear that it is more 
than a hypertext document system. The separation of documents into 
resources and representations thereof paved the way to integrate real-
world entities such as persons or even imaginary or abstract concepts such 
as companies into the Web at an architectural level. No longer was the 
Web limited to simple documents. While Tim Berners-Lee’s original 
proposal [23] already hinted such an architecture (and early standardiza-
tion efforts certainly took it into consideration), he felt urged to express 
his vision more explicitly to a wider public at the First International 
World Wide Web Conference in 1994. He argued that the Web has 
become an “exciting world” for users but that it contains very little 
machine-readable information. “The meaning of the documents is clear 
[only] to those with a grasp of (normally) English, and the significance of 
the links is only evident from the context around the anchor [but to a 
computer] the web is a flat, boring world devoid of meaning.” [60] He 
identified two things which would be necessary to add machine-readable 
semantics to the Web, namely allowing documents to contain machine-
readable information and allowing links with explicit relationship values. 
Unsurprisingly, the World Wide Web Consortium (W3C), which 
Berners-Lee founded later that year to coordinate the standardization of 
the Web, put a focus on standardizing Semantic Web technologies. After 
various related efforts, this resulted in the standardization of the Resource 
Description Framework (RDF) in 1999 [61]. 
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For a long time, RDF/XML was the only standardized serialization for-
mat for RDF but it was widely disliked even by XML enthusiasts (XML 
was at the peak of its popularity at that time). RDX/XML is neither 
optimized for humans nor machines but, most importantly, standard 
XML tools are almost useless when working with RDF/XML. This and 
the fact that the Semantic Web community derailed into the artificial 
intelligence domain instead of concentrating on more practical data-
oriented applications resulted in the languishing adoption of the technol-
ogy. In 2006, however, Shadbolt, Hall, and Berners-Lee published an 
article [62] admitting that the simple idea behind the Semantic Web 
vision still remained largely unrealized. Nevertheless, standardization 
work continued and led to a more or less complete stack of Semantic 
Web technologies which we will discuss in the next section. The few early 
Semantic Web projects lacked viral uptake and only very few used 
dereferenceable URIs which would have allowed the data to be browsed 
in a similar fashion as documents can be browsed on the Web. This 
motivated Berners-Lee to formulate the famous Linked Data princi-
ples [17] which can be classified as a turning point in the history of the 
Semantic Web. We will discuss them later in this section. 

2.3.1 The Semantic Web Technology Stack 

The Semantic Web is an extension of the traditional Web with the aim to 
offer information not only in the form of natural language documents 
but also as machine-readable data. The Resource Description 
Framework (RDF) [63] builds the foundation of the Semantic Web 
technology stack. It defines a simple, triple-based data model in which 
each statement consists of a subject, a predicate, and an object as 
illustrated in Figure 4. Multiple triples build a graph, and multiple 
graphs form a dataset. 

While IRIs can be used in every element of an RDF triple, literals, i.e., 
basic values such as strings or numbers which are typed and optionally 
language-tagged, can only be used in the object position. Blank nodes, 
which are special local identifiers whose scope is limited to a single doc-
ument or data store, can only be used in the subject and the object posi-
tion; not as predicates. Despite this simple data model, RDF has the bad 
reputation of being overly complex. In large parts, this stems from the 
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fact that RDF is often conflated with its first, and for a long time only, 
serialization format RDF/XML [64]. In fact, RDF/XML is now generally 
believed to be one of the main reasons for the hesitant adoption of 
Semantic Web technologies in general. Since critics often complain that 
“RDF is complex artificial intelligence technology”, it is also worth 
noting that RDF itself does not specify a mechanism for reasoning. This 
is left to higher layers in the stack. 

In RDF, every concept is identified with an IRI, an Internationalized 
Resource Identifier. Since IRIs are global identifiers, two different 
appearances of an IRI denote the same concept. The owner of IRI [10] 
defines what concept the IRI denotes. This, again, can be described in 
RDF by reusing other, already defined concepts. A set of such concepts 
targeting a specific use case or application domain is typically called a 
vocabulary or, more formally, an ontology (we will use the two terms 
interchangeably throughout this thesis). The W3C standardized the two 
vocabularies RDF Schema (RDFS) and the Web Ontology 
Language (OWL) to describe new vocabularies in an interoperable way. 

RDF Schema [65] defines concepts to describe classes (and class hierar-
chies), data types, or properties similar to object-oriented programming 
languages. Furthermore, it defines concepts to express sets and lists. 
While this may look familiar to developers used to object-oriented pro-

Figure 4.  The RDF data model 
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gramming languages, the devil lies in the details. Unlike programming 
languages, resources can be, e.g., instances and classes at the same time, 
classes are not disjoint (and there is no way to express disjointness explic-
itly), and properties can be applied to instances of any class. We will dis-
cuss these “issues” in more detail in section 3.4. 

Unlike RDFS, the Web Ontology Language [66] allows, e.g., to create dis-
joint classes or unions of classes. Simply speaking, it could be classified as 
an extension of RDFS adding many concepts, which makes it a far more 
expressive modeling language (even though technically only some of 
OWL’s profiles are extensions of RDFS). Since both RDFS and OWL 
play only a marginal role in the context of this thesis, we will not discuss 
them or their differences in detail but refer the interested reader to the 
respective specifications [65], [66]. 

In most cases, both RDFS and OWL are not used to validate data but to 
infer new knowledge. The properties associated to a specific entity can, 
e.g., be used to infer the classes it is an instance of. Historically, these 
inference rules have only been described in natural language in the 
vocabulary’s specification. Thus, reasoners had to be manually adapted to 
support new vocabularies. RIF [67], the Rule Interchange Format, solves 
this issue by making (inference) rules machine-readable. The RIF 
Working Group, e.g., published a W3C WG Note showing how 
OWL 2 RL can be implemented using RIF [68]. 

Figure 5.  The Semantic Web technology stack (adapted from [247]) 
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Instead of trying to define a universal rule language, RIF acknowledges 
the fact that existing rule systems have widely varying syntaxes and 
semantics. In order to achieve interoperability across systems, it defines a 
number of “dialects”, i.e., a set of languages with well-defined syntaxes 
and semantics. Each system translates its own language(s) to and from a 
RIF dialect which allows the exchange of rules across systems—provided 
that the systems find a dialect they both support. The intermediate repre-
sentation of rules is specified in the form of an XML-based format, thus 
the term “format” in RIF’s name. At the time of this writing, there exists 
only a Working Group Note describing the mapping of RIF XML doc-
uments to RDF graphs [69]. 

The last piece of the currently standardized Semantic Web technology 
stack is SPARQL. As the name suggests, SPARQL, which is a recursive 
acronym for SPARQL Protocol and RDF Query Language [70], not only 
specifies a language to query and manipulate RDF data [71]–[73] but 
also a protocol to invoke such queries over HTTP [74]–[76] and a num-
ber of result formats (XML, JSON, CSV, and TSV [77]–[79]), however 
no RDF-based formats. 

2.3.1 Linked Data 

All the technologies that form the Semantic Web technology stack have 
in common that they do not require IRIs to be dereferenceable. Instead, 
just as RDF itself, they treat them as opaque identifiers. Unlike the tradi-
tional Web, the early Semantic Web could not be browsed which means 
that, strictly speaking, it was not an extension of the Web but a separate 
ecosystem. In an effort to change that, Tim Berners-Lee postulated the 
following Linked Data principles in 2006 [17]: 

1) Use URIs as names for things  
2) Use HTTP URIs so that people can look up those names.  
3) When someone looks up a URI, provide useful information, using the 

standards (RDF, SPARQL) [sic] 
4) Include links to other URIs. so [sic] that they can discover more 

things. 

These four simple principles represent an important turning point in the 
history of the Semantic Web. Not only did they rebrand the vision of a 
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Semantic Web with a much more concrete and graspable description of 
the basic principles underlying it but also refocused its applications on 
more practice-relevant problems, namely the publication and consump-
tion of vast amounts of structured data. As famously illustrated by the 
well-known Linked Open Data cloud diagram [80] shown in Figure 6, 
the amount of Linked Data, and thus the Semantic Web in general, has 
managed to grow significantly over the last couple of years. This is not to 
say that the Semantic Web is now widely adopted or that there are no 
major pain points left hindering its adoption. Adoption is still several 
orders of magnitudes lower compared to the Web and, as soon as one 
wishes to start publishing Linked Data, several fundamental questions 
arise for which satisfactory answers are still missing. The most heavily 
debated question is about the proper use of IRIs for Linked Data. 

The shift in the architecture of the World Wide Web [10] from a distrib-
uted hypertext system to a resource-oriented architecture in which 

Figure 6.  The growth of the Linked Open Data Cloud, 2007–2011 (source: [80]) 
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resources are manipulated through representations did not require Web 
developers to adapt to. On the contrary, the conceptual model 
underlying the Web was changed to reflect the way people used the Web 
since its inception. However, the problem surfaces when IRIs are used to 
identify both a representation, i.e., the bytes on the wire, and an abstract 
resource such as a person. Unlike humans, logic reasoners and other 
inference technologies cannot disambiguate these two concepts and will 
consequently produce wrong conclusions. A simple example illustrating 
the problem is an IRI that is both used to describe a person and metadata 
such as licensing information about the document (representation) it 
returns when it is dereferenced. If such data is now integrated with data 
from other sources by declaring IRIs use to talk about the same person as 
being equal, invalid conclusions such as contradicting licensing terms 
may be drawn. 

This problem has been discussed for over a decade and is commonly 
known as the httpRange-14 issue [81], the identifier assigned by the 
W3C’s Technical Architecture Group (TAG) in its issue tracker. The 
resolution of that issue was an advice to the community [82] to either use 
fragment identifiers or HTTP 303 See Other redirects to signal that an 
IRI identifies an abstract resource (formally known as a non-information 
resource), such as a person, instead of the returned representation, i.e., 
the document describing the person. While the issue has been closed, 
consensus that the proposed solution is practical is still uncertain and 
alternative solutions are proposed on a regular basis. The most promising 
proposals at the time of this writing involve “punning” to use the same 
IRI to mean different things. They use the context in which an IRI is 
used to determine whether the representation or the abstract concept is 
meant. A property specifying a person’s first name, e.g., would be 
mapped to the abstract concept (the person) whereas a property 
specifying the license would be mapped to the representation. When data 
is integrated these separations need to be preserved meaning that it is 
necessary to have mechanisms which allow the equality of representations 
to be defined separately from the equality on the abstract concepts they 
describe. Tennison not only wrote an excellent blog post [83] explaining 
this in more detail but also published a first draft [84] of what might 
become a W3C Recommendation as part of her work at the W3C TAG. 
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Summarized, Linked Data requires Web developers not only to identify 
things and concepts by an IRI but also to distinguish between infor-
mation resources such as documents and non-information resources such 
as persons in order to choose the right form of IRI (fragment identifier) 
or HTTP behavior when dereferenced (redirect). In this context it is 
interesting to note that recent commercial efforts such as 
Schema.org [85] or Facebook’s Open Graph Protocol [86] largely stay 
silent on these issues and instead try to disambiguate the data computa-
tionally. Since humongous amounts of data that follows their advice are 
being published, they clearly influence the direction of future solutions. 

2.4 Services on the Web 
Many pages on Web are built by segmenting and flattening structured 
data from databases to HTML documents. To process the data published 
in such a way, brittle approaches such as screen scraping have to be used 
to at least partially reconstruct the raw data in order to make it machine-
processable. The aim of the Semantic Web is to eliminate this limitation 
by creating a Web of Data that can be directly processed by machines. In 
practice, however, that goal is still rarely approached by using Semantic 
Web technologies. Instead, the majority of structured data is being pub-
lished in the form of XML [49] or JSON [50] documents. 

Commonly speaking, such offerings are termed as Web services but given 
that also human-targeting, HTML-based websites are, at least to a certain 
degree, machine-processable, that term is somewhat misleading as web-
sites could be classified as Web services as well. Similarly, a Web service 
could be referred to as a “website for machines”. Thus, for the scope of 
this thesis, we define the term Web service as a set of HTTP-based 
interfaces to support interoperable machine-to-machine interaction by the 
exchange of structured data. The aim of the machine-to-machine interac-
tion is to drive business processes in order to serve particular, application-
dependent goals. Since Web services put the emphasis on “machine-to-
machine”, the interactions are optimized for machines instead of being 
optimized for humans as websites are. In practice, two major classes of 
Web services can be identified, namely SOAP-based services and 
RESTful services. We will discuss both in the following sections. 
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2.4.1 SOAP-based Services 

In an effort to improve the flexibility and dynamicity of their products, 
the information technology industry started to work on the formalization 
and standardization of Web services in the late nineties. The outcome 
was a complex set of specifications. XML was, mainly due to its popu-
larity at the time, chosen as the main data format. The other three main 
pillars are SOAP, WSDL, and UDDI. 

SOAP [7], originally defined as Simple Object Access Protocol at Microsoft, 
specifies a messaging framework consisting of a processing an extensi-
bility model, a protocol binding framework as well as a XML-based mes-
sage format. The Web Service Description Language (WSDL) [87] 
describes the interface of a Web Service and Universal Description, 
Discovery and Integration (UDDI) [88] registries allow the discovery of 
services and their interface descriptions. 

Even though huge investments have been made, the promise of uniform 
service interface standards and universal service registries in the form of 
SOAP, WSDL, and UDDI has proven elusive. The Universal Business 
Registry, the main public UDDI registry, has been shut down in 2006 
and most public SOAP-based Web services have been phased out shortly 
thereafter. There were many problems that led to this demise but the 
most fundamental reason is that the whole architecture is based on a 
Remote Procedure Call style which has been known to be flawed [8] for 
years. Furthermore, instead of using HTTP as an application protocol, it 
was misused as a transport protocol. In SOAP, e.g., data is typically 
retrieved by POSTing a SOAP-request to the service which then returns 
the desired data. This breaks intermediaries that serve as proxies or caches 
which typically perform their functions based on the standard semantics 
associated with the HTTP verbs and headers in the messages flowing 
through them. In practice, this reduces the scalability enormously and 
means that running a public service often results in prohibitive costs. 
Consequently, the number of public SOAP-based services has become 
negligibly small. Looking at company-internal services, however, the 
extensive tooling often outweighs these disadvantages so that they are still 
used in such scenarios. 

Another problem when there is no coordination between the publisher 
and the consumer of a service is that, despite using abstractions of the 
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data types found in the actual implementations, services interfaces 
described with WSDL often leak implementation details which leads to 
tightly coupled systems. Similarly, the mapping to the abstract types is 
not always easily possible and thus often results in severe interoperability 
problems. Especially the inherent impedance mismatch between 
XML Schemas (XSD) [89], [90] and object-oriented programming con-
structs, the so called O/X impedance mismatch, often complicate the 
integration of different systems. The XML Schema language has a num-
ber of type system constructs which simply do not exist in commonly 
used object-oriented programming languages such as Java [91]. Thus, 
interoperability problems arise because each SOAP stack has its own way 
of mapping the various XSD type system constructs to objects in the tar-
get platform’s programming language and vice versa. 

In summary, the problems outlined above and the complexity of the 
technology, which consists of far more specifications than just SOAP, 
WSDL, and UDDI, led to a shift towards more lightweight solutions 
that integrate better into the architecture of the Web, which we will 
describe in the next section. 

2.4.2 RESTful Services 

According to statistics from ProgrammableWeb [92], the premier catalog 
of public Web services, three out of four Web services are based on the 
REST architectural style. This does not mean that they fully obey REST 
constraints but primarily that they do use HTTP as an application proto-
col and that the various resources get their own IRIs. In fact, most ser-
vices that claim to be RESTful (REST APIs) are not. To capture the 
various levels of “RESTfulness”, Richardson defined a maturity 
model [93] but by definition, a service is either RESTful by obeying to all 
constraints defined by REST or it is not. Annoyed by the fact that espe-
cially the hypermedia constraint is ignored by many Web services that 
claim to be RESTful, Fielding wrote a blog post [45] making it clear that 
the constraint it is not optional. Since the term REST was so often mis-
used, recently HTTP-based Web services are typically simply referred to 
as Web APIs instead. For services that do obey to REST’s hypermedia 
constraint, the term Hypermedia API has become popular. 
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Web APIs typically have in common that they use a very small set of 
standards. Most often, it consists of just HTTP and either XML [49] or 
JSON [50] as the serialization format. Even though XML with its 
namespacing support that allows messages to be enriched with hyper-
media controls or to be made self-descriptive would be better suited for 
RESTful services, JSON has become the preferred data interchange for-
mat for Web APIs in recent years. The downside of this simplicity is that 
most services are unique and only documented in natural language. This 
renders automatic code generation or the creation of generic tooling 
almost impossible. These problems are the focus of this thesis and will 
thus be discussed in more detail in the next chapter. 

2.5 Discussion 
As we have seen in this chapter, the development of the World Wide 
Web was often chaotic, uncoordinated, and unpredictable. Who would 
have thought that many of the simple technologies created by a handful 
of people in the first days of the Web would survive for such a long time 
while industry-driven, multi-million dollar projects such as SOAP-based 
Web services would quickly pale into insignificance? Surely technical 
aspects played an important role but social aspects were not less 
important. Compared to simple JSON-based Web APIs SOAP-based 
services quickly “felt” heavy and complex even though, in most cases, the 
complexity is completely hidden by the sophisticated tooling that has 
been built around these technologies. Indeed, the Web is often “more a 
social creation than a technical one.” [94] The history of the Semantic 
Web is another case nicely illustrating this. Its acceptance languished for 
years but finally a simple Web page [17] full of typographical errors for-
mulating four very basic principles was able to herald an important 
turning point. The Linked Data principles did not introduce any new 
technology but were a mere rebranding and clarification of the vision of a 
Semantic Web—a Web of Data. 

The standardization of Web services failed, but the problems these efforts 
were trying to address are still valid. The Web has grown exponentially 
and massive amounts of new information are being added as we speak. 
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We have reached a point at which we humans are the bottleneck for the 
meaningful usage of all this knowledge. We need to extend the Web to 
make it easier for machines to process the available information and to 
exchange and manipulate data without human intervention in order to 
better assist us. The combination of Semantic Web technologies and 
RESTful Web APIs might help to bring us a step closer to this ambitious 
goal but, as already suggested, they suffer from various issues. In the next 
chapter we will look at those issues in detail and define the problem this 
thesis is addressing. 



 

 

Chapter 3 

Problem Definition 

Web APIs are increasingly important in connecting distributed systems. 
They are becoming the glue keeping together systems within an 
organization while, at the same time, providing unprecedented, open 
access to data managed by these systems to the wider world. Yet, the 
proper design and implementation of Web APIs remain largely more an 
art than a science. 

In this chapter, which is based on our previous work in [95], [25], [96], 
[97], [98], and [99], we will analyze the current best practices for the 
creation, documentation, and usage of Web APIs. We will distill a num-
ber of shortcomings and issues and finally formalize the research prob-
lems addressed by this thesis. 

3.1 Proprietary Data Formats and Models 
One of the first design decisions a developer has to make when creating a 
Web API is to choose the serialization format and data model. Web ser-
vices created in the last decade use almost exclusively either XML or 
JSON as their serialization format. XML, whose first version was pub-
lished in 1998, is as a markup language, i.e., a language which allows 
documents to be annotated with machine-processable instructions. At the 
beginning of the new millennium, XML was extremely popular and the 
preferred choice for many use cases. Not surprisingly, the first Web ser-
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vices also relied on XML demonstrating its flexibility and extensibility. 
SOAP-based services [7] use XML for data interchange alongside 
WSDL [87] and XML Schemas (XSD) [37-38] as description formats. 
This results in Web services where both the data as well as the interfaces 
are described in a machine-readable way which enabled the creation of 
powerful tooling assisting developers in the implementation of such ser-
vices. Often both the server-side as well as the client-side code can be 
generated completely automatically out of these descriptions. Thus, the 
client and the server are typically tightly bound in such a system. Typi-
cally even the change from, e.g., a 64 bit integer to a 32 bit integer 
requires the recompilation of the client. Furthermore, the inherent 
impedance mismatch between XML and object-oriented programming 
constructs (O/X impedance mismatch) generally results in severe interop-
erability problems. The fundamental problem is that the XML Schema 
language has a number of type system constructs which simply do not 
exist in commonly used object-oriented programming languages such as 
Java. In consequence, this leads to interoperability problems because each 
SOAP stack has its own way of mapping the various XSD type system 
constructs to objects in the target platform's programming language and 
vice versa. Recent extensions for common languages such as Cω or LINQ 
(Language Integrated Query) for C# or E4X (ECMAScript for XML) for 
JavaScript ease the data handling enormously and avoid the inherent O/X 
impedance mismatch. 

Nevertheless, in most cases all a developer wants to do is to interchange 
data—and here we are distinguishing between data interchange and 
document interchange. In 2002 Douglas Crockford realized that JavaScript 
object notation can be used as a simple data interchange format. He 
extracted a small subset of the JavaScript programming language [100] 
which he called JSON (JavaScript Object Notation) with the aim to cre-
ate a lightweight, language-independent data-interchange format which is 
easy to parse and easy to generate. Initially, JSON was only documented 
on Crockford’s website json.org but after requests from larger companies 
asking for a more stable specification he wrote an IETF Internet Draft 
which eventually became RFC 4627 [50] in 2006. Since then, JSON 
enjoys an ever-increasing popularity across the Web community [92]. 
Given that JSON’s whole specification [50] consists of just 10 pages 
(with the actual content being a mere 4 pages), it is often considered to 
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be a much simpler format and thus easier to use and understand than 
XML for which the XML Core Working group alone lists XML, XML 
Namespaces, XML Inclusions, XML Information Set, xml:id, XML 
Fragment Interchange, XML Base, and Associating Stylesheets with XML as 
standards [101], not even including XML Schema Part 1 and XML 
Schema Part 2. 

From a REST perspective, the current practice of using JSON could be 
seen as a step backwards. While XML with its namespacing support [53] 
allows self-describing messages to be created even when its generic media 
type application/xml (or text/html) is used, the same is not the case for 
JSON. If a JSON message is labeled with the generic media type 
application/json, all the message semantics as well as the processing 
model have to be documented out of band which introduces an unde-
sired coupling between the publisher and the consumer of such data. To 
work around this issue, the current best practice for developing truly 
RESTful JSON-based Web APIs is to define a custom media type which 
defines the semantics of the used JSON structures. This allows JSON to 
be extended to support labeled hyperlinks—another painfully missing 
concept needed to create RESTful Web APIs with JSON. Unfortunately, 
however, even just creating a specialization of an existing generic media 
type is not as straightforward as it might seem at first sight. 

On the one hand, it is not trivial to design a media type that is general 
enough for a broad range of applications, yet useful. On the other hand, 
it is difficult to find broad acceptance for a media type that is only usable 
in a very specific application domain. Obviously, if the media type intro-
duces a new serialization format, no existing libraries can be used to parse 
its representations forcing all clients to implement parsers specifically 
designed for this new media type. While such an approach might provide 
the best possible efficiency, it does not scale when the number of services 
or even if just the number of entities using different media types in a sin-
gle service increases. The practice of defining specialized media types for 
each entity type used in an application is especially problematic as it 
promotes the reuse of these specialized media types to design the applica-
tion-level data model. More than likely, such an approach will result in 
tighter coupled systems at the model layer given that the same data model 
is shared among all system components. The fact that only very few of 
the more than 1,300 officially registered media types [102] are in com-
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mon use should be evidence enough that their design is not trivial and 
requires a lot of expertise. Arguing that every RESTful service should 
design its own specific media type to document the contract with its cli-
ents is thus clearly impractical and far from reality. It also indicates that 
generally, services either stick to generic media types such as XML or 
JSON or do not invest the necessary time and effort to register their pro-
prietary media types. 

One of the main problems with media types is that they are organized in 
a very shallow, two-level deep hierarchy. This makes it impossible to 
define refinements or extensions in a way which would make it possible 
to deduce those dependencies from the media type’s identifier. Given 
that it is also impossible to describe such dependencies in a machine-
processable way in the media type’s specification itself, the only available 
option is to directly include that knowledge into a client’s code.  

In principle the same applies to media types that build on top of existing, 
generic media types such as XML or JSON. A common pattern is to add, 
e.g., a +json suffix to the media type identifier to describe that it is based 
on JSON’s syntax. Even though this practice has been standardized [103] 
(and has been so for XML for more than a decade [104]) some client 
libraries still do not understand this convention. To be fair, it is also not 
clear what libraries should do with this information; all it tells is the seri-
alization format. In human-facing tools, such as browsers, this infor-
mation might be used to render a representation as if it would have been 
served using the base type instead of not displaying it at all due to an 
unknown media type. For programming libraries the situation is much 
less clear as all that can be done is to parse the representation which, most 
of the time, is the most trivial aspect. 

Looking at, e.g., XHTML, SVG, Atom, and RDF/XML it becomes clear 
that all these formats share is the serialization format. The processing 
models and even the data models are completely different. XHTML for 
instance deals with a document object tree while RDF/XML is used to 
serialize graphs. In such cases it certainly makes sense to create specific 
media types. If, however, the only difference lies in the semantics, i.e., the 
meaning of the serialized data, it is questionable whether specialized 
media types are required at all. The examples best illustrating this are 
probably xCard [51] and xCal [52] as they are doing nothing more than 
specifying XML-based serializations for vCard and iCalendar. Such 
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“micro-types” are the main reason for the often criticized proliferation of 
media types. The concern is that an abundance of media types conflicts 
with REST’s emphasis on a uniform interface. The more variability there 
is the more difficult interoperability becomes. Instead of requiring devel-
opers to create new media types for every minor semantic difference, 
more generic media types able to express the various semantics and 
mechanisms to signal them at the HTTP layer are necessary. This would 
allow the creation of composable contracts, improve the Web as a plat-
form in general, and simplify the development of Web APIs in particular. 

As Steve Vinoski argues in his excellent article [14], platforms, although 
efficient for their target use case, often inhibit reuse and adaptation by 
creating highly specialized interfaces, even if they stick to industry stand-
ards. He argues “the more specific a service interface [is], the less likely it 
is to be reused, serendipitously or otherwise, because the likelihood that 
an interface will fit what a client application requires shrinks as the 
interface’s specificity increases.” This observation surely applies to most 
current Web APIs which are, due to their specializations, rarely flexible 
enough to be used in unanticipated ways. 

Needless to say that data integration is also made much more difficult 
given that data models differ widely and all the semantics are implicit. If 
the semantics were explicit and the data model generic, data integration 
would be drastically simplified. In fact, data could be integrated 
(semi-)automatically with other data sources. For instance, a typical 
mashup combining and showing data from different sources on a map 
could be created automatically. The widget would be able to automati-
cally figure out which parts of the representation represent the needed 
coordinates and in consequence render the data on the map. This would 
render the creation of dashboards, an important business use case, much 
simpler and eliminate a lot of the usually needed data mediation code. 

3.2 Static Contracts in Natural Language 
In order for two or more components of a distributed system to interop-
erate, a contract has to be established. As we have seen in section 
2.2, contracts on the Web are based on media types and protocols. In 
contrast to other distributed system architectures, these contracts are 



 

42 

centrally owned and negotiated at runtime instead of being defined at 
design time. This involves not only the negotiation of media types but 
also the use of hypermedia to dynamically convey valid state transitions. 

The use of hypermedia as the engine of application state [11] is a central 
aspect of the REST architectural style and when building traditional Web 
sites, developers intuitively use it to guide visitors through their sites. 
They understand that no visitor is interested in reading documentation 
that tells them how to handcraft the URLs necessary to access the desired 
pages. Developers spend considerable time to ensure that their sites are 
fully interlinked so that visitors are able to reach every single page in just 
a few clicks. To achieve that, links have to be labeled so that users are 
able to select the link bringing them one step closer to their goal. Often 
that means that multiple links with different labels but the same target 
are presented to make sure that a visitor finds the right path. This is most 
evident when looking at the checkout process of e-commerce sites which 
usually consists of a single path leading straight to the order confirmation 
page (plus a typically de-emphasized link back to the homepage or shop-
ping cart). On this path, the user has to fill in a number of forms asking 
for order details such as the shipping address or the payment details. It is 
not a coincidence that these forms tend to use exactly the same language 
on completely different e-commerce sites. It is also not a coincidence that 
the same names for the form fields are chosen to allow the user’s browser 
to fill the fields automatically in or, at least, offer auto-completion. 
HTML5 tries to push that even further by introducing an autocomplete 
attribute along with a set of tokens in order to standardize the auto-
completion support across browsers [105]. All this is part of purposeful 
optimization with the clear goal to increase conversion rates, i.e., to 
ensure that visitors achieve their goal. 

These practices build the foundation of today’s Web, a gigantic graph 
consisting of billions and billions of interlinked pages. Hyperlinks are 
such a fundamental building block of the Web’s architecture that it feels 
natural to browse across sites from completely different publishers. It is 
taken for granted that content links to other relevant content; relevant 
links are generally seen as a sign of quality. Surprisingly, Web services 
very rarely link to external data. As a matter of fact, most times even links 
to other resources within the service itself are missing. More often than 
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not, developers completely ignore hypermedia when creating solutions 
for machine-to-machine communication. 

One of the primary reasons for this is certainly that for Web APIs no 
accepted, standardized media type with hypermedia support exists. 
JSON, which is much easier to parse and has a direct in-memory repre-
sentation in most programming languages, is typically favored instead of 
using HTML as on the human Web. Unfortunately, this often leads to 
the exposure of internals resulting in a tight coupling between the server 
and its clients. A common example for this is the inclusion of local, 
internal identifiers in representations instead of including links to other 
entities. This requires out-of-band knowledge of IRI templates to recon-
struct the URLs to retrieve representations of entities referenced in such a 
way. Since in most cases the documentation about those IRI templates is 
not machine-readable, they are hardcoded into clients which means that 
clients break whenever the server implementation changes. 

The current best practice for developing truly RESTful JSON-based Web 
APIs is to define a custom media type which extends JSON to support 
labeled hyperlinks. Effectively this means that HTML’s anchor or link 
tags with their relation attributes (rel) are imitated by some JSON 
structure. Since there is a common need for such functionality, there 
have already been some efforts to standardize such extensions to JSON, 
but so far their adoption is very limited. Far more often these proprietary 
extensions are documented out-of-band on the API publisher’s home-
page. Apart from the description of how hyperlinks are expressed, these 
documentations generally also include a list of resource types (such as 
products and orders) describing their semantics, properties, and serializa-
tions. Last but not least, a number of link relations along with the sup-
ported HTTP operations, the expected inputs and outputs, and the con-
sequences of invoking those operations are documented. This allows 
developers to get an overview of the API’s service surface and to imple-
ment specialized clients. 

A negative side effect of this proliferation of proprietary data formats and 
the use of natural language to document them is that it becomes almost 
impossible to create generic clients similar to browsers on the human 
Web. Thus, developers usually need to implement not only the server 
side part but also a client (library) which is then used by other developers 
to access the Web API. It is not surprising that these two components are 
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often tightly coupled given that they are frequently developed in lockstep 
by the same team or at least the same company. Consequently developers 
choose to use the simplest approach to solve their problem at hand. 
Instead of using dynamic contracts that are retrieved and analyzed at 
runtime, which would, just as on the human Web, allow clients to adapt 
to ad-hoc changes, static contracts are used. All the knowledge about the 
API a server exposes is typically directly embedded into the clients. This 
leads to tightly coupled systems which impede the independent evolution 
of its components. When a service’s domain application protocol [46], 
which defines the set of legal interactions necessary to achieve a specific, 
application-dependent goal, is defined in a static, non-machine-readable 
document served out-of-band, it becomes impossible to dynamically 
communicate changes to clients. Even though such approaches might 
work in the short term, they are condemned to break in the long term as 
assumptions about server resources will break as resources evolve 
over time. 

3.3 Manually Written Documentation 
Writing documentation is certainly a task that most developers would 
like to avoid. Therefore, tools for virtually every programming language 
have been created to formalize and streamline the process of writing (at 
least some minimal) documentation. In most cases, such documentation 
is written by directly annotating the code. Specialized tools such as 
Doxygen [106], so called documentation generators, analyze those anno-
tations as well as the code itself and create consistently formatted docu-
mentations. At the same time, such tools can leverage the fact that the 
documentation is clearly bound to certain code fragments such as classes 
or methods and enable, e.g., integrated development environments 
(IDEs) to display assisting documentation during the development pro-
cess. The documentation is automatically queried and put in the context 
of the programmer’s task. This allows programmers to stay focused on 
the problem at hand instead of having to jump back and forth between 
their code and the documentation of the APIs of the programming 
libraries they are using. Given that most documentation for Web APIs is 
in the form of manually written HTML pages which do not follow a 
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well-defined structure and are thus not machine-processable, it is impos-
sible to create similar assisting tooling for Web APIs. 

The Linked Data community is clearly a step ahead of the REST com-
munity in this regard. In contrast to the current practice for Web APIs, 
Linked Data is described in detail in a machine-readable way. All data 
publishers have to do, is reuse one or more of the many existing vocabu-
laries to express their data. This not only eliminates the need to docu-
ment the semantics of the data over and over again but also improves the 
interoperability of systems exchanging such data and the reusability of 
code. It would thus make sense to reuse these technologies and vocabu-
laries for the creation and description of Web APIs. All a developer has to 
do is annotate the code with concepts from a vocabulary. The human-
readable documentation can then be generated automatically by using the 
rdfs:label and rdfs:comment properties associated to that concept in the 
vocabulary. The positive side effect of such an approach is that machines 
would be able to recognize when equivalent elements are encountered 
and process them using existing code instead of requiring manual adap-
tations by the implementer. In fact, the documentation could be linked 
directly to the messages which would make them self-descriptive and thus 
reduce the need for additional human-readable documentation.  

3.4 The Semantic Web: Complex, Read-Only, 

and No Links? 
Since the Linked Data principles align well with the REST architectural 
style (see [107] for an extensive analysis) it would seem natural to com-
bine their strengths as we have seen in the previous section. Nevertheless, 
the two remain largely separated in practice. Instead of providing Linked 
Data via RESTful Web services, current efforts deploy centralistic 
SPARQL endpoints or upload static dumps of data which rarely reflects 
the nature of the data, i.e., descriptions of interlinked resources. Just as 
public SQL endpoints are uncommon nowadays, public SPARQL end-
points are not expected to become widespread in the near future. This is 
because it is considerably more expensive to expose SQL or SPARQL 
endpoints than easier-to-optimize RESTful service interfaces. 
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While most of the efforts by the Semantic Web community are spent on 
the accurate description of resources, which could be compared to the 
self-descriptive messages constraint, the linking of data received little 
attention. RDF uses IRIs to identify entities but that does not imply that 
those IRIs are dereferenceable or that RDF has built-in support for 
hypermedia. In fact, neither RDF itself nor RDF Schema or OWL 
defines a concept to describe dereferenceable IRIs. Whether an IRI is 
intended to be dereferenced or not, depends implicitly on what it 
represents. FOAF’s homepage property [108], e.g., suggests that its values 
are dereferenceable IRIs. Without further out-of-band knowledge, how-
ever, a machine would not be able to infer that information. In fact, in 
the early days of the Semantic Web, most of the data used IRIs that did 
not dereference to anything useful. The Linked Data principles postu-
lated by Berners-Lee [17] in 2006 were an attempt to change that. 

Berners-Lee urged to use IRIs to name things that dereference to useful 
information in a standardized format. Additionally, the returned data 
should contain links to other relevant data in order to create a giant 
graph of Linked Data that could be seen as the direct data-centric coun-
terpart of the document-centric human Web. At the time of this writing, 
the Linked Data community, even though it advocates the use of 
dereferenceable identifiers, leaves open how to recognize them. RDF still 
has no built-in notion of hypermedia but uses IRIs solely as identifiers. It 
is therefore not surprising that the vast majority of the available data are 
largely read-only representations. The best a client can do is to blindly try 
to interact with these IRIs. To change this, a vocabulary able to describe 
affordances beyond simple dereferenceability would be needed. 

Another aspect developers are often struggling with in practice is that in 
RDF properties have, just as classes and everything else that is identified 
with an IRI, global scope and independent semantics. In contrast, prop-
erties in the models used by most Web APIs are class-dependent. Their 
semantics depend on the class they belong to. In data models classes are 
typically described by the properties they expose whereas in RDF proper-
ties define to which classes they belong. If no class is specified, it is 
assumed that a property may apply to every class. This behavior stems 
from the fact that RDF Schema [65] and OWL [66], the two preferred 
languages to describe RDF vocabularies, work under an open-world 
assumption. In contrast, data models used by programmers typically 
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work under a closed-world assumption. The difference is that when a 
closed world is assumed, everything that is not known to be true is false 
or vice versa. With an open-world assumption the failure to derive a fact 
does not automatically imply the opposite; it embraces the fact that the 
knowledge is incomplete. One of the effects illustrating the difference in 
those world views is that in data models an instance of a class also belongs 
to all its superclasses, but not any other class. In ontologies using an 
open-world assumption, the same cannot be said unless classes are 
explicitly defined as being disjoint. 

These differences have interesting consequences. For example, the com-
monly asked question of which properties can be applied to an instance 
of a specific class cannot be answered for RDF. Strictly speaking, any 
property which is not explicitly forbidden can be applied. This may 
sound counter-intuitive and could lead to the wrong conclusion that 
RDF Schema and OWL cannot be used to define data models. In fact 
they can, but that is not their intended use.  

While data models are used to describe the information in a specific, 
well-delimited application domain; vocabularies, as described by 
RDF Schema or OWL, are used to define concepts that can be shared 
across multiple application domains. In other words, data models are 
typically used to specify validity criteria and constraints for data processed 
within an application whereas vocabularies are used to reason over data to 
discover new knowledge. In this light, data models can be said to be 
intended for closed-world systems whereas vocabularies are intended for 
open, distributed systems. This may sound surprising as the motivation 
for most Web APIs is to build open distributed systems. However, as a 
matter of fact, most current Web APIs just represent small, closed-world 
systems that happen to be accessible over a standardized protocol with a 
uniform interface, i.e., HTTP. Neither the entities, nor the concepts 
defined by such a Web API can be reused in other systems without some 
special glue code. To simplify data integration and enable reuse, it would 
thus be sensible to describe the data and behavior exposed by a Web API 
using RDF vocabularies. 

As famously illustrated by the well-known Linked Open Data cloud dia-
gram [80] (see Figure 6 on page 30), the amount of Linked Data has 
managed to grow significantly over the last couple of years but, never-
theless, the greater vision of a Semantic Web, which has been around for 



 

48 

more than fifteen years, still has a long way to go before mainstream 
adoption will be achieved. The Linked Data principles specifically and 
Semantic Web technologies in general, have yet to find their way into the 
design of RESTful Web APIs. The fundamentally different models of 
Semantic Web technologies with their open world assumption, the lack 
or immaturity of tools, and the (perceived) complexity are just some of 
the reasons for this lack of adoption. For a long time, the Semantic Web 
suffered from a classic chicken-and-egg problem as there were no clear 
incentives for developers to use it. This aspect is improving recently as 
major search engines started to index some structured data such as RDFa 
and microformats. Another problematic factor, especially in the enter-
prise space, is that the Semantic Web is perceived as a disruptive tech-
nology, making it a show-stopper for organizations needing to evolve 
their systems and build upon existing infrastructure investments. 
Changing whole systems to be based on triples whereas most developers 
program their systems in an entity centric, i.e., object-oriented manner is 
often not a viable option. Additionally, the current Semantic Web 
approaches usually provide just read-only interfaces to the underlying 
data. This clearly limits the usefulness and inhibits networking effects 
and engagement of the crowd. 

Beside these technical issues, a lot of developers are also simply over-
whelmed by the complexity, perceived or otherwise, or are just reluctant 
to use new technologies. The prevalent terminology, suffused with words 
such as Ontology, just seems to fuel their misconceptions. Furthermore, 
the fact that the Semantic Web community derailed into the artificial 
intelligence domain instead of concentrating on more practical data-
oriented applications certainly played a major role in that regard as well. 
A lot of potential users were alienated by this and developed an aversion 
to Semantic Web technologies—a phenomenon we denoted as 
Semaphobia [95]. A solution to this problem might be a more gradual 
introduction to those principles and practices by the use of less disruptive 
technologies. Furthermore, clear incentives along with simple specifica-
tions and guidelines are necessary. 

The recent introduction of Schema.org [85] and Microdata [109] nicely 
illustrate the potential of such an approach and the willingness of Web 
developers to adopt it. Instead of creating a completely new serialization 
format, Microdata adds a number of attributes to HTML for its semantic 
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annotation. Schema.org, on the other hand, represents a vocabulary for a 
broad range of application domains ranging from events and recipes to 
products and people. Schema.org is a joint effort between Google, 
Microsoft, Yahoo!, and Yandex which all added support for both 
Microdata and Schema.org to their search engines to extract structured 
data from web pages in order to improve the precision of search results 
and to present the results in a visually more appealing way. Web develop-
ers benefit from higher click-through rates which increases the number of 
people visiting their sites. Unfortunately, a similar approach for machines 
talking to each other via Web services is still missing. Developers thus 
still have to deal with a plethora of heterogeneous data formats, data 
models, and service interfaces when interacting with Web APIs. 

3.5 Missing Tooling 
As outlined in section 3.2, developers instinctively use hypermedia when 
building traditional Web sites but seem to ignore it completely when 
building Web APIs. One of the reasons behind this might be the differ-
ent level of tooling support on both the server and the client side. 

Current Web development frameworks are typically based on a Model-
View-Controller (MVC) architecture [110]. MVC is a design pattern 
that separates the presentation of information from its processing to allow 
code reusability and separation of concerns.  The models represent the 
relevant entities in the system, the views create representations of those 
entities, and the controller is responsible for processing inputs, manipu-
lating the models, and finally returning an updated representation by 
using the according views. Web frameworks often further modularize the 
code by dividing controllers into Front Controllers, which handle all 
requests for a Web site, and Page Controllers or Commands, which are 
only responsible for certain requests [110]. Therefore, the front con-
troller’s job is typically to parse the received HTTP request, extract the 
request IRI and method, and then pass the control to a specific page 
controller or command which then, in turn, invokes specific models 
and views. 

In the context of this thesis, the view layer is the most critical layer as it 
decouples the internals of an application from its external representation. 
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In Web development frameworks, the view layer typically consists of 
templates and a rendering engine. By creating representations in a stand-
ardized and centrally owned format and targeting generic clients, i.e., 
Web browsers, internals are usually very well hidden behind a common 
standardized interface. This decouples the client from the server and ena-
bles the independent evolution of the two. Unfortunately, the situation 
typically looks quite different for Web APIs. Instead of a sophisticated 
view layer that decouples the internals from the system’s external inter-
faces (representations), most of the time a serializer is used to marshal the 
in-memory representations (often complete object graphs) into a generic 
data format such as JSON. This would not be problematic per se, if the 
contract were not owned by the server instead of being centrally owned. 

Since the server might decide to change the contract at any time, there 
are very little incentives for independent developers to invest time and 
money to create sophisticated and thus more flexible and dynamic service 
clients. On the technical side, the fact that JSON, e.g., has no built-in 
support for hyperlinks makes it impossible to leverage hypertext as the 
engine of application state (HATEOAS) [11] without additional out-of-
band information. In consequence, consumers of such Web APIs expect 
that API publishers provide specialized programming libraries to simplify 
the usage of their services.  The result are tightly coupled systems in 
which the clients are statically bound to the server’s URL space and thus 
need to be updated in lockstep with the server. Not uncommonly, clients 
for object-oriented programming languages directly replicate the classes 
to represent the various resource types exposed by the server as native 
objects on the client. Such an approach clearly inhibits the independent 
evolution of components. 

3.6 Discussion 
The problem with the practices outlined in this chapter is that they result 
in specialized implementations targeting specific use cases and not gener-
alizations that can be reused across application domains. Therefore, every 
API created with such an approach is unique and needs to be docu-
mented. Even though most of the code to access such services is very 
similar, there are still minor differences which make it difficult to reuse 
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code and almost impossible to write generic clients. On the human Web 
this problem is addressed by a generic media type (HTML) which 
decouples the clients from the servers they are accessing. Admittedly, 
HTML could be used for Web APIs as well but its nature, which targets 
human facing web pages that are essentially graphical user interfaces, is 
fundamentally different to machine-to-machine communication. A data 
interchange format such as JSON is a much better fit for use cases which 
just require the transfer of structured data; having to parse HTML for 
this has typically too big of an overhead. Thus, to solve this problem also 
for Web APIs, a generic media type to create self-descriptive messages 
with inherent support for hypermedia is needed. Just adding support for 
hyperlinks to JSON, as most current approaches do, is not enough 
because it only solves part of the problem. Since the interaction with 
Web APIs could generally be seen as a data integration problem, other 
aspects, such as globally unique identifiers for both the entities and their 
properties, become important as well. By using semantic annotations, a 
client would not only be able to figure out which elements in a JSON 
representation represent IRIs but also what these IRIs and all the other 
elements mean.  

We believe that it should be feasible to standardize and streamline the 
development of Web APIs by combining ideas and principles from both 
the REST architectural style and the Semantic Web. Having identified 
several issues and shortcomings of current best practices, we are thus able 
to formalize the problem statement that integrates these issues into the 
primary aim of this thesis, i.e., to support developers creating, docu-
menting, and using RESTful Web APIs. 

The problem addressed in this thesis consists of three clearly defined sub-
problems that are summarized as follows: 

▪ Development of a generic and extensible data interchange format or 
description language specifically designed for RESTful Web APIs. This 
requires support for hypermedia controls as well as a mechanism similar 
to XML namespaces to enable the creation of self-describing messages. 
The hypermedia support may either be included directly into the format 
similar to HTML or in an external vocabulary similar to the XML 
Linking Language [111]. The solution should address the problems dis-
cussed in this chapter. 
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▪ Design and implementation of plugins or programming libraries integrat-
ing support for the created data interchange format and vocabulary into 
current Web frameworks in order to simplify the creation of truly 
RESTful Web APIs. The aim is to make the creation of Web APIs com-
parably simple as the creation of a traditional website. The implementa-
tion of this proof of concept will help to evaluate the practical relevance 
and usability of the created solution. 

▪ Design and implementation of a generic client accessing such Web APIs. 
This requires the dynamic evaluation of messages and service descriptions 
at runtime instead of hard-coding contracts into the client at design time 
as most current approaches do. The generic client will not just represent a 
highly valuable tool but also demonstrate some of the features realizable 
by building Web APIs based on the proposed data interchange format 
and vocabulary. 

Given that the solution is targeting RESTful services, it clearly has to 
adhere to REST’s [11] architectural constraints which can be summarized 
as follows: 1) stateless interaction, 2) uniform interface, 3) identification 
of resources, 4) manipulation of resources through representations, 
5) self-descriptive messages, and 6) hypermedia as the engine of applica-
tion state. Stateless interaction means that all the session state is kept 
entirely on the client and that each request from the client to the server 
has to contain all the necessary information for the server to understand 
the request; this makes interactions with the server independent of each 
other and decouples the client from the server. All the interactions in a 
RESTful system are performed via a uniform interface which decouples 
the implementations from the services they provide. To obtain such a 
uniform interface every resource is accessible through a representation 
and has to have an identifier (whether the representation is in the same 
format as the raw source, or is derived from the source, remains hidden 
behind the interface). All resource representations should be self-
descriptive, i.e., they are somehow labeled with their type. Finally, the 
hypermedia as the engine of application state (HATEOAS) constraint 
refers to the use of hyperlinks in resource representations as a way of 
navigating the state machine of an application. 

While all of these constraints are important when designing a RESTful 
service, the most important aspects in the context of this thesis are how 
resources can be accessed, how they are represented, and how they are 
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interlinked. The solution should be expressive enough to describe how 
resource representation can be retrieved and manipulated, and what the 
meaning of those representations is. To integrate the resulting services 
into the Semantic Web, it should also be possible to transform resource 
representations to RDF. An important requirement to foster adoption, to 
evolve systems, and to build upon existing infrastructure is that no (or 
just minimal) changes on existing systems are required; this implies a 
requirement to support partial descriptions that can be completed later. 
Finally, in order to lower the entry barrier for developers, the approach 
has to be as simple as possible and provide instant incentives such as 
increased productivity or enhanced reusability. 





 

 

Chapter 4 

Related Work 

In order for two (or more) systems to communicate successfully there has 
to be an agreement or contract on the used interfaces, data formats and 
processing models as well as the semantics. In the traditional Remote 
Procedure Call (RPC) model, where all differences between local and 
distributed computing are hidden, usually static contracts in the form of 
an Interface Description Language (IDL) are used to specify those inter-
faces. The data types that such an IDL offers are abstractions of the data 
types found in actual programming languages to enable interoperability 
between different platforms. SOAP-based services typically follow the 
same approach by describing the interfaces with WSDL [87] and 
XML Schema [112] documents. Since in such a model all the documen-
tation is machine readable, automatic code generation on both the client 
and the server sides are made possible. This improves developers’ 
productivity but also increases coupling.  

In contrast, the REST architectural style is characterized by the use of 
contextual contracts where the set of actions varies over time. 
Additionally, the interface variability is almost eliminated due to REST’s 
uniform interface. In consequence REST-based services are almost 
exclusively described by human-readable documentation describing the 
URLs as well as the data expected in requests and returned by the 
corresponding responses. Generally, that data is not described by 
specifying media types, but by the definition of specific JSON or XML 
structures. Due to a lack of formalism and the ambiguity of natural 
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language, these descriptions can neither be automatically transformed 
into code nor be interpreted at runtime; they have to be hardcoded into 
clients and servers at design time. 

In this section we will examine the most important related work 
addressing the issues outlined above and in the previous chapter. We will 
begin with an overview of generic interface description languages appli-
cable to a broad range of application domains before we look at a number 
of ontologies and vocabularies which extend syntactic interface descrip-
tions with semantic annotations. Such semantic descriptions typically 
promise higher level of automation for tasks like discovery, negotiation, 
composition, and invocation. Since most Semantic Web Service (SWS) 
technologies use ontology languages as the underlying data model they 
also provide the means for tackling the interoperability problem at the 
semantic level instead of just at the syntactic level, enabling the integra-
tion of Web services into the greater vision of the Semantic Web. We will 
also discuss some of the specialized media types that have been created to 
implement RESTful systems for specific use cases. Finally, given that 
JSON has become the preferred data interchange format in Web APIs, 
we will also provide an overview of proposals which attempt to add sup-
port for hyperlinks and namespaces to JSON. 

This section is based on our previous work in [96], [26], and [28]. 

4.1 Interface Description Languages 
Over the years, multiple interface description languages for RESTful ser-
vices have been proposed. Most of them, such as WRDL [113], 
NSDL [114], SMEX-D [115], Resedel [116], RSWS [117], and 
WDL [118] were more or less ad-hoc inventions designed to solve partic-
ular problems and haven’t been updated for many years. So far none of 
them managed to attain noticeable adoption and even approaches that 
were the outcome of large research projects did not manage to break out 
of their academic confines. 

There have been very controversial discussions as to whether REST even 
needs service interface description languages in the traditional sense. The 
opponents typically argue that the definition of media types (although 
not machine readable) eliminates the need for additional descriptions as 
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they describe the format as well as the semantics of exchanged message. 
However, as we have seen in section 2.2, the creation of specialized media 
types is not trivial and thus, in practice, most systems rely on generic, 
application-agnostic media types instead. Furthermore, the fact that new 
solutions trying to create machine readable documentations are proposed 
on an almost monthly basis clearly indicates that developers are not satis-
fied with the status quo. 

In this section, we will discuss the most noteworthy proposals which 
define interface description languages for RESTful services. We do not 
restrict our selection to purely syntactic descriptions, but also present 
some approaches that either add or are based on semantic descriptions. 

4.1.1 WSDL and SAWSDL 

The Web Service Description Language (WSDL) [87] is an established 
standard to describe the contract between a Web service provider and its 
clients at a syntactic level. It documents the message formats (schemas), 
transport protocols, and locations. WSDL 2.0 introduced some signifi-
cant changes to the structure of WSDL documents and added new fea-
tures such as interface inheritance and extensible message exchange pat-
terns. It was the first version which was designed with RESTful services 
in mind and consequently the first WSDL version to support their 
description; the WSDL 1.1 HTTP binding was inadequate to describe 
RESTful services. WSDL descriptions typically use XML Schema [112] 
as schema language but others, such as DTD, RelaxNG, or even non-
XML type systems, would be allowed as well. 

A WSDL description consists of the following four elements: types, 
interface, binding, and service. The types element describes the Web 
service’s messages; even though other type systems are allowed practically 
only XML Schema is used. The interface describes the supported opera-
tions (this is where WSDL exposes its RPC-orientation) with the corre-
sponding input, output, and fault messages and the respective message 
exchange patterns. The purpose of the bindings element is to specify how 
those messages can be exchanged. It specifies the concrete message format 
(the actual serialization format in contrast to the abstract definition in the 
types element) and the transmission protocol details for each operation 
and fault in an interface. Finally, the service element specifies a list of 
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endpoints where the 
service can be 
accessed. Each end-
point is associated 
with a specific 
binding to indicate 
what protocols and 
transmission formats 
have to be used. 

With the introduc-
tion of Semantic Annotations for WSDL and XML Schema 
(SAWSDL) [119] the W3C standardized a mechanism to associate 
semantics with service interfaces and message schemas. SAWSDL defines 
how to add semantic annotations to various parts of a WSDL document 
such as inputs, outputs, interfaces, and operations, but it does not specify 
a language for representing the semantic models. Instead, it just defines 
how semantic annotation is accomplished using references to semantic 
models such as ontologies, by providing three new extensibility attributes 
to WSDL and XML Schema elements as shown in Figure 7. 

The modelReference extension attribute defines the association between a 
WSDL or XML Schema component and a concept in some semantic 
model. It is used to annotate XML Schema type definitions, element 
declarations, and attribute declarations as well as WSDL interfaces, oper-
ations, and faults. The other two extension attributes, named 
liftingSchemaMapping and loweringSchemaMapping, are added to XML 
Schema element declarations and type definitions for specifying map-
pings between semantic data and XML. SAWSDL allows multiple 
semantic annotations to be associated with WSDL elements. Schema 
mappings as well as model references can contain multiple pointers. 
Multiple schema mappings are interpreted as alternatives whereas multi-
ple model references all apply. SAWSDL does not specify any other rela-
tionship between them [119]. 

The major critique of SAWSDL is that it comes without any formal 
semantics. This hinders logic-based discovery and composition of Web 
services described with SAWSDL but calls for “magic mediators outside 
the framework to resolve the semantic heterogeneities” [120]. Similarly, 

modelReference 

liftingSchemaMapping 

loweringSchemaMapping WSDL/XSD 

SAWSDL 

Figure 7.  SAWSDL extension attributes 
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even though it is technically possible to use WSDL 2.0 to describe 
RESTful Web services, it is not perceived as suitable by developers. Thus, 
WSDL usage is limited to the description of traditional SOAP-based 
services. A reason for this lack of adoption might also be the inherent 
complexity of the WS-* stack compared to the lightweight model of typi-
cal RESTful services. 

4.1.2 WADL 

The approach of the Web Application Description Language 
(WADL) [121] is closely related to WSDL. With WADL a developer 
creates a monolithic XML file containing all the information about the 
service interface to make it machine-accessible. Given that WADL was 
specifically designed for describing RESTful services (or HTTP-based 
Web applications as they are called in the specification), it models the 
resources provided by the service and the relationships between them 
instead of putting operations at the center as WSDL does. 

In WADL each service resource is described as a request containing the 
used HTTP method and the required inputs as well as zero or more 
responses describing the expected service response representations and 
HTTP status codes. The data format of the request and response repre-
sentations are described by embedded or referenced data format defini-
tions. Even though WADL does not mandate any specific data format 
definition language, the use of RelaxNG and XML Schema are described 
in the specification. 

The main critique of WADL is that it is complex and thus requires 
developers that have a certain level of training and tool support to enable 
the usage of WADL. This complexity contradicts the simplicity of 
RESTful services. In addition, WADL urges the use of specific resource 
hierarchies which introduce an obvious coupling of the client and server. 
Servers should have the complete freedom to control their own 
namespace. In contrast to WSDL, no mechanism to semantically anno-
tate service descriptions exists for WADL. A reason for WADL’s missing 
uptake might be that in practice it offers too few advantages to justify the 
increased overhead, complexity and thus cost. 
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4.1.3 Swagger and Google’s API Discovery Service 

Over the years a number of similar interface description languages have 
been proposed and more recently most of them use JSON as their seriali-
zation format. At the time of this writing, Swagger [122], is probably the 
approach that received the most traction in the community due to its 
early release and the availability of open source tools. It follows quite a 
similar approach to WADL. The biggest difference is that it does not 
impose any specific resource hierarchy. Other than that, it allows the 
association of almost exactly the same information to URI templates: an 
HTTP method, request parameters, response type, hints for returned 
status codes, and natural language descriptions. Swagger is mainly 
intended to enrich human-facing API documentations with interactive 
controls so that the various operations can be tested directly in the 
browser. It also enables the automatic generation of client libraries. This 
makes it very similar to Google’s API Discovery Service [123] which fol-
lows a very similar approach and is mainly used to generate client 
libraries in different programming languages for Google’s numerous 
Web APIs. 

All of these approaches, which also include solutions like I/O Docs [124], 
API Blueprint [125], and RAML [126] (some of which use Markdown or 
YAML instead of JSON), have in common that everything is bound to 
the URLs to access the various resources. This is clearly opposed to 
REST’s hypermedia constraint which demands the dynamic discovery of 
resources at runtime. 

4.1.4 SA-REST, hRESTS, and MicroWSMO 

Compared to the approaches presented so far, SA-REST [127] follows a 
fundamentally different approach. Instead of creating description docu-
ments for machines and tools, SA-REST tries to exploit the fact that 
almost all RESTful services have textual documentation in the form of 
HTML pages. Its basic idea is to annotate those documents with 
RDFa [128] to make the information accessible to machines. 

SA-REST offers the following service annotations (depicted in Figure 8): 
1) input and 2) output to facilitate data mediation; 3) lifting and 
4) lowering schemas to translate the data structures that represent the 
inputs and outputs to the data structure of the ontology, the grounding 
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schema; 5) action, which specifies the required HTTP method to invoke 
the service; 6) operation which defines what the service does; and 
7) fault to annotate errors. 

Given that SA-REST is a derivative of SAWSDL, it is possible to trans-
form SA-REST descriptions into WSDL 2.0 documents that are anno-
tated with SAWSDL and vice versa (even though the information in 
annotated WSDL documents is not rich enough to create meaningful 
HTML documents). Similarly to SAWSDL, SA-REST does not enforce 
the choice of language for representing the ontology or conceptual model 
of a service.  

hRESTS (HTML for RESTful Services) is an approach that is very simi-
lar to SA-REST but uses microformats [129] instead of RDFa. The main 
differences between the two approaches are thus not the underlying prin-
ciples but rather the implementation techniques. A single HTML docu-
ment enriched with hRESTS microformats can contain multiple service 
descriptions and conversely multiple HTML documents can together be 
used to document a single service (addressing the common practice of 
splitting service documentations into multiple HTML documents to 
make them more digestible). 

Each service is described by a number of operations, i.e., actions a client 
can perform on that service, with the corresponding URL, HTTP 
method, the expected inputs and outputs. While hRESTS offers a rela-
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hRESTs annotations: service, operation, 
address, method, input, output, label 

Figure 8.   SA-REST and MicroWSMO (with hRESTs) 
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tively straightforward solution to describe the resources and the sup-
ported operations, there is some lack of support for describing the data 
schemas. Apart from a potential label, hRESTS does not provide any 
support for further machine-readable information about the inputs and 
outputs. Extensions such as MicroWSMO address this issue. 

MicroWSMO [130] is an attempt to adapt the SAWSDL approach for 
the semantic description of RESTful services. Just as hRESTS, on which 
it relies, it uses microformats for adding semantic annotations to the 
HTML service documentation. Similar to SAWSDL, MicroWSMO has 
three types of annotations as illustrated in Figure 8: 1) model, which can 
be used on any hRESTS service property to point to appropriate seman-
tic concepts; 2) lifting, and 3) lowering, which specify the mappings 
between semantic data and the underlying technical format such as XML. 
Therefore, MicroWSMO enables the semantic annotation of RESTful 
services basically in the same way as SAWSDL supports the annotation of 
Web services described by WSDL. 

Since both MicroWSMO and SAWSDL can apply WSMO-Lite service 
semantics (an ontology described later in this chapter) it is important to 
note that REST-based services can be integrated with WSDL-based 
ones ([26], [131]). Therefore, tasks such as discovery, composition, and 
mediation can be performed independently from the underlying Web 
service technology. 

Even though at first glance SA-REST’s and hRESTS’ idea seems to be 
fundamentally different from WSDL, their underlying models are closely 
related to WSDL’s structure. In consequence, both SA-REST and 
hRESTS provide, just as WSDL, an RPC-oriented view of the service 
which does not really consider REST’s resource orientation. 

4.1.5 RESTdesc 

RESTdesc [132] is a promising effort which is based on a fundamentally 
different realization. Instead of describing service interfaces in terms of 
resources or operations, it expresses functional descriptions of Web APIs 
in Notation3 [133], a data format extending RDF’s data model by con-
cepts such as variables. These functional descriptions are composed of 
preconditions which entail certain postconditions, such as the existence 
of an HTTP request. A client thus needs to express its goal in terms of 
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postconditions. If the preconditions are fulfilled, it becomes possible to 
deduce an HTTP request that, when executed, results in the desired post-
conditions. It is worth noting that the HTTP request is part of the 
postconditions and not of the preconditions. This means that the data 
returned by a reasoner contains the HTTP request as if it would have 
been part of the input data. If several potential requests (or a chain of 
requests) are returned, it becomes difficult to interpret the data. This is 
aggravated by the fact that no tooling exists so far, not even (public) 
prototypes thereof. 

RESTdesc’s strength is the elegant description of the behavioral seman-
tics of a service. The missing tooling, the unusual underlying data model 
and serialization format (Notation3 is not standardized and even within 
the Semantic Web community rarely used), and the dependency on 
semantic reasoners however makes it difficult to use RESTdesc in prac-
tice. We believe that a more gradual introduction to Semantic Web tech-
nologies is necessary to achieve widespread adoption. 

4.2 Data Interchange Formats 
Almost all current Web APIs use either XML or JSON as their data 
interchange format whereas for a long time RDF/XML was the only 
standardized choice for Semantic Web applications. RDF/XML has been 
first released in 1999 [61] at the peak of XML’s hype and revised in 
2004 [64]. Today, it is widely believed that RDF/XML significantly 
slowed the adoption of RDF and thus the whole vision of the Semantic 
Web. Its syntax is neither optimized for humans nor for machines nor 
does it allow the expression of all RDF data. In practice this means that it 
is generally very difficult to understand the data by just looking at the 
source code without further tooling. Similarly, standard XML technolo-
gies such as XPath [134], XQuery [135], or XSLT [136] are almost use-
less for working with RDF/XML because the same RDF graph can be 
serialized in many different ways. For a detailed analysis refer to Beckett’s 
retrospective on the development of RDF/XML’s revised syntax [137]. 

In contrast to the REST community which seems to be happy with XML 
and JSON (indicated by the fact that there have not been any notable 
efforts defining new data interchange formats), the Semantic Web com-
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munity has been actively working on numerous proposals to replace 
RDF/XML. In 2011, the W3C started a new working group whose 
charter [138] included the serialization of Turtle, a W3C Team 
Submission [139], and to either extend it to support multiple graphs or 
to standardize a separate syntax doing so. Eventually, the working group 
decided to standardize a whole suite of new syntaxes: Turtle [140], 
TriG [141] (an extension of Turtle supporting multiple graphs) as well as 
N-Triples [142] and N-Quads [143] which could be classified as line-
based counterparts of Turtle and TriG. Furthermore, the working group 
agreed to standardize JSON-LD [144], a serialization format based on 
JSON that follows a completely different approach. 

In the following section, we will describe Turtle in more detail as it 
builds the foundation of all new RDF serialization formats. JSON-LD, 
which is one of the main contributions of this thesis, is described in more 
detail in section 5.3. 

4.2.1 Turtle 

In 2003, David Beckett proposed N-Triples Plus [145], a new textual, 
non-XML syntax for RDF based on the test case format N-Triples [146] 
defined by the RDF Core Working Group revising RDF/XML. As the 
name suggests, the syntax is, just as the 2004 revised definition of 
RDF [147], triple-centric which makes it much simpler to understand 
the serialized data. Furthermore, the simple syntactic constructs, make it 
easy to author such documents by hand. This can be best illustrated by 
an example. The snippet in Listing 2, which has been taken directly from 

<?xml version="1.0"?> 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
         xmlns:dc="http://purl.org/dc/elements/1.1/" 
         xmlns:ex="http://example.org/stuff/1.0/"> 
  <rdf:Description 
      rdf:about="http://www.w3.org/TR/rdf-syntax-grammar" 
      dc:title="RDF/XML Syntax Specification (Revised)"> 
    <ex:editor> 
      <rdf:Description ex:fullName="Dave Beckett"> 
        <ex:homePage rdf:resource="http://purl.org/net/dajobe/" /> 
      </rdf:Description> 
    </ex:editor> 
  </rdf:Description> 
</rdf:RDF> 

Listing 2.  An exemplary RDF/XML document [64] 
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the RDX/XML specification [64], not only shows how verbose 
RDF/XML (still) is, but also that it is relatively difficult to author and 
read such documents without tooling support. In contrast, N-Triples 
Plus, which was later renamed to Turtle, feels much simpler and natural 
as shown in Listing 3. 

Prefixes and the constructs allowing to group triples by subject or object 
or to express lists or blank nodes, eliminate a lot of N-Triples’ verbosity. 
The downside of these features is the increased variability which makes 
parsing and processing more complex. 

Turtle is seen as one of the most important efforts of the Semantic Web 
community. It finally provides a syntax which shows the simplicity of 
RDF’s data model. Nevertheless, it is important to note that RDF’s data 
model, which is based on triples, is alien to most developers. Developers 
typically think in terms of entities and thus an entity-centric format 
might be more suitable to increase the adoption of Semantic Web tech-
nologies outside the Semantic Web community. Furthermore, the fact 
that Turtle defines a new grammar means that custom lexers and parsers 
have to be build and developers cannot reuse their existing toolchains. 

4.3 Vocabularies and Ontologies 
Interface descriptions languages normally offer only syntactic descriptions 
of service surfaces. In practice, however, such syntactic descriptions are 
insufficient to enable the automation of tasks such as service discovery 
and composition. The information that an operation requires two strings 
and returns an integer does not offer any hint as to what the operation 
does. Thus, in order to solve this problem, research has been done to 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 
@prefix dc: <http://purl.org/dc/elements/1.1/> . 
@prefix ex: <http://example.org/stuff/1.0/> . 
 
<http://www.w3.org/TR/rdf-syntax-grammar> 
    dc:title "RDF/XML Syntax Specification (Revised)" ; 
    ex:editor [  
          ex:fullname "Dave Beckett"; 
          ex:homePage <http://purl.org/net/dajobe/> 
    ] . 

Listing 3.  The exemplary RDF/XML document from Listing 2 converted to Turtle 
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describe services also semantically. In this section we will give a brief 
overview of the most significant approaches. 

4.3.1 OWL-S 

OWL-S (Web Ontology Language for Web Services, formerly known as 
DAML-S) [148] is an upper ontology based on the W3C standard ontol-
ogy OWL used to semantically annotate Web services. OWL-S consists 
of the following main upper ontologies as shown in Figure 9: 1) the 
Service Profile for advertising and discovering services; 2) the Service 
(Process) Model, which gives a detailed description of a service’s operation 
and describes the composition (choreography and orchestration) of one 
or more services; and 3) the Service Grounding, which provides the 
required details about transport protocols to invoke the service (e.g. the 
binding between the logic-based service description and the service’s 
WSDL description). Generally speaking, the Service Profile provides the 
information needed for an agent to discover a service, while the Service 
Model and Service Grounding provide enough information for an agent 
to make use of a service once found [148]. 

The main critique of OWL-S is its limited expressiveness of service 
descriptions in practice. Since it practically corresponds to OWL-DL, it 
allows only the description of static and deterministic aspects; it does not 
cover any notion of time and change, nor uncertainty. Furthermore, in 
contrast to WSDL, an OWL-S process cannot contain any number of 
completely unrelated operations [120], [149]. 

Service 
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presents 
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described by 

What the service does 

How the service works 

How to access the service 

Figure 9.  The OWL-S ontology 
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4.3.2 WSMO 

Another approach to describe Web services semantically is the Web 
Service Modeling Ontology (WSMO) [150]—the outcome of work 
funded by numerous large European Union research projects. It defines a 
conceptual model and a formal language called WSML (Web Service 
Modeling Language) as well as a reference implementation of an execu-
tion environment (WSMX; Web Service Execution Environment) for the 
dynamic discovery, selection, mediation, invocation, and interoperation 
of Semantic Web services based on the WSMO ontology. 

WSMO offers four top-level notions to describe the different aspects of 
Web services as shown in Figure 10: 1) Ontologies that define the formal-
ized domain knowledge; 2) Goals, which specify objectives that a client 
might have when consulting a Web service; 3) Service Descriptions for 
describing functional, non-functional and behavioral aspects of a Web 
service; and 4) Mediators for enabling interoperability and handling het-
erogeneity between all these components at data (mediation of data 
structures) and process level (mediation between heterogeneous 
communication patterns) to allow loose coupling between services, goals, 
and ontologies. 

In contrast to most other description formalisms, WSMO propagates a 
goal-based approach for SWS. It is particularly designed to allow the 
search for Web services by formulating the queries in terms of goals. So 
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to enable interoperability 

Figure 10.  The WSMO ontology 
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the task of the system is to automatically find and execute Web services 
which satisfy the client’s goal. This goes beyond the OWL-S idea whose 
principal aim is to describe the service’s offers and needs. 

One of the main critiques of WMO is that its development has been 
done in isolation of existing W3C standards. This raised serious concerns 
by the W3C which were expressed in the official response to the WSMO 
submission in 2005 [151]. To address those issues, a lightweight version 
called WSMO-Lite that is presented in the next section has been created. 
Another critique is that guidelines for developing mediators, which seem 
to be the essential contribution of WSMO in concrete terms, are missing. 

4.3.3 WSMO-Lite 

SAWSDL does not specify a language for representing the semantic 
models but defines how to add semantic annotations to various parts of 
WSDL or XML Schema documents. WSMO-Lite [152] was created as a 
lightweight service ontology to fill SAWSDL annotations with concrete 
service semantics to allow bottom-up modeling of services. It adopts the 
WSMO model and makes its semantics lighter. The biggest difference to 
WSMO is that WSMO-Lite treats mediators as infrastructure elements 
and specifications for user goals as dependent on the particular discovery 
mechanism used. In contrast, WSMO defines formal user goals and me-
diators. Furthermore, WSMO-Lite defines the behavior semantics only 
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Figure 11.  The WSMO-Lite ontology 
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implicitly. WSMO-Lite also does not exclusively use WSML, as WSMO 
does, but allows the use of any ontology language with an RDF syntax. 

WSMO-Lite describes the following four aspects of a Web service: 1) the 
Information Model, which defines the data model for input, output, and 
fault messages; 2) the Functional Semantics, which define the func-
tionality, which the service offers; 3) the Behavioral Semantics, which 
define how a client has to talk to the service; and 4) the Non-functional 
Semantics, which define non-functional properties such as quality of 
service or price. A graphical representation of the ontology is shown 
in Figure 11. 

A major advantage of the WSMO-Lite approach is that it is not bound to 
a particular service description format such as WSDL. As a result 
WSMO-Lite can be used to integrate approaches like, e.g., hRESTS and 
MicroWSMO with traditional WSDL-based service descriptions. 

4.3.4 EXPRESS 

Given that EXPRESS [153] follows a completely different strategy than 
the other approaches mentioned so far, we believe it is another interesting 
approach to look at despite the fact that we are not aware of a single 
usage in the wild. Instead of a domain ontology and a separate semantic 
description of a service, EXPRESS only requires the definition of a 
domain ontology in OWL [66], i.e., the formal description of the con-
cepts and their relationship in the API’s application domain.  An 
EXPRESS “deployment engine” then analyzes that domain ontology and 
creates a URI space for the found classes, instances, and properties. 
Finally, the developer decides which HTTP methods are permitted for 
the various created resources in order to define the supported function-
ality. It is worth noting, that EXPRESS maps the HTTP methods to the 
CRUD operations (create, read, update, and delete) and thus, the func-
tionality of APIs created with EXPRESS is limited to the CRUD opera-
tions. This reduces the complexity but also the possible applications of 
EXPRESS. Often, simple CRUD-style functionality is not enough. 

Since EXPRESS follows a top-down approach in which concrete services 
are automatically created out of semantic descriptions, it represents a dis-
ruptive approach that cannot be used to upgrade existing services and 
thus makes it impossible to build upon existing infrastructure invest-
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ments. For simple APIs it could, however, be an interesting approach to 
consider presuming that powerful tooling would be available, which is 
not the case at the time of this writing. 

4.3.5 Linked Data Platform 

Based on a member submission by IBM, the W3C decided in 2012 to 
start a working group with the aim to “produce a W3C 
Recommendation for HTTP-based (RESTful) application integration 
patterns using read/write Linked Data” [154]. The Linked Data Platform 
(LDP) vocabulary [155] defines concepts such as resources and collec-
tions but it is misses any notion of operations. Effectively this means that, 
at least at the current stage, the Linked Data Platform does not go 
beyond defining a standardized CRUD interface to manage resources in 
collections. It could thus be characterized as an RDF version of the Atom 
Publishing Protocol [47] as the interaction models are almost identical. 

Collections can be used to store (more or less) opaque RDF documents. 
LDP has neither built-in support for the semantic description of 
operations other than CRUD nor does it allow the description of 
supported properties, classes, etc. The only way for a client to find out 
which properties are supported is to POST an RDF document to a col-
lection in order to create a new resource. That resource then has to be 
inspected to verify that all the data has been stored and no properties 
have been discarded.  

Given these limitations, it is questionable whether mainstream Web 
developers will see enough compelling reasons to adopt the approach 
proposed by the Linked Data Platform working group. The same func-
tionality can be achieved with much simpler, proven approaches such as 
the Atom Publishing Protocol [47]. 

4.4 Domain Application Protocols 
All the approaches mentioned so far try to be as general as possible in 
order to be usable for a wide range of application domains. In this sec-
tion, we will present a number of specialized solutions tailored for very 
specific application domains. In contrast to the previously mentioned 
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approaches, the solutions presented in this section were able to achieve 
some adoption across the Web. These approaches have in common that 
they use specialized media types (even though not all of them have been 
officially registered) to define message semantics and processing models 
for specific use cases. In other words, they represent domain application 
protocols [46]. 

4.4.1 Atom 

Atom consists of two related standards, the Atom Syndication 
Format [48] and the Atom Publishing Protocol [47] (also known as 
AtomPub or APP). The Atom Syndication Format is an XML-
based format to syndicate content in the form of so called Web feeds or 
news feeds. The Atom Publishing Protocol is an application-level 
protocol for publishing, editing, and deleting feed entries and associated 
media resources. 

The Atom Syndication Format consists of two kinds of documents: 
Atom Feed Documents and Atom Entry Documents. An Atom Feed 
Document is, as the name suggests, the representation of an Atom feed. 
It contains metadata about the feed and some or all of the entries associ-
ated with the feed. An Atom Entry Document describes exactly one feed 
item outside the context of an Atom feed. It is worth mentioning that 
Atom documents must be well-formed XML but are not required to be 
valid XML because the specification does not include a Document Type 
Definition (DTD) for them. Atom is designed to be an extensible format 
and so foreign markup (markup which is not part of the Atom vocabu-
lary) is allowed almost anywhere in an Atom document. 

The Atom Publishing Protocol describes how a feed can be manipulated 
by a client. It defines, just as the Syndication Format, two kinds of doc-
uments: Category Documents and Service Documents. Category 
Documents are used to hold the list of Atom categories as defined in the 
Atom Syndication format. Those category lists are used to describe the 
categories that can be applied to the members of a Collection (i.e. the 
entries of an Atom Feed Document). The Service Document describes 
the location and capabilities of one or more Collections which are 
grouped into Workspaces. That information is needed by clients for 
authoring to commence. 
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Both the Atom Syndication Format as well as the Atom Publishing 
Protocol are fully based on the REST architectural style and thus inte-
grate very well in the Web’s architecture. In fact, the Atom Publishing 
Protocol is often cited as the poster child of RESTful service design. Its 
extensible design led to the adoption of AtomPub for the implementation 
of various kinds of Web services. The most prominent examples have 
been early versions of Google’s Data Protocol (GData) [156] and 
Microsoft’s Open Data Protocol (OData) [157]. They used Atom’s 
extensibility to implement APIs for their services but unfortunately such 
an approach is not always feasible or desirable. It is also just a solution for 
the description of the service’s interface; the problem of describing the 
exchanged data, i.e., the feed entries, still remains unresolved. Sometimes 
this approach also yields strange results, e.g. when a service provider just 
serializes an Atom feed into a JSON representation. The JSON serializa-
tion of Google’s Data Protocol [156] is one of those inglorious examples. 
At least its subsidiary YouTube recognized the problem and is now 
offering an alternative JSON serialization [158]. 

4.4.2 OpenSearch 

OpenSearch [159] was developed by A9, an Amazon.com subsidiary, and 
was first unveiled in 2005. It is a collection of simple formats that allow 
the description of search engines’ interfaces as well as the publishing of 
search results in a format suitable for syndication and aggregation. 
OpenSearch allows clients such as Web browsers to invoke search queries 
and process the responses. By now all major Web browsers support 
OpenSearch and use it to add new search engines to the browser’s search 
bar. This way the user can invoke a query directly from the browser 
without first having to load the search engine’s homepage. 

OpenSearch consists of the following four formats: 1) the description 
document, 2) the URL template syntax, 3) the response elements, and 
4) the Query element. The OpenSearch description document describes 
the interface of a search engine in the form of a simple XML document. 
It may also contain some metadata such as the name of the search engine 
and its developer. The URL template syntax represents a parameterized 
form of the URL by which a search engine is queried. Simply speaking it 



 

73 

describes the used GET parameters to invoke a query. An example of 
such a template looks as follows:  

http://example.com/search?q={searchTerms} 

All parameters are enclosed in curly braces and are by default considered 
to be part of the OpenSearch template namespace. By using the XML 
namespace prefix convention it is possible to add new parameter names, 
which enables extensibility. The OpenSearch response elements are used 
by search engines to augment existing XML formats such as Atom and 
RSS with search-related metadata. Finally, the OpenSearch Query ele-
ment can be used to define specific search requests that can be performed 
by a search client. The Query element attributes correspond to the search 
parameters in a URL template. One use case is, e.g., the definition of 
related queries in a search result element. 

4.4.3 oEmbed 

oEmbed [160] provides a simple interface that allows a Web site to dis-
play embedded content (such as photos or videos) when a user posts a 
link to that resource without having to parse the resource directly. This 
makes it possible to embed, e.g., a YouTube video on a web page without 
having to extract the YouTube video player from the HTML page the 
user referenced. 

The interface defined by oEmbed is trivial. A provider specifies one or 
more URI scheme and API endpoint pairs which a consumer then uses to 
issue HTTP requests to get the necessary information to embed a specific 
resource. The aforementioned URI scheme describes which URIs (wild-
cards are supported) may have an embedded representation, i.e., for 
which URIs the associated API endpoint might be used by a consumer to 
lookup the structured data used to embed the representation. The con-
sumer then issues an HTTP GET request to the API endpoint with the 
URI of the representation it would like to embed along with the optional 
maximum width and height of the embedded resource as query parame-
ters. It might also specify in which format it would like to get the 
response; possible formats are JSON and XML. Finally, the provider 
replies with a response containing structured data such as, among others, 
a title, the author’s name, a thumbnail of the referenced image or the 
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HTML code needed to embed a video player. The client can then use 
this information to display the resource referenced by the user. 

oEmbed is a nice example of a clear use case that lead to a clear and sim-
ple specification and thus resulted in wide adoption. Among others, 
YouTube, Flickr, Hulu, Slideshare, and Vimeo act as providers and there 
are plugins and libraries which add support for oEmbed to almost every 
blogging and content management system available. 

4.5 Hyperlinks and Namespaces in JSON 
In contrast to XML, JSON, the JavaScript Object Notation, was specifi-
cally designed as a lightweight, language-independent data-interchange 
format that is easy to parse and generate. Often it is thus considered to be 
simpler than XML—but this simplicity comes at a price. JSON has nei-
ther native support for hypermedia nor does it support namespaces or 
semantic annotations. There have been various proposals to solve these 
shortcomings; all of them have in common that they specify a set of key-
words to express certain aspects such as hyperlinks. 

The most prominent examples trying to add hypermedia support to 
JSON are probably JSON Schema [161] and its trimmed down counter-
part JSON Reference [162]. Both define a special keyword $ref to 
denote a hyperlink. While, as the name suggests, JSON Schema puts that 
type information in a schema describing the document, JSON Reference 
uses the $ref keyword directly within the document. It can thus be seen 
as a static serialization of the same type but it lacks support for semantic 
annotation to describe its relation to the current document (which is pos-
sible with JSON Schema). Two related solutions that address this issue 
are HAL and Collection+JSON, but in contrast to the previously men-
tioned approaches which augment JSON, they represent a new media 
type on their own. 

HAL [163] uses the _links keyword instead of $ref but, instead of setting 
its value directly to the link’s target, it sets its value to an object whose 
keys are the link relations and whose values are the link targets. HAL has 
also support to embed external resources within a representation. Often 
this is important as it allows applications to greatly decrease the number 
of required HTTP requests. 
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Collection+JSON [164] is basically a JSON version of the Atom protocol 
suite to manage simple lists of entities. This media type not only specifies 
how links (which can be templated) are represented but also how HTTP 
can be used to manipulate the various representations. 

Similar to these proposals, but with a different goal in mind, various 
approaches have been presented to add semantic annotations or 
namespace support to JSON. These two aspects can be considered to be 
roughly the same as the idea of semantic annotations to define the 
semantics of a concept in a special namespace to avoid collisions when 
the same terms are reused in different documents. The different proposals 
can be classified into two groups based on whether namespaces are sup-
posed to be dereferenceable or not. In the first group, where namespaces 
are just used to avoid collisions and are thus not expected to be 
dereferenceable, often DNS-style names such as com.example.

projects.namespacesInJSON are used [165]; the syntactic differences of the 
proposals are negligible. The second group of approaches assumes 
namespaces to be dereferenceable to be able to retrieve further infor-
mation about them. In other words, they are based on the idea of Linked 
Data and, as such, they are mostly trying to create a JSON serialization 
format for RDF. Most of those approaches thus also offer other function-
ality such as data typing or string internationalization. 

As part of the effort to standardize a JSON serialization format for RDF, 
the RDF Working group has already compared most of the existing 
approaches [166]; therefore we would like to refer the interested reader to 
that document for a detailed review of the various proposed solutions. 
Summarized, it can be said that most of the approaches create a new me-
dia type with specific processing models.  The main difference is whether 
they are triple- or entity-centric and the degree by which they rely on 
microsyntaxes. This determines how familiar a representation looks to a 
JSON developer; an important aspect for the acceptance of such a for-
mat. Unfortunately, most proposed solutions fall short in this respect. 

4.6 Discussion 
As we have shown in this chapter, multiple approaches trying to describe 
RESTful services in a machine readable manner have been proposed over 
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the years. Similarly, numerous attempts have been made to extend JSON 
with hypermedia controls and namespacing support to make it more 
suitable for the creation of self-descriptive messages. This clearly shows a 
desire to formalize the development and description of RESTful services 
but, unfortunately, none of the proposed solutions managed to achieve 
noticeable adoption. The only endeavors blessed with some uptake were 
solutions targeting small, well-defined use cases such as the description of 
search engine interfaces or content syndication. 

We argue that the lack of acceptance of those approaches stems from the 
fact that they do not provide any imminent incentive and thus experience 
a classic chicken-and-egg problem. No services are being formally 
described because there are no applications making use of that infor-
mation and no applications are developed because there are no such ser-
vice descriptions. Furthermore, a lot of the presented proposals are 
complex, heavyweight solutions. Often their functioning resembles the 
flawed RPC-model which is a problem especially with regard to RESTful 
services that follow a fundamentally different architecture. Some seman-
tic approaches introduce new languages and most of them promote top-
down modeling, i.e., semantics first. RESTful Web APIs, however, are 
often driven by bottom-up design. Analyzing the current state of the art 
and taking into account our experience in creating Web services and 
working with Web developers, we were able to distill a number of aspects 
which we deem important to solve the issues described in Chapter 3. 

A critical, yet often neglected feature is the support for hypermedia. Web 
APIs need to the able to convey valid state transitions at runtime instead 
of requiring developers to hardcode them into their clients. Thus, the 
description of URL structures or templates generally provides little 
advantages. Developers typically find it much simpler to hardcode against 
those patterns instead of processing them at runtime. This leads to a tight 
coupling and hinders the evolvability of Web APIs as URLs cannot be 
changed without breaking clients. Thus, a number of approaches pre-
sented in this chapter define constructs to serialize hyperlinks in, e.g., 
JSON. This is definitely a step in the right direction but doing just that is 
certainly not enough. It solves only part of the problem and can just as 
well be achieved by simpler, standardized mechanisms such as the HTTP 
Link header [57]. So, while support for hypermedia is without a doubt 
critical, features such as namespacing are important as well. Without 
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namespacing, it becomes extremely difficult to reuse concepts across dif-
ferent Web APIs. This leads to the current situation in which every Web 
API is effectively a snowflake, i.e., every Web API is unique and requires 
documentation to be used. By supporting namespacing, it becomes pos-
sible to reuse and mix concepts from various sources in a single message. 
At the same time, the message becomes self-descriptive, which is one of 
REST’s fundamental constraints. The problem with most formats or 
conventions supporting namespacing is that the messages become overly 
verbose. Furthermore, our experience tells us that average Web develop-
ers do not want to deal with namespaces. Thus, we believe that it would 
be better to let experts define “namespace bundles” similar to profiles as 
described in section 2.2, which would allow developers to work with the 
concepts as if they would all belong to a single namespace. 

An interesting observation in analyzing the state of the art is that most 
proposed solutions are either too simplistic or overly complex. It is hard 
to find approaches in the middle ground of these two extremes. Solutions 
in the first camp typically confine themselves to CRUD-style APIs. 
While it is true that almost all functionality can be implemented by such 
interfaces, the semantics the CRUD operations offer are too weak in sys-
tems that are not centrally coordinated. Clients also need to know what 
the consequences of the various operations are. It is not enough to know 
how to create an entity, but it is also necessary to know what implications 
such a creation has. For instance, it is crucial to know whether the crea-
tion of an order entity results in the delivery of goods or not. Solutions in 
the second camp typically become overly complex by features without 
clear usage scenarios in practice. 

A lot of proposed solutions from the Semantic Web community e.g. 
included descriptions of non-functional characteristics of a service to 
support matchmaking. This seems like a sensible decision per se but in 
practice it generally becomes too complex to describe abstract charac-
teristics of multiple services in a uniform way. Often, the decision about 
which service to use is not based on objective characteristics but on 
subjective aspects such as the API publisher’s reputation, relationships 
between various companies, or changes in competitive conditions. We 
therefore believe that it is essential to find to find the right trade-off 
between complexity and expressivity. In this thesis, we therefore concen-
trate on the functional aspects of Web APIs but try to keep the solution 
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extensible enough to support more complex functionality in the future. 
Furthermore, we believe that it is imperative to allow the gradual intro-
duction of new features such as namespacing or hypermedia support as 
well as the description of service interfaces and semantics. It should be 
possible to update existing services with minimal changes to the service 
itself. This will ensure that investments in existing systems can be lever-
aged and that developers do not have to change their toolchains due to 
disruptively different base technologies. 



 

 

Chapter 5 

Bridging the Gap 

between REST 

and Linked Data 

Developers have to deal with a plethora of heterogeneous data formats 
and service interfaces for which little to no tooling support is available 
when using RESTful Web APIs. Similarly, when implementing services 
developers struggle with a number of difficult design decisions. Thus, 
most Web APIs are like snowflakes, i.e., similar yet not alike. Even 
though the differences are in general quite subtle, they render code reuse 
impossible to a large extent. As we have seen in Chapter 3, the usage of 
proprietary data formats, the reliance on static contracts written in natu-
ral language, and the fact that clients are often developed by the same 
team in lockstep with the service itself are the main reasons for this situa-
tion. Simply speaking, the goal of this thesis is to break this vicious cycle. 

As we have seen in the previous chapters, various issues have to be solved 
to achieve this ambitious goal but the most important building block is a 
data interchange format or a description language supporting the creation 
of self-descriptive messages. Moreover, that format or language either 
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needs to have built-in support for hypermedia or provide extension 
points to add it separately—for instance in the form of a vocabulary. It is 
also important to keep data integration and reuse in mind when design-
ing a solution to these issues as it is the underlying problem to be solved 
in a lot of Web API usage scenarios. This is a task RDF has proven to be 
very apt at as its simple data model often represents the least common 
denominator to which various different other data models can be easily 
mapped to. 

Even though RDF/XML, the only standardized standalone serialization 
format for RDF, is widely disliked and new formats, such as Turtle, have 
not been optimized for Web APIs, our hypothesis is that it should be fea-
sible to standardize and streamline the development and usage of truly 
RESTful Web APIs by combining technologies from both the world of 
Web APIs and the Semantic Web. We expect that such standardization 
would, in the first place, result in higher productivity due to the ability to 
create generic tools and libraries, and to reuse already existing RDF 
vocabularies. Subsequently, it could lead to much more sophisticated 
applications. It could also potentially foster the creation of tools at higher 
levels of abstraction which could, hopefully, even allow non-technical 
experts to create solutions fulfilling their situational needs. 

Based on this hypothesis, the study and analysis of the state of the art, 
and our experience in creating and using RESTful services, we began 
with experiments to design a solution for the problems identified in sec-
tion 3. We first concentrated on the data interchange as it is the most vis-
ible and concrete aspect of a Web API. This led to the development of a 
generic data interchange format, which we complemented with a light-
weight vocabulary defining the semantics of a number of concepts 
needed in most Web APIs. This iterative process resulted in four original 
contributions which are described in the following sections. JSON-LD, 
the final data interchange format has become an official and well-
accepted W3C standard. Hydra, the vocabulary defining important con-
cepts for RESTful Web APIs, has also been well received and has led to 
the establishment of a W3C Community Group working on its stand-
ardization and future extensions. 

This chapter is based on previous work that has been published in [25], 
[27], [95]–[99], [144], [167]–[170]. 
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5.1 SAPS 
Numerous services are implemented by exposing a simple CRUD inter-
face to manage entities of various types. All the interaction with such an 
API happens through the manipulation of specific entities. An 
e-commerce API, e.g., might enable clients to order goods by creating an 
order entity which references a number of article entities. While a CRUD 
interface is rarely enough to build sophisticated services in practice, it is a 
common pattern and often the least common denominator of different 
Web APIs. To prove the principal viability of our hypothesis that it 
should be possible to standardize and streamline the development of Web 
APIs by combining Semantic Web technologies with technologies used in 
RESTful services, we started experimenting with proven, standardized 
technologies. 

The Atom Syndication Format [48] and its publishing protocol [47] are 
often cited as poster children of RESTful service design. Along with 
OpenSearch [159] they are among the few approaches that have been 
widely adopted. Well aware of the fact that XML was not designed for 
interchange of structured data but to markup mixed content and that 
Atom often enforces a too rigid structure, we nevertheless chose them as 
the base technologies for our first experiments which aimed to create a 
minimum viable product [171] combining Semantic Web technologies 
with technologies used in Web APIs. This finally lead to the development 
of SAPS [27] which is described in this section. 

Building a solution by combining different proven technologies has the 
advantage of readily available, mature tooling instead of having to start 
from scratch. This is quite beneficial in terms of agility as the focus can 
be put on the high-level concepts and ideas instead of having to spend 
time on implementation details. 

5.1.1 Basic Concepts and Principles 

The basic idea of SAPS (Semantic AtomPub-based Services) is to combine 
the Atom Syndication Format [48], the Atom Publishing Protocol [47], 
and the OpenSearch [159] format to provide a framework for the 
exchange and manipulation of entities. The entities themselves, i.e., the 
data the client is mainly interested in, are described by semantically 
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annotated schemas. The result 
is a mostly standardized tech-
nology stack as illustrated in 
Figure 12. If the payload is 
encoded in XML, even the 
semantic layer at the top can 
be realized by using stand-
ardized technologies such as 
XML Schema [89] and 
SAWSDL [119]. The sole 
purpose of SAPS is to define 
how to integrate these 
technologies. 

The main entry point of a Web API built with SAPS is represented by an 
Atom service document [47] consisting of a number of collections, i.e., 
Atom feeds. This allows a client to add new entities or to discover already 
existing entries by browsing the various collections. Without further 
knowledge, however, it is difficult for a machine client to figure out to 
which collection an entry should be added and which collection should 
be browsed to find a specific entity respectively. Humans typically rely on 
the collection’s name or categories for this purpose but the natural lan-
guage description is semantically too weak for a machine to work with 
directly. SAPS, therefore leverages the fact that Atom does not assign any 
meaning to the content of the app:categories element and reuses it to 
convey machine-readable hints about the data in a collection. 

The category’s scheme is set to an ontology’s namespace prefix and the 
term to a specific concept in that ontology. Effectively, the concept’s IRI 
is split into a prefix and a suffix similar to the usage of compact URIs 
(CURIEs) [172] in various RDF serialization formats or XML. This 
informs a client what kind of data it may find in a specific collection. 
Unfortunately, it does not convey enough information to add new enti-
ties, as it describes neither the expected syntactic structure nor the prop-
erties of such an entity (in RDF the properties define their relationship to 
a class and not vice versa). 

The Atom Publishing Protocol normally addresses this by defining the 
acceptable payload formats in terms of media types but unfortunately this 
is normally not specific enough in practice—at least not for Web APIs. 

HTTP(S) 

Atom + AtomPub 

TCP/IP 

OpenSearch 

SAWSDL 

XML Schema 

SAPS Semantic Layer 

Figure 12.  The SAPS layer cake 
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The preferred media types for Web APIs are typically too general and, 
most of the time, minting new proprietary media types is neither practi-
cal nor desirable. Both XML (application/xml) and JSON 
(application/json), e.g., are not concrete enough to allow the automatic 
construction of messages. SAPS solves this by using semantically anno-
tated schemas to define both the syntactic structure of the messages as 
well as the semantics of the various elements. Via the newly introduced 
attribute saps:schema the media type is augmented with a schema that 
can be used to generate payloads according to the requirements of the 
server. It is important to note that, since the schema is semantically 
annotated, the data model used on the client can be automatically 
mapped to the syntactic structure required by the server. The coupling, 
however, takes places at the semantic layer instead of the syntactic layer 
which improves the evolvability and reusability of the system as semantic 
concepts change much less frequently than the syntactic structures to 
serialize them. 

Just as with Atom itself, clients of SAPS-based services typically interact 
with feed entries indirectly, i.e., not by dereferencing each entry’s URL to 
retrieve its representation, but by retrieving the feed in which the entries’ 
representations are embedded. This is much more efficient when 
retrieving numerous entries but the downside is that the metadata that 
could be found in the HTTP headers when retrieving each feed entry 
separately is lost. To partially mitigate this limitation SAPS introduces 
the saps:etag attribute. 

SAPS’s etag attribute is equivalent to HTTP’s ETag header [9], a token 
identifying the current version of a resource representation. The etag 
attribute can be used to specify the ETag of an entry embedded in a feed 
so that the need to separately dereference its URL just to get the ETag is 
eliminated. This improves the efficiency by enabling conditional retriev-
als (GET using the If-None-Match HTTP header) and adds support for 
optimistic concurrency control when manipulating or deleting entries 
(e.g., PUT or DELETE requests using HTTP’s If-Match header). 

This simple model offers a complete CRUD interface to the data exposed 
by a Web API allowing entities to be created, retrieved, updated, and 
deleted by standardized technologies. While this covers a lot of the func-
tionality typically needed in Web APIs, it ignores a common use case, 
namely the query of data. With the interface described so far, a client has 
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to iterate through a collection in order to find a specific entry. In most 
cases, however, it would be much more efficient to query the API to find 
a specific entity directly. SAPS addresses this use case by describing a ser-
vice’s search interface(s) with the OpenSearch format. Given that Atom 
was designed as an extensible format, it is trivial to integrate OpenSearch. 
The OpenSearch document describing the search interface can either be 
directly embedded in a Atom service document or feed as “foreign 
markup” [48] or referenced by using Atom’s link tag with the standard-
ized search link relation. The OpenSearch document itself specifies a 
URL template which is expanded to a URL by populating it with the 
concrete query criteria. In SAPS, the query criteria are, most of the time, 
expressed by using semantic concepts from a vocabulary. The 
OpenSearch document defines a prefix (an XML namespace) identifying 
the vocabulary so that the URL template’s variables can be expressed in 
the form of CURIEs. 

Similar to the search functionality, interaction models that do not fit 
nicely in the collections/items structure can be built by including links 
with specific link relations in both feeds and feed entries. Obviously a 
client needs to know how to process the link relations. SAPS does not 
define any mechanism to describe that, but just as Atom, relies on exter-
nal documentation that developers can use to implement their clients. 

Since SAPS is based on Atom, it strictly follows its specification and the 
use of most Atom elements is self-explanatory. Some elements, however, 
require further clarification in the context of SAPS. For instance, in most 
of the cases it is not obvious how atom:title, atom:author, and 
atom:summary should be used. SAPS takes a pragmatic approach for these 
fields: the title element is used to create a human-readable representa-
tion of the item (e.g., if a product is represented its name and price could 
be used), the same applies for the summary element where required. The 
author element is a bit trickier; most of the time it will either be empty or 
set by the server to some constant value such as the API’s name.  

5.1.2 Illustrative Example 

In order to give a better understanding of the basic concepts and princi-
ples explained in the previous section, we will demonstrate how an illus-
trative example can be realized using SAPS in this section. The example 
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implements the Web API of an imaginary website that lets users find fes-
tivals and buy tickets to attend them. Thus, users should able to find 
upcoming festivals, find out which artists perform at that festival, and get 
information about the available tickets. Furthermore, it should be possi-
ble for users to buy tickets and to see all the orders they made. 

The first step when implementing the Web API is to define the resources 
that are needed to represent the application domain’s data. By analyzing 
the user stories described in the example we are able to extract the fol-
lowing resources: festivals, performers (artists), tickets, orders, and, per-
haps, payments to complete orders. These resources are accessed by dif-
ferent actors, e.g., users and administrators. It is obvious that the actors 
have different privileges and need to authenticate themselves to the sys-
tem, but for the sake of simplicity we will ignore authentication and 
authorization issues. 

Just like for a normal website we start by building the service’s “home-
page”. In SAPS, this is done by creating an Atom service document enu-

<?xml version="1.0" encoding="utf-8"?> 
<service xmlns="http://www.w3.org/2007/app" 
        xmlns:atom="http://www.w3.org/2005/Atom" 
        xmlns:saps="http://www.purl.org/saps"> 
 <workspace> 
   <atom:title>Awesome Festivals API</atom:title> 
   <collection href="/festivals/" > 
     <atom:title>Upcoming Festivals</atom:title> 
     <accept /> 
     <categories fixed="yes"> 
       <atom:category scheme="http://schema.org/" term="Festival" /> 
     </categories> 
    <atom:link rel="search" 
      type="application/opensearchdescription+xml"  
      href="/queries/festival.xml"/> 
   </collection> 
   <collection href="/users/4812/orders/" > 
     <atom:title>Orders</atom:title> 
     <accept saps:schema="/schemas/purchase-order.xsd"> 
       application/xml 
     </accept> 
     <categories fixed="yes"> 
       <atom:category scheme="http://schema.org/" term="Order" /> 
     </categories> 
   </collection> 
 </workspace> 
</service> 

Listing 4.  The Atom service document representing the exemplary API’s entry point 
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merating the available collections and referencing one or more 
OpenSearch description documents defining the search interface. In this 
example, the service’s homepage includes collections for the upcoming 
festivals and the user’s orders. Neither performers, nor tickets, nor pay-
ments are included directly on the homepage because there is no immi-
nent use case justifying it. Of course it would be possible to, e.g., also 
include the collection of performers directly on the homepage to make it 
easier for users to find all festival where a specific artist performs but this 
decision is at the sole discretion of the API publisher. 

In the Atom service document in Listing 4, the festival collection has an 
empty accept element which specifies that the festival collection does not 
support the creation of new entries—at least not for the currently 
authenticated user. The category of the collection is set to 
Schema.org’s [85] Festival class so that clients are able to understand the 
meaning, i.e., the semantics, of this collection. These categories could 
also be used to store information about the behavior as well as non-
functional descriptions of the service. 

Furthermore, the festival collection contains a link to an OpenSearch 
description document defining the interface to search for festivals either 
by search terms (full-text search) or by the date it begins. As shown in the 
OpenSearch description in Listing 5, the full-text query parameter is 
represented by OpenSearch’s searchTerms variable whereas the date is 
linked to Schema.org’s startDate property. This conveys the semantics of 
the two parameters to a client, which is then able to replace them with 
concrete values. 

The orders collection is, in contrast to the festivals collection, writable. It 
accepts new orders in the form of XML documents with the media type 

<?xml version="1.0" encoding="UTF-8"?>       
<OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/"> 
  <ShortName>Festival Search</ShortName> 
  <Description>Search for festivals</Description> 
  <Url xmlns:schema="http://schema.org/" 
    type="application/atom+xml;type=feed" 
    template="http://example.com/festivals/?q= 
      {searchTerms?}&amp;date={schema:startDate?}" /> 
</OpenSearchDescription> 

Listing 5.  An OpenSearch document describing the 
query interface of the festivals collection 
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application/xml complying with the purchase-order.xsd XML schema. 
Just as for the festivals collection, the category of the orders collection is 
set to a concept in a vocabulary to convey the semantics of the collec-
tion’s items.  

With this information from the Atom service document, a client is now 
able to search for a festival and create a purchase order to buy a ticket. As 
described by the OpenSearch description document, it can, e.g., search 

<?xml version="1.0" encoding="utf-8"?> 
<feed xmlns="http://www.w3.org/2005/Atom" 
 xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/"> 
  <title type="text">Search for “Ultra”</title> 
  <updated>2013-11-14T12:29:29Z</updated> 
  <author><name>Awesome Festivals API</name></author> 
  <link rel="search" type="application/opensearchdescription+xml"  
    href="/queries/festival.xml"/> 
  <entry> 
    <title>Ultra Music Festival</title> 
    <summary>Outdoor electronic music festival</summary> 
    <id>tag:example.org,2014:ultra-miami</id> 
    <link rel="alternate" type="text/html" 
       href="http://example.com/festivals/2014/ultra-miami.html" />  
    <link rel="alternate" type="application/xml" 
       href="http://example.com/festivals/umf84705.xml"/> 
    <updated>2013-08-30T12:29:29Z</updated> 
    <published>2013-05-13T08:29:29-04:00</published> 
    <content type="application/xml" 
      <festival xmlns="http://example.com/ns/festival/" 
            xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
            xsi:schemaLocation="http://example.com/ns/festival 
            http://example.com/schemas/festival.xsd"> 
        <id>http://example.com/festivals/umf84705</id> 
        <label>Ultra Music Festival</label> 
        <description>...</description> 
        <from>2014-03-28</from> 
        <till>2014-03-30</till> 
        <performers> 
          ... 
        </performers> 
        <tickets> 
          <ticket> 
            <label>General Admission</label> 
            <sku>umf84705-165</sku> 
            <price>399.95</price> 
          </ticket> 
        </tickets> 
      </festival> 
    </content> 
  </entry> 
</feed> 

Listing 6.  The result of querying the festivals collection 
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for a festival containing the term “Ultra” by issuing an HTTP GET request 
on http://example.com/festivals/?q=Ultra. The server responds with an 
Atom feed containing the search results as show in Listing 6. 

The XML schema associated with the returned festival entity is defined is 
shown in Listing 7 and describes not only the syntactic structure but also 

<?xml version="1.0" encoding="utf-8"?> 
<xs:schema xmlns="http://example.com/ns/festival/" 
           xmlns:xs="http://www.w3.org/2001/XMLSchema" 
           xmlns:sawsdl="http://www.w3.org/ns/sawsdl" 
           targetNamespace="http://example.com/ns/festival/" 
           elementFormDefault="qualified" > 
  <xs:element name="festival" type="festivalType" /> 
  <xs:complexType name="festivalType" 
      sawsdl:modelReference="http://schema.org/Festival"> 
    <xs:sequence> 
      <xs:element name="id" type="xs:anyURI" /> 
      <xs:element name="label" type="xs:string" 
          sawsdl:modelReference="http://schema.org/name" /> 
      <xs:element name="description" type="xs:string" 
          sawsdl:modelReference="http://schema.org/description" /> 
      <xs:element name="from" type="xs:date" 
          sawsdl:modelReference="http://schema.org/startDate" /> 
      <xs:element name="till" type="xs:date" 
          sawsdl:modelReference="http://schema.org/endDate" /> 
      <xs:element name="performers" 
          sawsdl:modelReference="http://schema.org/performer"> 
        ... 
      </xs:element> 
      <xs:element name="tickets" 
          sawsdl:modelReference="http://schema.org/offer"> 
        <xs:complexType> 
          <xs:sequence> 
            <xs:element name="ticket" type="ticketType" /> 
          </xs:sequence> 
        </xs:complexType> 
      </xs:element> 
    </xs:sequence> 
  </xs:complexType> 
  <xs:complexType name="ticketType" 
      sawsdl:modelReference="http://schema.org/Offer"> 
    <xs:sequence> 
      <xs:element name="label" type="xs:string" 
          sawsdl:modelReference="http://schema.org/name" /> 
      <xs:element name="sku" type="xs:string" 
          sawsdl:modelReference="http://schema.org/sku" /> 
      <xs:element name="price" type="xs:decimal" 
          sawsdl:modelReference="http://schema.org/price" /> 
    </xs:sequence> 
  </xs:complexType> 
</xs:schema> 

Listing 7.  The XML schema describing a festival 

http://example.com/festivals/?q=Ultra
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the mapping of the data to Schema.org using SAWSDL’s modelReference 
attribute. In this case the semantic annotation is trivial as there is a direct 
mapping from the syntactic elements to the concepts in Schema.org. 
More complex mappings often need to leverage SAWSDL’s 
liftingSchemaMapping and loweringSchemaMapping to describe the trans-
formation using technologies such as XSLT [136], XQuery [135], or 
SPARQL [71]. 

Due to the SAWSDL annotations in both the festival and order XML 
schemas, the client is able to extract the SKU of the ticket and create a 
purchase order by sending an order XML document to the orders collec-
tion. Obviously the client has to have knowledge about the desired 
quantities and acceptable price ranges but that is part of the client’s busi-
ness logic and thus beyond the scope of SAPS. Finally, the server can 
guide the client to the payment process by returning a link for the pay-
ment as shown in Listing 8. 

<link rel="next payment" href="/users/4812/orders/1684/payment" 
      type="application/xml" saps:schema="/schemas/payment.xsd" 
      title="Pay to complete your order" /> 

Listing 8.  A typed and SAPS-annotated link to guide a client to the payment process 

In order to guarantee a loose coupling of the client and the server, the 
schemas have to be retrieved and interpreted on-the-fly at runtime and 
not at design time. This is in contrast to the traditional SOAP-practice 
where the schemas are used at design time to generate static proxy classes 
to interact with the service. Additionally, it has to be assured that devel-
opers do not fall in the “RPC trap”. Developers need to be aware at any 
point whether local or remote resources are accessed in order to treat the 
differences accordingly; otherwise there is an imminent danger of signifi-
cantly reduced scale, greater client-server coupling, and more difficult 
system modification and maintenance [8], [173], [174]. 

5.1.3 Integration into the Linked Data Cloud 

SAPS relies on SAWSDL for the semantic annotation of XML schemas. 
Surprisingly, however, SAWSDL, however, does not specify how the 
semantic annotations can be used to convert the XML instance data to 
RDF or vice versa. In fact, SAWSDL does not even specify a language for 
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representing the semantic models, meaning that RDF is just an option. 
Similarly, SAWSDL does not prescribe any particular mapping language 
for its liftingSchemaMapping and loweringSchemaMapping attributes. 

While SAWSDL’s specification [119] contains an example illustrating 
how XSLT [136] and SPARQL [71] may be used to lift XML documents 
to RDF and lower RDF data to XML, other languages such as 
XQuery [135] may be used as well. The translation from XML to RDF is 
typically called lifting because data in RDF is on a higher level of abstrac-
tion than data in XML. This flexibility in regard to both the semantic 
model and the schema mapping languages complicates the implementa-
tion of clients and impedes interoperability, as the server and the client 
need to find a model and a mapping language they both support. Thus, 
in practice, a server may have to offer several alternatives to increase the 
likelihood of a match. 

SAPS does not restrict the mapping languages but requires a mapping to 
RDF in order to integrate the services into the Linked Data cloud. In our 
experiments we used a pragmatic solution. We interpreted complex types 
as entities that are identified with the URI that is the value of the element 
with the type xs:anyURI but without modelReference. For the 
festivalType in Listing 7 it is thus the id element which holds the URI 
identifying the entity. The modelReference of the complex type defines 
the entity’s rdf:type. All remaining elements of the complex type with a 
modelReference represent properties of the entity. The festival contained 
in the search result in Listing 6 would thus be converted to the represen-

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 
@prefix xs: <http://www.w3.org/2001/XMLSchema#> . 
 
<http://example.com/festivals/umf84705> 
      rdf:type <http://schema.org/Festival> ; 
      <http://schema.org/name> "Ultra Music Festival"^^xs:string ; 
  <http://schema.org/description> "..."^^xs:string ; 
  <http://schema.org/startDate> "2014-03-28"^^xs:date ; 
  <http://schema.org/endDate> "2014-03-30"^^xs:date ; 
  <http://schema.org/performer> ... 
  <http://schema.org/offer> [ 
      rdf:type <http://schema.org/Offer> ; 
      <http://schema.org/name> "General Admission"^^xs:string ; 
      <http://schema.org/sku> "umf84705-165"^^xs:string ; 
      <http://schema.org/price> "399.95"^^xs:decimal . 
  ] . 

Listing 9.  The festival returned by the query in Listing 6 translated to Turtle 
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tation in Turtle shown in Listing 9. Obviously such a simple approach 
does not work for more complex mappings which need, e.g., to combine 
two XML elements to a single property value in RDF as when merging a 
first name and last name to just a name. 

5.1.4 Summary and Lessons Learned 

With the definition of just two attributes SAPS is able to build an exten-
sible framework by integrating a number of proven, standardized tech-
nologies. Simple services consisting of just a CRUD-style interface and a 
simple query mechanism can be realized without having to rely on any 
out-of-band documentation as the necessary interaction models have 
already been specified by the underlying standardized technologies. For 
more complex scenarios, however, new link relations have to be defined 
which means that a dependency on additional out-of-band documenta-
tion describing them is introduced. 

Since SAPS is based on the Atom protocol suite it is similar to previous 
efforts such as Google’s Data Protocol (GData) [156] or Microsoft’s 
Open Data Protocol (OData) [157]. The difference to GData is that the 
allowed elements are described in a machine-readable manner in the form 
of a schema instead of defining them just in a human-readable form. This 
makes it more similar to Microsoft’s OData but, in contrast to OData, 
SAPS uses standardized building blocks such as XML Schema and 
SAWSDL to do so instead of defining a completely new and proprietary 
data model as Microsoft does. 

The fact the all major components of SAPS are already standardized leads 
to standard-conforming, interoperable services. Unfortunately, however, 
it is difficult to integrate the various components into a single product. 
The situation is made even worse by the fact that some important 
aspects, such as the conversion of XML documents to RDF via 
SAWSDL-annotated schemas, are underspecified. Therefore, it has to be 
said that the approach is of limited practical use. To be accepted by 
developers, a fully specified approach covering all necessary aspects is 
needed. Furthermore, a more gradual introduction has to be supported 
instead of requiring developers to change their toolchains completely and 
to reimplement their services from scratch. Nevertheless, from a research 
point of view, SAPS was a successful project as it allowed us to experi-
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ment with the underlying ideas without having to spend much effort on 
foundational groundwork or implementation details. 

5.2 SEREDASj 
The experiments with SAPS confirmed that the underlying idea of com-
bining Semantic Web technologies with technologies used in RESTful 
services works but also revealed a number of practical issues. The rigid 
structure dictated by Atom makes it, at times, difficult to implement 
intuitive Web APIs. Furthermore, the model based on XML, 
XML Schema, SAWSDL etc. turned out to be overly complex in the 
context of lightweight RESTful services. The feedback we received made 
it strikingly clear that a more lightweight and flexible solution is required 
to be of practical use. While looking for alternative serialization formats, 
we quickly turned our attention to JSON [50] as it was becoming 
increasingly popular at the time. 

The advantage of JSON is that in most programming languages it is 
much easier to work with as it can be directly parsed into an in-memory 
representation sharing the same structure as the data itself. This is clearly 
a big advantage but also imposes the risk of a tight coupling between cli-
ents and servers if they depend on the same data structures internally and 
externally. In an attempt to eliminate this coupling we designed 
SEREDASj—a language to describe SEmantic REstful DAta Services. The 
“j” at the end highlights the fact that the approach is based on JSON. 

Similar to SAPS, SEREDASj is optimized for CRUD-style services but 
instead of forcing developers to (re)implement their services using the 
Atom protocol suite and XML, SEREDASj attempts to describe existing 
JSON-based services. It is thus not a data interchange format (or exten-
sion thereof) but a description language. SEREDASj descriptions docu-
ment the semantics of the representations and the relationships between 
resources. Furthermore, as we will see in section 5.2.3, the descriptions 
can be used to lift representations to RDF, manipulate the data with 
SPARQL, and write the changes back to the service. This moves the cou-
pling from the syntactic structures of the JSON representations to the 
semantics of the data, which not only change much less frequently but 
can also much more easily be shared between various services. 
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In this section, we will first introduce the basic underlying ideas and their 
realization in SEREDASj. Then, in section 5.2.2, we will illustrate its 
usage based on a simple example. Finally, in section 5.2.3 we will show 
how services based on SEREDASj can be integrated in the Linked Data 
cloud before we conclude the section with a brief discussion of the 
strengths and weaknesses of SEREDASj. These sections are based on pre-
vious work which has been published in [95], [97], [167]. 

5.2.1 Basic Concepts and Principles 

To describe a RESTful service, SEREDASj specifies the syntactic struc-
ture of a specific JSON representation, similar to Zyp’s JSON Schema 
draft [175]. Additionally, it allows the mapping of JSON elements to 
concepts in an ontology and further describes the element itself by 
semantic annotations. In contrast to the JSON Schema draft, SEREDASj 
has no validation rules as such but instead allows a developer to add 
arbitrary descriptions in the form of semantic annotations to a JSON 
element. The rationale behind this is that we believe that the data has to 
be understood semantically to be validated and used correctly; simple 
validation rules as the ones proposed by Zyp are not expressive enough 
and thus of limited use. In order to illustrate this, e.g., it is impossible to 
define in a JSON Schema that a value has to be either between ten and 
twenty or forty and fifty (think of something like frequency bands); it is 
just possible to define that it has to be between ten and fifty. A program 
understanding the concepts in the semantic annotations will be much 
more capable of validating the data. Since our use cases are fundamentally 
different from Zyp’s this should not be understood as a critique towards 
Zyp’s approach; quite the contrary. SEREDASj is heavily based on Zyp’s 
JSON Schema draft to describe the syntactic structure of representations. 

As illustrated in Figure 13 on the next page, a SEREDASj document 
consists of metadata and a description of the structure of the JSON data 
it describes. The metadata describes the hyperlinks related to the JSON 
instance data and defines prefixes to abbreviate long IRIs in the semantic 
annotations to CURIEs [172]. The structure of the JSON data is 
described in terms of nested element descriptions, which define both the 
syntactic structure of the data as well the semantic meaning of those 
syntactic constructs. 
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The description of links consists of a semantic description of the link, the 
link’s target as either a concrete IRI reference or a IRI template, a defini-
tion of the variables to fill the target’s IRI template, a hint about the tar-
get’s media type and its SEREDASj description, and, for the construction 
of requests that require a payload, the SEREDASj description describing 
the expected payload. Just as the link itself, the IRI template variables can 
be described by generic semantic annotations in the form of predicate-
object pairs. This can be used to describe restrictions of the value space of 
IRI template variables or to define a link’s relation type. A link’s variables 
can be either bound to an element in the instance data or be linked to a 
conceptual model, e.g., a property in an ontology. 

Thus, a link description contains all the necessary information for a client 
to construct links by filling IRI templates with concrete values from the 
data or to create links depending on dynamic, client-supplied infor-
mation, which is, e.g., used for query interfaces where the link contains 
the query criteria. Furthermore, the link description describes how a valid 
request body can be constructed in order to manipulate resources. 

The syntactic structure of the data is described by nested element 
descriptions as illustrated in Figure 13. Each element description defines 
the element’s JSON data type(s) as well as the mapping to a semantic 
concept. As we will see later in this chapter, this makes it possible to con-
vert documents to RDF and vice versa. Additionally, an element descrip-
tion may contain semantic annotations to describe the element in more 
detail, and if the element represents either a JSON object or an array, it 
also contains a description of the object’s properties respectively the 
array’s items in term of, again, an element description. 

Given that elements in different representations frequently represent the 
same concept, SEREDASj allows element descriptions to be reused by 
setting the type of an element description to the IRI of another element 
description, even across different SEREDASj documents. Different parts 
of a SEREDASj document can be referenced by using a slash-delimited 
fragment resolution similar to JSON Pointer [176] (which was specified 
after SEREDASj; otherwise we would have reused it) but without the 
leading slash. For instance, if the top-level structure described by a 
SEREDASj document called doc.seredasj is an object with a property 
called name, the IRI to reference the description of that property would be 
doc.seredasj#properties/name. 
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SEREDASj descriptions do not have to be complete, i.e., they do not 
need to describe every element in all details. If an unknown element is 
encountered in a document it is simply ignored. This way SEREDASj 
allows forward compatibility as well as extensibility. It should also be 
emphasized that a SEREDASj description does not imply a shared data 
model between a service and a client. It just provides a description of the 
service’s representations to enable the translation between the service’s 
and the client’s data model. Just as in SAPS the coupling happens on the 
semantic layer instead of the syntactic structure of representations. 

Typically, a representation is linked to its SEREDASj description via an 
HTTP Link header [57]. By following the Link header a client can easily 
find the description to interpret a representation and extract hyperlinks 
from the JSON data. This approach, however, works only for Web APIs 
where the API publisher itself decides to use SEREDASj. Thus, in order 
to avoid the classic chicken-and-egg problem of such new approaches, 
SEREDASj also allows an API user to describe a service independently of 
the API publisher. An API consumer can establish an overlay graph par-
allel to, but independent of the resources exposed by the service consist-
ing of SEREDASj descriptions. In such a case, the client is given the 
entry point of the API and a link to the SEREDASj document describing 
it. From that point onwards the client will rely on the SEREDASj docu-
ments associated to the links it decides to follow. It thus navigates simul-
taneously through the resource space of the service and the SEREDASj 
descriptions, which have not been created by the API publisher but by a 
third party or by the consumer himself. 

Similar to SAPS, which inherits the Atom Publishing Protocol’s interac-
tion model, SEREDASj by itself does not define any interaction model 
apart from untyped hyperlinks and basic CRUD operations. Instead, it 
completely relies on semantic annotations to describe the semantics of 
both hyperlinks and the data itself. In practice this means that without a 
concrete vocabulary describing the hyperlinks and data, the functionality 
of an automatic client is limited. This separation of concerns also means 
that the semantics are independent of the serialization format, which 
makes it possible to use exactly the same approach to describe, e.g., an 
XML-based service. Furthermore, it liberates the data from the tight cor-
set that Atom enforces with its collection/entries model. 
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5.2.2 Illustrative Example 

To make it easier to compare SEREDASj with SAPS and in order to 
better illustrate the approach, this section shows how the festival Web 
API described in section 5.1.2 can be implemented using SEREDASj. In 
contrast to SAPS, which uses Atom service documents as the API’s entry 
point and Atom feeds for the representation of collections, SEREDASj 
does not distinguish between representations. It is a generic mechanism 
to describe arbitrary JSON documents. Thus, instead of beginning with 
the description of the entry point, which consists of just two links refer-
encing the collection of festivals and orders and an IRI template to 
invoke search queries, we will start with the representation of a festival: 

{ 
  "id": "umf84705", 
  "label" : "Ultra Music Festival", 
  "desc": "Outdoor electronic music festival", 
  "from": "2014-03-28", 
  "till": "2014-03-30", 
  "performers": [ 
    { 
      "id": "t6159", 
      "name": "Tiësto" 
    } 
  ], 
  "tickets": [ 
    { 
      "label": "General Admission", 
      "sku": "umf84705-165", 
      "price": "399.95" 
    } 
  ] 
} 

Listing 10.  Exemplary JSON representation of a festival 

Without annotations the data cannot be understood by a machine, and 
even for a human it is not evident that a performer’s ID is in fact a 
hyperlink to a more detailed representation of that specific performer. 
The SEREDASj description in Listing 11 solves these problems by 
describing all the important aspects of such a representation. 

The metadata section in the SEREDASj document describes two links: 
one to get more details about the performers and one to order tickets. 
The link to the performer’s details is defined in terms of an URI tem-
plate [177] whose only variable is bound to the performer’s id element in 
the data as well as the artistId concept in the service’s vocabulary. 
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Furthermore, the description references SEREDASj documents describ-
ing both the representations that can be retrieved by dereferencing the 
link and the template to use when creating or updating artist resources. It 
also shows how a link can be annotated semantically. In this case, the 
annotation is leveraged for the conversion to RDF, which is described in 
detail in the next section. The second link specifies the interface to order 
tickets and is thus not bound to any element in the instance data but 
stands on its own. Again, the description describes the targets’ represen-
tations and the template to create or manipulate orders. The links’ 
semantic annotation defines the link relation (reusing Atom’s rel attrib-
ute) a client can use to decide whether to follow the link or not. In this 
case, it tells the client that the link can be used to order. Such semantic 
annotations allow developers to implement smarter clients which follow 
REST’s hypermedia as the engine of application state constraint. The cli-
ent can dynamically choose among the server provided options by evalu-
ating each link’s semantics at runtime. 

The rest of the SEREDASj document in Listing 11 describes the struc-
ture of the representation shown in Listing 10 (for the sake of brevity, we 
omitted details such as which properties are required and which are 
optional). Simply speaking, it describes the syntactic structure of the rep-
resentation by nested element descriptions and maps them to concepts 
defined by Schema.org [85]. The mapping strategy is similar to the table-
to-class, column-to-predicate strategy of the R2RML standard [178] 
which maps relational databases to RDF datasets. JSON objects are 
mapped to classes and their properties are mapped to predicates. This not 
only allows to translate the JSON representations to RDF, as described in 
the next section, but also to automatically create human-readable docu-
mentation of the data by exploiting the information about the various 
concepts of the used vocabulary, in this case Schema.org. The mapping 
to semantic concepts thus not only reduces the coupling between the cli-
ent and the server by moving it to a centrally-owned contract but also 
liberates developers from the tedious task of writing documentation. 
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{ 
  "meta": { 
    "prefixes": { 
      "owl": "http://www.w3.org/2002/07/owl#", 
      "schema": "http://schema.org/", 
      "atom": "http://www.w3.org/2005/Atom", 
      "ex": "http://example.com/vocab#" 
    }, 
    "links": { 
      "/artists/{id}#": { 
        "mediaType": "application/json", 
        "seredasjDescription": "artist.json", 
        "requestDescription": "artist-createupdate.json", 
        "semantics": { "[owl:sameAs]": "<#properties/performers>" }, 
        "variables": { 
          "id": { 
            "binding": "#properties/performers/id", 
            "model": "[ex:artistId]" 
          } 
        } 
      }, 
      "/orders/": { 
        "mediaType": "application/json", 
        "seredasjDescription": "order.json", 
        "requestDescription": "order-createupdate.json", 
        "semantics": { "[atom:rel]": "[ex:order]" } 
      } 
    } 
  }, 
  "type": "object", "model": "[schema:Festival]", 
  "properties": { 
    "id":    { "type": "string", "model": "[ex:festivalId]" }, 
    "label": { "type": "string", "model": "[schema:name]" }, 
    "desc":  { "type": "string", "model": "[schema:description]" }, 
    "from":  { "type": "string", "model": "[schema:startDate]" }, 
    "till":  { "type": "string", "model": "[schema:endDate]" }, 
    "performers": { 
      "type": "array", "model": "[schema:performer]", 
      "items": { 
        "type": "object", "model": "[schema:Person]",  
        "properties": { 
          "id":   { "type": "string", "model": "[ex:artistId]" }, 
          "name": { "type": "string", "model": "[schema:name]" } 
    } } }, 
    "tickets": { 
      "type": "array", "model": "[schema:offer]", 
      "items": { 
        "type": "object", "model": "[schema:Offer]",  
        "properties": { 
          "label": { "type": "string", "model": "[schema:name]" }, 
          "sku":   { "type": "string", "model": "[schema:sku]" }, 
          "price": { "type": "string", "model": "[schema:price]" } 
  } } } } 
} 

Listing 11.  SEREDASj document describing the representation in Listing 10 
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5.2.3 Integration into the Linked Data Cloud 

As the name suggests, one of the main goals of SEREDASj is to integrate 
JSON-based services into the Semantic Web. In this section, we will not 
only show how SEREDASj descriptions can be used to convert JSON 
documents to RDF but also how the resulting data can be manipulated 
using SPARQL and how the changes can be written back to the Web 
API. This allows a seamless integration of RESTful services into the 
Linked Data cloud and goes beyond the typical read-only interfaces. 

Translating SEREDASj-described JSON representations to RDF triples 
is a straightforward process. The translation starts at the root of the 
JSON representation and considers all model references of JSON objects 
to be RDF classes while all the other elements’ model references are con-
sidered to be RDF predicates; values of those elements will be taken as 
objects. If a representation contains nested objects, just as the example in 
Listing 10, a slash-delimited URI fragment is used to identify the nested 
object. Semantic annotations in the form of the semantics property, as 

@base <http://example.com/festivals/umf84705> . 
 
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 
@prefix owl: <http://www.w3.org/2002/07/owl#> . 
@prefix schema: <http://schema.org/> . 
@prefix atom: <http://www.w3.org/2005/Atom> . 
@prefix ex: <http://example.com/vocab#> . 
 
<#> rdf:type schema:Festival ; 
    ex:festivalId "umf84705" ; 
    schema:name "Ultra Music Festival" ; 
    schema:description "Outdoor electronic music festival" ; 
    schema:startDate "2014-03-28" ; 
    schema:endDate "2014-03-30" ; 
    schema:performer <#performers/0> . 
    schema:offer <#tickets/0> . 
 
<#performers/0> rdf:type schema:Person ; 
                ex:artistId "t6159" . 
                schema:name "Tiësto" . 
 
<#tickets/0> rdf:type schema:Offer ; 
             schema:name "General Admission" ; 
             schema:sku "umf84705-165" ; 
             schema:price "399.95" . 
 
</artists/t6159#> owl:sameAs <#performers/0> . 
</orders/> atom:rel ex:order . 

Listing 12.  The example from Listing 10 translated to RDF 
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the one shown in the artist details link in Listing 11, contain the predi-
cate and the object. The object might point to a specific element in the 
SEREDASj description and is eventually translated to a link in the 
instance data. 

Listing 12 shows the result of the automatic translation of the example 
from Listing 10 to RDF. The event, the performers, and the tickets are 
nicely mapped to Schema.org’s ontology. For every array item a new IRI 
is created by using a slash-delimited IRI fragment. Eventually, those IRIs 
are mapped to the performer’s “real” IRI by an OWL’s sameAs 
assertion [179] taken from the link’s semantic annotation. This allows 
the JSON data to be integrated in the Linked Data cloud. 

In fact, a big part of the current Semantic Web consists of data that is 
extracted from Web APIs, relational databases, or traditional Web sites 
and transformed to RDF. Unfortunately, this also means that the vast 
majority of the current Semantic Web is just read-only, i.e., changes can-
not be stored back to the original source. Thus, we will show in the next 
sections how SEREDASj allows data to be updated and transferred back 
to the originating Web API. 

In the following description we assume that all data of interest and the 
corresponding graph of interlinked SEREDASj descriptions have already 
been retrieved (whether this means crawled or queried specifically is irrel-
evant). The objective is then to manipulate the harvested data or to add 
new data by using SPARQL Update. 

SPARQL Update [72] manipulates data by either adding or removing tri-
ples from a graph. The INSERT DATA and DELETE DATA operations respec-
tively add and remove a set of triples from a graph by using concrete data 
(no named variables). In contrast, the INSERT and DELETE operations also 
accept templates and patterns. SPARQL has no operation to change an 
existing triple as triples are considered to be binary: the triple either exists 
or it does not. This is probably the biggest difference between SQL and 
Web APIs and complicates the translation between a SPARQL query and 
the equivalent HTTP requests to interact with a Web service. 

Translating INSERT DATA and DELETE DATA Operations 

In regard to a Web service an INSERT DATA operation can either result in 
the creation of a new resource or in the manipulation of an existing 
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resource if just a previously unset attribute of an already existing resource 
is set. The same applies to a DELETE DATA operation which could unset an 
attribute of a resource or delete the whole resource. A resource is only 
deleted if all the triples describing the resource are deleted. This mis-
match, or rather, conceptual gap between triples and resource attributes 
implies that constraints imposed by the Web service’s interface are trans-
ferred to SPARQL’s semantic layer. In consequence some operations that 
are completely valid if applied to a native triple store are invalid when 
applied to a Web API. If these constraints are documented in the inter-
face description, i.e., the SEREDASj document, a client is able to con-
struct valid requests or to detect invalid requests and give meaningful 
error messages. If these constraints are not documented, a client has no 
choice but to try and issue requests to the server and evaluate its 
responses. This is similar to HTML forms with and without client-side 
form validation. 

In order to better explain the translation algorithm we will use the festival 
Web API whose interface is partially described in Listing 11 but ignore 
the tickets to keep the examples simple. We will assume that the CRUD 
operations to store and manipulate festivals and their respective perform-

1 do 
2   requests ← retrievePotentialRequests(triples) 
3   progress ← false 
4   while requests.hasNext() = true do 
5     request ← requests.next() 
6     request.setData(triples) 
7     request.setData(tripleStore) 
8     if isValid(request) = true then 
9       if request.submit() = success then 

10         resp ← request.parseResponse() 
11         triples.update(resp.getTriples()) 
12         tripleStore.update(resp.getTriples()) 
13         requests.remove(request) 
14         progress ← true 
15       end if 
16     end if 
17   end while 
18 while progress = true 
19 if triples.empty() = true then 
20   success() 
21 else 
22   error(triples) 
23 end if 

Algorithm 1.  Translate SPARQL INSERT DATA/DELETE DATA to HTTP requests 
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ers are mapped to the HTTP verbs POST, GET, PUT, and DELETE. Festival 
representations can be accessed at /festivals/{id} URLs while the per-
formers are accessible at /artists/{id} URLs. Both can be edited by 
PUTing an updated JSON representation to the respective URL. New 
festivals and artists can be created by POSTing a JSON representation to 
their respective collection URL. 

Since SPARQL differentiates between data and template operations, we 
split the translation algorithm into two parts. Algorithm 1 translates 
SPARQL INSERT DATA/DELETE DATA operations to HTTP requests inter-
acting with the Web service and Algorithm 2 deals with SPARQL’s 
DELETE/INSERT operations using patterns and templates. 

Listing 13 contains an exemplary INSERT DATA operation which we will 
use to explain Algorithm 1. It creates a new festival and a new artist. The 
festival is linked to the newly created artist as well as to an existing one. 

To convert the operations in Listing 13 to HTTP requests interacting 
with the Web service, in the first step (line 2 in Algorithm 1) all potential 
requests are retrieved. This is done by retrieving all SEREDASj descrip-
tions that contain model references corresponding to classes or predicates 
used in the SPARQL triples; this step also takes into consideration 
whether an existing resource should be updated or a new one created. 
Since Listing 13 does not manipulate existing resources (/artists/t6159# 
in line 11 is just used as an object), all potential HTTP requests have to 
create new resources, i.e., have to be POST requests in our example. In our 
example we get two potential requests, one for the creation of a new festi-

1 BASE <http://example.com/> 
2  
3 PREFIX rdf:    <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
4 PREFIX schema: <http://schema.org/> 
5  
6 INSERT DATA { 
7   _:greatg rdf:type schema:Festival ; 
8            schema:name "Great Gig" ; 
9            schema:startDate "2014-02-14" ; 

10            schema:endDate "2014-02-15" ; 
11            schema:performers </artists/t6159#> ;  
12            schema:performers _:williams . 
13   _:williams rdf:type schema:Person ; 
14              schema:name "Robbie Williams" . 
15 } 

Listing 13.  Exemplary INSERT DATA operation 
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val resource and one for a new person/artist resource. These request tem-
plates are then filled with information from the SPARQL triples (line 6) 
as well as with information stored in the local triple store (line 7). Then, 
provided a request is considered to be valid (line 8), it will be submitted 
(line 9). 

As shown in Listing 14, in our example the first valid request creates a 
new event (lines 1-5). Since the ID of the blank node _:williams is not 
known yet (it gets created by the server), it is simply ignored. Provided 
the HTTP request was successful, the response is subsequently parsed, 
and the new triples exposed by the Web service are removed from the 
SPARQL triples (line 11) and added to the local triple store (line 12). 
Furthermore, the blank nodes in the remaining SPARQL triples are 
replaced with concrete terms. In our example this means that the triples 
in lines 7-11 in Listing 13 are removed and the blank node subject of the 
triple in line 12 is replaced by the /festivals/gg51972# URL returned by 
the server. Finally, the request is removed from the potential requests list 
and a flag is set (line 13-14, Algorithm 1) signaling that progress has been 
made within the current do while iteration. If in one loop iteration, 
which cycles through all potential requests, no progress has been made, 
the process is stopped (line 18). In our example the process is repeated for 
the request to create a person, which again results in an HTTP POST 
operation (line 7-8, Listing 14). Since there are no more potential 
requests available, the next iteration of the do while loop begins. 

1 → POST /festivals/ 
2     { "name": "Great Gig", "from": "2014-02-14", 
3       "till": "2014-02-15", "performers": [ { "id": "t6159" } ] } 
4 ← 201 Created 
5   Location: /festivals/gg51972# 
6  
7 → POST /artists/ 
8     { "name": "Robbie Williams" } 
9 ← 201 Created 

10   Location: /artists/k92167# 
11  
12 → PUT /festivals/gg51972 
13     { "name": "Great Gig",  
14       "performers": [ { "id": "t6159" },  
15                       { "id": "k92167" } ] } 
16 ← 200 OK) 

Listing 14.  INSERT DATA operation from Listing 13 translated to HTTP requests 
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The only remaining triple is the previously updated triple in line 12 
(Listing 13), thus the only potential request this time is a PUT request to 
update the newly created /festivals/gg51972#. As before, the request 
template is filled with “knowledge” from the local triple store and the 
remaining SPARQL triples and eventually processed. Since there are no 
more SPARQL triples to process, the do while loop terminates and a suc-
cess message is returned to the client (line 20, Algorithm 1) as all triples 
have been successfully processed. 

Translating DELETE/INSERT Operations 

In contrast to the DATA-form operations that require concrete data and do 
not allow the use of named variables, the DELETE/INSERT operations are 
pattern-based and use templates to delete or add groups of triples. These 
operations are processed by first executing the query patterns in the WHERE 
clause that bind values to a set of named variables. These bindings are 
then used to instantiate the DELETE and the INSERT templates and finally 
the concrete deletes are performed followed by the concrete inserts. Thus, 
the DELETE/INSERT operations are effectively transformed to concrete 
DELETE DATA/INSERT DATA operations before execution. We exploit this fact 
in Algorithm 2, which transforms DELETE/INSERT operations to DELETE 
DATA/INSERT DATA operations that are then translated by Algorithm 1 into 
HTTP requests. 

Listing 15 contains an exemplary DELETE/INSERT operation which replaces 
the name of all persons whose ID equals k92167 with Lenny Kravitz; 

1 PREFIX rdf:    <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
2 PREFIX schema: <http://schema.org/>  
3 PREFIX ex:     <http://example.com/vocab#> 
4  
5 DELETE { 
6   ?person schema:name ?name . 
7 } 
8 INSERT { 
9  ?person schema:name "Lenny Kravitz" . 

10 } 
11 WHERE { 
12   ?person rdf:type schema:Person ; 
13           ex:artistId "k92167" ; 
14           schema:name ?name . 
15 } 

Listing 15.  Exemplary DELETE/INSERT operation 
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regardless of what it was before. This operation is first translated to a 
DELETE DATA/INSERT DATA operation by Algorithm 2 and then to HTTP 
requests by Algorithm 1. 

The first step (line 1, Algorithm 2) is to create a SELECT query out of the 
WHERE clause. This query is then executed on the local triple store return-
ing the bindings for the DELETE and INSERT templates (line 2). This 
implies that all relevant data has to be included in the local triple store 
(an assumption made earlier in this section), otherwise the operation 
might be just partially executed. For each of the retrieved bindings 
(line 4), one DELETE DATA (line 5) and one INSERT DATA (line 7) operation 
is created. In our example, the variable person is bound to the URL 
/artists/k92167# and name to Robbie Williams. Therefore, only one 
DELETE DATA and one INSERT DATA operation are created as shown in 
Listing 16. The operations are then sorted (line 11) as deletes have to be 
executed before inserts and finally translated into HTTP requests 
(line 12) by Algorithm 1. 

1 select ← createSelect(query) 
2 bindings ← tripleStore.execute(select) 
3  
4 for each binding in bindings do 
5   deleteData ← createDeleteData(query, binding) 
6   operations.add(deleteData) 
7   insertData ← createInsertData(query, binding) 
8   operations.add(insertData) 
9 end for 

10  
11 operations.sort() 
12 translateDataOperations(operations) 

Algorithm 2.  SPARQL DELETE/INSERT operations to HTTP requests translation 
algorithm 

1 PREFIX rdf:    <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
2 PREFIX schema: <http://schema.org/>  
3 PREFIX ex:     <http://example.com/vocab#> 
4  
5 DELETE DATA { 
6   </artists/k92167#> schema:name "Robbie Williams" . 
7 } 
8 INSERT DATA { 
9   </artists/k92167#> schema:name "Lenny Kravitz" . 

10 } 

Listing 16.  DELETE DATA/INSERT DATA operations generated 
from Listing 15 by Algorithm 2 
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In many cases, just as demonstrated in the example, a DELETE/INSERT 
operation will actually represent a replacement of triples. Thus, the effi-
ciency of the algorithm can be improved by performing both the DELETE 
DATA and the INSERT DATA locally before issuing the actual HTTP request. 
This optimization reduces the number of HTTP requests since attributes 
do not have to be reset before getting set to the desired value. In our 
example this consolidates the two PUT requests into one. 

5.2.4 Summary and Lessons Learned 

SEREDASj is a semantic description language that has been specifically 
designed for JSON-based RESTful services. It focuses on the description 
of JSON representations and their semantic annotation. Representations 
can be augmented with links and semantically annotated, which makes it 
possible to build hypermedia-driven APIs and convert the data to inter-
linked RDF, i.e., Linked Data. We have also shown how the data can be 
manipulated with SPARQL Update on a semantic level, abstracting away 
the serialization details, and how the changes can be written back to the 
Web API. Effectively, this introduces a standardized interface, which not 
only has the potential to increase the productivity of developers but also 
to improve code reusability and reduce the coupling between the client 
and the server. Unlike SAPS, SEREDASj does not require any changes 
on the described services and thus provides a smooth upgrade for existing 
Web APIs. This also implies that developers can continue to use tools 
and knowledge they are already familiar with. 

Despite the fact that we put a strong emphasis on simplicity in order to 
lower the entry barrier for developers, we found that in practice the fol-
lowed approach is suboptimal. Developers struggle with the separation of 
data into representations and descriptions thereof. The layer of intercon-
nected SEREDASj descriptions that sits on top of the JSON representa-
tions exposed by the service increases the cognitive load put on develop-
ers substantially. These lifting and lowering schema mappings to translate 
between serialization formats such as JSON to namespaced, interlinked 
graphs in RDF, require not only an understanding of the exchanged data 
but also how that data gets lifted to a representation in an abstract syntax 
such as RDF. It is thus difficult for developers to understand the repre-
sentations and the links connecting them without looking at the corre-



 

108 

sponding SEREDASj description documents at the same time. 
Developers also complained that the syntax, which follows JSON 
Schema’s approach, is too verbose and that the reliance on semantic 
annotations to realize services whose functionality goes beyond simple 
CRUD operations is problematic as no vocabulary defining the necessary 
concepts is available—even guidelines to create one are still missing. 
Similarly, using the CRUD operations as the main interaction model is 
often problematic as their semantics are not explicit enough. Clients need 
to know whether the creation of, e.g., an order entity is just that or 
whether it also implies the delivery of goods. 

Summarized, the lesson we learned from building SAPS and SEREDASj 
and by working with developers is that the underlying ideas are practical 
and accepted by developers but that the concrete realizations we chose to 
follow were suboptimal. In our research, we came to the conclusion that 
it is generally better to put more effort in the messages themselves instead 
of applying the intelligence to message translation mechanisms such as 
lifting and lowering schema mappings. What is needed is a clear separa-
tion of the solution into a generic data interchange format and vocabu-
laries defining the semantics of both the data to be exchanged and the 
domain application protocol, i.e., a description of the behavioral model. 

5.3 JSON-LD 
Both SAPS and SEREDASj provide a more or less integrated solution for 
CRUD-based services but their expressivity and extensibility are limited 
by the lack of a clear separation between the interaction model, the 
semantics of the data, and the serialization format. If developers need to 
step outside the interaction models of the simple CRUD-based service 
interfaces that these approaches were optimized for, the lack of separation 
results in increased complexity and thus cognitive load. The experience 
we gained from working with SAPS and SEREDASj and teaching them 
to other developers revealed that it is necessary to introduce a clear sepa-
ration between these aspects in order to build a scalable and extensible 
solution. After getting started with such work, we discovered the 
JSON-LD project. As it had almost the same goals that we were trying to 
achieve and followed a very similar approach, we joined the, back then, 
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still small community. Consequently, we decided to discontinue our 
work on refining SEREDASj in favor of JSON-LD as we believed we 
could achieve more by joining forces instead of working on similar, yet 
different approaches competing to solve similar problems. 

In spite of being a comparatively young project, JSON-LD has already 
had a turbulent history. According to Manu Sporny [180], the chair of 
the JSON-LD community group, the work was started internally at 
Digital Bazaar in March 2010. This was shortly before the W3C RDF 
Next Steps Workshop where the desire for a JSON-based RDF format 
was expressed [181]. Consequently, the RDF Working Group at W3C 
started working on a JSON-based RDF serialization on two fronts. It 
decided to quickly standardize Talis’ triple-centric RDF/JSON [182] for 
RDF experts needing a JSON-based serialization and to incubate on 
JSON-LD for average Web developers without RDF background. 
Unsurprisingly, this strategy soon ended in general confusion as to the 
exact target group it is attempting to address and what the final outcome 
should be. The group did not share a common vision. Finally, in 
August 2011, Thomas Steiner, the appointed co-editor of the JSON-
based RDF serialization format pulled the “emergency brake” [183] and 
the work in the RDF Working Group was stopped. Despite these hap-
penings we continued to work as part of the JSON-LD community to 
improve the syntax. Instead of waiting for the RDF Working Group to 
decide on how to proceed the work was moved into a W3C Community 
Group, a lightweight alternative to a full-grown W3C Working Group. 

Over the years we contributed several ideas to turn JSON-LD from a 
language that resulted in documents as the one shown in Listing 17 into 
a language allows documents to be created that look almost indistin-
guishable from the idiomatic JSON used in current Web APIs. As usual 
in open development projects, we started by asking questions, raising 
issues, and providing ideas to earn the trust and respect of the commu-
nity. Over the years, the author of this dissertation went from contrib-
uting test cases and minor text proposals for the specification to become 
the lead editor of the JSON-LD 1.0 Processing Algorithms and 
API [168] and co-editor of the JSON-LD 1.0 syntax specification [144]. 
As JSON-LD was brought back to the RDF Working Group for stand-
ardization the author of this thesis was invited by the W3C to join the 
group as an expert. This allowed him to directly participate in the devel-
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opment of the RDF Working Group’s other specifications. After several 
contributions the author of this thesis eventually also became a co-editor 
of the central RDF specification RDF 1.1 Concepts and Abstract 
Syntax [63]. Even though we were not able to achieve everything we 
wanted, especially not in the RDF Working Group, these opportunities 
gave us a unique chance to influence—and hopefully improve—the 
further development of the Semantic Web and Linked Data. 

The insights we have gained by creating SAPS and SEREDASj clearly 
helped us to shape and improve JSON-LD, which we will present in this 
section, and to design a vocabulary, which we will present in section 5.4. 
The division of the solution into a data format and a vocabulary not only 
reduces the overall complexity but has also the positive side effect that 
both parts can be used independently of each other. Just as JSON-LD 
can be used in conjunction with any RDF vocabulary (easily also with 
multiple vocabularies at the same time), Hydra, the vocabulary that we 
will present in section 5.4, can be used with any concrete RDF syntax. 

Additional to the features JSON provides, JSON-LD supports hyper-
links, universal identifiers for entities and their properties in the form of 
IRIs, string internationalization, definition and use of arbitrary data 
types, support for unordered sets and ordered lists, and, last but not least, 
a facility to express named graphs. These features not only simplify data 
integration, which is the underlying problem in many Web API usage 
scenarios, but also enable developers to express their data with much 
stronger semantics. 

{ 
  "#": { 
    "foaf": "http://xmlns.com/foaf/0.1/" 
  } 
  "@": "<http://example.com/people/markus>", 
  "foaf:name": "Markus Lanthaler", 
  "foaf:homepage": "<http://www.markus-lanthaler.com/>", 
  "foaf:knows": { 
    "@": "</people/john>", 
    "foaf:name": "John Doe" 
  } 
} 

Listing 17.  The structure of a JSON-LD document at 
the time we joined the JSON LD community 
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Just as in the previous sections, we will start with introducing 
JSON-LD’s basic concepts and principles before we illustrate how it can 
be used to realize our exemplary festival API. Finally, we will show how 
JSON-LD documents can be interpreted as RDF and discuss JSON-LD’s 
relationship to other Semantic Web technologies before we conclude the 
section with some final remarks. This section is based on material that 
has been published in [98], [99], [144], [168]. 

5.3.1 Basic Concepts and Principles 

JSON-LD is an attempt to create a simple method to not only express 
Linked Data in JSON but also to make existing JSON documents self-
descriptive. Given the reluctance of average Web developers to use 
Semantic Web technologies, one of the primary design goals in the 
development of JSON-LD was to require as little effort as possible from 
developers to create and understand JSON-LD documents. Therefore, 
great efforts were put in its simplicity, terseness, and human readability. 
Furthermore, it was a goal to require as little effort as possible from 
developers to transform their plain old JSON to semantically rich 
JSON-LD. Instead of the normally triple-centric approach that other 
common serialization formats for Linked Data use, an entity-centric 
approach was chosen for JSON-LD. The rationale was to resemble the 
programming models most developers are familiar with and to reflect the 
way JSON is used. This, and the fact that JSON-LD is 100% compatible 
with traditional JSON, allows developers to build on existing infrastruc-
ture investments—which is especially important for enterprises as it 
allows them to add meaning to their JSON documents in a way that is 
not disruptive to their operations and is transparent to their current cus-
tomers. Thus, in many respects, JSON-LD forms an entire ecosystem for 
developers to work with Linked Data without the high entry barrier that 
other Linked Data and Semantic Web technology stacks entail. While 
initial versions [184] of JSON-LD looked more or less like a direct trans-
lation of Turtle to JSON, we changed the syntax substantially in subse-
quent versions to allow data to be serialized in a way that is often indis-
tinguishable from traditional JSON. This is a remarkable feature of 
JSON-LD given that JSON, whose native data model is a tree, is used to 
serialize directed graphs which potentially even contain cycles. 
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Given its focus on simplicity, a developer familiar with JSON generally 
needs to know only two keywords in order to use JSON-LD’s basic 
functionality, namely @context and @id. The @context keyword is used to 
include or reference a so-called context which allows JSON properties to 
be mapped to IRIs in order to make them uniquely identifiable across the 
Web and, typically, dereferenceable. The @id keyword does the same for 
entities by assigning identifiers to JSON objects. Thus, it can also be used 
to express hyperlinks between resources. Using just these two keywords, 
information about two persons and their relationship can be expressed as 
follows in JSON-LD: 

{ 
  "@context": "http://example.com/contexts/person.jsonld", 
  "@id": "http://example.com/people/markus", 
  "name": "Markus Lanthaler", 
  "homepage": "http://www.markus-lanthaler.com/", 
  "knows": { 
    "@id": "/people/john", 
    "name": "John Doe" 
  } 
} 

Listing 18.  A simple JSON-LD document serializing information about two persons 

The document in Listing 18 contains information about a person identi-
fied by the IRI http://example.com/people/markus with the name Markus 
Lanthaler. It also contains a reference to another person whose identifier 
is http://example.com/people/john (the relative IRI is resolved against the 
document’s base IRI, which can, if needed, be set explicitly using the 
@base keyword). This reference also shows how some of the properties (in 
this case the name) of a referenced entity can be directly embedded. This 
allows developers to fine-tune the performance of Web APIs by reducing 
the number of HTTP requests necessary for clients to retrieve the desired 
information. The referenced context maps the JSON properties in the 
document to IRIs which enables clients to retrieve more information 
about them by simply following those links; this principle is known as 
Follow Your Nose [185]. Assuming that FOAF [108] is used as the vocab-
ulary, the context would look something like Listing 19. 

The fact that plain old JSON documents can be interpreted as JSON-LD 
by referencing a context via an HTTP Link header provides a smooth 
upgrade path for existing infrastructure as it allows most of the function-
ality without having to change the contents of an existing document. API 
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publishers can thus continue to serve the same documents so that existing 
clients do not break, while at the same time, newer, more sophisticated 
clients able to leverage the additional information from the context are 
made possible. This mechanism is even more powerful when combined 
with JSON-LD’s keyword aliasing feature. Apart from @context, every 
keyword can be aliased to any arbitrary string. This way it is e.g. possible 
to use url instead of @id. Aliases are mapped to keywords just as proper-
ties are mapped to IRIs. 

If documents are served with JSON-LD’s media type 
application/ld+json, it is also possible to embed the context directly in 
the document instead of just referencing it in an HTTP Link header. 
This saves additional HTTP requests at the cost of increasing the docu-
ment’s size. The developer is thus able to control the trade-off between 
bandwidth usage and latency. This control is very fine-grained as it is also 
possible to include or reference multiple contexts by wrapping them in an 
array. Developers can thus reference an external context and overwrite 
some of the mappings locally in the document. 

Looking at the example in Listing 18, the alert reader might notice that 
the document contains a link to the person’s homepage 
(http://www.markus-lanthaler.com/) without using the @id construct—
and also the context in Listing 19 does not contain any further 
information to disambiguate that IRI from a regular string. This is where 
the @type keyword comes into play. It allows type information to be 
assigned to properties as well as to individual values and entities. The 
mapping for homepage in the context above can therefore be rewritten to 
include such type information to tell clients that the property’s values 
represent IRIs. 

In Listing 21, @id is used as the value of @type to express that the data 
type is an IRI—all other types are identified, just as everything else, with 

{ 
  "@context": { 
    "name": "http://xmlns.com/foaf/0.1/name", 
    "homepage": "http://xmlns.com/foaf/0.1/homepage", 
    "knows": "http://xmlns.com/foaf/0.1/knows" 
  } 
} 

Listing 19.  The JSON-LD context mapping the properties in Listing 18 to IRIs 
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IRIs. The most commonly used data types are already standardized as 
part of XML Schema [186] and it is recommended to reuse them when-
ever possible to improve interoperability. It is also possible to use @type 
directly in a document to express a value or entity type. The person entity 
in Listing 18 can, for instance, be enriched with its type and a typed 
creation date: 

{ 
  "@context": "http://example.com/c/person.jsonld", 
  "@id": "http://example.com/people/markus", 
  "name": "Markus Lanthaler", 
  "@type": "http://xmlns.com/foaf/0.1/Person", 
  ... 
  "created_at": { 
    "@value": "2012-09-05", 
    "@type": "http://www.w3.org/2001/XMLSchema#date" 
  } 
} 

Listing 20.  Usage of @type to specify the type of values and entities 

The first use of @type in the example above associates a class (FOAF’s 
Person class) with the entity identified by the @id keyword. The second 
use of @type associates a data type (XML Schema’s date) with the value 
expressed using the @value keyword. This is similar to object-oriented 
programming languages where both scalar and structured types use the 
same typing mechanism, even though scalar types and structured types 
are inherently different. As a general rule the @type keyword is expressing 
a data type to be used with scalars when @value and @type are used in the 
same JSON object; otherwise it is expressing an entity type, i.e., a class. If 
it is used within a context, it always expresses a data type. 

Another use of @value is to language-tag strings, which is essential for 
multilingual applications. This can be done with the @language keyword 

{ 
  "@context": { 
    ... 
    "homepage": { 
      "@id": "http://xmlns.com/foaf/0.1/homepage", 
      "@type": "@id" 
    } 
  } 
} 

Listing 21.  Type-coercion of the homepage property 
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which tags a string with the supplied language code. Just as the @type 
keyword, it can either be used in the context or, along with @value, in a 
document’s body. The example below shows how the academic title of 
the person can be added in both English and German: 

{ 
  "@context": "http://example.com/c/person.jsonld", 
  "@id": "http://example.com/people/markus", 
  "name": "Markus Lanthaler", 
  ... 
  "title ": [ 
    { "@value": "MSc", "@language": "en" }, 
    { "@value": "Dipl. Ing.", "@language": "de" } 
  ] 
} 

Listing 22.  Expressing language-tagged strings 

This brings us to the only case were JSON-LD differs from traditional 
JSON, i.e., arrays are generally considered as being unordered sets instead 
of ordered lists. This stems from the fact that JSON-LD’s underlying 
data model is based on directed graphs in which edges are inherently 
unordered. In most cases, this is a minor detail that only matters when 
JSON-LD is transformed to other serialization formats or, e.g., persisted 
into a database. JSON-LD, however, also has built-in support for ordered 
lists in the form of the @list keyword which can be used to express that 
an array has to be interpreted as an ordered list. It can either be used 
directly in the document by wrapping an object with only an @list prop-
erty around the array or be mapped to a property in the context by set-
ting @container to @list (@set can be used to express explicitly that an 
array has to be interpreted as an unordered set and can be classified as 
syntactic sugar). Both methods are outlined in the following example: 

{ 
  "@context": { 
    "propertyA": "http://example.com/vocab#a", 
    "propertyB": { 
      "@id": "http://example.com/vocab#b", 
      "@container": "@list" 
    } 
  }, 
  "propertyA": { "@list": [ "a", "b", "c" ] }, 
  "propertyB": [ "a", "b", "c" ] 
} 

Listing 23.  Serializing lists using @container and inline @list-objects 
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JSON-LD’s container feature is not limited to sets and lists; there are two 
more container types. The first allows to index language-tagged strings by 
their language. This makes the usage of JSON-LD in multilingual envi-
ronments much more efficient since the desired language can be accessed 
directly instead of having to filter an array of language-tagged strings to 
find the desired entry. This is illustrated in Listing 24 which indexes the 
person’s academic title from Listing 22 by language. Since indexing pro-
vides very compelling benefits in terms of performance and ease of use, 
JSON-LD also allows indexing by arbitrary string values using the @index 
keyword instead of @language. Adding an index does not affect the 
semantics of the data, it just provides a mechanism to bring the data into 
the most advantageous form for further processing or usage. 

{ 
  "@context": { 
    ... 
    "title": { 
      "@id": "http://xmlns.com/foaf/0.1/title", 
      "@container": "@language" 
    } 
  }, 
  "@id": "http://example.com/people/markus", 
  "name": "Markus Lanthaler", 
  ... 
  "title ": { 
    "en": "MSc", 
    "de": "Dipl. Ing." 
  } 
} 

Listing 24.  Language maps allow language-tagged strings to be indexed by language 

The @reverse keyword goes in the same direction. As the name already 
suggests, it allows the direction of the arc that a property is spanning to 
be inverted. Sometimes vocabularies define inverse properties but most of 
the time they do not and thus inadvertently enforce a certain serialization 
structure onto JSON-LD documents. By using @reverse such restrictions 
can easily be sidestepped. Thus, regardless of the fact that FOAF does not 
define an inverse property for knows, the example from Listing 18 can be 
serialized in a way so that the person John Doe is the top-level object, as 
shown in Listing 25. 

As the examples shown so far already suggest, it is often cumbersome and 
error-prone to spell out the IRIs in full to transform a JSON document 
to Linked Data. To mitigate that JSON-LD has two mechanisms to 
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minimize the need to type full IRIs. The first one is to define prefix 
mappings in the context to shorten long IRIs. By using prefixes, the 
context in Listing 19 can be simplified by defining a prefix for FOAF’s 
vocabulary namespace and consequently use it to considerably shorten 
the IRIs as shown in Listing 26. 

This not only makes the context much smaller but also much more read-
able and hence reduces the cognitive load put on developers. Prefixes can 
also be used directly in properties in the body of a document. A 
JSON-LD processor expands all compact IRIs (that is how IRIs using 
prefixes are called in JSON-LD) by first splitting them into a prefix and a 
suffix at the colon and then concatenating the IRI mapped to the prefix 
to the suffix. JSON-LD’s compact IRIs are thus effectively 
CURIEs [172] but any of their restrictions. 

The second approach to minimize the amount of long IRIs goes a step 
further by eliminating the need to manually map terms to full IRIs 
altogether—at least if a single vocabulary is used. JSON-LD’s @vocab 
keyword can be used to define an implicit global prefix which is used for 
properties that are not explicitly mapped to an IRI. Since this method 

{ 
  "@context": { 
    ... 
    "isKnownBy": { "@reverse": "http://xmlns.com/foaf/0.1/knows" } 
  }, 
  "@id": "/people/john", 
  "name": "John Doe", 
  "isKnownBy": { 
    "@id": "http://example.com/people/markus", 
    "name": "Markus Lanthaler", 
    "homepage": "http://www.markus-lanthaler.com/" 
  } 
} 

Listing 25.  Reshaping documents by reversing the direction of properties 

{ 
  "@context": { 
    "foaf": "http://xmlns.com/foaf/0.1/", 
    "name": "foaf:name", 
    "homepage": "foaf:homepage", 
    "knows": "foaf:knows" 
  } 
} 

Listing 26.  Defining prefixes to abbreviate IRIs 
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automatically affects every non-mapped property in a document (it is 
possible to override this behavior by explicitly defining which properties 
should not be expanded), it is recommended to use this mechanism only 
when a) all or at least most properties are mapped to an IRI and b) most 
properties are mapped to the same vocabulary sharing a common IRI 
prefix. By using @vocab the initial example can be simplified as shown in 
Listing 27. Please note that no external context is referenced and that the 
homepage property definition in the context just defines the type coercion 
but not the IRI mapping. 

{ 
  "@context": { 
    "@vocab": "http://xmlns.com/foaf/0.1/", 
    "homepage": { "@type": "@id" } 
  }, 
  "@id": "http://example.com/people/markus", 
  "name": "Markus Lanthaler", 
  "homepage": "http://www.markus-lanthaler.com/", 
  "knows": { 
    "@id": "/people/john", 
    "name": "John Doe" 
  } 
} 

Listing 27.  Defining a global prefix using @vocab 

Data serialized with JSON-LD has the form of a graph, and, at times, it 
becomes necessary to make statements about the graph itself rather than 
just about the entities, i.e., the nodes, it contains. That is exactly the pur-
pose of the last remaining keyword: @graph. It makes it possible to assign 
properties and an identifier to the graph itself. The example in Listing 28 
shows how a graph can be annotated with its creation date. It is 
important to note that while RDF 1.1 [63] introduces the notion of 
named graphs and datasets it does not define their semantics. Thus, 
looking at it from an RDF perspective, strictly speaking the IRI /graphs/1 
does not denote the graph consisting of the information about the two 
persons; it is undefined what it denotes. 

As the examples already illustrated, it is possible to serialize the same data 
in multiple ways. This is an inevitable consequence of the underlying 
graph based data model. Furthermore, JSON-LD’s mechanisms to make 
the data look like idiomatic JSON, introduce additional variability. 
While this flexibility has many advantages, it also makes it more difficult 
to process the data. Thus, additional to the serialization format, we also 
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created and standardized a number of algorithms and an application 
programming interface (API) to simplify the processing of JSON-LD 
documents [168]. 
 

The algorithms allow JSON-LD documents to be expanded, compacted, 
and flattened. Expansion is the process of taking a JSON-LD document 
and applying all embedded and referenced contexts such that all IRIs, 

{ 
  "@context": { 
    ... 
    "generatedAt": { 
     "@id": "http://www.w3.org/ns/prov#generatedAtTime", 
     "@type": "xsd:date" 
    } 
  }, 
  "@id": "/graphs/1", 
  "generatedAt": "2012-09-05", 
  "@graph": { 
    "@id": "/people/markus", 
    "name": "Markus Lanthaler", 
    "homepage": "http://www.markus-lanthaler.com/", 
    "knows": { 
      "@id": "/people/john", 
      "name": "John Doe" 
    } 
  } 
} 

Listing 28.  Named graphs in JSON-LD 

[ 
  { 
    "@id": "http://example.com/people/markus", 
    "http://xmlns.com/foaf/0.1/name": [ 
      { "@value": "Markus Lanthaler" } 
    ], 
    "http://xmlns.com/foaf/0.1/homepage": [ 
      { "@id": "http://www.markus-lanthaler.com/" } 
    ], 
    "http://xmlns.com/foaf/0.1/knows": [ 
      { 
        "@id": "http://www.markus-lanthaler.com/people/john", 
        "http://xmlns.com/foaf/0.1/name": [ 
          { "@value": "John Doe" } 
        ] 
      } 
    ] 
  } 
] 

Listing 29.  The example from Listing 27 converted to expanded document form 
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types, and values are expanded in a way so that the contexts can be elimi-
nated from the document without losing any information. Furthermore, 
all properties that allow multiple values are converted to array form to 
harmonize their representation. By doing so, expansion thus makes it 
much easier to write tools and libraries on top of a JSON-LD processor 
as it has already processed all the information contained in the context. 
Listing 29 shows how the document in Listing 27 looks when converted 
to expanded document form. While all the properties have been replaced 
with the full IRIs they are mapped to and the values are expanded to 
either @value- or @id-objects, the overall structure of the document is still 
the same. 

This is not the case for flattened documents. Flattening simplifies pro-
cessing even more as it also normalizes the document’s structure. It is 
thus possible to bring any JSON-LD document to a deterministic shape. 
This makes it possible to program against a single structure instead of 
having to adapt to the various possible document shapes. As shown in 
Listing 30, flattening removes the nesting of the two person-objects by 
replacing it with a hyperlink connecting them. While the data stays the 
same, the syntactic structure of the document is brought into a deter-
ministic shape. This makes it much easier for machines to process the 
document at the cost of making it more difficult to read and understand 

[ 
  { 
    "@id": "http://example.com/people/markus", 
    "http://xmlns.com/foaf/0.1/name": [ 
      { "@value": "Markus Lanthaler" } 
    ], 
    "http://xmlns.com/foaf/0.1/homepage": [ 
      { "@id": "http://www.markus-lanthaler.com/" } 
    ], 
    "http://xmlns.com/foaf/0.1/knows": [ 
      { "@id": "http://www.markus-lanthaler.com/people/john" } 
    ] 
  }, 
  { 
    "@id": "http://example.com/people/john", 
    "http://xmlns.com/foaf/0.1/name": [ 
      { "@value": "John Doe" } 
    ] 
  } 
] 

Listing 30.  The example from Listing 27 converted 
to expanded, flattened document form 
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for humans. Thus, we also created algorithms to reverse this process. The 
counterpart to expansion is compaction. 

Compaction takes a JSON-LD document and applies a supplied context 
such that the most compact form of the document is generated, i.e., all 
IRIs are translated to short terms (as specified by the supplied context) 
and all array values with a single entry are unwrapped from that array 
form. Compacting Listing 29 with the initial context from Listing 19 
(please note the missing type-coercion for the homepage property) results 
in a document equal to Listing 31. Compaction is, however, not always 
the exact inverse operation of expansion; it is, e.g., impossible to split 
properties that have been merged to the same IRI during expansion. 
Since expansion and compaction can be used together, applications can 
use them to harmonize data representations by translating between differ-
ent contexts in order to, e.g., rename properties. 

{ 
  "@context": { 
    "name": "http://xmlns.com/foaf/0.1/name", 
    "homepage": "http://xmlns.com/foaf/0.1/homepage", 
    "knows": "http://xmlns.com/foaf/0.1/knows" 
  }, 
  "@id": "http://example.com/people/markus", 
  "name": "Markus Lanthaler", 
  "homepage": { "@id": "http://www.markus-lanthaler.com/" }, 
  "knows": { 
    "@id": "http://example.com/people/john", 
    "name": "John Doe" 
  } 
} 

Listing 31.  The document in Listing 29 compacted with the context from Listing 19 

For greater flexibility, we also started designing a framing algorithm [187] 
which allows a developer to reshape and query a document using 
templating and query-by-example. This declarative definition of the 
desired syntactic structure of the document fits very well with the way 
developers typically work with JSON, i.e., they program directly against 
the structure of the document instead of going through an API. Thus, 
framing usually means that all existing JSON tools and workflows can be 
retained and the JSON-LD data can be processed as JSON by bringing 
the document to the most advantageous form prior its use. 
Unfortunately, due to concerns from the RDF WG, whose expertise is 
not the definition of APIs or processing algorithms, the framing algo-
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rithm and the corresponding API were not put on the recommendation 
track and are thus not part of JSON-LD 1.0 as standardized at the W3C. 
That being said, most available JSON-LD processors implement it and 
there already exists a fairly complete test suite ensuring interoperability of 
most aspects. 

Last but not least, the JSON-LD 1.0 Processing Algorithms and API 
specification [168] also defines how JSON-LD can be converted to 
RDF’s abstract syntax and vice versa. We will describe the basic princi-
ples of the algorithm separately in section 5.3.3. 

5.3.2 Illustrative Example 

JSON-LD is just a data interchange format. As such, it is by itself not 
enough to implement a Web API. It also needs a vocabulary defining the 
semantics of the concepts serialized as JSON-LD. Most concepts needed 
to express the data managed by the exemplary festival Web API are 
already defined by Schema.org; what is missing, however, is a vocabulary 
to describe the hypermedia controls necessary to implement a truly 
RESTful Web service. Thus, in practice, developers need to define their 
own proprietary concepts similar to how they define their own link rela-
tions if none of the standardized relation types fits. 

The JSON-LD context in Listing 32 shows the concepts we need to 
implement our exemplary festival API. It includes properties to link from 

{ 
  "@context": { 
    "ex": "http://example.com/vocab#", 
    "festivals": { "@id": "ex:festivals", "@type": "@id" }, 
    "orders": { "@id": "ex:orders", "@type": "@id" }, 
    "totalItems": "ex:totalItems", 
    "member": "ex:member", 
    "search": "ex:search", 
    "template": "ex:template", 
    "mapping": "ex:mapping", 
    "variable": "ex:variable", 
    "property": { "@id": "ex:property", "@type": "@vocab" }, 
    "@vocab": "http://schema.org/" 
  } 
} 

Listing 32.  The JSON-LD context used to describe 
representations of the exemplary festival API 
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the API’s entry point to the collection of festivals and orders, properties 
to express those collections, and some concepts to realize the search func-
tionality. For the sake of simplicity, we have tried to keep the number of 
concepts to a bare minimum. Features such as paging or the typing of the 
resources have thus been omitted. All the other concepts come directly 
from the Schema.org vocabulary which is why the context sets @vocab to 
http://schema.org/.  

Using this context, the API’s main entry point can be realized as illus-
trated in Listing 33. Just as the Atom service document acting as main 
entry point for SAPS-based services, the JSON-LD document in 
Listing 33 references the main collections. While the reference to the 
orders collection consists of just a relative IRI, the reference to the festi-
vals collection also includes information about how the collection can be 
queried. The variables in the IRI template to query the collection are 
mapped to properties from both the proprietary vocabulary (searchTerms) 
and Schema.org (startDate). In contrast to the OpenSearch description 
as used by SAPS, the variables themselves are just string tokens. The 
mapping happens separately. The reason for this seemingly arbitrary and 
insignificant decision is that by doing so, the JSON-LD processor will 
automatically take care of the expansion to the full IRIs. If the template’s 
variables were to represent the properties directly, the processing would 
have to be adapted to take care of the expansion. Additionally, the trans-
formation to other RDF serialization formats would be made more diffi-
cult as the template would have to be transformed as well—which is 
something no off-the-shelf JSON-LD processor would be able to do. 

{ 
  "@context": "/context.jsonld", 
  "festivals": { 
    "@id": "/festivals/", 
    "search": { 
      "template": "/festivals/?q={query}&date={date}", 
      "mapping": [ 
        { "variable": "query", "property": "searchTerms" }, 
        { "variable": "date", "property": "startDate" } 
      ] 
    } 
  }, 
  "orders": "/users/4812/orders/" 
} 

Listing 33.  The festival API's main entry point using the context from Listing 32 
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Provided the client “understands” the used vocabularies, the representa-
tion in Listing 33 provides enough information for the client to invoke a 
query to find a specific festival. The result of such a query might look like 
the document shown in Listing 34, which, apart from @context and @id, 
looks like an idiomatic JSON document as it can be found in numerous 
current Web APIs. The difference, however, is that it is completely self-
descriptive. All properties apart from totalItems and member were reused 
from an already existing vocabulary (Schema.org), which reduces the risk 
of leaking implementation details and thus introducing unnecessary cou-
pling. An additional advantage is that, since all these properties are 
already documented and widely used, they do not need to be further 
described by the API publisher. 

These examples not only highlight JSON-LD’s strengths but also reveal 
its weaknesses regarding RESTful Web APIs. On one hand, JSON-LD 
makes it simple to create representations that feel like idiomatic JSON, 
which is important to achieve wide adoption. In many cases, existing 
JSON representations require very little or no changes at all. On the 

{ 
  "@context": "/context.jsonld", 
  "@id": "", 
  "totalItems": 1, 
  "member": [ 
    { 
      "@id": "/festivals/umf84705#", 
      "name" : "Ultra Music Festival", 
      "description": "Outdoor electronic music festival", 
      "startDate": "2014-03-28", 
      "endDate": "2014-03-30", 
      "performer": [ 
        { 
          "@id": "/artists/t6159#", 
          "name": "Tiësto" 
        } 
      ], 
      "offer": [ 
        { 
          "name": "General Admission", 
          "sku": "umf84705-165", 
          "price": "399.95" 
        } 
      ] 
    } 
  ] 
} 

Listing 34.  The representation of a search result in JSON-LD 
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other hand, JSON-LD by itself is not expressive enough to implement 
Web APIs. It needs vocabularies which define concepts to do so. The 
representation of the API’s entry point in Listing 33 illustrates this prob-
lem. If a client does not know what the orders property stands for, all it 
can do is to try to dereference the IRI which is the value thereof or the 
property itself. Unfortunately, however, no vocabulary specifically 
designed for RESTful Web APIs exists yet to describe the fact that a new 
order can be created by POSTing a representation of the order to 
/users/4812/orders/. Thus, clients effectively need to be hardcoded 
against such properties similar to how clients for the Atom Publishing 
Protocol clients are hardcoded against the edit link relation or the 
app:collection element. 

5.3.3 Integration into the Linked Data Cloud 

Ignoring a few extensions such as the support of blank node properties or 
data indexing, JSON-LD represents an ordinary RDF 1.1 dataset seriali-
zation format. As such, it integrates seamlessly into the Linked Data 
cloud. If those features are not used, a lossless conversion of JSON-LD 
documents to other RDF serialization formats is possible. Conversions in 
the other direction, i.e., from any other concrete RDF serialization for-
mat to JSON-LD, are always possible. We specified the conversion to 
and from RDF in detail in the JSON-LD 1.0 Processing Algorithms and 
API specification [168]. Thus, we will confine ourselves to a high-level 
description of the process in this section. To keep the explanation simple, 
we will use the expanded and flattened document from Listing 30, which 
expresses the relationship of the two persons “Markus Lanthaler” and 
“John Doe”. 

All JSON properties have been transformed to the IRIs they are mapped 
to during expansion. Properties (and their values) which are not mapped 
to IRIs, keywords, or blank node identifiers are dropped during expan-
sion. Flattening then removed the nesting by replacing nested nodes with 
node references, i.e., objects consisting of just an @id-member. Node 
objects that are not identified by an IRI or blank node identifier get 
assigned a newly minted blank node identifier. This is possible because 
blank node identifiers only have local scope and can thus be systemati-
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cally replaced. The remaining steps to convert such a document to RDF’s 
abstract syntax are straightforward. 

Each JSON object either represents a node, i.e., an IRI or blank node 
with its associated properties, or a value, i.e., a literal. If it is a node, the 
value of the @id member represents the subject of the RDF triples which 
can be built by taking the remaining key-value pairs. The keys, i.e., the 
properties’ names, represent the predicates, whereas the values represent 
the objects. Each JSON object having an @id member is transformed to 
an IRI or blank node, depending on whether its value begins with _: or 
not. If the object has an @value member, it represents an RDF literal 
along with its type (in the form of an @type member) or language (in the 
form of an @language member). It may also represent an ordered list, in 
which case the JSON object consists of an @list-member. Lists are con-
verted to linked lists using the rdf:first/rdf:rest properties as specified 
by RDF Schema [65]. In case JSON objects with an @graph property are 
encountered, a named graph has to be created. The value of the @id-
member of the JSON object containing @graph is taken as the graph 
name. The value of @graph represents the graph itself which is converted 
to triples as just explained. Named graphs cannot be nested and thus 
there is only ever one level of nesting in the flattened JSON-LD docu-
ment as well. 

The result of converting the document in Listing 30 to Turtle is shown 
in Listing 35. In order to illustrate the triples as interpreted by RDF’s 
abstract syntax [63] we do not use any of Turtle’s syntactic shortcuts. 

<http://example.com/people/markus> 
   <http://xmlns.com/foaf/0.1/name> 
      "Markus Lanthaler"^^<http://www.w3.org/2001/XMLSchema#string> . 
 
<http://example.com/people/markus> 
   <http://xmlns.com/foaf/0.1/homepage> 
      <http://www.markus-lanthaler.com/> . 
 
<http://example.com/people/markus> 
   <http://xmlns.com/foaf/0.1/knows> 
      <http://www.markus-lanthaler.com/people/john> . 
 
<http://example.com/people/john> 
   <http://xmlns.com/foaf/0.1/name> 
      "John Doe"^^<http://www.w3.org/2001/XMLSchema#string> . 

Listing 35.  The document shown in Listing 30 converted to Turtle 
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It should be noted that JSON-LD allows the serialization of generalized 
RDF, i.e., it represents a superset of RDF because it allows blank nodes 
to be used as properties. Unless a flag is set, the JSON-LD processing 
algorithms and API will, however, by default eliminate such triples when 
converting JSON-LD to RDF. 

5.3.4 Summary and Lessons Learned 

Similar to SEREDASj, JSON-LD tries to provide a smooth upgrade path 
from existing JSON-based services to self-descriptive services built on 
Linked Data principles. This is enabled by a 100% JSON-conformant 
syntax which creates idiomatic representations that are very similar to 
how JSON is typically used by Web developers. Developers therefore 
neither have to change their workflows nor their toolchains or program-
ming libraries, which considerably lowers the entry barrier to publish 
Linked Data in the form of RESTful services. This is exactly what 
JSON-LD was designed for. It has built-in support for domain semantics 
yet its syntax is completely independent thereof. Instead of having to 
design new media types, which are often just specializations of existing 
syntaxes, developers can thus fully concentrate on defining and describ-
ing the application’s domain semantics and its behavioral model when 
creating Web APIs. Since every concept gets assigned an IRI whose defi-
nition can be looked up, the need for out-of-band knowledge is elimi-
nated as the semantics are brought in band. By leveraging existing vocab-
ularies such as RDFS [65] and OWL [66], detailed machine-processable 
definitions that enable automated consistency checks of domain applica-
tion protocols become possible. Furthermore, since JSON-LD 
documents can be directly interpreted as RDF, no complex mappings or 
algorithms are necessary to manipulate the data and to transfer the 
changes back to the server. The additional complexity due to the graph-
based data model and the fact that there exist multiple valid representa-
tions for the same data is significantly outweighed by the achievable 
benefits in terms of loose coupling, evolvability, scalability, self-
descriptiveness, and maintainability. 

Given that the JSON-LD syntax specification, the processing algorithms 
and the API were put on the recommendation track at the World Wide 
Web Consortium (W3C) and thus became officially endorsed Internet 
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standards, JSON-LD could become the lingua franca for Web APIs sim-
ilar to how HTML is the dominant language on the human Web. Our 
experiments in the context of a large-scale Web of Things project [98], 
[188] and the positive feedback from numerous early adopters, some of 
which we will present in Chapter 6, attest that the presented approach is 
practical. In fact, JSON-LD could be a first step toward standardizing 
semantic RESTful Web services and form the basis for various efforts that 
previously could not seem to find any common ground. As we have 
shown, JSON-LD itself, however, is not a complete technology stack—it 
needs to be used with vocabularies that define the domain semantics. 
Therefore, in the next section we will introduce a lightweight vocabulary 
that can be used with JSON-LD to created truly RESTful, hypermedia-
driven Web APIs. 

5.4 Hydra 
RDF has, despite its use of IRIs for identifiers, no inherent support for 
hypermedia. Whether an IRI is intended to be dereferenced or not 
depends implicitly on what it represents. FOAF’s [108] homepage prop-
erty, e.g., suggests that its values are dereferenceable IRIs. The Linked 
Data principles postulated by Berners-Lee [17] go a step further and rec-
ommend that all IRIs are dereferenceable (unlike all other RDF concrete 
syntax specifications, JSON-LD’s specification [144] recommends the 
same). This enables the creation of large interconnected graphs of data. 
Most of these graphs, however, are read-only representations—just as 
most of the document-based human Web was read-only at the begin-
ning. To change this and add hypermedia support to RDF-driven appli-
cations, a shared vocabulary able to describe affordances beyond simple 
dereferenceability is needed. Hydra is an attempt to define a minimal 
vocabulary to address these issues. By specifying a number of concepts 
that are commonly used in Web APIs it can be used as the foundation to 
build truly RESTful, hypermedia-driven services that can be accessed 
with generic clients. 

Simply speaking, a RESTful Web API consists of a number of interlinked 
resources whereby each is identified by an IRI. In order to find its way 
through the resource space, a client has to understand the semantics of a 
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hyperlink, i.e., be able to identify in which relation a resource stands to 
another resource. Typically, those relationships and resource types them-
selves are domain-specific but it is, nevertheless, possible to extract a 
number of such link relations and resource types that are generic enough 
to be applicable to a wide range of application domains. Collections as 
defined by, e.g., Atom, are a good example for this. 

Web APIs use collections to reference a number of related resources. 
Taking a blog as example, most developers would probably choose to 
expose a collection containing all individual blog posts. Similarly, all 
comments related to a specific post, would be grouped in a dedicated 
collection. Such collections typically also expose functionality such as the 
creation of new resources by POSTing representations to the collection’s 
IRI or searching for specific resources in the collection by accessing the 
collection with specific URL parameters describing the query criteria. 

Unlike JSON-LD, which was a collaborative effort from the very begin-
ning, Hydra was a personal project for a long time. This allowed us to 
iterate more quickly than would have been possible if several people 
would have been involved at this early stages. After having published the 
first more or less stable version of Hydra in we decided it was time to 
open the further development of Hydra to a wider public and established 
a W3C Community Group. 

Most parts of this section have already been published in [96], [99], 
[169], [170]. 

5.4.1 Basic Concepts and Principles 

The basic idea behind Hydra is to provide a vocabulary which enables a 
server to advertise valid state transitions. A client then proceeds through 
the service by looking at one response at a time, each time evaluating how 
best to proceed given its overall goal and the available transitions. The 
Hydra descriptions provide enough information for the client to con-
struct HTTP requests manipulating the server’s state in order to achieve a 
certain application-specific goal. Since all the information about the valid 
state transitions is exchanged in a machine-processable way at runtime 
instead of being hardcoded into the client at design time, clients can be 
decoupled from the server and are able adapt to changes more easily. 
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Figure 14 illustrates the Hydra core vocabulary (the figure’s intention is 
to show how Hydra is used rather than its precise definition). At the 
center stands the ApiDocumentation class which represents, just as its name 
suggests, the documentation of a Web API. It enables a server to define 
the main entry point and to document the classes and properties as well 
the operations it supports. Furthermore, it enables HTTP status codes to 
be associated with additional information. Such descriptions may also be 
constructed and returned dynamically in response to client requests. This 
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Figure 14.  The Hydra core vocabulary 
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may sometimes be necessary as HTTP status codes are often not specific 
enough, making it difficult to understand the real cause of an error. For 
instance, a 400 Bad Request response is rarely informative enough 
by itself. 

Even though entities are identified by IRIs in RDF, clients cannot relia-
bly assume that IRIs are dereferenceable. In fact, neither RDF itself nor 
RDF Schema or OWL defines a concept to describe dereferenceable IRIs. 
Hydra’s Resource class, however, does just that. It is a subclass of 
RDF Schema’s Resource class and can thus be used to signal a client that 
an IRI is dereferenceable and can be used to retrieve further information. 
This allows Linked Data to be distinguished from data where IRIs are 
used exclusively as identifiers. Similarly, the Link class can be used to 
define properties whose values are known to be dereferenceable IRIs. 

It is not always possible for a server to create a complete link. For 
instance, links to query a server often require parameters which have to 
be filled at runtime by the client. To support such functionality, Hydra 
uses URI Templates [177]. An IriTemplate (URI templates are allowed 
to contain all characters that are legal in IRIs; for consistency we thus 
decided to name the class IriTemplate instead of UriTemplate) consists of 
a template and a number of mapping declarations. Each IriTemplate-
Mapping maps a variable in the IRI template to a property. This allows a 
client to understand the meaning of the various variables and to replace 
them with concrete values in order to expand the IRI template to an IRI. 
Analogous to Link, there exists a property class TemplatedLink to create 
recognizable properties whose value is an IriTemplate. 

To enable clients to interact with a Web API beyond simple GET 
requests, Hydra contains a notion of operations. An Operation represents 
the information necessary for clients to construct valid HTTP requests in 
order to manipulate the server’s resource state. As such, each Operation 
consists of a required HTTP method and optional expects and returns 
types. Similar to the ApiDocumentation itself, operations may also docu-
ment statusCodes that might be returned. This allows a developer to 
understand what to expect when invoking an operation. It is, however, 
not to be considered as an extensive list of all potentially returned status 
codes; it is merely a hint. Developers should expect to encounter other 
HTTP status codes and return types as well. 
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The alert reader might wonder why operations have no property to spec-
ify the target IRI. The reason for this is that operations are either bound 
to classes or link properties or directly associated with the resources they 
apply to. This means that the target IRI is communicated at runtime in-
stead of being defined at design time. If an operation is bound to a class, 
it will apply to all its instances, which will be dereferenceable resources 
(they are ignored for blank nodes). Similarly, if an operation is bound to 
a Link or a TemplatedLink, it will apply to the corresponding IRI value. 

A difficult design decision we had to make was how to inform a client 
which data a server expects for a certain operation. Classes would lend 
themselves but, as we discussed earlier, in RDF it is practically impossible 
to say which properties belong to a class. This, in turn, makes it impossi-
ble for a client to know which data it has to send to a server in order to 
achieve a certain goal. It also makes it difficult to inform a client (or a 
developer for that matter) what it might expect in responses from a 
server. We decided to choose the simplest and most pragmatic solution, 
i.e., to augment a class definition with supportedProperty, i.e., an enu-
meration of the properties known to be supported. This not only solves 
the problem at hand but also enables properties from other vocabularies 
to be reused directly. 

Each SupportedProperty consists of a property and optionally some flags 
specifying whether it is required, readonly, or writeonly. Read-only prop-
erties cannot be modified by a client and are useful for information such 
as creation dates or authorship information that gets set by the server 
based on login credentials. Write-only properties, on the other hand, are 
useful for things like passwords that a client can change but not retrieve. 

To ensure Hydra helps bootstrap Web API development, it includes a 
small number of commonly used concepts. Since a lot of APIs deal with 
basic CRUD functionality, Hydra has three built-in operation types, 
namely CreateResourceOperation, DeleteResourceOperation, and 
ReplaceResourceOperation. As their names suggest, they can be used to 
indicate to a client that an operation results in a resource being created, 
deleted, or replaced. Hydra does not restrict the mapping of these opera-
tion types to certain HTTP methods, which means that a concrete delete 
operation might be mapped to a POST request. This is an intentional 
design decision to not unnecessarily restrict Hydra’s expressivity. The 
user is responsible for the mapping of operations to sensible HTTP 
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requests respecting their semantics. It is purely the HTTP method which 
defines whether a method is idempotent or safe. The operation describes 
the result at a higher level of abstraction and can easily be reused across 
different Web APIs. This is one of the aspects which enable the creation 
of generic clients. 

Similar to the predefined operation classes, Hydra defines classes for col-
lections, another commonly used concept in Web APIs. A Collection is 
simply a container pointing to a number of member items. In Hydra, each 
of those members is a dereferenceable Resource. Since it is frequently 
desired not to serve the whole collection at once, but to separate it into 
pages instead, Hydra also defines a specialized PagedCollection. Addi-
tional to its member items, it may also specify the number of itemsPerPage, 
the totalItems and links to the firstPage, the nextPage, the previousPage, 
or the lastPage. This way, a client can easily navigate through a collec-
tion. Furthermore, Hydra’s search property, whose value is an 
IriTemplate, can be used to query such a collection. The only property 
Hydra defines to use in such a mapping is freetextQuery but of course 
properties defined by other vocabularies can be used as well. 

Table 1 and Table 2 summarize the most important information about 
the classes respectively the properties that Hydra defines. 

Table 1.  The classes defined by Hydra 

Class Subclass of Description 

Resource rdfs:Resource The class of dereferenceable 
resources. 

Class hydra:Resource, 

rdfs:Class 

The class of Hydra classes. 
Hydra classes and their instances 
are dereferenceable resources. 

ApiDocumentation hydra:Resource The Hydra API documentation 
class 

SupportedProperty hydra:Resource A property known to be sup-
ported by a Hydra class. 

Operation hydra:Resource An operation. 
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Class Subclass of Description 

CreateResource-

Operation 

hydra:Operation A CreateResourceOperation is an 
HTTP operation which expects 
an input of the type specified by 
hydra:expects and creates a 
resource of the type specified by 
hydra:returns. 

ReplaceResource-

Operation 

hydra:Operation A ReplaceResourceOperation is an 
HTTP operation which over-
writes a resource. It data of the 
type specified in hydra:expects 
and results in a resource of the 
type specified by hydra:returns. 

DeleteResource-

Operation 

hydra:Operation A DeleteResourceOperation is an 
HTTP operation that deletes a 
resource. 

Collection hydra:Resource A collection holding references 
to a number of related resources. 

PagedCollection hydra:Collection A PagedCollection is a subclass 
of Collection with the only dif-
ference that its members are 
sorted and only a subset of all 
members are returned in a single 
PagedCollection. To get the 
other members, the nextPage and 
previousPage properties have to 
be used. 

Link hydra:Resource, 

rdf:Property 

The class of properties repre-
senting links. 

TemplatedLink hydra:Resource, 

rdf:Property 

A templated link. 

IriTemplate hydra:Resource The class of IRI templates. 

IriTemplate-

Mapping 

hydra:Resource A mapping from an IRI tem-
plate variable to a property. 
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Class Subclass of Description 

StatusCode-

Description 

hydra:Resource Additional information about a 
status code that might be 
returned. 

Error hydra:Status-

CodeDescription 

A runtime error, used to report 
information beyond the returned 
status code. 

 

Table 2.  The properties defined by Hydra 

Property Domain Description 

Range 

apiDocumentation  A link to the API docu-
mentation 

hydra:ApiDocumentation 

entrypoint hydra:ApiDocumentation A link to main entry 
point of the Web API 

hydra:Resource 

supportedClass hydra:ApiDocumentation A class known to be sup-
ported by the Web API 

hydra:Class 

statusCodes  Additional information 
about status codes that 
might be returned by the 
Web API 

hydra:StatusCode-

Description 

statusCode hydra:StatusCode-

Description 

The HTTP status code 

xsd:integer 

supportedProperty hydra:Class A property known to be 
supported by the Hydra 
class hydra:SupportedProperty 

property  A property 

rdf:Property 
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Property Domain Description 

Range 

required  True if the property is 
required, false otherwise. 

xsd:boolean 

readonly hydra:SupportedProperty True if the property is 
read-only, false other-
wise. 

xsd:boolean 

writeonly hydra:SupportedProperty True if the property is 
write-only, false other-
wise. 

xsd:boolean 

supported-

Operation 

 An operation supported 
by instances of the 
Hydra class or the target 
of the Hydra link 

hydra:Operation 

operation hydra:Resource An operation supported 
by the Hydra resource 

hydra:Operation 

method hydra:Operation The HTTP method. 

xsd:string 

expects hydra:Operation The information ex-
pected by the Web API. 

hydra:Class 

returns hydra:Operation The information 
returned by the Web 
API on success 

hydra:Class 

title  A title, often used along 
with a description. 

xsd:string 

description  A description. 

xsd:string 

member hydra:Collection A member of the 
collection 

hydra:Resource 
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Property Domain Description 

Range 

totalItems hydra:Collection The total number of 
items referenced by a 
collection or a set of 
interlinked 
PagedCollections. 

xsd:integer 

itemsPerPage hydra:PagedCollection The maximum number 
of items referenced by 
each single 
PagedCollection in a set 
of interlinked 
PagedCollections. 

xsd:integer 

firstPage hydra:PagedCollection The first page of an 
interlinked set of 
PagedCollections hydra:PagedCollection 

lastPage hydra:PagedCollection The last page of an 
interlinked set of 
PagedCollections 

hydra:PagedCollection 

nextPage hydra:PagedCollection The page following the 
current instance in an 
interlinked set of 
PagedCollections 

hydra:PagedCollection 

previousPage hydra:PagedCollection The page preceding the 
current instance in an 
interlinked set of 
PagedCollections 

hydra:PagedCollection 

search  A IRI template that can 
be used to query a 
collection hydra:IriTemplate 

freetextQuery  A property representing 
a freetext query. 

xsd:string 
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Property Domain Description 

Range 

template hydra:IriTemplate An IRI template as 
defined by RFC6570. 

xsd:string 

mapping hydra:IriTemplate A variable-to-property 
mapping of the IRI 
template. 

hydra:IriTemplate-

Mapping 

variable hydra:IriTemplate-

Mapping 

An IRI template variable 

xsd:string 

5.4.2 Illustrative Example 

As explained in the previous section, Hydra defines several key concepts 
for the creation of hypermedia-driven Web APIs. As shown in Listing 36, 
we can therefore replace almost all proprietary concepts in the context in 
Listing 32 with concepts defined by Hydra. This simple change is 
enough to eliminate most of the out-of-band knowledge required to use 
the API presented in section 5.3.2. Any client supporting Hydra is thus 
able to expand the IRI template to query the festivals collection in 
Listing 33 without requiring any additional information. Similarly, the 

{ 
  "@context": { 
    "ex": "http://example.com/vocab#", 
    "festivals": { "@id": "ex:festivals", "@type": "@id" }, 
    "orders": { "@id": "ex:orders", "@type": "@id" }, 
    "hydra": "http://www.w3.org/ns/hydra/core#", 
    "totalItems": "hydra:totalItems", 
    "member": "hydra:member", 
    "search": "hydra:search", 
    "template": "hydra:template", 
    "mapping": "hydra:mapping", 
    "variable": "hydra:variable", 
    "property": { "@id": "hydra:property", "@type": "@vocab" }, 
    "@vocab": "http://schema.org/" 
  } 
} 

Listing 36.  Hydra replaces most proprietary concepts 
of the context shown in Listing 32 
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rest of the API’s functionality can be described in a machine-readable way 
using Hydra. 

The proprietary orders property, for instance, can be defined as a link 
pointing to a collection. Furthermore, it is possible to describe that a POST 
request to that collection can be used to create a new order entity. The 
whole definition can be seen in Listing 37. 

This example reveals an interesting question, namely what the semantics 
of a specific HTTP request are. The documentation in Listing 37 only 
tells that a new resource is being created if an HTTP POST request with a 
payload containing an Order entity is invoked on the orders collection. 
These are enough semantics to describe simple CRUD-style interfaces. In 
our example, however, the consequence of sending such an HTTP 
request is that a ticket is being ordered. To convey those semantics to a 
client, a more specific operation type has to be used. Obviously this is out 
of scope for Hydra itself but nothing prevents a developer to either sub-
class Hydra’s CreateResourceOperation to specialize it or to reuse a con-
cept someone else has already defined. Luckily in a recent initiative (long 
after Hydra has been first presented) it was decided to add “actions” to 
Schema.org which can be leveraged by Hydra-powered APIs. Thus, we 
can simply type the operation as http://schema.org/BuyAction, which is 
defined as the “act of giving money to a seller in exchange for goods or 
services rendered”. Since Hydra and Schema.org can be used so well 
together, we have been discussing the inclusion of Hydra into 
Schema.org or a closer alignment with the Schema.org team for several 

{ 
  "@context": "http://www.w3.org/ns/hydra/core", 
  "@id": "http://example.com/vocab#orders", 
  "@type": "Link", 
  "rdfs:range": "Collection", 
  "title": "The orders collection", 
  "description": "A link to the current user’s order collection.", 
  "supportedOperation": { 
    "@type": "CreateResourceOperation", 
    "title": "Create a new order", 
    "method": "POST", 
    "expects": "http://schema.org/Order", 
    "returns": "http://schema.org/Order" 
  } 
} 

Listing 37.  The definition of the orders property 
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months. Recently we also published a first draft proposing the integration 
of a subset of Hydra directly into Schema.org [189]. 

The operation in Listing 37 expects and returns an Order entity. This 
information by itself is not enough, as RDF vocabularies typically do not 
link from classes to properties but vice versa. Thus, the Hydra API doc-
umentation also documents the properties known to be supported by 
instances of the Order class as shown in Listing 38. To keep the examples 
simple, the orders in our exemplary festival API consist of just the ticket’s 
SKU number, its price, and a link to complete the payment. While the 
SKU number can be set by a client when creating the order, the price and 
the payment URL are filled in by the server and are therefore marked as 
read-only properties. 

{ 
  "@context": "http://www.w3.org/ns/hydra/core", 
  "@id": "http://schema.org/Order", 
  "@type": "Class", 
  "title": "A ticket purchase order", 
  "description": "All we need is the ticket’s SKU.", 
  "supportedProperty": [ 
    { 
      "@type": "SupportedProperty", 
      "property": "http://schema.org/sku", 
      "required": true 
    }, 
    { 
      "@type": "SupportedProperty", 
      "property": "http://schema.org/price", 
      "readonly": true 
    }, 
    { 
      "@type": "SupportedProperty", 
      "property": "http://schema.org/paymentUrl", 
      "readonly": true 
    } 
  ] 
} 

Listing 38.  The definition of the Order class 

This describes the whole API in a machine-readable and interoperable 
manner. The few remaining proprietary concepts such as the festivals 
and orders properties referencing the corresponding collections could be 
further described using other, already existing and standardized vocabu-
laries such as RDF Schema and OWL. For instance, using RDF Schema’s 
range [65] along with OWL restrictions [190] makes it possible to 
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describe that the festivals property points to a Hydra Collection whose 
member items are instances of Schema.org’s Festival class. Listing 39 
shows how such information can be expressed in JSON-LD (omitting 
the context definition). 

{ 
  "@id": "http://example.com/vocab#festivals", 
  "rdfs:range": [ 
    "hydra:Container", 
    { 
      "owl:equivalentClass": { 
        "@type": "owl:Restriction", 
        "owl:onProperty": "hydra:member", 
        "owl:allValuesFrom": "schema:Festival" 
      } 
    } 
  ] 
} 

Listing 39.  Specifying the type of the Hydra collection 
members of the festivals property 

5.4.3 Integration into the Linked Data Cloud 

Hydra is an ordinary RDFS/OWL vocabulary and as such, it integrates 
seamlessly into the Linked Data cloud. In fact, it can be used to improve 
data in the Linked Data cloud by explicitly expressing which IRIs are 
dereferenceable and which are just used as identifiers. Furthermore, it 
allows the enrichment of the typically read-only data found in the Linked 
Data cloud with affordances in order to support read/write and other, 
more sophisticated interaction models. This opens the door for Linked 
Data to many applications that previously have been mainly reserved for 
classic Web APIs. In this context is also worth to highlight again that 
Hydra can be used with any concrete RDF syntax; it does not depend 
on JSON-LD.  

5.4.4 Summary and Lessons Learned 

Normally, when using Linked Data, a machine-client has no choice but 
to try whether a specific IRI dereferences to a document providing fur-
ther information about the concept or not. The reason is that RDF lacks 
any notion of hypermedia or interaction models since IRIs are solely used 
as identifiers. This is one of the most fundamental hurdles to overcome 
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when combining the Representational State Transfer (REST) architec-
tural style with the Linked Data principles. Other formats such as 
HTML have multiple hypermedia controls that can be embedded in the 
representations returned by a server. Hydra therefore provides generic 
concepts such as links and operations that can be used to augment 
Linked Data representations with actionable information. Clearly, this 
goes far beyond what is achievable with the traditional definition of me-
dia types as the descriptions can be reasoned with by computer programs. 

An important principle to follow when developing clients using such 
information is to be prepared that everything might change or even 
break. The machine-readable description of the API should be retrieved 
and analyzed at runtime and not embedded directly into the client. All 
the documentations about things such as available operations or possible 
errors should be seen as hints rather than static contracts. At the moment 
they are used they might already be outdated and the server might 
respond in a totally different way than expected. Clients should be able to 
detect and possibly recover from such errors. As a last resort, the client 
might need to ask its user for assistance, report an error, or automatically 
file a bug report. 

One of the design decisions was whether these controls should be opti-
mized to be embedded directly into every single representation, or 
whether a separate document should be the preferred way to describe 
those affordances. We choose the latter approach for a number of rea-
sons. First of all, the responses from most Web APIs are rather uniform, 
meaning that in a Web API there usually exist a small number of 
response “types” that are all completely consistent. This is quite different 
from human-facing Web sites where different pages differ heavily in 
order to keep their users engaged. Secondly, in contrast to a human user, 
a machine agent has no problems to remember a number of affordances 
and to apply them consistently to elements contained in responses. A 
similar approach would be prohibitive on the human Web since the 
resulting cognitive load put on humans would be way too heavy. Finally, 
an approach collecting the affordances supported by a server in a single 
description document is what programmers are already familiar with. 
This is not only the predominant form of documentation for Web APIs, 
but for APIs in general as it allows developers to quickly understand the 
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capabilities of a server or programming library without having to traverse 
the whole state space. 

This knowledge concentration of supported affordances in a central 
description leads to another interesting question that is left open for most 
current Web APIs, namely how to discover that description. The typical 
approach is to fall back to a human operator which browses an API pub-
lisher’s website to locate the API description. That is a valid approach 
given that the API description is rarely machine-readable anyway. How-
ever, if the API document is machine-readable, as it is the case for Hydra, 
it would be a serious limitation if the discovery of that description docu-
ment would require human intervention. Therefore, Hydra uses an 
HTTP Link header [57] to direct a client to the corresponding API 
document. The link relation used in such a Link header corresponds to 
the IRI of Hydra’s apiDocumentation property. This enables the dynamic 
discovery of the API description at runtime and works across different 
APIs. As soon as an API links to resources of a different API, a client can 
recognize the different API description and adapt itself accordingly. Since 
the API description is not bound to the API’s host it becomes possible to 
rely on central, standardized API descriptions resulting in an even looser 
coupling between the client and the server. Furthermore, RDF’s use of 
globally unique identifiers allows parts of API descriptions to be shared 
and reused, which improves interoperability and reduces costs. Hydra’s 
predefined operation types are a first step in that direction. We believe 
that it is possible to extract and standardize similarly reusable concepts 
for a wide variety of application domains and we are already working 
with both the Schema.org and the Activity Streams community to do so. 

Considering Hydra’s focus on reusability of concepts between different 
APIs, the question may arise why Hydra itself does not rely more on 
other existing vocabularies apart from RDF Schema and OWL. The rea-
son is simple. Hydra tries to address Web developers which do not neces-
sarily have profound knowledge of Semantic Web technologies. As such, 
a simple, coherent, and self-contained vocabulary is easier to understand. 
Using, e.g., OWL class expressions [66] to specify required properties in 
the request class used in an operation would simply be too complex for 
average Web developers. In other cases, the potential reuse from vocabu-
laries is too small to be justifiable. The HTTP vocabulary [191] is such 
an example. The only overlapping concepts are Hydra’s HTTP method 



 

144 

and statusCode properties. Such a small overlap does not represent a rea-
sonable argument to include a dependency to a vocabulary. We did, 
however, align Hydra’s concepts with the corresponding concepts in the 
HTTP vocabulary, which results in almost the same benefits without 
producing an unnecessary dependency. 

As soon as IRIs in RDF are dereferenced to retrieve further information 
about a resource, the question of whether the IRI identifies the returned 
representation or some abstract entity arises. Hydra is deliberately silent 
on this issue because it is an aspect that has to be solved at a different 
layer. All Hydra is concerned about is to describe potential state transi-
tions by providing concepts to describe the interaction model of a Web 
API. As history has shown, discussions around issue httpRange-14 [81] 
quickly transform into painful philosophical debates making it difficult 
to work on technical solutions mitigating the inherent problem. We do 
not believe that the Technical Architecture Group’s resolution [192] is a 
practical way forward as the recommended mechanism is brittle and 
costly to implement. A quick look at the Web also reveals that it is rarely 
implemented and therefore cannot be relied upon. Unfortunately, until 
an agreed solution to this problem has been found, the only sensible 
advice that can be given to developers is to clearly document what IRIs 
and properties associated to them denote. As already mentioned earlier, 
Tennison’s blog post describing punning [83] and her “URLs in Data 
Primer” [84] gives some good advice and shows how it might be done in 
a machine-readable way. 

5.5 Discussion 
In this chapter we presented the approaches we developed to simplify and 
standardize the creation of truly RESTful Web APIs. While JSON-LD 
has become an official and widely used W3C standard, Hydra’s further 
development has been moved to a W3C Community Group to open it to 
the wide public. At the same time, we are already discussing its inclusion 
(or parts thereof) into Schema.org. 

In this section, which is based on previous work published in [25], we 
will discuss how JSON-LD and Hydra can be used for the domain-
driven design and implementation of RESTful Web APIs. We will dis-
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cuss a number of crucial design decisions and show how it is possible to 
create Web APIs in which almost all aspects are documented in a 
machine-processable form. Not only does this result in an improved reus-
ability of domain models, either as a whole or parts thereof, but also in 
composable contracts that enhance the interoperability between systems. 
The fact that all data, including the data describing the system, is man-
aged in a unified form allows testing to commence in much earlier stages 
of the development process and typically increases the productivity of 
developers and the quality of the built solution. 

Data Modeling 

The first and most important step when creating a RESTful API, or an 
application in general, is to understand the problem domain. Based on 
that understanding it is then possible to design the data model repre-
senting the various domain entities and their properties. The shared 
understanding gained by the formalization of the data model is funda-
mental to enable collaboration between the various stakeholders working 
on the realization of a Web API. Given that REST is a resource-oriented 
architecture it should not come as a surprise that the modeling of the 
resources, i.e., the exposed entities, is a fundamental part of the design 
process. The outcome of this process should be a formal description of 
the entities, their properties, and their relationships in the problem 
domain. This is a task RDF has proven to be very successful at. 

Standardized RDF vocabularies such as RDF Schema [65] or the Web 
Ontology Language (OWL) [66] formalize the necessary concepts to 
describe an API’s data model or, more formally, ontology. The advantage 
of using RDF, which is based on a simple graph-based data model, is that 
the description can be created in exactly the same format as all other data 
in the system. The resulting unified view makes it possible to use the 
same tools for both the definition of the data models and the data itself. 
Another advantage of an RDF-based system is the drastically simplified 
reuse of domain models—either as a whole or parts thereof. Such reuse 
not only reduces the inherent costs and risks but also results in concrete 
benefits in terms of interoperability and adoption. RDF’s data model 
uniquely embraces the inevitable heterogeneity encountered when work-
ing with data at Web scale. Furthermore, its schemalessness ensures the 
required agility in today’s fast-moving world. 
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The most important aspect developers have to keep in mind is to not 
expose implementation details. That means that a change in the imple-
mentation on the server should not result in changes in the API it exposes 
over the Web. In practice, this means that developers should introduce 
an abstraction layer decoupling the internals from the data exposed in the 
Web API. There exist a number of well-known design patterns to achieve 
that; e.g., the Adaptor or the Composite pattern [193]. The fact that 
there exists a generic client (which we will present in the next chapter) 
from the very beginning allows API “usability tests” to be run similar to 
the usability tests that are typically done for Web sites. This helps to 
ensure that the API is usable without knowledge of server internals. 

From a Linked Data perspective, a vital principle is to reuse existing 
vocabularies as much as possible. This allows code reuse on the client-side 
and simplifies data integration. Nevertheless, developers often want to 
keep full control over the vocabularies they use to provide a unified expe-
rience. In such cases, specific concepts should either be sub-typed or 
declared as being equivalent to concepts in existing vocabularies. This 
allows more elaborated clients to interpret the data even if they only 
support the already existing vocabulary. There are significant research 
efforts to support users in this mapping process, which is typically 
referred to as ontology alignment.  

Related to the reuse of existing vocabularies is the reuse of existing 
instance data. Just as Web sites typically link to other related Web sites, 
data exposed by a Web API should link to other relevant data on the 
Web; otherwise services will continue to remain islands in the vast infor-
mation sea of the Web. This is also a cost-effective opportunity for devel-
opers to provide their customers with additional data outside of their 
main business focus. As paradoxical as it may sound, the more data there 
is, and the more interconnected it is, the easier it becomes to integrate it 
with other data. 

After the data model has been defined, it has to be decided how the data 
is serialized. Fortunately, there exist already a number of serialization 
formats for RDF. As JSON has become the prevalent serialization format 
used in Web APIs, it clearly makes sense to choose a format such as 
JSON-LD, which combines the best of both worlds the simplicity of 
JSON with the semantic expressivity of RDF. A special challenge lies in 
the fact that, in contrast to trees as used in traditional JSON, graphs can 



 

147 

be serialized in a number of ways while still expressing the same data. 
While this imposes no issues for clients processing the data as JSON-LD, 
it requires special attention if JSON-only clients that rely purely on the 
structure of the serialized data have to be supported as well. The solution 
is to formalize the conventions used to serialize the data and document 
them in a profile as described in section 2.2.1. The JSON-LD processing 
algorithms [168] and framing [187] make it possible to define these pro-
files declaratively and to automatically reshape documents to bring them 
into the desired shape. Both JSON-only and JSON-LD aware clients can 
then seamlessly work with the same data representations.  

Behavioral Modeling 

The data model defines how data is represented in the system. This, in a 
sense, provides a static view of the system. To be able to access and 
manipulate data through an API, the domain application protocol [46], 
or more formally speaking, the behavioral model needs to be defined as 
well. Despite significant research and development efforts, most Web 
APIs are still solely documented in the form of human-targeting, natural-
language documents. Since such documentations do not represent 
machine-processable information, the creation of generic clients is made 
almost impossible and the results are costly and hard to maintain. To 
address these issues we designed Hydra, a lightweight vocabulary to cap-
ture and document the behavioral model of hypermedia-driven Web 
APIs in a machine-processable way. 

Since Hydra makes the affordances supported by the various resources 
exposed by a Web API explicit, it becomes possible to either build 
machine agents that navigate Web APIs completely autonomously or to 
create generic programming libraries at a much higher level of abstraction 
that simplify developers’ lives. Given that all the descriptions are repre-
sented in the same format as the data itself, even the code to access an 
API can be transformed to a declarative description that can be analyzed 
and worked with using the same tools—a very powerful feature often 
referred to as the Principle of Least Power [194]. 

The combination of a formal data model and a holistic documentation of 
the behavioral model based on Hydra enable the creation of declarative 
contracts capturing all aspects of a Web API. It is worthwhile to note 
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that, in the spirit of domain-driven design, it is possible to map the con-
cepts defined in the model to those in the code implementing it. Thus, it 
would be possible to automatically generate code stubs from these 
descriptions. Automatic code generation, however, always imposes the 
risk of either introducing unnecessary coupling or leaking implementa-
tions details, which is especially risky if the contract is owned by the 
server. Solutions based on JSON-LD and Hydra mitigate this issue by 
allowing the problem domain to be decomposed into smaller sub-
problems that are significantly easier to standardize, which shifts the cou-
pling to a central standard (or a combination of multiple standards in the 
form of a profile).  

Test Early, Test Often 

While it is important to test early in the development process it is often 
disproportionally difficult to do so when developing Web APIs. Apart 
from low-level HTTP libraries, there typically exist no off-the-shelf tools 
assisting developers in testing their API. The situation is similar when 
developing API clients. Given that the proposed approach provides a 
unified view of the system, where all information is represented in the 
same format, testing is drastically simplified. 

The existence of standardized tools allows the verification of different 
aspects of the system at very early stages—way before the system has been 
implemented as a whole. This reduces risks and costs while, at the same 
time, improving the quality of the system. Using off-the-shelf quad 
stores, e.g., it is possible to ensure that the data model is expressive 
enough and structured in a way to facilitate its usage by the various 
stakeholders. By augmenting the behavioral model with sample responses 
for the various operations, it becomes possible to easily create mock ser-
vices that can help in developing clients even when the server does not 
exist yet. Just as everything else, the test cases become an integrated part 
of the data providing a holistic view of the system. This also allows 
verifying that all required interactions are supported by the system 
being built. 

To further streamline and assist the development of Web APIs, we devel-
oped generic clients for Hydra-based services which can be used to run 
API “usability tests” similar to usability tests as usually used for Web 
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sites. This helps to ensure that the API is usable without knowledge of 
server internals. Both the human-facing single-page Web application 
HydraConsole, which we will present in the next chapter, and an early 
version of the generic programming library HydraClient have been 
released as open source software [170]. 

Documenting Services 

It takes time to convince developers to use such a new approach to build 
their systems. Thus, everything that allows an iterative introduction of 
these techniques helps to foster adoption. It is, at least for the foreseeable 
future, still important to provide human-targeting documentation in 
addition to the machine-processable service descriptions. Most developers 
are still better in understanding prose than formal descriptions 
and proofs. 

The process outlined in the previous sections has the unique advantage 
that a lot of the otherwise implicit information about the system is 
explicitly expressed in a machine-processable form. The information 
from the data model and behavioral model can be used to automatically 
generate large parts of human-targeting documentations. By utilizing 
technologies such as HTML and RDFa or HTML with embedded 
JSON-LD, it is even possible to combine the machine-processable and 
the human-targeting documentation into a single document. Since most 
of the lower-level details are either standardized or already documented, 
humans can thus focus on augmenting the documentation with infor-
mation that really matters for developers: the rationales behind design 
decisions, the assumptions made, the mental models, and the overall 
goals of a Web API. 





 

 

Chapter 6 

Evaluation 

In this chapter we will evaluate JSON-LD and Hydra by looking at them 
from different angles. We will begin by evaluating which of the problems 
discussed in Chapter 3 have been addressed. Then we will demonstrate 
how easily the proposed approach can be integrated into current Web 
frameworks. This is a very important aspect for the acceptance of new 
technology. If the integration is too difficult or even impossible, devel-
opers will be reluctant to use these technologies as they have to discard 
their existing work and start from scratch. Consequently, very few devel-
opers would decide to build Web APIs based on JSON-LD and Hydra. 
While this relates mainly to the server side and is thus of most interest for 
API publishers, the client side must also not be ignored. In fact, most of 
the problems of current Web APIs manifest themselves on the client side 
and not on the server side. Thus, in section 6.3 we will present a proto-
type of a completely generic client for JSON-LD/Hydra-powered Web 
APIs, which supports browsing the data exposed by the API and inter-
acting with the various resources. As we will see, all the information to 
render the user interface is retrieved dynamically at runtime. It thus rep-
resents a highly adaptive solution similar to Web browsers. Given that 
JSON-LD has already been well adopted and Hydra is starting to gain 
traction, we will present a number of early adopters from both the 
industry and academia using JSON-LD and Hydra for public as well as 
internal Web APIs in section 6.4 before we conclude the chapter with 
some final remarks. 
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The sections 6.2 and 6.3 in this chapter are based on previous work pub-
lished in [99] and [169]. 

6.1 Problems Addressed 
As discussed in detail in Chapter 3, current Web APIs and Semantic Web 
technologies suffer from a number of problems. The main issues are that 
current Web APIs often rely on proprietary data formats and models and 
that the contracts are documented solely in natural language. This makes 
them inaccessible for machines and means that they are mostly written 
manually which is a tedious and error-prone process. From the perspec-
tive of the REST architectural style, these issues mostly stem from viola-
tions of two important architectural constraints, namely the requirement 
of messages to be self-descriptive and the usage of hypermedia as the 
engine of application state. Consequently, it is almost impossible to cre-
ate generic, standardized tooling support for Web APIs similar to how 
standardized browsers exist for the human Web. Semantic Web tech-
nologies address some of these issues but are perceived as overly complex 
and have no inherent hypermedia support (IRIs in RDF are, strictly 
speaking, not hyperlinks but identifiers), which typically leads to read-
only interfaces to the data. 

The main idea underlying this thesis is to bridge the gap between tech-
nologies used in RESTful Web APIs and Semantic Web technologies. 
After several experiments, this led to the development of JSON-LD and 
Hydra that address the discussed problems. 

RDF underpins the proposed solution by defining a simple, yet powerful 
and expressive data model. JSON-LD allows RDF to be serialized as 
JSON, the prevalent data format in current Web APIs. As illustrated in 
the previous chapter, in most cases JSON-LD documents look almost 
exactly the same as their JSON counterparts but are completely self-
descriptive. Developers therefore do not have to spend any effort on 
defining proprietary data formats or data models. Instead, they can focus 
on building their solution around standardized and interoperable tech-
nologies. If desired, it also opens the door to other Semantic Web 
technologies such as quad stores, SPARQL query engines, and reasoners. 
Unlike other Semantic Web technologies, however, JSON-LD does not 
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force developers to use them. It also works well with popular NoSQL 
solutions such as MongoDB [195] or Elasticsearch [196]. This makes it a 
highly flexible technology which looks familiar to most Web developers 
and provides a smooth upgrade path for existing infrastructure invest-
ments. We are confident that JSON-LD, together with the clear separa-
tion of the data model from the various serialization formats and the 
overall much more accessible RDF 1.1 specifications, will help to alleviate 
Semaphobia, the fear of developers to use Semantic Web technologies as 
described in section 3.4. 

Hydra extends JSON-LD with hypermedia controls going far beyond 
simple hyperlinks. This enables the machine-readable communication of 
affordances at runtime instead of having to rely on static contracts writ-
ten in natural language at design time. At the same time, the structured 
nature of these descriptions and the fact that they are based on Linked 
Data principles improves the reusability of definitions and thus reduces 
the need to manually write documentation. Developers can therefore 
reuse concepts defined by Schema.org instead of having to design their 
own vocabulary. This not only reduces the amount of work necessary to 
design a Web API but also improves interoperability. Furthermore, it 
prevents the leakage of internals, which in turn reduces the coupling 
between clients and the server. 

The fact that all representations returned by a Web API based on 
JSON-LD and Hydra are self-descriptive and contain actionable hyper-
media affordances makes it possible to implement powerful generic 
clients instead of having to rely on specialized clients or low-level HTTP 
libraries and tools such as cURL [197]. Given also that the API descrip-
tions are just data, they can be used in various ways as discussed in sec-
tion 5.5. It is the usage of IRIs as unambiguous and globally-valid 
identifiers, RDF’s generic data model, and the machine-readable seman-
tics that enable serendipity. Similar to mashups, developers will find ways 
to use the data in unanticipated ways and integrate it with other data to 
make it even more useful. 

The clear separation of concerns and the fact that JSON-LD, the data 
format, and Hydra, the vocabulary, can be used independently is another 
important aspect fostering serendipity. Hydra can, e.g., also be used with 
other RDF serialization formats such as Turtle, thus turning hypermedia 
into a first-class citizen in Linked Data in general. Hydra clearly describes 
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which IRIs in an RDF graph are just identifiers and which IRIs are, at 
the same time, hyperlinks that are intended to be interacted with. Conse-
quently, it renders it possible to turn the currently mostly read-only 
Linked Data cloud into fully interactive Web APIs or to seamlessly inte-
grate Web APIs into the Linked Data cloud. 

6.2 Ease of Integration into Web Frameworks 
Armed with JSON-LD and Hydra, we developed a prototype to demon-
strate the feasibility of the approach presented in the previous chapter. It 
shows how easily the proposed building blocks can be integrated in real-
world systems.  

The prototype is based on Symfony2 [198], a Web development frame-
work implemented in PHP [199]. It is, as most other current Web 
frameworks, based on the Model-View-Controller (MVC) [200] design 
pattern. By separating the presentation of information from its pro-
cessing, MVC improves code reusability and separation of concerns.  The 
models represent the relevant entities in the system, the views (typically 
defined by templates) are used to create representations of those entities, 
and the controller is responsible for processing inputs, manipulating the 
models, and finally returning an updated representation by using the 
associated views. Symfony2 further modularizes the code by Page Con-
trollers, which are only responsible for certain requests [110]. Symfony2’s 
HttpKernel and Routing components parse the received HTTP request, 
extract the request URL and method, and then pass the processing to a 
specific page controller, which in turn invokes specific models and views. 

Figure 15 illustrates how Symfony2 processes an HTTP request. Incom-
ing requests are parsed by a front controller and subsequently passed on 
to the framework’s kernel. The kernel then invokes its routing compo-
nent to retrieve the page controller responsible for the requested resource. 
Finally, the page controller constructs a response which is sent back to 
the client. Typically, the controller uses various models and a view con-
sisting of one or more templates to construct the response. 

While for human-facing Web sites the view layer is crucial and the tem-
plates vary widely, it is rarely required in Web APIs. Instead, for Web 
APIs the view layer is typically much simpler and consists of just a 
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serializer turning the models, i.e., the entities, directly into representa-
tions following a specific format. The prototype we implemented thus 
replaces Symfony2’s default templating engine with a serializer. Thus, 
instead of having to create templates to render the responses, developers 
can directly serialize the entities as JSON-LD. In fact, developers do not 
even need to call the serializer manually as the prototype directly hooks 
into Symfony2’s request lifecycle to serialize the return value of the con-
troller function. So, instead of having to return a response object, devel-
opers can choose to simply return the entity and our prototype will take 
care of the serialization. 

The serialization component relies on code annotations to control the 
serialization of entities and their documentation. While this is more 
complex than simply serializing all public members of an entity (not least 
because PHP has no built-in support for annotations), it provides the 
flexibility that is often required in practice. Not all members should be 
exposed (all the time) and sometimes transformations, such as converting 
a numeric identifier into a URL, are necessary. The advantage of using 
annotations is that the information is kept close to the source code it 
describes, which makes it much easier to keep the two in sync. Symfony2 
developers are generally used to annotations because several crucial com-
ponents such as the routing component [201] or Symfony2’s default 
object-relational mapper Doctrine [202] support them and recommend 
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Figure 15.  Symfony2's request-response flow 
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their use. That being said, it is worth noting that the prototype has been 
designed to support other mapping mechanism as well. If developers 
prefer to define the mapping from the internal objects to external repre-
sentations by using, e.g., XML files, all they have to do is to implement a 
driver that reads those files and populates a class metadata registry with 
the extracted information. 

The annotations not only specify which properties are to be exposed, but 
also describe the affordances supported by the entities. Thus, in addition 
to the serialization of entities as JSON-LD, it becomes possible to gener-
ate a machine-readable API documentation based on Hydra. As we will 
demonstrate in section 6.3, this makes it possible to create completely 
generic clients that are, e.g., able to automatically render forms in order 
to gather the necessary data for the creation of valid requests or to pro-
vide additional information about the semantics of the representations 
returned by the service. Since this data closely resembles the information 
available in current Web API documentations, exactly the same data can 
also be used to automatically generate such documentation. 

To make its integration as simple as possible, we realized the prototype 
integrating JSON-LD and Hydra into Symfony2 in the form of a 
so-called bundle, i.e., a plugin in Symfony2-speak. Thanks to 
Composer [203] and the modularity of Symfony2, the installation 
involves a couple of trivial steps. After adding the HydraBundle as a 
Composer dependency and registering it in Symfony2’s kernel, the only 
remaining step is to import its routes into Symfony2’s routing collection. 
All this requires just a couple of lines of code and is documented in detail 
at the bundles homepage [204]. 

In order to demonstrate how the bundle can be used in practice, we 
implemented a hypermedia-driven Web API featuring an issue tracker as 
a case study. This not only allows us to show how easily Web APIs can be 
implemented using such an approach but also to describe the implemen-
tation of our prototype in more detail. 

As we discussed in section 5.5, JSON-LD and Hydra can be used for the 
domain-driven design and implementation of RESTful Web APIs. 
According to that approach, the first step in the development of a Web 
API is to define the required domain concepts. For our issue tracker, the 
application domain consists of issues, comments on those issues, and 
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users. Issues have a title, a description, a state (open/closed), a creation 
date, and a reference to the user who created it. Comments associated to 
an issue have a description, a reference to the user who created it, and a 
creation date. Finally, users have a name, an e-mail address, and a pass-
word. Using the user type as an example, we will show how classes can be 
augmented with the annotations necessary for their serialization and the 
generation of a machine-readable vocabulary. 

As shown in the extract of the User class definition in Listing 40, the 
fields to be exposed when an instance is being serialized are annotated 
with an @Hydra\Expose() annotation. The password will never be serial-
ized, as it is marked as write-only. It will, nevertheless, be documented in 
the automatically generated API documentation and be used when 
deserializing requests. The class itself has an @Hydra\Id() annotation 
which converts the internal identifier (an integer) to a globally valid 
identifier in the form of an IRI. This is done by referencing the corre-
sponding route which essentially represents an IRI template—in this case 
/users/{id}. The class also has an @Hydra\Operations() annotation which 
documents the supported operations on this entity. In this example it ref-
erences routes to replace (update) and delete users. 

The raised_issues property in Listing 40 returns an array of the issues 
the user raised. The @Hydra\Collection() annotation tells the serializer 
that it should wrap that array in a Hydra Collection that can be accessed 
via the specified route. The alert reader might wonder why there is no 
variable mapping as in the class’ ID annotation. The reason is that the 
serializer is smart enough to create those mappings itself if the IRI 
template variables correspond directly to a property of the class. In this 
case, there is a direct correspondence to the id property. This approach is 
commonly known as convention over configuration and is used to decrease 
the amount of code/annotations a developer has to write. The same rea-
soning applies to the automatic code generation of simple CRUD-
controllers. All a developer has to do to generate a controller for the just 
defined User class is to invoke the following command in the shell: 

php app/console hydra:generate:crud --entity=MLDemoBundle:User  
  --route-prefix=/users/ --with-write --no-interaction 

This will create a page controller supporting all CRUD operations and 
listening to requests on the /users/ IRI prefix. If a developer omits the 
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parameters, a wizard will ask for the required information step-by-step. 
The code to retrieve the issues raised by a user cannot be generated 

namespace ML\DemoBundle\Entity; 
use ML\HydraBundle\Mapping as Hydra; 
 
/** 
 * User 
 * 
 * @Hydra\Expose() 
 * @Hydra\Id( 
 *   route = "user_retrieve", 
 *   variables = { "id" : "id" } 
 * )  
 * @Hydra\Operations({"user_replace", "user_delete"}) 
 */ 
class User 
{ 
  /** 
   * @var integer An internal unique identifier 
   */ 
  private $id; 
 
  /** 
   * @var string The user's full name 
   * @Hydra\Expose() 
   */ 
  private $name; 
 
  /** 
   * @var string The user's email address 
   * @Hydra\Expose() 
   */ 
  private $email; 
 
  /** 
   * @var string The user's password 
   * @Hydra\Expose(writeonly = true) 
   */ 
  private $password; 
 
  /** 
   * The issues raised by this user 
   * 
   * @var ArrayCollection<ML\DemoBundle\Entity\Issue> 
   * @Hydra\Expose() 
   * @Hydra\Collection("user_raised_issues_retrieve") 
   */ 
  private $raised_issues; 
 
  // ... getters, setters, and other methods 
} 

Listing 40.  An annotated entity class 
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automatically and has thus to be added manually. This is simple as the 
code in Listing 41 shows. 

The @Hydra\Operation() annotation above shows how to document an 
operation. In this case, the operation would be exposed as 
GetRaisedIssuesOperation and contain the additional information when a 
response with a status code of 404 is returned and what it means in this 
context (in this case not that no raised issues exist, but that the user does 
not exist). In the long term, we envision that a large number of such 
operations are “standardized” and thus recognized by generic clients—
Hydra’s built-in CRUD operations are just the beginning. The methods 
generated by the CRUD controller code generator are automatically 
mapped to Hydra’s built-in operations. This allows the prototype API 
console we implemented to pre-fill the form generated for a 
ReplaceResourceOperation with the data of the entity. 

Implementing the rest of the API is just a matter of implementing the 
domain concepts and documenting them with the appropriate annota-
tions. The system is then able to automatically generate both a human-
readable documentation in the form of an HTML page and a machine-
readable vocabulary in JSON-LD for the client. As the response in 
Listing 42 shows, it also allows the system to automatically serialize the 
entities returned by page controllers into JSON-LD documents that look 
almost exactly the same as responses of current JSON-based Web APIs, 

  /** 
   * Retrieves the issues raised by a User 
   * 
   * @Route("/{id}/raised_issues",  
   *   name="user_raised_issues_retrieve") 
   * @Method("GET") 
   * @Hydra\Operation( 
   *   status_codes = { 
   *   "404" = "If the User entity wasn't found." 
   * }) 
   * @Hydra\Collection() 
   * @return ArrayCollection<ML\DemoBundle\Entity\Issue> 
   */ 
  public function getRaisedIssuesAction(User $entity) 
  { 
    return $entity->getRaisedIssues(); 
  } 

Listing 41.  An annotated controller function 
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apart from the link to a context definition and the @id and @type key-
words, which could also be aliased to something else. 

{ 
  "@context": "/contexts/User.jsonld", 
  "@id": "/users/1", 
  "@type": "User", 
  "name": "Markus Lanthaler", 
  "email": "mail@markus-lanthaler.com", 
  "raised_issues": { 
    "@id": "/users/1/raised_issues", 
    "@type": "hydra:Collection" 
  } 
} 

Listing 42.  A sample response as rendered by the HydraBundle 

6.3 Support for Generic Clients 
The advantage of JSON-LD and Hydra manifests itself most apparently 
in the fact that it is possible to implement fully generic and adaptive 
clients. To demonstrate this, we implemented an API console or browser 
which allows the user to navigate the service presented in previous section 
and to invoke operations on the various resources. Furthermore, the con-
sole displays the relevant element documentation which is also used to 
dynamically create forms to gather the required data for the construction 
of valid HTTP requests. 

The HydraConsole [205], as we named our API browser, is implemented 
as a single-page JavaScript Web application using a number of well-
known libraries such as jQuery [206], Bootstrap [207], 
Backbone.js [208], and Underscore.js [209]. Even though it would prob-
ably have made the implementation slightly simpler we made the delib-
erate design decision to not use any RDF-specific library such as a triple 
store or a SPARQL engine. We believe that it is important to demon-
strate to Web developers without Semantic Web background that it is 
possible to implement such a generic client without having to buy into 
the typical RDF stack. Instead, our implementation shows that such a 
client can be realized with tools and libraries most Web developers are 
already familiar with. 

Following a similar reasoning we kept the user interface quite simple. 
Thus, instead of rendering the responses in the form of abstract graphs—
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as it is often done in Semantic Web tools and demos—we decided to 
display the retrieved JSON-LD representations more or less as they were 
received. As shown in Figure 16, the only formatting we apply to 
responses are whitespace changes, such as the addition of line breaks and 
indentations, and the underlining and coloring of hyperlinks in their 
typical blue. To aid the understanding of the rendered responses as 
JSON-LD we added some unobtrusive interactivity. 

When the user moves his mouse over a property in the response pane to 
the left, a tooltip showing the IRI it is expanded to appears. Additionally, 
the API console dereferences the property’s IRI in the background, looks 
for its definition in the response, displays the documentation of the class 
associated with the property in the pane at the right, and finally high-
lights the property itself in the displayed documentation. The result of 
this process is shown in Figure 16 in which the user’s mouse is over the 
raised_issues property that, as the tooltip shows, expands to the IRI 
http://hydra.test/vocab#raisedIssues. 

To realize this in-place expansion with tooltips we had to modify the 
expansion algorithm of our JSON-LD processor [210] to not only emit 
the expanded document, but also combine it with the input document. 
Thus, behind the scenes the sample response shown in Listing 42 and 
Figure 16 is transformed to the document shown in Listing 43 (context 
omitted). As the document in Listing 43 illustrates, properties are not 
removed during expansion but their value is instead transformed to an 
object consisting of an __iri and a __value member. The value of the 

Figure 16.   The HydraConsole showing a response and its documentation 



 

162 

__iri member represents the expanded property. Therefore, the value of 
the __iri member of the name property is set to http://hydra.test/↩

{ 
  "@context": ... ommitted for clarity ... 
  "@id": { 
    "__iri": "@id", 
    "__value": { 
      "__orig_value": "/users/1", 
      "__value": { "@id": "http://hydra.test/users/1" } 
    } 
  }, 
  "@type": { 
    "__iri": "@type", 
    "__value": { 
      "__orig_value": "User", 
      "__value": { "@id": "http://hydra.test/vocab#User" } 
    } 
  }, 
  "name": { 
    "__iri": "http://hydra.test/vocab#User/name", 
    "__value": { 
      "__orig_value": "Markus Lanthaler", 
      "__value": { "@value": "Markus Lanthaler" } 
    } 
  }, 
  "email": { 
    "__iri": "http://hydra.test/vocab#User/email", 
    "__value": { 
      "__orig_value": "mail@markus-lanthaler.com", 
      "__value": { "@value": "mail@markus-lanthaler.com" } 
    } 
  }, 
  "raised_issues": { 
    "__iri": "http://hydra.test/vocab#User/raisedIssues", 
    "__value": { 
      "@id": { 
        "__orig_value": "/users/1/raised_issues", 
        "__value": { 
           "@id":"http://hydra.test/users/1/raised_issues" 
        } 
      }, 
      "@type": { 
        "__orig_value": "hydra:Collection", 
        "__value": { 
          "@id": "http://www.w3.org/ns/hydra/core#Collection" 
        } 
      } 
    } 
  } 
} 

Listing 43.  The sample response from Listing 42 as expanded for 
the rendering in the HydraConsole (context omitted for clarity) 
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vocab#User/name. As the name suggests, the __value member keeps the 
value of the property, which, again is split into a __value member holding 
the expanded value and a __orig_value member keeping the property’s 
original, unexpanded value. This representation of both the expanded 
and the original, unexpanded document at the same time is what enables 
the HydraConsole to render the tooltips mentioned previously and to 
distinguish between ordinary strings and strings representing IRIs. 

Given that our JSON-LD processor is implemented in PHP and not in 
JavaScript, it runs as a remote service that is invoked by the 
HydraConsole. Similarly, we implemented a simple proxy to work 
around the same-origin policy of browsers which, for security reasons, 
typically block network requests to all servers except the one that served 
the original web page. This was especially important at the beginning, 
before Hydra’s namespace was moved from purl.org to w3.org, as 
purl.org still does not set the necessary Cross-Origin Resource 
Sharing (CORS) headers [211] which would allow modern browsers to 
make cross-origin requests. 

When a user decides to load a new resource into the HydraConsole, a 
number of steps happen in the background. First of all, the resource is 
loaded via the proxy described above. If it yields a JSON-LD representa-
tion, the representation is expanded using the modified expansion algo-
rithm in order to be rendered in the HydraConsole. Then, if the response 
contained an HTTP Link header to a Hydra API documentation, that 
documentation is loaded and framed via the proxy. If available, the doc-
umentation of the type of the top-level resource contained in the 
response is loaded and rendered. The result of retrieving the 
http://hydra.test/users/1 resource is illustrated in Figure 16. 

Navigating the Web API by following hyperlinks or sending HTTP 
requests other than GET is as easy as clicking on a link and selecting the 
desired operation. The HydraConsole presents a dialog in which the user 
can select the desired operation. The HydraConsole takes into considera-
tion operations embedded directly in the representation as well as opera-
tions bound to the property (i.e., the link relation) whose target the 
resource is and operations bound to the types the resource is an instance 
of. It is important to note that the client is stateless in the sense that it 
forgets information from previous requests. This implies that clicking on 
a hyperlink in different contexts may result in different operations being 
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shown. In any case, if the user selects an operation whose expected data is 
documented, a form to gather the required data for the creation of a valid 
request, as the one shown in Figure 17, is constructed on-the-fly. In 
order to make the navigation consisting of just GET requests more effi-
cient, clicking on a link with the shift key pressed directly invokes an 
HTTP GET request on the target resource. 

6.4 Adoption 
Even the best technology is useless if it is not accepted by users. While 
this important aspect is usually neglected in research projects, it was a 
major concern in our work. Our focus on simplicity is fueled by studies 
that have shown that the perceived usefulness and the perceived ease of 
use are key drivers of technology acceptance and adoption [212]–[214]. 
The perceived usefulness is defined by Davis [214] as “the degree to which 
a person believes that using a particular system would enhance his or her 
job performance” whereas the perceived ease of use is defined as “the 

Figure 17.  A form rendered by the HydraConsole to invoke an operation 
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degree to which a person believes that using a particular system would be 
free of effort”. Therefore, we spent a lot of time to find the right balance 
between feature-richness and simplicity in order to maximize the chance 
of adoption. While these two determinants are important, they are rarely 
enough by themselves. In general, further motivation is needed to 
overcome user resistance to change [212]. Hence, it is vital to understand 
the typical technology adoption lifecycle. As Tim Berners-Lee, the 
inventor of the Web, said, “the web is more a social creation than a 
technical one.” [94] 

Adopter groups can be categorized by their degree of resistance to a new 
idea or technology. In his seminal book “Diffusion of 
Innovations” [215], Rogers divides adopters into five categories based on 
their innovativeness: innovators, early adopters, early majority, later 
majority, and laggards. Innovators play an important gatekeeping role in 
the adoption process as they import a technology into their community 
(they are not necessarily respected by other members of their commu-
nity). Early adopters on the other hand are a more integrated part of a 
community than their innovators. Thus, this adopter category has the 
highest degree of opinion leadership in most communities. Given that 
they are not too far ahead of the average individual in innovativeness, 
they typically serve as a role model in their community. Early adopters 
decrease the uncertainty about a new technology by adopting it and 
thereby help to trigger the critical mass. The early majority follows “with 
deliberate willingness in adopting innovations but seldom lead” [215]. By 
adopting new technologies just before the average member of a commu-
nity does, they form an important link to adopters with longer inno-
vation-decision periods. The late majority is driven by the pressure of 
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Figure 18.  Adopter categorization on the basis of innovativeness [215] 
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peers and the early majority as well as economic necessity. Most of the 
uncertainty about a new technology must be eliminated before the late 
majority adopts it. Together, the early and late majority make up roughly 
two thirds of the members of a community as illustrated in Figure 18. 
The only remaining group is the laggards or late adopters. According to 
Rogers, they tend to be suspicious of innovations and thus extremely 
cautious in adopting them. 

Following this model we reached out to innovators in different commu-
nities very early in the development of both JSON-LD and Hydra. While 
JSON-LD managed to attract notable early adopters such as Google and 
the BBC, Hydra, being a very young technology, is a step behind in the 
adoption lifecycle and is still concentrating on innovators. The 
W3C Community Group into which Hydra’s further development was 
moved grew within the first six months of its existence to over fifty mem-
bers [216]. The participants’ backgrounds range from academia over 
startups to large companies. 

In the following sections, we will present a number of notable adopters 
broadly categorized into academia, industry, and standardization efforts. 
This is by no means intended to be an exhaustive list. The motivation is 
to present a number of different use cases for which these technologies 
have been adopted and to create a historical reference of the early days of 
JSON-LD and Hydra. 

6.4.1 Academia 

Among the first adopters of 
JSON-LD was IKS (Interac-
tive Knowledge Stack) [217], 
a multi-million euro research 
project funded mostly by the 
European Union [218]. IKS 
was developed by a core con-
sortium of seven research and 
six industrial partners. The 
main outcome of the project 
is a reference architecture for 
semantic content management systems [219] and a set of open source 
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Figure 19.  Decoupled CMS architecture 
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software components that both represent the reference implementation 
and extend traditional content management systems (CMS) with 
Semantic Web technologies. 

The open source components can be divided into two main projects: the 
VIE project [220], focusing on presentation and user interaction, and the 
Apache Stanbol project [221], providing services such as named entity 
extraction and reasoning to enhance unstructured content with metadata 
about related entities and links. The two projects are loosely coupled via a 
RESTful service interface resulting in a so called “decoupled content 
management system” [222]. In contrast, most traditional CMS are 
implemented as a monolithic block. As illustrated in Figure 19, the IKS 
project breaks this block into a classic three-tier architecture. The com-
munication between the logic tier and the data tier can be realized by 
standardized interfaces such as the Content Repository API for 
Java (JCR) [223]. Similarly, the communication between the logic tier 
and the presentation tier can be realized with standardized technologies. 
Given that the IKS project concentrates mainly on web content man-
agement systems, it decided to send data from the logic to the presenta-
tion tier as HTML annotated with RDFa. These semantic annotations 
make it possible to extract the content model of the CMS into JavaScript 
models on the client, i.e., the browser. The presentation tier then imple-
ments the user interface to manage the content, which includes features 
such as rich text editing, semantic annotations, and image handling. The 
changes are then sent back to the logic tier using JSON-LD. The service 
interface itself is hardcoded into the client and predates Hydra. It would 
be interesting to describe it using Hydra in future versions. 

An interesting feature of VIE is the ability to load additional information 
about an entity from DBpedia; another project adopting JSON-LD quite 
early. DBpedia [224] is one of the most well-known Linked Data pro-
jects. Several hundred data sets on the Web reference DBpedia entities 
making it one of the central interlinking hubs in the Linked Open Data 
cloud [80]. Its main idea is to extract structured data from Wikipedia 
articles and turn it into a rich, multi-lingual knowledge base by mapping 
the extracted concepts to an ontology. The result is a knowledge base 
consisting of almost 1.5 billion facts about more than 13 million things. 
Using HTTP content negotiation, all that data can be retrieved from 
DBpedia as JSON-LD. 



 

168 

While these efforts either concentrate on read-only access to data or rely 
on out-of-band documentation for their APIs, the Educational System 
Group [225] of the Galileo University Guatemala goes a step further. In 
their Cloud Educational Interoperability Service project they are building 
an e-learning platform powered by popular online tools. Instead of cre-
ating, e.g., word processors or mind mapping editors themselves, they 
integrate popular, free tools such as Google Docs [226], 
MindMeister [227], or Cacoo [228] by transforming their responses to 
JSON-LD and describing them with Hydra. These machine-readable 
descriptions allow them to semi-automatically create widgets that can be 
used by non-technical experts to build personal learning environments. 

The project is a highly interesting test bed for both Hydra and JSON-LD 
as it tries to convert real-world APIs into APIs powered by JSON-LD 
and Hydra.  Instead of programming directly against the underlying API, 
all requests go to through a transformation layer harmonizing the APIs. 
The advantage is that integration becomes much more efficient and pro-
gramming can happen on a higher level of abstraction. The system is 
built on a layered architecture that helps to concentrate the transfor-
mations on a single layer instead of having to spread them throughout 
the whole code base. As soon as the third-party APIs adopt JSON-LD 
and Hydra themselves, it becomes possible to completely eliminate that 
intermediary layer. Since the project is still under heavy development 
unfortunately no publicly accessible publications are available yet at the 
time of this writing. 

6.4.2 Industry 

Large media organizations and libraries typically maintain sophisticated 
metadata catalogs to manage their information. Since this is one of the 
core features of the Semantic Web technologies, media organizations 
started to embrace them relatively early. The BBC is one of the pioneers 
in this field by launching “the first large scale, mass media site using 
concept extraction, RDF, and a triple store to deliver content” [229] for 
the 2010 FIFA World Cup. The use of Semantic Web technologies 
helped, among others, to improve navigation, content re-use and re-
purposing, and search engine rankings. Furthermore, the system enabled 
the automated publication of web pages that require minimal journalist 
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management, as they automatically aggregate and render links to relevant 
stories and assets. 

A challenge the BBC was dealing with was the usage of RDF data in the 
frontend. As discussed in section 3.4, web developers find RDF and its 
serialization formats such as RDF/XML confusing and hard to code with. 
Thus, over the years the BBC refined its architecture and created a 
“linked data platform” (not to be confused with the Linked Data 
Platform [155] being standardized at the W3C) as illustrated in 
Figure 20. In its latest versions, Turtle and RDF/XML have been 
replaced with JSON-LD [230]. As David Rogers, senior technical archi-
tect at BBC Future Media, News & Knowledge, told us in personal 
communication, the linked data platform’s APIs are planned to form the 
foundation of a “BBC open API” and JSON-LD will be the default for-
mat serialization format. 

The platform used by globo.com, the web portal of Organizações Globo, 
the largest media group in Latin America, went through a similar trans-
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Figure 20.  Architecture of the BBC Linked Data Platform 
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formation. As Ícaro Medeiros reported at the 2nd International Workshop 
on Web of Linked Entities (WoLE) [231], the Semantic Web team at 
globo.com re-architected their system to increase the data quality and to 
make access to data simpler, more secure, and performant by introducing 
a RESTful Web API built on JSON-LD. The API uses hypermedia but 
does not offer any hypermedia controls apart from simple hyperlinks. All 
operations are being described out-of-band in natural language. Since 
Hydra is able to address this issue, globo.com was among the first partici-
pants of the W3C Hydra Community Group [216] and is currently 
evaluating its usage. 

Coincidentally, exactly one day after we presented Hydra for the first 
time to a larger audience at the 22nd International World Wide Web 
Conference, Google announced arguably the most high-profile adoption 
of JSON-LD at the Google I/O 2013 [232]. They released a new feature 
for Gmail, Google Search, and Google Now that leverages JSON-LD to 
embed structured data into e-mails. This data allows them to understand 
what an e-mail is about and thus to process it more intelligently. When a 
user, e.g., opens a flight confirmation e-mail in Gmail, all the important 
information about the flight is extracted from the e-mail and displayed 
prominently above the e-mail itself as shown in Figure 21. The same 
information is used to display the so-called Google Now cards on 
Android and iOS and is also integrated into Google’s search engine so 
that users can easily find it. Figure 22 illustrates how the result looks like 
when users search for their hotel reservations. 

The most interesting aspect of this new feature is that it is not limited to 
just displaying data. Google went a step further and also allows users to 
take action on e-mails without needing to open them first [233]. 

Figure 21.  Gmail displays information embedded as JSON-LD in e-mails 
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Responding to an invitation thus becomes as simple as pressing two but-
tons as illustrated in Figure 23. The code to render an RSVP button in 
Gmail is shown in Listing 44. It describes an event and declares three ac-
tions of type RsvpAction with different values for the attendance property. 

While Google uses Schema.org as the vocabulary to describe actions in 
e-mails, the concepts have not yet been added to Schema.org. In fact, we 
are in contact with Google and other Schema.org partners in order to 
improve the vocabulary and to align it or replace it with Hydra. We also 
published a first draft [189] explaining how a subset of Hydra could be 
integrated into Schema.org. By making descriptions of actions with 
Schema.org less RPC-oriented, the same vocabulary could be reused to 
describe RESTful Web APIs. 

The usage of JSON-LD by Google for Actions in Gmail and the subse-
quent enthusiastic announcement by the Schema.org partners [235] that 
JSON-LD has been added to the list of recommended serialization for-
mats for Schema.org is an important proof for the trust in the technology. 

Figure 22.  Google queries may return information embedded in e-mails 
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<html> 
  <body> 
    <script type="application/ld+json"> 
    { 
      "@context": "http://schema.org//", 
      "@type": "Event", 
      "name": "Taco Night", 
      "startDate": "2013-05-18T19:00-07:00", 
      "endDate": "2013-05-18T20:50-07:00", 
      "location": { 
        "@type": "Place", 
        "address": { 
          "@type": "PostalAddress", 
          "name": "Taco Joe", 
          "streetAddress": "Tortilla Heights", 
          "addressLocality": "San Francisco", 
          "addressRegion": "CA", 
          "postalCode": "94107", 
          "addressCountry": "USA" 
        } 
      }, 
      "action": [ { 
          "@type": "RsvpAction", 
          "handler": { 
            "@type": "HttpActionHandler", 
            "url": "http://example.com/rsvp?eventId=123&value=yes", 
            "method": "http://schema.org/HttpRequestMethod/GET" 
          }, 
          "attendance": "http://schema.org/RsvpAttendance/Yes" 
        }, { 
          "@type": "RsvpAction", 
          "handler": { 
            "@type": "HttpActionHandler", 
            "url": "http://example.com/rsvp?eventId=123&value=no", 
            "method": "http://schema.org/HttpRequestMethod/GET" 
          }, 
          "attendance": "http://schema.org/RsvpAttendance/No" 
        }, { 
          "@type": "RsvpAction", 
          "handler": { 
            "@type": "HttpActionHandler", 
            "url": "http://example.com/rsvp?eventId=123&value=maybe", 
            "method": "http://schema.org/HttpRequestMethod/GET" 
          }, 
          "attendance": "http://schema.org/RsvpAttendance/Maybe" 
        } 
      ] 
    } 
    </script> 
    <p>Please let me know if you join our Taco Night on Saturday.</p> 
  </body> 
</html> 

Listing 44.  A marked-up e-mail declaring an event 
with an RSVP action (adapted from [234]) 
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As discussed in the introduction, these early adopters play a crucial role 
in triggering the critical mass by decreasing the uncertainty about a new 
technology such as JSON-LD. The official ratification of JSON-LD as a 
W3C standard is another important milestone to convince more risk-
averse adopters with longer innovation-decision processes. 

 

6.4.3 Standardization 

Due to the need for stable base technologies, standardization efforts are 
typically among the last to adopt new technologies. Nevertheless, 
JSON-LD is already being used as the serialization format in a number of 
specifications and recommended by others. 

The IMS Global Learning Consortium, e.g., announced in a press release 
in 2012 [236] to use JSON-LD as the main serialization format in the 
second version of their Learning Tools Interoperability standard. Simi-
larly, the Image API 1.1 specification [237] of the International Image 
Interoperability Framework (IIIF) working group requires that 
conformant implementations use JSON-LD. Other specifications, such 
as Open Annotation [238] or the Open Digital Rights Language [239] 
do not require the usage of JSON-LD but recommend it. 

Another interesting standardization effort to keep an eye on are JSON 
Activity Streams 2.0 [240] and the corresponding draft specifying action 
handlers [241]. They are relevant for both JSON-LD and Hydra. JSON 

Figure 23.  Actions in Gmail can be invoked directly from the inbox 
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Activity Streams 2.0 is not directly based on JSON-LD but has been 
“designed to be closely compatible with JSON-LD” [240]. Furthermore, 
the IETF Internet Draft contains an appendix explaining how a JSON 
Activity Stream can be processed as JSON-LD. Action handlers could be 
classified as a mixture of the approach Google used to describe actions in 
e-mails and Hydra. Consequently, they are highly interesting for the 
further development of Hydra. 

6.5 Discussion 
The combination of the REST architectural style with the Linked Data 
principles builds a foundation to bring many of the key success factors of 
the human Web to the Web of machines. Instead of building Web APIs 
with highly specialized interfaces, all the modeling happens on a semantic 
layer completely independent of the underlying serialization format. By 
using a format such as JSON-LD to serialize the data, a gradual intro-
duction of such a (at first sight) disruptive approach becomes possible. 
Apart from a few additional properties, the responses from a Web API 
using JSON-LD and Hydra look almost exactly the same as the ones of 
current JSON-based APIs. As shown in this chapter, this greatly simpli-
fies the integration into current Web frameworks and provides a smooth 
upgrade path for developers that have to build on existing infrastructure 
investments. 

The standardized data format provided by JSON-LD along with the 
concepts defined by Hydra enables the creation of completely generic 
clients. Together they are thus capable of addressing all issues that have 
been discussed in Chapter 3. JSON-LD has become an official World 
Wide Web Consortium standard that has been well accepted and 
adopted. Hydra, being the much younger technology, has been moved 
into a W3C Community Group for further development and is starting 
to gain traction. 

Summarized, the combination of JSON-LD and Hydra is, to our best 
knowledge, the first practical solution to successfully bridge the gap 
between REST and Linked Data. By combining the REST architectural 
style with the Linked Data principles and the rich semantic framework 
established by RDF and related technologies, JSON-LD and Hydra are 



 

175 

able to solve problems that API publishers and consumers are increasingly 
struggling with. This, hopefully, not only helps to solve the issues of cur-
rent Web APIs, but also to advance the World Wide Web as a whole, as 
Martin Hepp, creator of the widely used GoodRelations e-commerce 
vocabulary [242], suggested in a recent tweet [243]. 





 

 

Chapter 7 

Conclusions and 

Future Work 

For many companies RESTful Web APIs have become an integral part of 
their strategy and products. Just as it became clear in the early 2000s that 
a company has to have a website in order to stay competitive it is nowa-
days almost mandatory for businesses to provide APIs. In fact, for a lot of 
companies the API has become the main product instead of being just an 
add-on for other products. Yet, by looking at the APIs such companies 
expose, history seems to repeat itself. Similar to how businesses at the 
beginning of the last decade struggled to embrace the Web as a different 
medium and wondered why their websites, which closely resembled their 
print products, failed to engage users, nowadays API publishers try to 
reuse their existing implementations by exposing them directly and won-
der why developers have troubles accessing their services. However, 
instead of addressing the problem at its core, most API publishers confine 
themselves to cure the symptoms by also implementing the clients them-
selves; mostly in the form of software development kits (SDKs) or librar-
ies. Actually, a whole industry emerged to cure the symptoms. There exist 
API integrators harmonizing various APIs in a specific vertical by creating 
generalized wrappers, API orchestration platforms allowing even non-
technical users to connect different APIs to create simple applications, 
API portal providers formalizing API documentation, access token man-
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agement, etc. by creating developers portals, API testing and monitoring 
solutions helping companies to fulfill their service level agreements 
(SLAs), API security gateways providing single sign-on solutions or 
enforcing access control, and API marketplaces helping publishers to 
monetize their services. Since such offerings are typically based on propri-
etary technology, their usage normally results in vendor lock-in. Switch-
ing to another vendor is not only complex, but also labor intensive and 
thus costly. 

As analyzed in detail in Chapter 3, the root causes that led to this situa-
tion are the usage of proprietary data formats and data models and the 
reliance on static, manually written, natural language contracts docu-
mented out of band at design time instead of negotiating and communi-
cating them dynamically at run time. From the perspective of the 
Representational State Transfer architectural style this corresponds to a 
violation of the self-descriptive messages constraint and a negligence of 
hypermedia as the engine of application state. This means that crucial 
information is not available in a machine-processable form, which makes 
it almost impossible to implement powerful, generic tooling. While 
Semantic Web technologies would at least be able to offer a solution to 
make messages self-descriptive, they suffer from a number of problems 
themselves—including a lack of hypermedia support. Most problematic, 
however, is their disruptiveness and (perceived) complexity. 

For a long time the Semantic Web community derailed into the artificial 
intelligence domain instead of concentrating on more practical data-
oriented applications. This resulted in technologies that are, admittedly, 
powerful, but also very alien and difficult to understand for typical devel-
opers. Gradually adopting Semantic Web technologies is very challenging 
as the underlying data model with its open world assumption is funda-
mentally different from what developers are used to. RDF/XML, which 
was standardized at the peak of XML’s popularity, certainly tried to 
appeal to developers by being based on XML but it is widely disliked 
even by XML enthusiasts. It is neither optimized for humans nor for 
machines and, most critically, standard XML tools are almost useless 
when working with RDF/XML documents. RDF/XML can thus be con-
sidered as one of the main barriers to the adoption of Semantic Web 
technologies. Another important factor is that the “Web” in “Semantic 
Web” got little attention. Instead of building a hypermedia-driven Web 
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of Data, IRIs in RDF were often just non-dereferenceable identifiers. In 
an attempt to refocus on the importance of the main principles of the 
Web, Tim Berners-Lee formulated the Linked Data principles in 2006. 
Simply speaking, he advocated the usage of dereferenceable URLs and 
the interlinking of data. This was an important turning point in the his-
tory of the Semantic Web and resulted in huge amounts of data being 
published. Unfortunately, however, this data is typically not exposed in 
the form of Web APIs but as static read-only dumps or centralistic 
SPARQL endpoints. While there have been many efforts to change that, 
no practical solution that addresses all the issues identified in Chapter 3 
exists yet. The state of the art presented in Chapter 4 either addresses just 
some of the problems or is not practical enough—as confirmed by the 
lack of adoption. Thus, rather than focusing on a particular problem we 
looked at the bigger picture in this thesis. 

In an iterative process we set out to bridge the gap between REST and 
Linked Data in order to build a practical solution for these issues. Based 
on experiences gained by implementing and analyzing various Web APIs, 
and the lessons learned from designing and experimenting with SAPS 
and SEREDASj, we were finally able to come up with JSON-LD and 
Hydra. Together, this loosely coupled combination of data format and 
vocabulary is able to offer a holistic solution for the identified issues. The 
clear separation of concerns helped to keep the complexity as low as pos-
sible while still providing all necessary functionality. For example, users 
that do not need the features Hydra provides because they just want to 
publish read-only data can choose to adopt only JSON-LD. Similarly, 
users which prefer another serialization format such as RDFa or Turtle 
may decide to adopt Hydra but not JSON-LD. This was very beneficial 
in terms of adoption as has been shown in Chapter 6. JSON-LD is 
already used by hundreds of millions of people across the globe; most of 
them use it without knowing it. Furthermore, it has become an official 
World Wide Web Consortium standard. Such quick adoption and 
standardization would likely have been very difficult to achieve if the two 
technologies were merged into one. Hydra, being the younger technology 
is not as widely adopted yet but is quickly gaining traction. The W3C 
Community Group into which its further development has been moved 
is continuously growing and there is interest to integrate parts of Hydra 
directly into Schema.org. 
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As demonstrated in section 6.2, current Web frameworks can be easily 
extended to support JSON-LD and Hydra. This is a major selling point 
compared to most related approaches, which are interesting but rarely 
practical in real-world scenarios. The design of JSON-LD ensures a 
smooth upgrade path from JSON tooling that couples on the syntactic 
structure of representations to more sophisticated tools such as the 
HydraConsole presented in section 6.3 that work on a higher level of 
abstraction. Together these two prototypes nicely illustrate what is 
achievable with JSON-LD and Hydra. The client, represented by the 
HydraConsole is completely generic. There exist no static contracts that 
are hardcoded into the client. Instead, all necessary information is 
exchanged dynamically at runtime. This allows the independent evolu-
tion of both the server and the client, and is beneficial in terms of 
adaptivity and reusability. By reusing existing vocabularies such as 
Schema.org, interoperability can be increased without having to com-
promise on extensibility. In many cases, developers do not have to define 
custom concepts at all but will be able to entirely base their services on 
existing vocabularies. This prevents the leakage of implementation details 
which in turn helps to reduce the coupling between clients and servers. 

Bridging the gap between REST and Linked Data is an ambitious 
endeavor. The technologies and prototypes developed as part of this the-
sis are an important first step but there are still a number of limitations 
that have to be overcome to fully unfold their potential. Broadly speak-
ing, these issues can be classified into concrete limitations of JSON-LD 
or Hydra, or general problems such as a lack of tooling and accessible 
documentation which lead to limited understanding of the underlying 
principles and ideas. Some of these issues are discussed below and pave 
the way for future work. 

7.1 JSON-LD 
The standardization of JSON-LD took many years and was the result of 
an extremely transparent, open, and consensus-driven process. Most of 
the development happened in a W3C Community Group which indi-
viduals as well as companies could easily join with a couple of mouse 
clicks. All e-mails were publicly archived, the teleconferences were scribed 
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and recorded, the source code repository and issue tracker are open 
(everyone can file new issues and file so-called pull requests to contribute 
code). This ensured that all legitimate views and objections have been 
considered, which undoubtedly increased the quality of the final specifi-
cation. Taking into consideration different, and sometimes conflicting, 
opinions is not always straightforward and frequently requires compro-
mises to be made. Reaching consensus takes time and at some point it 
becomes necessary to stop the work on new features and concentrate on 
stabilizing and improving existing ones. This was no different in the 
development of JSON-LD and resulted in a number of features post-
poned to future versions of JSON-LD. 

The indexing feature of JSON-LD is a great example of this. It is very 
flexible but nevertheless its realization was a compromise. When working 
with JSON, developers typically structure their documents in a specific 
way to simplify data access. In most current programming languages, 
parsed JSON data can be directly accessed without having to use special 
programming libraries. The JSON data is directly converted to an in-
memory representation. JSON-LD’s @index keyword allows data to be 
indexed by arbitrary strings. These strings, however, stand in no relation-
ship with the data; they are just structural annotations (which is why the 
@index keyword was called @annotation for some time). In other words, 
indexes can be discarded without losing any information (in fact they are 
when JSON-LD data is being converted to RDF). In a lot of cases, how-
ever, developers would like to index their data based on the entities’ IRIs 
or on specific properties. 

Listing 45 illustrates how such a feature might look like in the future. 
Additional to setting the @container of the knows property to @index, the 
“index key” is set to name, which in this example would correspond to 
http://schema.org/name. Thus, instead of having to duplicate the data by 
using the @index feature as currently specified, it would become possible 
to index the data directly. This would allow more existing JSON 
documents to be interpreted as JSON-LD by just adding a context. It 
would also reduce the file size of certain JSON-LD documents as no data 
would have to be duplicated. Following the same motivation, various 
features have been proposed to simplify the conversion of certain values 
to IRIs. A lot of current Web APIs expose JSON which does not include 
the IRIs of entities directly, but just some sort of identifiers such as 
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primary keys taken directly from the database. In order to convert those 
strings or numbers to IRIs, a client needs to have knowledge of an IRI 
template. Instead of having to rely on out-of-band documentation, that 
information could be directly embedded into a JSON-LD context. There 
are various proposals ranging from directly including support for IRI 
templates to allowing the creation of nested contexts, similar to how 
SEREDASj works. Describing all these proposals is beyond the scope of 
this section and thus we would like to refer the interested reader to our 
issue tracker [244] or the mailing list archives [245]. 

Making JSON-LD more flexible and expressive is important, but just as 
important is the tooling around it. The standardized JSON-LD 
API [168], which has been implemented in all major programming lan-
guages, lays the foundation for more sophisticated tooling to be built in 
the future. We have already started working on that with Framing [187]. 
The algorithm, however, is not fully up to date with the latest JSON-LD 
specification as work on it was stopped when the JSON-LD syntax and 
the rest of the API was brought into the RDF Working Group for stand-
ardization at the World Wide Web Consortium. Therefore, the framing 
algorithm does not support reverse properties or named graphs yet. It will 
be interesting to see how JSON-LD is used in practice and how users can 
be supported with tooling. Some of these observations have already led to 

{ 
  "@context": { 
    "@vocab": "http://schema.org/", 
    "homepage": { "@type": "@id" }, 
    "knows": { "@container": "@index", "@index": "name" } 
  }, 
  "@id": "http://example.com/people/markus", 
  "name": "Markus Lanthaler", 
  "homepage": "http://www.markus-lanthaler.com/", 
  "knows": { 
    "Jane Doe": { 
      "@id": "/people/jane", 
      "homepage": "http://doe.example.com/jane/" 
    }, 
    "John Doe": { 
      "@id": "/people/john", 
      "homepage": "http://doe.example.com/john/" 
    } 
  } 
} 

Listing 45.  Using arbitrary properties to index data in JSON-LD 
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discussions to change some aspects of the framing algorithm in order to 
make it more useful and practical. There also exist prototypes of tools 
that automatically generate JSON-LD contexts out of vocabulary defini-
tions or attempt to convert various data formats (not just RDF-based 
ones) to JSON-LD. 

7.2 Hydra 
In contrast to JSON-LD, Hydra is not fully stable yet. The different 
backgrounds of the various members of the Hydra W3C Community 
Group and the discussions regarding the inclusion of parts of Hydra into 
Schema.org resulted in interesting debates, new feature proposals, and 
also revealed a number of weaknesses. 

A frequently asked question is how Hydra can be used with media types 
other than JSON-LD. It is, e.g., not trivial to describe that an operation 
expects or returns an image file. There are various proposals on the table 
but no decision has yet been made of how to address this issue. One 
option would be to create a dedicated class—something like Blob—that 
could then be further refined by media type ranges. 

The most often misunderstood and criticized aspects of Hydra, however, 
are the three predefined operation types. It was never the intention to 
include specific operation types directly in the Hydra core vocabulary but 
we deemed it necessary to include some very generic operations to illus-
trate how the whole concept can be used. Apparently, the inclusion of 
CreateResourceOperation, ReplaceResourceOperation, and DeleteResource-
Operation was counterproductive. A lot of people are confused by these 
concepts by thinking that they are the only available operation types. 
Especially people without knowledge of RDF and other Semantic Web 
technologies do not realize that it is trivial to add additional operation 
types. Furthermore, the semantics of these operations are very weak. The 
typing of an operation as a DeleteResourceOperation, e.g., does not add 
much value if the HTTP method of that operation is set to DELETE. Given 
that the concept of “actions” has been added to Schema.org since the 
initial release of Hydra, it is likely that we will remove these three prede-
fined operation types from the Hydra core vocabulary. 
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The assumption that collections are a much-needed feature in most Web 
APIs seems to vindicate. In many discussions their usefulness was reiter-
ated and some members of the Hydra W3C Community Group pro-
posed extensions to make it even more useful. An interesting proposal is 
to add a memberTemplate property to Hydra which associates an 
IriTemplate with a Collection. That way, clients would be able to directly 
construct the URL of specific members, which is much more efficient 
than having to query the collection or iterate through all members. The 
same motivation triggered a request for a feature to control the sorting of 
paged collections. At the moment, the sorting order of members of paged 
collections is neither specified nor can it be directly influenced by a 
client. It is at the sole discretion of the server. 

Since we are actively discussing the inclusion of parts of Hydra directly 
into Schema.org, some concepts might also get renamed to more closely 
align with the rest of Schema.org or extended to support other use cases. 
An important feature request from Schema.org was to support not only 
HTTP operations but also operations that cause mobile applications to 
be launched. This could be included directly in the core vocabulary, but 
as Hydra was designed to be a modular suite of vocabularies form the 
beginning, it is more likely that such functionality would be realized by a 
dedicated vocabulary. Similarly, there are plans to create a vocabulary 
extending Hydra to allow operations to be annotated with sample 
requests and responses in order to facilitate API and client testing as 
described in section 5.5. 

While extensions and refinements such as the ones presented above are 
important in the long term, the most pressing concern is to improve 
tooling support. Due to Hydra’s nature, it is probably even more 
important than for JSON-LD. The HydraBundle for Symfony2 as well 
as the HydraConsole are important first steps but both have to be 
improved to be usable in production and complemented by additional 
tools and libraries. A crucial missing piece we are already working on is a 
client library for programmatic access to Hydra-powered Web APIs. Its 
aim is to provide developers with a generic library instead of requiring 
them to either use a special library for each API they are accessing or a 
very low level HTTP library. The long-term goal is to allow a more 
declarative, goal-oriented usage of Web APIs. If the used vocabularies are 
based on formal semantics (just as RDF’s core vocabularies are), it 
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becomes possible to implement reasoners that are able to infer conclu-
sions which are not expressed explicitly in the data. That, combined with 
techniques such as hierarchical state machines or behavior trees that allow 
the creation of reusable blocks of logic, could pave the way for much 
smarter clients than possible today. 

7.3 Related Topics 
A yet unresolved issue for the creation of smarter clients, which is not 
directly related to JSON-LD or Hydra but more to RDF in general, is 
data integration. The transformation of data from different sources to 
RDF is just the first and simplest step. To be fully integrated, however, 
all the data has to be expressed eventually in a vocabulary supported by 
the application processing it. This process is typically called ontology 
alignment and is a heavily researched area. Instead of requiring a manual 
mapping as the HydraBundle does, a similar approach could be used to 
automatically map object-oriented implementations to vocabularies such 
as Schema.org. Currently, such alignment and integration is mostly still 
done in an imperative way by writing data mediation code. To be able to 
cope with the exponentially growing amount of data it will become inevi-
table to automate these processes. It is also necessary to research on how 
to deal with incomplete or inconsistent data and which data sources can 
be trusted. 

Talking about the Semantic Web stack in general, the biggest remaining 
hurdle to a more widespread adoption apart from missing tooling is, in 
our opinion, a lack of accessible documentation. When writing the 
JSON-LD specifications we took a radically different approach than most 
existing specifications. We tried our best to avoid complex terminology 
while still being technically accurate. Instead of just enumerating and 
describing features, we built the entire specification around examples. 
The specification contains very few sections that consist of mostly nor-
mative language. Instead, much of the document reads more like a tuto-
rial or a primer rather than a specification. This makes the specification 
much longer (it was indeed criticized by a minority of people for its 
length) but it also means that the average Web developers do not need to 
read any other document to understand and begin using JSON-LD; the 
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document is completely self-contained. We tried to advocate a similar 
simplification for the rest of the specifications the RDF Working Group 
produced, but unfortunately many of our proposals were turned down. 
Thus, even though the new standards are much clearer and simpler than 
their previous versions, even our editorship of the central RDF specifi-
cation RDF 1.1 Concepts and Abstract Syntax [63] did not allow us to 
fully achieve our goal. It is regrettable that this unique opportunity was 
not fully exploited at such an important turning point of the Semantic 
Web. Thus, much more community outreach and the publication of 
accessible educational material will be needed in the coming years to fos-
ter adoption. The new RDF 1.1 Primer [246], to which we contributed 
several ideas and feedback, is a great first step in that direction. 
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