

Doctoral Dissertation

Third Generation Web APIs
Bridging the Gap between REST and Linked Data

Markus Lanthaler

Institute of Information Systems and Computer Media

Graz University of Technology, Austria

Supervisor: Dr. techn. Univ.-Doz. Christian Gütl

Statutory Declaration

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
marked all material which has been quoted either literally or by content
from the used sources.

Graz, March 2014

Abstract

It is becoming increasingly difficult to cope with the exponentially
growing amount of data. Thus, systems are progressively being connected
directly to each other to exchange, analyze, and manipulate humongous
amounts of data without any human interaction. On the Web, different
systems typically communicate via Web services with each other. The
first generation of services was based on the flawed Remote Procedure
Call (RPC) style, and was difficult to scale and maintain. Consequently,
service providers started to align their offerings more closely with the
architecture of the World Wide Web. Creating such services, or Web
APIs as they are often called, is, however, still more an art than a science.
Developers have to struggle with a number of complex design decisions
and important technologies are still missing.

This dissertation discusses the main issues of current Web services and
related Semantic Web approaches. It reviews the state of the art and pre-
sents the results of our research. Our first two contributions, namely
SAPS and SEREDASj, were mainly research prototypes that acted as a
proof of concept and allowed us to evaluate the main underlying ideas.
Eventually, these approaches led to the creation of JSON-LD and Hydra.
JSON-LD is a community effort to serialize Linked Data in JSON that
resulted in a well-accepted and widely used standard. Hydra, on the other
hand, is a lightweight vocabulary defining the necessary concepts to
create Web APIs that fully conform to the Web’s architecture. This thesis
elucidates how JSON-LD and Hydra can be used for a domain-driven
design and implementation of Web APIs. To evaluate their practicality
and demonstrate that they address the issues of current Web APIs, both
technologies have been integrated in a current Web development
framework and a completely generic client has been implemented.
Finally, this dissertation also provides an overview of some early adopters
and describes how they use the technologies in practice.

iv

Acknowledgements

Even though this dissertation was written according the academic con-
vention that prescribes the use of “we” instead of “I”, the “we” is justified
in many occasions. Without the help and support of many people, this
thesis would not have been possible. First and foremost, I would like to
express my deepest gratitude to my supervisor Christian Gütl who helped
me in every imaginable way, but at the same time granted me complete
freedom in my research. Without his support and trust, it would never
have been possible to spend most of this research abroad—literally at the
other end of the world. On a related note, I would also like to thank the
Curtin University for welcoming me in Australia and Chen Wu for his
support during my early days in that fantastic country. I am grateful to
Michael Granitzer for reviewing my first paper on Semantic Web Services
and Steve Wallis for proofreading a number of papers that I wrote while I
was in Australia.

Over the years, I was very fortunate to collaborate with many smart peo-
ple. I am proud to have worked with the JSON-LD and Hydra Commu-
nity Groups, especially with Manu Sporny, Gregg Kellogg, Niklas
Lindström, Dave Longley, Ruben Verborgh, Ryan J. McDonough, and
Thomas Hoppe. Thank you for the countless technical discussions
amidst an amicable atmosphere; that is certainly not a given if you have
never met in person. I would also like to thank the RDF Working Group
for accepting me despite being the youngest participant by far.

Finally, I would like to thank all my new friends in the little land down
under for making my stay unforgettable. A very special thanks goes to
Meifania Kohn who has done a terrific job in proofreading this
dissertation. Thank you buddy!

I dedicate this dissertation to my family. Without their love, continuous
support, and encouragement, I would certainly not be where I am today.

vi

Contents

1 Introduction .. 1

1.1 Contributions ... 7

1.2 Outline ... 9

2 Basic Concepts and Technologies .. 11

2.1 The Architecture of the World Wide Web 12

2.1.1 The Representational State Transfer Architectural Style 16

2.2 Contracts on the Web ... 21

2.2.1 An Alternative Approach .. 23

2.3 Linked Data and the Semantic Web .. 25

2.3.1 The Semantic Web Technology Stack 26

2.3.1 Linked Data ... 29

2.4 Services on the Web .. 32

2.4.1 SOAP-based Services .. 33

2.4.2 RESTful Services .. 34

2.5 Discussion ... 35

3 Problem Definition ... 37

3.1 Proprietary Data Formats and Models ... 37

3.2 Static Contracts in Natural Language .. 41

3.3 Manually Written Documentation .. 44

3.4 The Semantic Web: Complex, Read-Only, and No Links?............ 45

3.5 Missing Tooling .. 49

3.6 Discussion ... 50

4 Related Work .. 55

4.1 Interface Description Languages .. 56

viii

4.1.1 WSDL and SAWSDL .. 57

4.1.2 WADL .. 59

4.1.3 Swagger and Google’s API Discovery Service 60

4.1.4 SA-REST, hRESTS, and MicroWSMO 60

4.1.5 RESTdesc .. 62

4.2 Data Interchange Formats .. 63

4.2.1 Turtle .. 64

4.3 Vocabularies and Ontologies .. 65

4.3.1 OWL-S .. 66

4.3.2 WSMO ... 67

4.3.3 WSMO-Lite .. 68

4.3.4 EXPRESS .. 69

4.3.5 Linked Data Platform .. 70

4.4 Domain Application Protocols ... 70

4.4.1 Atom ... 71

4.4.2 OpenSearch ... 72

4.4.3 oEmbed ... 73

4.5 Hyperlinks and Namespaces in JSON .. 74

4.6 Discussion .. 75

5 Bridging the Gap between REST and Linked Data 79

5.1 SAPS .. 81

5.1.1 Basic Concepts and Principles .. 81

5.1.2 Illustrative Example ... 84

5.1.3 Integration into the Linked Data Cloud 89

5.1.4 Summary and Lessons Learned .. 91

5.2 SEREDASj ... 92

5.2.1 Basic Concepts and Principles .. 93

5.2.2 Illustrative Example ... 97

5.2.3 Integration into the Linked Data Cloud 100

5.2.4 Summary and Lessons Learned .. 107

5.3 JSON-LD ... 108

5.3.1 Basic Concepts and Principles .. 111

5.3.2 Illustrative Example ... 122

5.3.3 Integration into the Linked Data Cloud 125

5.3.4 Summary and Lessons Learned .. 127

5.4 Hydra ... 128

5.4.1 Basic Concepts and Principles .. 129

ix

5.4.2 Illustrative Example .. 138

5.4.3 Integration into the Linked Data Cloud 141

5.4.4 Summary and Lessons Learned ... 141

5.5 Discussion ... 144

6 Evaluation ... 151

6.1 Problems Addressed .. 152

6.2 Ease of Integration into Web Frameworks 154

6.3 Support for Generic Clients .. 160

6.4 Adoption ... 164

6.4.1 Academia ... 166

6.4.2 Industry ... 168

6.4.3 Standardization .. 173

6.5 Discussion ... 174

7 Conclusions and Future Work .. 177

7.1 JSON-LD ... 180

7.2 Hydra ... 183

7.3 Related Topics .. 185

References .. 187

Chapter 1

Introduction

The World Wide Web profoundly changed many aspects of our society.
It has shaped our lives so rapidly and so effectively that many of us can-
not imagine life without it anymore. The Web brings the world’s infor-
mation to our fingertips and enables frictionless communication across
continents in fractions of seconds. Never before in human history has
access to information and its dissemination been easier. The initial hur-
dles to publish content on the Web have long since been eliminated. In
fact, the Web has become a global, collaborative information space in
which user-generated content dominates. In its short history, the World
Wide Web has thus arguably already become an invention as important
as Gutenberg’s printing press.

For a long time, data has been a scarce resource but the success of the
Web resulted in a fundamental shift from information scarcity to surfeit.
Not only are individuals producing more content than ever before but
also companies and governments are releasing unprecedented amounts of
data to the public. While such open data initiatives have been mainly
motivated by the desire to increase transparency and accountability, they
also create substantial economic value. According to a recent study [1],
the more than one million datasets that have already been made public by
governments worldwide enable an estimated potential annual value of
more than three trillion dollars. The same study argues that consumers
will profit most of it, despite the fact that the release of data creates
opportunities for whole new businesses, which can be best exemplified by

2

the many companies that were established after access to data from the
Global Positioning System (GPS) became freely available. But govern-
ments themselves also profit by providing free access to their data. Kenya,
one of the poorest countries in the world, was the first African country to
launch an open data portal in 2011 and claims [2] that opening up their
government’s procurement data could save them up to one billion dollar
each year, more than they get from donors. Thus, it is also not surprising
that in 2013 President Obama signed an executive order “making open
and machine readable the new default for government information” [3]
that does not have to be kept secret for privacy, confidentiality, or
national security reasons.

While open data initiatives resulted in vast amounts of data being pub-
lished, only a relatively shrinking proportion of data is being created by
humans. The vast majority is created by machines or sensors, which in-
cludes our digital exhaust, i.e., the digital trails we leave by interacting
with various systems. Every day, 2.5 quintillion bytes of new data are
being created—so much that 90% of all data available today has been
created in the last two years alone [4]. To make use of this data, simply
finding it is not enough anymore as there is too much data for a human
to review, absorb, and act on. We humans have become the bottleneck.
Machines need to integrate data from various sources, analyze it, and dis-
till actionable insights for us—preferably in real time. Data is thus often
said to be the new oil; it is valuable but needs to be refined to be usable.
To achieve that, more and more systems are connected directly to each
other. They exchange, analyze, and manipulate humongous amounts of
data without any human interaction. While there are many strategies to
connect disparate systems, services are arguably the most flexible option
as they allow systems to remain independent and self-contained. Instead
of integrating systems directly, they communicate with each other via
well-defined interfaces and protocols. Each subsystem in such a distrib-
uted architecture represents a service that offers a specific functionality.

Forward-looking companies soon realized the potential of services and
began to redesign their systems to form so called service-oriented archi-
tectures (SOA). In a public post, Steve Yegge, a former Amazon em-
ployee, accidentally shared the now famous mandate that Amazon’s CEO
Jeff Bezos issued around 2002 [5] to aggressively transform all of Ama-
zon’s systems to services. Yegge summarized Bezos’ mandate as follows:

3

▪ All teams will henceforth expose their data and functionality through
service interfaces.

▪ Teams must communicate with each other through these interfaces.

▪ There will be no other form of interprocess communication allowed: No
direct linking, no direct reads of another team’s data store, no shared-
memory model, no back doors whatsoever. The only communication
allowed is via service interface calls over the network.

▪ It doesn’t matter what technology they use. HTTP, Corba, Pubsub,
custom protocols—doesn’t matter. Bezos doesn’t care.

▪ All service interfaces, without exception, must be designed from the
ground up to be externalizable. That is to say, the team must plan and
design to be able to expose the interface to developers in the outside
world. No exceptions.

▪ Anyone who doesn’t do this will be fired

Amazon and many other companies that followed such a strategy profited
handsomely. Salesforce.com, e.g., generates nearly 50 percent of its reve-
nue through Web services, i.e., services exposed on the World Wide
Web; for Expedia, that figure is closer to 90 percent [6].

The first wave of services has been built according the Remote Procedure
Call (RPC) style. The aim of RPC-based models is to hide all differences
between local and remote computing in order to shield developers from
the complexities arising from distributed architectures. But despite the
fact that many successful distributed systems were built based on RPC-
oriented technologies such as SOAP [7], it is known for quite some time
that this approach is fundamentally flawed exactly because it ignores the
differences between local and remote computing. The major differences
concern the areas of latency, memory access, partial failure and concur-
rency as described in detail by Waldo et al. [8]. Talking about SOAP-
based services specifically, they face additional problems in practice as
they abuse HTTP [9] as transport protocol instead of using it as applica-
tion protocol. This breaks intermediaries that rely on HTTP’s
application-level semantics. In Internet-scale systems, however, interme-
diaries for caching, filtering, monitoring, etc. are necessary to ensure
good performance, scalability, maintainability, and evolvability.

4

Relatively soon it became apparent that RPC- or SOAP-based services do
not scale well and are difficult to maintain. Thus, more and more service
publishers started to better align their implementations with the archi-
tecture of the World Wide Web [10], the Representation State Transfer
architectural style (REST) [11], to benefit from its superior scalability.
Fueled by their benefits in terms of scalability and maintainability as well
as their simplicity, these second generation Web services, which are also
referred to as RESTful services or Web APIs in order to distinguish them
from their SOAP-based predecessors, quickly became the prevalent form
and more and more companies started to retire their first generation Web
Services. This, however, does not mean that the overall number of Web
services decreased, quite the contrary. As shown in Figure 1, the advent
of RESTful Web APIs resulted in an accelerated growth.
ProgrammableWeb, the most well-known Web service directory,
announced in 2013 that the number of public services grew over
10,000 [12]. Public services, however, represent only a small subset of all
available Web services. There are estimates [13] that private services out-
number public services by as much as 9:1, meaning that the actual total
number of services would be closer 100,000. This is an astonishing num-
ber considering that most of these Web services are proprietary snow-
flakes, i.e., similar, yet different enough to be not interoperable. Most of
the current Web APIs violate one or more of REST’s constraints which

2,000

4,000

6,000

8,000

10,000

12,000

Dec 2005 Dec 2007 Dec 2011 Dec 2013Dec 2009

Figure 1. Total number of public Web APIs indexed by ProgrammableWeb

5

yields to several problems in practice. This mostly stems from the fact
that clear guidelines and standardized technologies to implement truly
RESTful services are still missing.

While it is possible to alleviate some of the problems by, e.g., creating
wrapper APIs, i.e., APIs that integrate multiple APIs from a specific verti-
cal into a single interface, standardization is unavoidable in the long
term. The Web would never have experienced such an exponential
growth if browsers were to be adapted to every single Web site. Similarly,
a process in which clients have to be adapted to be usable with different
APIs does not scale either. As Steve Vinoski argues in an excellent arti-
cle [14], platforms, although efficient for their target use case, often
inhibit reuse and adaptation by creating highly specialized interfaces,
even if they stick to industry standards. He argues that “the more specific
a service interface [is], the less likely it is to be reused, serendipitously or
otherwise, because the likelihood that an interface will fit what a client
application requires shrinks as the interface’s specificity increases.” This
observation undoubtedly also applies to most current Web APIs.

What would be needed to solve these issues are standardized, Web-based
technologies for the machine-to-machine communication and processing
of structured data whose meaning can be understood by machines. Since
we are still far from human-level artificial intelligence, the intended
meaning, i.e., the semantics, of the data has to be explicitly described in a
machine-processable format. Research on knowledge representation and
reasoning is almost as old as the dream of intelligent machines, but in the
context of Web, these ideas gained major public attention only after Tim
Berners-Lee, the inventor of the World Wide Web, and others published
a seminal article [15] entitled the “Semantic Web” in 2001. Since then,
the World Wide Web Consortium (W3C) standardized numerous tech-
nologies to build an interoperable Semantic Web. Unfortunately, how-
ever, for a long time the Semantic Web community derailed into the
artificial intelligence domain instead of concentrating on more practical
data-oriented applications. Thus, most Semantic Web technologies were
adopted very reluctantly (if at all) and the Semantic Web got a reputation
of being overly complex and impractical. It is thus also not really sur-
prising that even experts have quite different opinions of the likely pro-
gress toward achieving the goals of Berners-Lee’s vision of the Semantic
Web by the year 2020, as a survey [16] of the Pew Research Center and

6

the Elon University revealed. Around 47% of the invited experts asserted
that, “by 2020, the semantic web envisioned by Tim Berners-Lee will not
be as fully effective as its creators hoped and average users will not have
noticed much of a difference.” In contrast, about 41% agreed with the
opposite statement: “By 2020, the semantic web envisioned by Tim
Berners-Lee and his allies will have been achieved to a significant degree
and have clearly made a difference to average internet users.” The
remaining 12% of the experts did not venture a guess.

To refocus the Semantic Web community on the importance of the main
principles of the World Wide Web in order to produce more practical
solutions, in 2006 Berners-Lee published the so-called Linked Data prin-
ciples [17], a short list of guidelines to publish and interlink data using
basic Semantic Web technologies. This marked an important turning
point in the history of the Semantic Web and resulted in the publication
of numerous datasets according to these principles. Since REST princi-
ples align well with the Linked Data principles it would seem consequent
to combine the strengths of both, but in practice they still remain largely
separated. Instead of allowing the modification of data via RESTful ser-
vice interfaces, the vast majority of data published according the Linked
Data principles is read-only.

The aim of this dissertation is to bridge the gap between REST and
Linked Data in order to support developers in the creation, documenta-
tion, and usage of Web APIs. The motivation is to increase developers’
productivity and to improve the quality and reusability of the created
Web APIs and the data they expose. Consequently, we analyze, assess,
and improve the processes and technologies used to create and access
RESTful Web services. The work is divided into four phases: theoretical
research and empirical analysis, design of novel solutions, implementa-
tion of prototypes, and evaluation. The initial phase of theoretical
research and empirical analysis sheds light onto the potentials, the limita-
tions, and the current situation of creating and using RESTful services
and Linked Data. Based on these insights, novel approaches to describe
and implement semantic RESTful services are designed and evaluated in
an iterative approach. To practically evaluate the final proposed solutions,
both a prototype integrating them into a popular Web development
framework and a completely generic API console capable of interacting
with the resulting services is implemented. The final outcome of this the-

7

sis is a set of technologies and a reference model for third generation Web
APIs, i.e., Web APIs that fully embrace the architectural style of the Web
and combine it with the expressive power of the Semantic Web. By
addressing various issues of first and second generation Web APIs, this
new breed of Web APIs allow the creation of loosely coupled, scalable
systems and enable the creation of completely generic clients and tooling.
By standardizing the proposed technologies, we hope to help ignite the
next stage of Web API growth, similar to how the standardization of the
basic Web technologies and the advent of graphical browsers led to an
explosive growth of the Web in the early nineties.

1.1 Contributions
The major contributions of this thesis can be summarized as follows:

▪ Current state-of-the-art research. The review of related work provides a
comprehensive overview of the state-of-the-art research and development
in the context of RESTful Web APIs as well as semantic services. Fur-
thermore, we present a number of popular domain application protocols
and discuss current efforts to add hyperlinks and namespaces to JSON.

▪ SAPS and SEREDASj. With the creation of SAPS and SEREDASj we
present novel approaches to combine proven technologies used in current
Web APIs with Semantic Web technologies. SEREDASj, e.g., allows the
data exposed by current JSON-based Web APIs to be lifted to RDF, to
be manipulated with SPARQL, and to eventually be sent back to the
server. These two approaches were mainly research projects and work on
them has eventually been discontinued in favor of JSON-LD and Hydra.

▪ JSON-LD. After having begun the work to improve SEREDASj, we dis-
covered the JSON-LD project and we were among the first to join it. Just
as SEREDASj, JSON-LD’s goal is to improve JSON-based Web APIs by
bridging the gap to Linked Data. We made several crucial contributions
to improve and shape the syntax of JSON-LD as well as its processing
algorithms and application programming interface. The author of this
thesis is co-author and co-editor of both specifications that have been
ratified as official Internet standards by the World Wide Web Consor-
tium (W3C). JSON-LD was well accepted and is already being used by

8

hundreds of millions of people across the globe, most of them without
knowing it.

▪ Hydra. Given that JSON-LD is a data interchange format with very lit-
tle semantics by itself, we created Hydra, a lightweight vocabulary speci-
fying a number of frequently needed concepts to create and describe
hypermedia-driven, RESTful Web APIs. Unlike JSON-LD, which was a
collaborative effort from the very beginning, the first versions of Hydra
were developed solely by the author of this dissertation. After the overall
model stabilized, however, further development was moved to a steadily
growing W3C Community Group.

▪ Prototype implementations and evaluations. As a proof of concept, we
integrated JSON-LD and Hydra into a current Web development
framework and implemented a completely generic API console. This
allowed us to evaluate the complexity and usability of these two technol-
ogies in practice—both crucial aspects for their adoption. The complete
source code has been released into public domain.

▪ An alternative, domain-driven approach for the design and development
of Web APIs. The combination of JSON-LD, Hydra, and other RDF-
based vocabularies enables an alternative, domain-driven approach cov-
ering the whole lifecycle of a Web API. By making all the knowledge
about a Web API available in a reusable, machine-readable, and semanti-
cally-rich form, the approach enables the creation of much smarter clients
as possible today.

▪ Improvement and simplification of Semantic Web standards. The stand-
ardization of JSON-LD and the consequent invitation as an expert by the
W3C allowed the author of this dissertation to directly participate in the
work of the RDF Working Group. He made several contributions to
improve the specifications the group was working on. Eventually, the
author of this thesis became co-editor of the central Semantic Web speci-
fication RDF 1.1 Concepts and Abstract Syntax. He also contributed to
the new RDF 1.1 Primer to create an accessible introduction to RDF.

During the work on this doctoral dissertation, we identified a number of
minor issues or missing pieces in other standardization efforts. Thus, we
provided feedback for different specifications related to the main topics
of this dissertation, including the upcoming revision and clarification of
the HTTP/1.1 [18] and various specifications related to the “profile” link

9

relation [19]. The latter led to the discovery of the fact that an important
piece was forgotten in RFC6906 [19], namely a central registry of profile
URIs to decouple clients from servers. To fix that, we requested the
Internet Assigned Numbers Authority (IANA) to establish a registry for
profile URIs [20]. By registering a profile URI, its ownership moves from
the server to a central registry which decouples the client and server. As
we will discuss in section 2.2, this is one of the main differences of the
Web compared to other distributed system architectures.

1.2 Outline
This chapter provides the motivation behind our research as well as a
short introduction to our main contributions. The remainder of this dis-
sertation is structured as follows:

Chapter 2 introduces the reader to a number of basic concepts and tech-
nologies necessary for the understanding of this thesis. It includes a short
overview of the history and the architecture of the World Wide Web as
well as an introduction to the vision and the building blocks of the
Semantic Web and Linked Data. Finally, the chapter discusses services on
the Web and classifies them into two main categories, namely
SOAP-based services and RESTful services.

Chapter 3 distills a number of shortcomings and issues from the current
best practices for the creation, documentation, and usage of Web APIs. It
looks at the slow adoption of Semantic Web technologies and discusses
their (perceived) complexity, their ignorance of fundamental Web prin-
ciples, and the main challenges developers face due to their underlying
open-world assumption. Lastly, the chapter formalizes the research prob-
lems addressed by this thesis.

Chapter 4 reviews recent related work and research that have been con-
ducted in the area of interface description languages, data interchange
formats, and ontologies for Web services. It also presents a number of
successful domain application protocols that are relevant for this thesis
and discusses the efforts adding hyperlinks and namespacing support to
JSON.

10

Chapter 5 describes the four main contributions of this thesis, namely
SAPS, SEREDASj, JSON-LD, and Hydra. The description of each solu-
tion begins with an explanation of its basic concepts and principles and is
followed by an illustrative example showing how it might be used in
practice. Finally, the integration of each solution in the vision of a
Semantic Web is discussed before a number of lessons learned are dis-
tilled and evaluated.

Chapter 6 discusses which of the problems identified in Chapter 3 have
been addressed by the final two solutions JSON-LD and Hydra. It also
evaluates their practicality by their integration into a current Web devel-
opment framework and the implementation of a completely generic API
console. Finally, the chapter provides an overview of early adopters from
academia, industry, and related standardization efforts and describes how
they leverage the proposed solutions.

Chapter 7 concludes the thesis by briefly revisiting and summarizing the
main findings and contributions, identifying limitations of the proposed
solutions, and discussing future research directions and complementary
topics.

All relevant findings and contributions have already been published in
peer-reviewed scientific journals and conference proceedings or have been
integrated into ratified Internet standards. Since this thesis is heavily
based on our previous publications, we enumerate at the beginning of
each chapter the publications it is it based on.

Chapter 2

Basic Concepts

and Technologies

Even though the terms Internet and World Wide Web are often used
interchangeably in everyday speech, it is technically incorrect. The term
Internet refers to the global system of interconnected computer networks.
It is a network of networks using the Internet protocol suite; commonly
known as TCP/IP due to the Transmission Control Protocol (TCP) [21]
and the Internet Protocol (IP) [22]—the first two protocols defined back
in 1981.

The World Wide Web, or colloquially Web, on the other hand, is just one
of the many applications running on the Internet. Today it is by far the
most popular application on the Internet and overtook other applications
such as file transfer or newsgroups many years ago. The Web is an infor-
mation system of interlinked hypertext documents, so called web pages,
that Tim Berners-Lee proposed in 1989 to the CERN [23], his employer
at that time, to build a more efficient internal information system. Luck-
ily, he soon realized that the system could be used globally across organi-
zations and announced the project to the wider world.

Fast forward a little more than two decades, a world without Internet and
World Wide Web has become almost unimaginable. According to statis-
tics from the International Telecommunication Union [24], three quar-

12

ters of the population of the developed world are active Internet users. In
total, forty percent of the world’s population is online. Considering its
sheer size, its often uncoordinated development, and its heterogeneity,
the Internet and the World Wide Web are the most complex systems
ever built by humankind.

In the following sections, which are based on previous work published in
[25] and [26]–[28], we will have a look at the architecture that enabled
the Web’s exponential growth and some of the main technologies to
build websites and Web APIs. We will provide an overview of the vision
of a “Semantic Web”. In the context of this thesis, the underlying Inter-
net technology is assumed as a given infrastructure and thus not being
discussed in detail.

2.1 The Architecture of the World Wide Web
After getting the approval for his project proposal [23], Tim Berners-Lee
started the development of what became the World Wide Web in Octo-
ber 1990 [29]. By Christmas the same year, Berners-Lee had not only
specified the three main technologies which still form the foundation of

Figure 2. Internet users by development level (adapted from [24])

Developed: 76,8

World: 38,8

Developing: 30,7

0

10

20

30

40

50

60

70

80

90

100

2001 2003 2005 2007 2009 2011 2013

Pe
r 1

00
in

ha
bi

ta
nt

s

(estimate)

13

today’s Web, namely the Hypertext Transfer Protocol (HTTP), Uni-
versal Document Identifiers (UDIs), which was later renamed to Uni-
form Resource Identifiers (URIs), and the Hypertext Markup Language
(HTML), but also first running prototypes of a browser and a server.

An important milestone in the history of the Web was 1993 when the
CERN released the World Wide Web’s technology into public
domain [30]. The same year, the University of Minnesota
announced [31] that it would begin to charge licensing fees for its imple-
mentation of the Gopher protocol [32] (the University of Minnesota is
the inventor of Gopher) which caused many users to stop using Gopher
and switch to the World Wide Web instead. Today, Gopher is often
regarded as the predecessor of the World Wide Web.

The World Wide Web was conceived as a client-server system. Clients
access hypertext documents which are identified by Universal Resource
Identifiers (URI) on servers across the Internet via the Hypertext Transfer
Protocol (HTTP). The documents themselves are expressed in the
Hypertext Markup Language (HTML), a simple, text based markup lan-
guage inspired by SGML [33] (more concretely, SGMLguid, a CERN-
internal, SGML-based documentation format). So, historically, the Web
can be described as a giant, globally distributed collection of hypertext
documents. Links and the resulting networking effects played a funda-
mental role for the success of the Web. Universal Resource Identifiers
provide a mechanism to enrich documents with references to other
relevant documents.

The key differentiator to other hypertext systems available at the time lies
in the decision to make links unidirectional instead of requiring them to
be bidirectional. Practically, this means that it is impossible to prevent
broken links when documents become unavailable. While link rot is cer-
tainly an undesired consequence of this decision, the advantages clearly
outweigh this shortcoming. The decision is arguably one of the main rea-
sons for the Web’s superior scalability. As unidirectional links eliminate
the otherwise necessary referential integrity checks, it is possible to drasti-
cally simplify the implementation of clients and servers. Furthermore,
unidirectional linkage enables the decentralized, uncoordinated creation
of documents. This decentralism was the main reason why the Web
quickly overshadowed all previous hypertext systems and allowed it to
scale in an unprecedented manner.

14

For a long time, the Web’s architecture and its technologies were not
properly standardized. The documentation merely consisted of a set of
informal web pages [34], [35], draft specifications [36], and the source
code for clients and servers published by the CERN. As those documents
have not been kept in sync with the deployed implementations, it became
harder and harder to create interoperable systems. Consequently, the
pressure from industry asking for standardization of the core technologies
grew and working groups writing stable specifications were established.

In 1992 Berners-Lee, Groff, and Cailliau published a paper [37] discuss-
ing “the requirements on a universal naming syntax which can be used to
refer to documents [emphasis added]”. Furthermore, concrete recommen-
dations for a generic syntax for Universal Document Identifiers were pre-
sented. Somewhere during those initial standardization efforts in the early
nineties a subtle yet interesting shift in the used terminology can be
observed. RFC 1630 [38], which in 1994 defined for the first time the
Uniform Resource Identifier syntax in a stable document, is primarily con-
cerned with “objects” instead of documents. It defines “the syntax used
by the World-Wide Web initiative to encode the names and addresses of
objects [emphasis added] on the Internet”. RFC 1738 [39], which was
published the same year, officially standardized the syntax and replaced
the term “object” with “resource”. It then took four years till
RFC 2396 [40] finally defined the term “resource”:

A resource can be anything that has identity. Familiar examples
include an electronic document, an image, a service (e.g., “today’s
weather report for Los Angeles”), and a collection of other resources.
Not all resources are network “retrievable”; e.g., human beings, corpo-
rations, and bound books in a library can also be considered resources.
The resource is the conceptual mapping to an entity or set of entities,
not necessarily the entity which corresponds to that mapping at any
particular instance in time. Thus, a resource can remain constant even
when its content—the entities to which it currently corresponds—
changes over time, provided that the conceptual mapping is not
changed in the process.

While this appears to be the first trace of what later would become
Linked Data and the Semantic Web vision (which we will describe later
in this chapter), the first seeds can in fact already be found in

15

Berners-Lee’s initial proposal [23] to CERN’s management to build the
World Wide Web. The graph shown in the document (Figure 3) not
only includes documents but also real-world entities such as organiza-
tions, divisions, and even persons.

In 1995, HTML 2.0 [41] was the first version of the Hypertext Markup
Language to be officially standardized and a year later, HTTP/1.0 [42]
was published non-normatively as it was expected to be replaced soon by
a standards track document fixing some of HTTP/1.0’s issues. This hap-
pened in 1997 with the publication of HTTP/1.1 [43], the first norma-
tive specification of the Hypertext Transfer Protocol.

The snippet in Listing 1 shows the Web’s three main technologies in
action. A client requests the resource identified with the URI
http://example.com/doc over HTTP/1.1 for which the server returns an
HTML document linking to http://example.org/doc2.

In the mid-nineties, Roy T. Fielding, co-author of both the URI and the
HTTP specification, started working on “an architectural model for how

This
document"Hypertext"

Linked
information

Hypermedia

CERNDOC

ENQUIRE

Tim
Berners-Lee

section

group

C.E.R.N

wrote

 div ision

Hierarchical
sy stems

f or example

f or example

describes

includes

f or example

A
Proposal
"Mesh"

Hy per
Card uucp

News

IBM
GroupTalk

VAX/
NOTES

Computer
conf erencing

describes

includes

includes

Comms
ACM

describes

ref ers
to

describes

etc

group

unif ies

Figure 3. Information Management: A Proposal [23]

16

the Web should work, such that it could serve as the guiding framework
for the Web protocol standards” [11]. The outcome of his work was an
architectural style that he called Representational State Trans-
fer (REST) [11]. According to him, REST captures all aspects of a dis-
tributed hypermedia system that are considered central to the behavioral
and performance requirements of the Web. Since REST has been used to
guide the design and development of the architecture of the modern
Web [10] we will discuss it in more detail in the next section.

2.1.1 The Representational State Transfer Architectural Style

REST [11] is an architectural style that specifies constraints to improve
performance, scalability, reliability, and resource abstraction within dis-
tributed hypermedia systems. It ignores implementation details and pro-
tocol syntaxes in order to focus on the roles of the various system com-
ponents, their interaction with other components, and the interpretation
of the exchanged data. The meticulously chosen design trade-offs allow
the creation of extensible, maintainable, evolvable, and loosely-coupled
distributed systems at Internet-scale. The fact that the Web—the largest
and most successful distributed system ever built—is based on REST
principles should be evidence enough of its superior characteristics.

REST is based on a traditional client-server architecture in which the
server offers a number of services which a client can invoke by sending
requests to the server. The motivation for such an architecture is the clear

--> Client Request
GET /doc HTTP/1.1
Host: example.com

<-- Server Response
HTTP/1.1 200 OK
Content-Type: text/html

<html>
 <head>
 <title>An Example Page</title>
 </head>
 <body>
 <p>Link to document 2.</p>
 </body>
</html>

Listing 1. An HTTP request returning an HTML document

http://www.example.com/

17

separation of concerns which simplifies the implementation of the two
components which often has the positive side-effect of improving the
scalability of the server and enabling the independent evolution of the
two components (as long as their interfaces do not change). REST adds
an important constraint to this architectural style, namely that the server
is stateless, i.e., it does not manage any session state. Consequently, each
request from a client to the server must contain all the information neces-
sary for the server to understand the request. In other words, a client
cannot take advantage of any stored context on the server. The server of
course knows about the state of its resources but does not keep track of
individual client sessions; all session state is kept entirely on the client.
This is an important aspect which facilitates tasks like monitoring and
logging due to the increased visibility of the interactions. It also improves
reliability because the recovery from partial failures [8] is much simpler if
all the necessary state information is contained in each request. In addi-
tion, scalability is improved because not having to store state between
requests allows the server to quickly free resources and further simplifies
implementation because the server does not have to manage resource
usage across requests. It is the stateless server constraint which enables the
for many applications crucial load balancing. The downside of REST’s
statelessness is a decreased network performance due to repetitive data
since all the state information has to be transferred in every request
instead of keeping it on the server between requests. It also reduces the
server’s control over a consistent application behavior since the applica-
tion is split between the server and multiple clients with potentially dif-
ferent capabilities.

To mitigate the overhead caused by the statelessness of RESTful systems,
support for caching has been added. The cache constraint requires that
the data within responses is implicitly or explicitly labeled as cacheable or
non-cacheable. This reduces the number of requests or results in much
smaller responses that simply indicate that the data has not been changed
since the last request. This has positive effects on the efficiency and scala-
bility of RESTful systems and improves the user-perceived performance
by reducing latency. The downside is that the system’s reliability may be
decreased due to potentially stale information.

REST’s emphasis on a uniform interface between the system components
is the central feature which distinguishes it from other network-based

18

styles. It simplifies the overall system architecture and improves the visi-
bility of component interactions. By decoupling implementations from
the services they provide, independent evolvability of the various compo-
nents is improved at the cost of degraded efficiency compared to highly
specialized interfaces. REST defines four interface constraints to ensure a
uniform interface: 1) identification of resources, 2) manipulation of
resources through representations, 3) self-descriptive messages, and
4) hypermedia as the engine of application state.

REST is a resource-oriented architecture in the sense that the key
abstraction of information in REST is a resource. Any concept can be
thought of as a resource. Fielding defines a resource R as a “temporally
varying membership function MR(t), which for time t maps to a set of
entities, or values, which are equivalent.” [11] REST’s identification of
resources constraint requires that resources are identifiable so that they can
be accessed and manipulated via generic interfaces. On the Web,
resources are identified by IRIs [44]. Since a resource may represent con-
cepts which cannot be serialized into a byte stream (e.g., persons or a
feeling), resources are not manipulated directly. Instead, REST is built on
the concept of manipulation of resources through representations; i.e., an
additional layer of indirection in the form of resource representations is
introduced. A representation is a sequence of bytes plus some metadata.
Media types standardize the data format of resource representations on
the Web. Given that the communication between components is stateless
and that the data format of resource representations is standardized,
REST enforces self-descriptive messages that can be processed by interme-
diaries without out-of-band knowledge. The last missing piece to com-
plete REST’s uniform interface is the hypermedia as the engine of
application state constraint (HATEOAS). It refers to the use of hyperlinks
in resource representations as a way of navigating the state machine of an
application. Even though it is the hypermedia constraint which allows
systems to be dynamically composed and loosely coupled, it is one of the
least understood constraints and thus seldom implemented correctly.

A lot of systems, regardless of claiming to be RESTful or not, rely heavily
on implicit state control-flow, which is characteristic for the Remote
Procedure Call style. The allowed messages and how they are interpreted
depends on previously exchanged messages and thus in which implicit
state the system is in. Third parties or intermediaries trying to interpret

19

the conversation need the full state transition table and the initial state to
understand the communication—something that is rarely available or not
practical. This also makes it difficult or virtually impossible to recover
from partial failures in large distributed systems.

To solve these issues and assure evolvability, the use of hypermedia is a
core tenet of the REST architectural style. According to Fielding [45], “a
REST API should be entered with no prior knowledge beyond the initial
URI (bookmark) and set of standardized media types. […] From that
point on, all application state transitions must be driven by client selec-
tion of server-provided choices that are present in the received represen-
tations or implied by the user’s manipulation of those representations.”
The Web leverages this type of interaction and state-control flow where
very little is known a priori to allow the decentralization. At least humans
are able to quickly adapt to new control flows that are communicated at
runtime, e.g. a change in the order sequence or a new login page to access
a service.

Parastatidis et al. [46] define the set of legal interactions necessary to
achieve a specific, application-dependent goal as the domain application
protocol of a service. The protocol defines the interaction rules between
the different participants. Consequently, the application state is a snap-
shot of the system at an instant in time. This coincides with Fielding’s
definition [11] of application state which defines it as the “pending
requests, the topology of connected components (some of which may be
filtering buffered data), the active requests on those connectors, the data
flow of representations in response to those requests, and the processing
of those representations as they are received by the user agent.” Accord-
ingly, the overall system state consists of the application state and the
server state. By using the notion of a domain application protocol, the
phrase “hypermedia as the engine of application state” can now be
explained as the use of hypermedia controls to advertise valid state tran-
sitions at runtime instead of agreeing on static contracts at design time.
Changes in the domain application protocol can thus be dynamically
communicated to clients. This brings some of the human Web’s
adaptivity to the Web of machines and allows the building of loosely
coupled and evolvable systems. Rather than requiring an understanding
of a specific URI structure, clients only need to understand the semantics
or business context in which a link appears [46]. Unfortunately, however,

20

current Web APIs rarely exhibit such features and thus it is almost
impossible to achieve a comparable level of adaptivity on the Web of
machines as we will see in section 3.

Annoyed by the fact that a lot of services claim to be RESTful regardless
of violating the hypermedia constraint, Fielding made it very clear that
hypermedia is a fundamental requirement for a RESTful architec-
ture [45]. Given that the term REST is nonetheless frequently misused,
there exist efforts in the community to establish alternative terms, such as
Hypermedia API, to denote services respecting it.

While the hypermedia constraint is often violated, the layered system con-
straint is almost always implemented correctly and helps to reduce the
coupling between components. The constraint requires that RESTful
systems are composed by hierarchical layers in which components on a
specific layer only provide services to components on the layer above and
only use services provided by components on the layer below. This limits
the knowledge of components to a single layer and it could thus be said
that it lowers the upper bound of the overall system complexity. Fur-
thermore, it allows the introduction of important intermediaries such as
load balancers, shared caches, firewalls, gateways, or proxies at various
points to make the system more adaptable to changing requirements
without having to change the interfaces. Obviously, each additional layer
increases the processing overhead and therefore latency, which results in
lower user-perceived performance. That can, however, be partly compen-
sated by adding caches.

Finally, the Representational State Transfer architectural style has a code-
on-demand constraint which allows client functionality to be extended by
code that is loaded dynamically at runtime. The constraint’s main benefit
is the improved extensibility of systems. It is best illustrated by current
Web applications which depend heavily on dynamically loaded JavaScript
code to implement functionality that is not generally available in Web
browsers. It should, however, not be forgotten that loading code on
demand drastically reduces visibility and may open the door to security
vulnerabilities. In REST, code-on-demand is thus an optional constraint.

21

2.2 Contracts on the Web
In any distributed system there has to be an agreement, or more formally,
a contract prescribing how the various components of the system interact;
otherwise, communication is impossible. These contracts usually stipulate
the data model along with its processing model and encodings, i.e., the
serialization formats, the interaction model consisting of system interfaces
and coordination protocols, and sometimes various policy assertions. The
data encodings or formats along with their processing models enable the
creation and interpretation of messages that are exchanged between the
various components in order to invoke certain operations. The system
interfaces and coordination protocols define the mechanisms and the
order in which messages have to be exchanged to result in the desired
behavior. Finally, policies may describe non-functional aspects such as
service-level agreements (SLAs), pricing, security requirements, etc.

In the traditional Remote Procedure Call (RPC) model, where all differ-
ences between local and distributed computing are hidden, typically
Interface Description Languages (IDL) are used to define the application-
specific details on top of a standardized communication protocol. This
allows automatic code generation for both the client and the server side
but, in most cases, also leads to the undesirable effect of leaking imple-
mentation details from the server, who owns the contract, to the client.
Given that the client and the server are tightly coupled, such systems
typically rely heavily on implicit state control-flow. The allowed messages
and how they have to be interpreted depends on what messages have
been exchanged before and thus in which implicit state the system is.
Third parties or intermediaries trying to interpret the conversation need
the full state transition table and the initial state to understand the com-
munication. This implies that states and transitions between them have
to identifiable, which in turn suggests the need for (complex) orchestra-
tion technologies.

The architecture of the Web differs fundamentally from these traditional
models. On the Web, contracts are based on media types and protocols.
Applications can thus be built by composing various well-defined build-
ing blocks. Media types define the data and processing models as well as
the serialization formats. Protocols describe interaction models that
extend the capabilities of (the more or less generic) media types into the

22

realm of specific application domains; mostly by defining specific link
relations. An example illustrating this nicely is the Atom Publishing
Protocol [47], which, by defining a number of link relations, extends the
otherwise read-only Atom Syndication format [48] with a protocol that
allows the addition or manipulation of existing feed entries.

The main difference of the Web compared to other distributed system
architectures is that the contracts are centrally owned instead of being
owned by the server. This allows the independent evolution of clients and
servers as both are coupled to these central contracts instead of being
coupled to each other. Instead of relying on upfront agreement of all
aspects of interaction, parts of the contract can be communicated or
negotiated at runtime. Furthermore, instead of relying on implicit state
control-flows as described above, all communication is stateless, meaning
that each request from the client to the server must contain all the infor-
mation necessary for the server to understand the request. A client cannot
take advantage of any stored context on the server as the server does not
keep track of individual client sessions. The session state is kept entirely
on the client. This transfer of state information paired with centrally
owned contracts that can be communicated or negotiated at runtime is
the essence of what Fielding describes as the Representational State
Transfer (REST) architectural style [11].

The challenge in designing RESTful systems is to select the most appro-
priate media type(s) as the core of the application-specific contract.
Sometimes this requires creating new, specialized media types. Therefore,
designers of Web APIs have to decide whether to create their own spe-
cialized media type, which reduces interoperability; to use a generic one
such as XML [49] or JSON [50], which, with a probability bordering on
certainty, requires out-of-band contracts and thus introduces coupling; or
to create a specialized media type on top of an existing, generic one.
Unfortunately, even the specialization of an existing media type is not as
straightforward as it might seem at first sight as we will see in section 3.1.
It is also worth noting that media type specifications or media type spe-
cializations are not machine-readable but just described in natural lan-
guage. Software has thus to be manually adapted if new media type
(specializations) are to be supported.

23

2.2.1 An Alternative Approach

Both xCard [51] and xCal [52], e.g., are XML-based serializations and, as
such, use XML’s preferred solution to unambiguously bind elements and
attributes to the semantics of a specific vocabulary, namely
XML Namespaces [53]. The idea behind XML Namespaces is simple:
instead of using arbitrary strings as names for elements and attributes, a
vocabulary URI is defined which acts as a prefix for all names that are
part of the said vocabulary. This has the advantage that elements and
attributes from multiple XML markup vocabularies can be used within a
single document without risking that names clash. The fact that URIs are
used as identifiers allows both a centralized and a decentralized creation
and management of XML namespaces; in fact, the IANA maintains a
registry specifically for XML namespaces [54].

Thus, the question arises why both xCard and xCal have a dedicated
media type if the semantics are already signaled by a dedicated XML
namespace. The reason is simple. If HTTP messages are not typed using
a media type, a processor has to look into the content of the message in
order to decide how to process it. This is not problematic per se, but the
real problem lies in the fact that most processors (including browsers)
have no mechanisms to leverage these extension points. Instead of passing
the data to the most appropriate application, they simply fall back to the
basic behavior, which in the case of XML in the browser is to simply dis-
play the XML tree. Another, perhaps bigger, problem is the fact that
content negotiation is based on media types which makes it impossible
for a client to express its preferences if no dedicated media type exits.
This problem has been known for quite some time.

Inspired by HTML’s profile attribute [55] Toby A. Inkster started an
effort [56] to register an optional profile parameter for XML’s and
JSON’s media types to address this issue in 2009. Similar to HTML’s
profile attribute, the profile parameter was intended to signal that a mes-
sage conforms to some additional constraints or conventions on top of
the constraints and semantics imposed by the media type or to convey
some additional semantics. The value of the profile parameter in Inkster’s
proposal had to be a single absolute URI. If multiple profiles are appli-
cable to the content, a server should choose “the most useful” but “pay
attention to any of the profiles if found in the Accept header during con-
tent negotiation” [56]. Unfortunately, Inkster’s Internet Draft was not

24

standardized but expired and most Web APIs continued to either use the
generic media type or to mint their own specialized type.

In 2012, Erik Wilde started a new initiative to standardize a similar
mechanism. Instead of trying to change XML’s and JSON’s media type
registrations, he proposed [19] to standardize the link relation profile to
signal additional semantics associated with a representation using an
HTTP Link header [57]. While this enables servers to advertise profiles
in their responses, it leaves the content negotiation problem unsolved.
Wilde addressed this shortcoming in a later revision of his draft by rec-
ommending that newly defined media types should define a profile media
type parameter if appropriate. This allows clients to signal their capabili-
ties and preferences in the content negotiation process allowing the server
to return the best matching representation. Another notable difference to
Inkster’s proposal is that Wilde removed the restriction to a single profile
URI, meaning that multiple profiles can be easily combined.

In light of these advances, initiatives such as the effort [58] to standardize
dedicated media types for JSON-based versions of vCard and iCalendar
should be challenged—especially considering that most required parts
already exist. The work to create a shared vocabulary has already been
started a couple of years ago at the W3C [59] and JSON-LD, which is
presented in detail in section 5.3, provides a way to serialize such data in
a JSON-based syntax. It also features a profile media type parameter to
signal the additional semantics and conventions at the HTTP layer. The
only missing piece is the definition of a profile to specify which field
names are used and how the data is structured when serialized. This is
necessary as JSON-only clients depend on the structure and not directly
on the semantics of the serialization. Since JSON-LD represents graphs,
most of the time, there exist multiple ways to serialize the same data.

There are multiple advantages that such profile-based approach offers.
First of all, the need for micro-types such as xCard would disappear. It is
true that the information is basically just shifted to the profile parameter
but the fact that profiles can be easily combined means that the overall
need for dedicated types or profiles is reduced. This brings us to another
benefit: due to their simple composability, the scope of profiles can be
reduced which in turn simplifies their standardization. It is this
composability which allows the separation of concerns that is often
missing in media types. Leveraging profiles, generic media types defining

25

a serialization format can be combined with the concrete semantics of a
profile. Networking effects will ensure that a few well-known and widely
adopted profiles will emerge. At the same time it becomes easier to boot-
strap new profiles because, unlike newly established media types, they do
not suffer under a cold start problem. To alleviate the risk of introducing
tight coupling through the backdoor by the usage of profiles it is
important that they are centrally owned, just as media types. In practice,
this means that a central registry of standardized profiles is required. We
thus requested the Internet Assigned Numbers Authority (IANA) to
establish such a registry [20].

2.3 Linked Data and the Semantic Web
The early standardization efforts of the Web made it clear that it is more
than a hypertext document system. The separation of documents into
resources and representations thereof paved the way to integrate real-
world entities such as persons or even imaginary or abstract concepts such
as companies into the Web at an architectural level. No longer was the
Web limited to simple documents. While Tim Berners-Lee’s original
proposal [23] already hinted such an architecture (and early standardiza-
tion efforts certainly took it into consideration), he felt urged to express
his vision more explicitly to a wider public at the First International
World Wide Web Conference in 1994. He argued that the Web has
become an “exciting world” for users but that it contains very little
machine-readable information. “The meaning of the documents is clear
[only] to those with a grasp of (normally) English, and the significance of
the links is only evident from the context around the anchor [but to a
computer] the web is a flat, boring world devoid of meaning.” [60] He
identified two things which would be necessary to add machine-readable
semantics to the Web, namely allowing documents to contain machine-
readable information and allowing links with explicit relationship values.
Unsurprisingly, the World Wide Web Consortium (W3C), which
Berners-Lee founded later that year to coordinate the standardization of
the Web, put a focus on standardizing Semantic Web technologies. After
various related efforts, this resulted in the standardization of the Resource
Description Framework (RDF) in 1999 [61].

26

For a long time, RDF/XML was the only standardized serialization for-
mat for RDF but it was widely disliked even by XML enthusiasts (XML
was at the peak of its popularity at that time). RDX/XML is neither
optimized for humans nor machines but, most importantly, standard
XML tools are almost useless when working with RDF/XML. This and
the fact that the Semantic Web community derailed into the artificial
intelligence domain instead of concentrating on more practical data-
oriented applications resulted in the languishing adoption of the technol-
ogy. In 2006, however, Shadbolt, Hall, and Berners-Lee published an
article [62] admitting that the simple idea behind the Semantic Web
vision still remained largely unrealized. Nevertheless, standardization
work continued and led to a more or less complete stack of Semantic
Web technologies which we will discuss in the next section. The few early
Semantic Web projects lacked viral uptake and only very few used
dereferenceable URIs which would have allowed the data to be browsed
in a similar fashion as documents can be browsed on the Web. This
motivated Berners-Lee to formulate the famous Linked Data princi-
ples [17] which can be classified as a turning point in the history of the
Semantic Web. We will discuss them later in this section.

2.3.1 The Semantic Web Technology Stack

The Semantic Web is an extension of the traditional Web with the aim to
offer information not only in the form of natural language documents
but also as machine-readable data. The Resource Description
Framework (RDF) [63] builds the foundation of the Semantic Web
technology stack. It defines a simple, triple-based data model in which
each statement consists of a subject, a predicate, and an object as
illustrated in Figure 4. Multiple triples build a graph, and multiple
graphs form a dataset.

While IRIs can be used in every element of an RDF triple, literals, i.e.,
basic values such as strings or numbers which are typed and optionally
language-tagged, can only be used in the object position. Blank nodes,
which are special local identifiers whose scope is limited to a single doc-
ument or data store, can only be used in the subject and the object posi-
tion; not as predicates. Despite this simple data model, RDF has the bad
reputation of being overly complex. In large parts, this stems from the

27

fact that RDF is often conflated with its first, and for a long time only,
serialization format RDF/XML [64]. In fact, RDF/XML is now generally
believed to be one of the main reasons for the hesitant adoption of
Semantic Web technologies in general. Since critics often complain that
“RDF is complex artificial intelligence technology”, it is also worth
noting that RDF itself does not specify a mechanism for reasoning. This
is left to higher layers in the stack.

In RDF, every concept is identified with an IRI, an Internationalized
Resource Identifier. Since IRIs are global identifiers, two different
appearances of an IRI denote the same concept. The owner of IRI [10]
defines what concept the IRI denotes. This, again, can be described in
RDF by reusing other, already defined concepts. A set of such concepts
targeting a specific use case or application domain is typically called a
vocabulary or, more formally, an ontology (we will use the two terms
interchangeably throughout this thesis). The W3C standardized the two
vocabularies RDF Schema (RDFS) and the Web Ontology
Language (OWL) to describe new vocabularies in an interoperable way.

RDF Schema [65] defines concepts to describe classes (and class hierar-
chies), data types, or properties similar to object-oriented programming
languages. Furthermore, it defines concepts to express sets and lists.
While this may look familiar to developers used to object-oriented pro-

Figure 4. The RDF data model

28

gramming languages, the devil lies in the details. Unlike programming
languages, resources can be, e.g., instances and classes at the same time,
classes are not disjoint (and there is no way to express disjointness explic-
itly), and properties can be applied to instances of any class. We will dis-
cuss these “issues” in more detail in section 3.4.

Unlike RDFS, the Web Ontology Language [66] allows, e.g., to create dis-
joint classes or unions of classes. Simply speaking, it could be classified as
an extension of RDFS adding many concepts, which makes it a far more
expressive modeling language (even though technically only some of
OWL’s profiles are extensions of RDFS). Since both RDFS and OWL
play only a marginal role in the context of this thesis, we will not discuss
them or their differences in detail but refer the interested reader to the
respective specifications [65], [66].

In most cases, both RDFS and OWL are not used to validate data but to
infer new knowledge. The properties associated to a specific entity can,
e.g., be used to infer the classes it is an instance of. Historically, these
inference rules have only been described in natural language in the
vocabulary’s specification. Thus, reasoners had to be manually adapted to
support new vocabularies. RIF [67], the Rule Interchange Format, solves
this issue by making (inference) rules machine-readable. The RIF
Working Group, e.g., published a W3C WG Note showing how
OWL 2 RL can be implemented using RIF [68].

Figure 5. The Semantic Web technology stack (adapted from [247])

URI/IR
I H

TTP UNICODE AUTH
THE WEB PLATFORM

FORMATS XML TURTLE RDFa µFORMATS

G
R

A
P

H
 U

R
IS

PROOF

SECURITY

TRUST

INFORMATION EXCHANGE

RDF

SPARQL

MODELS OWL RDFS SKOS

Q
U

E
R

Y

AP
PL

IC
AT

IO
N

S

RULES RIF

LOGIC

SPECIFICATIONS & SOLUTIONS
Linked Data uses a small
selection of technologies

The Semantic Web
is based on the Web

Most apps use only
a subset of the stack

29

Instead of trying to define a universal rule language, RIF acknowledges
the fact that existing rule systems have widely varying syntaxes and
semantics. In order to achieve interoperability across systems, it defines a
number of “dialects”, i.e., a set of languages with well-defined syntaxes
and semantics. Each system translates its own language(s) to and from a
RIF dialect which allows the exchange of rules across systems—provided
that the systems find a dialect they both support. The intermediate repre-
sentation of rules is specified in the form of an XML-based format, thus
the term “format” in RIF’s name. At the time of this writing, there exists
only a Working Group Note describing the mapping of RIF XML doc-
uments to RDF graphs [69].

The last piece of the currently standardized Semantic Web technology
stack is SPARQL. As the name suggests, SPARQL, which is a recursive
acronym for SPARQL Protocol and RDF Query Language [70], not only
specifies a language to query and manipulate RDF data [71]–[73] but
also a protocol to invoke such queries over HTTP [74]–[76] and a num-
ber of result formats (XML, JSON, CSV, and TSV [77]–[79]), however
no RDF-based formats.

2.3.1 Linked Data

All the technologies that form the Semantic Web technology stack have
in common that they do not require IRIs to be dereferenceable. Instead,
just as RDF itself, they treat them as opaque identifiers. Unlike the tradi-
tional Web, the early Semantic Web could not be browsed which means
that, strictly speaking, it was not an extension of the Web but a separate
ecosystem. In an effort to change that, Tim Berners-Lee postulated the
following Linked Data principles in 2006 [17]:

1) Use URIs as names for things
2) Use HTTP URIs so that people can look up those names.
3) When someone looks up a URI, provide useful information, using the

standards (RDF, SPARQL) [sic]
4) Include links to other URIs. so [sic] that they can discover more

things.

These four simple principles represent an important turning point in the
history of the Semantic Web. Not only did they rebrand the vision of a

30

Semantic Web with a much more concrete and graspable description of
the basic principles underlying it but also refocused its applications on
more practice-relevant problems, namely the publication and consump-
tion of vast amounts of structured data. As famously illustrated by the
well-known Linked Open Data cloud diagram [80] shown in Figure 6,
the amount of Linked Data, and thus the Semantic Web in general, has
managed to grow significantly over the last couple of years. This is not to
say that the Semantic Web is now widely adopted or that there are no
major pain points left hindering its adoption. Adoption is still several
orders of magnitudes lower compared to the Web and, as soon as one
wishes to start publishing Linked Data, several fundamental questions
arise for which satisfactory answers are still missing. The most heavily
debated question is about the proper use of IRIs for Linked Data.

The shift in the architecture of the World Wide Web [10] from a distrib-
uted hypertext system to a resource-oriented architecture in which

Figure 6. The growth of the Linked Open Data Cloud, 2007–2011 (source: [80])

31

resources are manipulated through representations did not require Web
developers to adapt to. On the contrary, the conceptual model
underlying the Web was changed to reflect the way people used the Web
since its inception. However, the problem surfaces when IRIs are used to
identify both a representation, i.e., the bytes on the wire, and an abstract
resource such as a person. Unlike humans, logic reasoners and other
inference technologies cannot disambiguate these two concepts and will
consequently produce wrong conclusions. A simple example illustrating
the problem is an IRI that is both used to describe a person and metadata
such as licensing information about the document (representation) it
returns when it is dereferenced. If such data is now integrated with data
from other sources by declaring IRIs use to talk about the same person as
being equal, invalid conclusions such as contradicting licensing terms
may be drawn.

This problem has been discussed for over a decade and is commonly
known as the httpRange-14 issue [81], the identifier assigned by the
W3C’s Technical Architecture Group (TAG) in its issue tracker. The
resolution of that issue was an advice to the community [82] to either use
fragment identifiers or HTTP 303 See Other redirects to signal that an
IRI identifies an abstract resource (formally known as a non-information
resource), such as a person, instead of the returned representation, i.e.,
the document describing the person. While the issue has been closed,
consensus that the proposed solution is practical is still uncertain and
alternative solutions are proposed on a regular basis. The most promising
proposals at the time of this writing involve “punning” to use the same
IRI to mean different things. They use the context in which an IRI is
used to determine whether the representation or the abstract concept is
meant. A property specifying a person’s first name, e.g., would be
mapped to the abstract concept (the person) whereas a property
specifying the license would be mapped to the representation. When data
is integrated these separations need to be preserved meaning that it is
necessary to have mechanisms which allow the equality of representations
to be defined separately from the equality on the abstract concepts they
describe. Tennison not only wrote an excellent blog post [83] explaining
this in more detail but also published a first draft [84] of what might
become a W3C Recommendation as part of her work at the W3C TAG.

32

Summarized, Linked Data requires Web developers not only to identify
things and concepts by an IRI but also to distinguish between infor-
mation resources such as documents and non-information resources such
as persons in order to choose the right form of IRI (fragment identifier)
or HTTP behavior when dereferenced (redirect). In this context it is
interesting to note that recent commercial efforts such as
Schema.org [85] or Facebook’s Open Graph Protocol [86] largely stay
silent on these issues and instead try to disambiguate the data computa-
tionally. Since humongous amounts of data that follows their advice are
being published, they clearly influence the direction of future solutions.

2.4 Services on the Web
Many pages on Web are built by segmenting and flattening structured
data from databases to HTML documents. To process the data published
in such a way, brittle approaches such as screen scraping have to be used
to at least partially reconstruct the raw data in order to make it machine-
processable. The aim of the Semantic Web is to eliminate this limitation
by creating a Web of Data that can be directly processed by machines. In
practice, however, that goal is still rarely approached by using Semantic
Web technologies. Instead, the majority of structured data is being pub-
lished in the form of XML [49] or JSON [50] documents.

Commonly speaking, such offerings are termed as Web services but given
that also human-targeting, HTML-based websites are, at least to a certain
degree, machine-processable, that term is somewhat misleading as web-
sites could be classified as Web services as well. Similarly, a Web service
could be referred to as a “website for machines”. Thus, for the scope of
this thesis, we define the term Web service as a set of HTTP-based
interfaces to support interoperable machine-to-machine interaction by the
exchange of structured data. The aim of the machine-to-machine interac-
tion is to drive business processes in order to serve particular, application-
dependent goals. Since Web services put the emphasis on “machine-to-
machine”, the interactions are optimized for machines instead of being
optimized for humans as websites are. In practice, two major classes of
Web services can be identified, namely SOAP-based services and
RESTful services. We will discuss both in the following sections.

33

2.4.1 SOAP-based Services

In an effort to improve the flexibility and dynamicity of their products,
the information technology industry started to work on the formalization
and standardization of Web services in the late nineties. The outcome
was a complex set of specifications. XML was, mainly due to its popu-
larity at the time, chosen as the main data format. The other three main
pillars are SOAP, WSDL, and UDDI.

SOAP [7], originally defined as Simple Object Access Protocol at Microsoft,
specifies a messaging framework consisting of a processing an extensi-
bility model, a protocol binding framework as well as a XML-based mes-
sage format. The Web Service Description Language (WSDL) [87]
describes the interface of a Web Service and Universal Description,
Discovery and Integration (UDDI) [88] registries allow the discovery of
services and their interface descriptions.

Even though huge investments have been made, the promise of uniform
service interface standards and universal service registries in the form of
SOAP, WSDL, and UDDI has proven elusive. The Universal Business
Registry, the main public UDDI registry, has been shut down in 2006
and most public SOAP-based Web services have been phased out shortly
thereafter. There were many problems that led to this demise but the
most fundamental reason is that the whole architecture is based on a
Remote Procedure Call style which has been known to be flawed [8] for
years. Furthermore, instead of using HTTP as an application protocol, it
was misused as a transport protocol. In SOAP, e.g., data is typically
retrieved by POSTing a SOAP-request to the service which then returns
the desired data. This breaks intermediaries that serve as proxies or caches
which typically perform their functions based on the standard semantics
associated with the HTTP verbs and headers in the messages flowing
through them. In practice, this reduces the scalability enormously and
means that running a public service often results in prohibitive costs.
Consequently, the number of public SOAP-based services has become
negligibly small. Looking at company-internal services, however, the
extensive tooling often outweighs these disadvantages so that they are still
used in such scenarios.

Another problem when there is no coordination between the publisher
and the consumer of a service is that, despite using abstractions of the

34

data types found in the actual implementations, services interfaces
described with WSDL often leak implementation details which leads to
tightly coupled systems. Similarly, the mapping to the abstract types is
not always easily possible and thus often results in severe interoperability
problems. Especially the inherent impedance mismatch between
XML Schemas (XSD) [89], [90] and object-oriented programming con-
structs, the so called O/X impedance mismatch, often complicate the
integration of different systems. The XML Schema language has a num-
ber of type system constructs which simply do not exist in commonly
used object-oriented programming languages such as Java [91]. Thus,
interoperability problems arise because each SOAP stack has its own way
of mapping the various XSD type system constructs to objects in the tar-
get platform’s programming language and vice versa.

In summary, the problems outlined above and the complexity of the
technology, which consists of far more specifications than just SOAP,
WSDL, and UDDI, led to a shift towards more lightweight solutions
that integrate better into the architecture of the Web, which we will
describe in the next section.

2.4.2 RESTful Services

According to statistics from ProgrammableWeb [92], the premier catalog
of public Web services, three out of four Web services are based on the
REST architectural style. This does not mean that they fully obey REST
constraints but primarily that they do use HTTP as an application proto-
col and that the various resources get their own IRIs. In fact, most ser-
vices that claim to be RESTful (REST APIs) are not. To capture the
various levels of “RESTfulness”, Richardson defined a maturity
model [93] but by definition, a service is either RESTful by obeying to all
constraints defined by REST or it is not. Annoyed by the fact that espe-
cially the hypermedia constraint is ignored by many Web services that
claim to be RESTful, Fielding wrote a blog post [45] making it clear that
the constraint it is not optional. Since the term REST was so often mis-
used, recently HTTP-based Web services are typically simply referred to
as Web APIs instead. For services that do obey to REST’s hypermedia
constraint, the term Hypermedia API has become popular.

35

Web APIs typically have in common that they use a very small set of
standards. Most often, it consists of just HTTP and either XML [49] or
JSON [50] as the serialization format. Even though XML with its
namespacing support that allows messages to be enriched with hyper-
media controls or to be made self-descriptive would be better suited for
RESTful services, JSON has become the preferred data interchange for-
mat for Web APIs in recent years. The downside of this simplicity is that
most services are unique and only documented in natural language. This
renders automatic code generation or the creation of generic tooling
almost impossible. These problems are the focus of this thesis and will
thus be discussed in more detail in the next chapter.

2.5 Discussion
As we have seen in this chapter, the development of the World Wide
Web was often chaotic, uncoordinated, and unpredictable. Who would
have thought that many of the simple technologies created by a handful
of people in the first days of the Web would survive for such a long time
while industry-driven, multi-million dollar projects such as SOAP-based
Web services would quickly pale into insignificance? Surely technical
aspects played an important role but social aspects were not less
important. Compared to simple JSON-based Web APIs SOAP-based
services quickly “felt” heavy and complex even though, in most cases, the
complexity is completely hidden by the sophisticated tooling that has
been built around these technologies. Indeed, the Web is often “more a
social creation than a technical one.” [94] The history of the Semantic
Web is another case nicely illustrating this. Its acceptance languished for
years but finally a simple Web page [17] full of typographical errors for-
mulating four very basic principles was able to herald an important
turning point. The Linked Data principles did not introduce any new
technology but were a mere rebranding and clarification of the vision of a
Semantic Web—a Web of Data.

The standardization of Web services failed, but the problems these efforts
were trying to address are still valid. The Web has grown exponentially
and massive amounts of new information are being added as we speak.

36

We have reached a point at which we humans are the bottleneck for the
meaningful usage of all this knowledge. We need to extend the Web to
make it easier for machines to process the available information and to
exchange and manipulate data without human intervention in order to
better assist us. The combination of Semantic Web technologies and
RESTful Web APIs might help to bring us a step closer to this ambitious
goal but, as already suggested, they suffer from various issues. In the next
chapter we will look at those issues in detail and define the problem this
thesis is addressing.

Chapter 3

Problem Definition

Web APIs are increasingly important in connecting distributed systems.
They are becoming the glue keeping together systems within an
organization while, at the same time, providing unprecedented, open
access to data managed by these systems to the wider world. Yet, the
proper design and implementation of Web APIs remain largely more an
art than a science.

In this chapter, which is based on our previous work in [95], [25], [96],
[97], [98], and [99], we will analyze the current best practices for the
creation, documentation, and usage of Web APIs. We will distill a num-
ber of shortcomings and issues and finally formalize the research prob-
lems addressed by this thesis.

3.1 Proprietary Data Formats and Models
One of the first design decisions a developer has to make when creating a
Web API is to choose the serialization format and data model. Web ser-
vices created in the last decade use almost exclusively either XML or
JSON as their serialization format. XML, whose first version was pub-
lished in 1998, is as a markup language, i.e., a language which allows
documents to be annotated with machine-processable instructions. At the
beginning of the new millennium, XML was extremely popular and the
preferred choice for many use cases. Not surprisingly, the first Web ser-

38

vices also relied on XML demonstrating its flexibility and extensibility.
SOAP-based services [7] use XML for data interchange alongside
WSDL [87] and XML Schemas (XSD) [37-38] as description formats.
This results in Web services where both the data as well as the interfaces
are described in a machine-readable way which enabled the creation of
powerful tooling assisting developers in the implementation of such ser-
vices. Often both the server-side as well as the client-side code can be
generated completely automatically out of these descriptions. Thus, the
client and the server are typically tightly bound in such a system. Typi-
cally even the change from, e.g., a 64 bit integer to a 32 bit integer
requires the recompilation of the client. Furthermore, the inherent
impedance mismatch between XML and object-oriented programming
constructs (O/X impedance mismatch) generally results in severe interop-
erability problems. The fundamental problem is that the XML Schema
language has a number of type system constructs which simply do not
exist in commonly used object-oriented programming languages such as
Java. In consequence, this leads to interoperability problems because each
SOAP stack has its own way of mapping the various XSD type system
constructs to objects in the target platform's programming language and
vice versa. Recent extensions for common languages such as Cω or LINQ
(Language Integrated Query) for C# or E4X (ECMAScript for XML) for
JavaScript ease the data handling enormously and avoid the inherent O/X
impedance mismatch.

Nevertheless, in most cases all a developer wants to do is to interchange
data—and here we are distinguishing between data interchange and
document interchange. In 2002 Douglas Crockford realized that JavaScript
object notation can be used as a simple data interchange format. He
extracted a small subset of the JavaScript programming language [100]
which he called JSON (JavaScript Object Notation) with the aim to cre-
ate a lightweight, language-independent data-interchange format which is
easy to parse and easy to generate. Initially, JSON was only documented
on Crockford’s website json.org but after requests from larger companies
asking for a more stable specification he wrote an IETF Internet Draft
which eventually became RFC 4627 [50] in 2006. Since then, JSON
enjoys an ever-increasing popularity across the Web community [92].
Given that JSON’s whole specification [50] consists of just 10 pages
(with the actual content being a mere 4 pages), it is often considered to

39

be a much simpler format and thus easier to use and understand than
XML for which the XML Core Working group alone lists XML, XML
Namespaces, XML Inclusions, XML Information Set, xml:id, XML
Fragment Interchange, XML Base, and Associating Stylesheets with XML as
standards [101], not even including XML Schema Part 1 and XML
Schema Part 2.

From a REST perspective, the current practice of using JSON could be
seen as a step backwards. While XML with its namespacing support [53]
allows self-describing messages to be created even when its generic media
type application/xml (or text/html) is used, the same is not the case for
JSON. If a JSON message is labeled with the generic media type
application/json, all the message semantics as well as the processing
model have to be documented out of band which introduces an unde-
sired coupling between the publisher and the consumer of such data. To
work around this issue, the current best practice for developing truly
RESTful JSON-based Web APIs is to define a custom media type which
defines the semantics of the used JSON structures. This allows JSON to
be extended to support labeled hyperlinks—another painfully missing
concept needed to create RESTful Web APIs with JSON. Unfortunately,
however, even just creating a specialization of an existing generic media
type is not as straightforward as it might seem at first sight.

On the one hand, it is not trivial to design a media type that is general
enough for a broad range of applications, yet useful. On the other hand,
it is difficult to find broad acceptance for a media type that is only usable
in a very specific application domain. Obviously, if the media type intro-
duces a new serialization format, no existing libraries can be used to parse
its representations forcing all clients to implement parsers specifically
designed for this new media type. While such an approach might provide
the best possible efficiency, it does not scale when the number of services
or even if just the number of entities using different media types in a sin-
gle service increases. The practice of defining specialized media types for
each entity type used in an application is especially problematic as it
promotes the reuse of these specialized media types to design the applica-
tion-level data model. More than likely, such an approach will result in
tighter coupled systems at the model layer given that the same data model
is shared among all system components. The fact that only very few of
the more than 1,300 officially registered media types [102] are in com-

40

mon use should be evidence enough that their design is not trivial and
requires a lot of expertise. Arguing that every RESTful service should
design its own specific media type to document the contract with its cli-
ents is thus clearly impractical and far from reality. It also indicates that
generally, services either stick to generic media types such as XML or
JSON or do not invest the necessary time and effort to register their pro-
prietary media types.

One of the main problems with media types is that they are organized in
a very shallow, two-level deep hierarchy. This makes it impossible to
define refinements or extensions in a way which would make it possible
to deduce those dependencies from the media type’s identifier. Given
that it is also impossible to describe such dependencies in a machine-
processable way in the media type’s specification itself, the only available
option is to directly include that knowledge into a client’s code.

In principle the same applies to media types that build on top of existing,
generic media types such as XML or JSON. A common pattern is to add,
e.g., a +json suffix to the media type identifier to describe that it is based
on JSON’s syntax. Even though this practice has been standardized [103]
(and has been so for XML for more than a decade [104]) some client
libraries still do not understand this convention. To be fair, it is also not
clear what libraries should do with this information; all it tells is the seri-
alization format. In human-facing tools, such as browsers, this infor-
mation might be used to render a representation as if it would have been
served using the base type instead of not displaying it at all due to an
unknown media type. For programming libraries the situation is much
less clear as all that can be done is to parse the representation which, most
of the time, is the most trivial aspect.

Looking at, e.g., XHTML, SVG, Atom, and RDF/XML it becomes clear
that all these formats share is the serialization format. The processing
models and even the data models are completely different. XHTML for
instance deals with a document object tree while RDF/XML is used to
serialize graphs. In such cases it certainly makes sense to create specific
media types. If, however, the only difference lies in the semantics, i.e., the
meaning of the serialized data, it is questionable whether specialized
media types are required at all. The examples best illustrating this are
probably xCard [51] and xCal [52] as they are doing nothing more than
specifying XML-based serializations for vCard and iCalendar. Such

41

“micro-types” are the main reason for the often criticized proliferation of
media types. The concern is that an abundance of media types conflicts
with REST’s emphasis on a uniform interface. The more variability there
is the more difficult interoperability becomes. Instead of requiring devel-
opers to create new media types for every minor semantic difference,
more generic media types able to express the various semantics and
mechanisms to signal them at the HTTP layer are necessary. This would
allow the creation of composable contracts, improve the Web as a plat-
form in general, and simplify the development of Web APIs in particular.

As Steve Vinoski argues in his excellent article [14], platforms, although
efficient for their target use case, often inhibit reuse and adaptation by
creating highly specialized interfaces, even if they stick to industry stand-
ards. He argues “the more specific a service interface [is], the less likely it
is to be reused, serendipitously or otherwise, because the likelihood that
an interface will fit what a client application requires shrinks as the
interface’s specificity increases.” This observation surely applies to most
current Web APIs which are, due to their specializations, rarely flexible
enough to be used in unanticipated ways.

Needless to say that data integration is also made much more difficult
given that data models differ widely and all the semantics are implicit. If
the semantics were explicit and the data model generic, data integration
would be drastically simplified. In fact, data could be integrated
(semi-)automatically with other data sources. For instance, a typical
mashup combining and showing data from different sources on a map
could be created automatically. The widget would be able to automati-
cally figure out which parts of the representation represent the needed
coordinates and in consequence render the data on the map. This would
render the creation of dashboards, an important business use case, much
simpler and eliminate a lot of the usually needed data mediation code.

3.2 Static Contracts in Natural Language
In order for two or more components of a distributed system to interop-
erate, a contract has to be established. As we have seen in section
2.2, contracts on the Web are based on media types and protocols. In
contrast to other distributed system architectures, these contracts are

42

centrally owned and negotiated at runtime instead of being defined at
design time. This involves not only the negotiation of media types but
also the use of hypermedia to dynamically convey valid state transitions.

The use of hypermedia as the engine of application state [11] is a central
aspect of the REST architectural style and when building traditional Web
sites, developers intuitively use it to guide visitors through their sites.
They understand that no visitor is interested in reading documentation
that tells them how to handcraft the URLs necessary to access the desired
pages. Developers spend considerable time to ensure that their sites are
fully interlinked so that visitors are able to reach every single page in just
a few clicks. To achieve that, links have to be labeled so that users are
able to select the link bringing them one step closer to their goal. Often
that means that multiple links with different labels but the same target
are presented to make sure that a visitor finds the right path. This is most
evident when looking at the checkout process of e-commerce sites which
usually consists of a single path leading straight to the order confirmation
page (plus a typically de-emphasized link back to the homepage or shop-
ping cart). On this path, the user has to fill in a number of forms asking
for order details such as the shipping address or the payment details. It is
not a coincidence that these forms tend to use exactly the same language
on completely different e-commerce sites. It is also not a coincidence that
the same names for the form fields are chosen to allow the user’s browser
to fill the fields automatically in or, at least, offer auto-completion.
HTML5 tries to push that even further by introducing an autocomplete
attribute along with a set of tokens in order to standardize the auto-
completion support across browsers [105]. All this is part of purposeful
optimization with the clear goal to increase conversion rates, i.e., to
ensure that visitors achieve their goal.

These practices build the foundation of today’s Web, a gigantic graph
consisting of billions and billions of interlinked pages. Hyperlinks are
such a fundamental building block of the Web’s architecture that it feels
natural to browse across sites from completely different publishers. It is
taken for granted that content links to other relevant content; relevant
links are generally seen as a sign of quality. Surprisingly, Web services
very rarely link to external data. As a matter of fact, most times even links
to other resources within the service itself are missing. More often than

43

not, developers completely ignore hypermedia when creating solutions
for machine-to-machine communication.

One of the primary reasons for this is certainly that for Web APIs no
accepted, standardized media type with hypermedia support exists.
JSON, which is much easier to parse and has a direct in-memory repre-
sentation in most programming languages, is typically favored instead of
using HTML as on the human Web. Unfortunately, this often leads to
the exposure of internals resulting in a tight coupling between the server
and its clients. A common example for this is the inclusion of local,
internal identifiers in representations instead of including links to other
entities. This requires out-of-band knowledge of IRI templates to recon-
struct the URLs to retrieve representations of entities referenced in such a
way. Since in most cases the documentation about those IRI templates is
not machine-readable, they are hardcoded into clients which means that
clients break whenever the server implementation changes.

The current best practice for developing truly RESTful JSON-based Web
APIs is to define a custom media type which extends JSON to support
labeled hyperlinks. Effectively this means that HTML’s anchor or link
tags with their relation attributes (rel) are imitated by some JSON
structure. Since there is a common need for such functionality, there
have already been some efforts to standardize such extensions to JSON,
but so far their adoption is very limited. Far more often these proprietary
extensions are documented out-of-band on the API publisher’s home-
page. Apart from the description of how hyperlinks are expressed, these
documentations generally also include a list of resource types (such as
products and orders) describing their semantics, properties, and serializa-
tions. Last but not least, a number of link relations along with the sup-
ported HTTP operations, the expected inputs and outputs, and the con-
sequences of invoking those operations are documented. This allows
developers to get an overview of the API’s service surface and to imple-
ment specialized clients.

A negative side effect of this proliferation of proprietary data formats and
the use of natural language to document them is that it becomes almost
impossible to create generic clients similar to browsers on the human
Web. Thus, developers usually need to implement not only the server
side part but also a client (library) which is then used by other developers
to access the Web API. It is not surprising that these two components are

44

often tightly coupled given that they are frequently developed in lockstep
by the same team or at least the same company. Consequently developers
choose to use the simplest approach to solve their problem at hand.
Instead of using dynamic contracts that are retrieved and analyzed at
runtime, which would, just as on the human Web, allow clients to adapt
to ad-hoc changes, static contracts are used. All the knowledge about the
API a server exposes is typically directly embedded into the clients. This
leads to tightly coupled systems which impede the independent evolution
of its components. When a service’s domain application protocol [46],
which defines the set of legal interactions necessary to achieve a specific,
application-dependent goal, is defined in a static, non-machine-readable
document served out-of-band, it becomes impossible to dynamically
communicate changes to clients. Even though such approaches might
work in the short term, they are condemned to break in the long term as
assumptions about server resources will break as resources evolve
over time.

3.3 Manually Written Documentation
Writing documentation is certainly a task that most developers would
like to avoid. Therefore, tools for virtually every programming language
have been created to formalize and streamline the process of writing (at
least some minimal) documentation. In most cases, such documentation
is written by directly annotating the code. Specialized tools such as
Doxygen [106], so called documentation generators, analyze those anno-
tations as well as the code itself and create consistently formatted docu-
mentations. At the same time, such tools can leverage the fact that the
documentation is clearly bound to certain code fragments such as classes
or methods and enable, e.g., integrated development environments
(IDEs) to display assisting documentation during the development pro-
cess. The documentation is automatically queried and put in the context
of the programmer’s task. This allows programmers to stay focused on
the problem at hand instead of having to jump back and forth between
their code and the documentation of the APIs of the programming
libraries they are using. Given that most documentation for Web APIs is
in the form of manually written HTML pages which do not follow a

45

well-defined structure and are thus not machine-processable, it is impos-
sible to create similar assisting tooling for Web APIs.

The Linked Data community is clearly a step ahead of the REST com-
munity in this regard. In contrast to the current practice for Web APIs,
Linked Data is described in detail in a machine-readable way. All data
publishers have to do, is reuse one or more of the many existing vocabu-
laries to express their data. This not only eliminates the need to docu-
ment the semantics of the data over and over again but also improves the
interoperability of systems exchanging such data and the reusability of
code. It would thus make sense to reuse these technologies and vocabu-
laries for the creation and description of Web APIs. All a developer has to
do is annotate the code with concepts from a vocabulary. The human-
readable documentation can then be generated automatically by using the
rdfs:label and rdfs:comment properties associated to that concept in the
vocabulary. The positive side effect of such an approach is that machines
would be able to recognize when equivalent elements are encountered
and process them using existing code instead of requiring manual adap-
tations by the implementer. In fact, the documentation could be linked
directly to the messages which would make them self-descriptive and thus
reduce the need for additional human-readable documentation.

3.4 The Semantic Web: Complex, Read-Only,

and No Links?
Since the Linked Data principles align well with the REST architectural
style (see [107] for an extensive analysis) it would seem natural to com-
bine their strengths as we have seen in the previous section. Nevertheless,
the two remain largely separated in practice. Instead of providing Linked
Data via RESTful Web services, current efforts deploy centralistic
SPARQL endpoints or upload static dumps of data which rarely reflects
the nature of the data, i.e., descriptions of interlinked resources. Just as
public SQL endpoints are uncommon nowadays, public SPARQL end-
points are not expected to become widespread in the near future. This is
because it is considerably more expensive to expose SQL or SPARQL
endpoints than easier-to-optimize RESTful service interfaces.

46

While most of the efforts by the Semantic Web community are spent on
the accurate description of resources, which could be compared to the
self-descriptive messages constraint, the linking of data received little
attention. RDF uses IRIs to identify entities but that does not imply that
those IRIs are dereferenceable or that RDF has built-in support for
hypermedia. In fact, neither RDF itself nor RDF Schema or OWL
defines a concept to describe dereferenceable IRIs. Whether an IRI is
intended to be dereferenced or not, depends implicitly on what it
represents. FOAF’s homepage property [108], e.g., suggests that its values
are dereferenceable IRIs. Without further out-of-band knowledge, how-
ever, a machine would not be able to infer that information. In fact, in
the early days of the Semantic Web, most of the data used IRIs that did
not dereference to anything useful. The Linked Data principles postu-
lated by Berners-Lee [17] in 2006 were an attempt to change that.

Berners-Lee urged to use IRIs to name things that dereference to useful
information in a standardized format. Additionally, the returned data
should contain links to other relevant data in order to create a giant
graph of Linked Data that could be seen as the direct data-centric coun-
terpart of the document-centric human Web. At the time of this writing,
the Linked Data community, even though it advocates the use of
dereferenceable identifiers, leaves open how to recognize them. RDF still
has no built-in notion of hypermedia but uses IRIs solely as identifiers. It
is therefore not surprising that the vast majority of the available data are
largely read-only representations. The best a client can do is to blindly try
to interact with these IRIs. To change this, a vocabulary able to describe
affordances beyond simple dereferenceability would be needed.

Another aspect developers are often struggling with in practice is that in
RDF properties have, just as classes and everything else that is identified
with an IRI, global scope and independent semantics. In contrast, prop-
erties in the models used by most Web APIs are class-dependent. Their
semantics depend on the class they belong to. In data models classes are
typically described by the properties they expose whereas in RDF proper-
ties define to which classes they belong. If no class is specified, it is
assumed that a property may apply to every class. This behavior stems
from the fact that RDF Schema [65] and OWL [66], the two preferred
languages to describe RDF vocabularies, work under an open-world
assumption. In contrast, data models used by programmers typically

47

work under a closed-world assumption. The difference is that when a
closed world is assumed, everything that is not known to be true is false
or vice versa. With an open-world assumption the failure to derive a fact
does not automatically imply the opposite; it embraces the fact that the
knowledge is incomplete. One of the effects illustrating the difference in
those world views is that in data models an instance of a class also belongs
to all its superclasses, but not any other class. In ontologies using an
open-world assumption, the same cannot be said unless classes are
explicitly defined as being disjoint.

These differences have interesting consequences. For example, the com-
monly asked question of which properties can be applied to an instance
of a specific class cannot be answered for RDF. Strictly speaking, any
property which is not explicitly forbidden can be applied. This may
sound counter-intuitive and could lead to the wrong conclusion that
RDF Schema and OWL cannot be used to define data models. In fact
they can, but that is not their intended use.

While data models are used to describe the information in a specific,
well-delimited application domain; vocabularies, as described by
RDF Schema or OWL, are used to define concepts that can be shared
across multiple application domains. In other words, data models are
typically used to specify validity criteria and constraints for data processed
within an application whereas vocabularies are used to reason over data to
discover new knowledge. In this light, data models can be said to be
intended for closed-world systems whereas vocabularies are intended for
open, distributed systems. This may sound surprising as the motivation
for most Web APIs is to build open distributed systems. However, as a
matter of fact, most current Web APIs just represent small, closed-world
systems that happen to be accessible over a standardized protocol with a
uniform interface, i.e., HTTP. Neither the entities, nor the concepts
defined by such a Web API can be reused in other systems without some
special glue code. To simplify data integration and enable reuse, it would
thus be sensible to describe the data and behavior exposed by a Web API
using RDF vocabularies.

As famously illustrated by the well-known Linked Open Data cloud dia-
gram [80] (see Figure 6 on page 30), the amount of Linked Data has
managed to grow significantly over the last couple of years but, never-
theless, the greater vision of a Semantic Web, which has been around for

48

more than fifteen years, still has a long way to go before mainstream
adoption will be achieved. The Linked Data principles specifically and
Semantic Web technologies in general, have yet to find their way into the
design of RESTful Web APIs. The fundamentally different models of
Semantic Web technologies with their open world assumption, the lack
or immaturity of tools, and the (perceived) complexity are just some of
the reasons for this lack of adoption. For a long time, the Semantic Web
suffered from a classic chicken-and-egg problem as there were no clear
incentives for developers to use it. This aspect is improving recently as
major search engines started to index some structured data such as RDFa
and microformats. Another problematic factor, especially in the enter-
prise space, is that the Semantic Web is perceived as a disruptive tech-
nology, making it a show-stopper for organizations needing to evolve
their systems and build upon existing infrastructure investments.
Changing whole systems to be based on triples whereas most developers
program their systems in an entity centric, i.e., object-oriented manner is
often not a viable option. Additionally, the current Semantic Web
approaches usually provide just read-only interfaces to the underlying
data. This clearly limits the usefulness and inhibits networking effects
and engagement of the crowd.

Beside these technical issues, a lot of developers are also simply over-
whelmed by the complexity, perceived or otherwise, or are just reluctant
to use new technologies. The prevalent terminology, suffused with words
such as Ontology, just seems to fuel their misconceptions. Furthermore,
the fact that the Semantic Web community derailed into the artificial
intelligence domain instead of concentrating on more practical data-
oriented applications certainly played a major role in that regard as well.
A lot of potential users were alienated by this and developed an aversion
to Semantic Web technologies—a phenomenon we denoted as
Semaphobia [95]. A solution to this problem might be a more gradual
introduction to those principles and practices by the use of less disruptive
technologies. Furthermore, clear incentives along with simple specifica-
tions and guidelines are necessary.

The recent introduction of Schema.org [85] and Microdata [109] nicely
illustrate the potential of such an approach and the willingness of Web
developers to adopt it. Instead of creating a completely new serialization
format, Microdata adds a number of attributes to HTML for its semantic

49

annotation. Schema.org, on the other hand, represents a vocabulary for a
broad range of application domains ranging from events and recipes to
products and people. Schema.org is a joint effort between Google,
Microsoft, Yahoo!, and Yandex which all added support for both
Microdata and Schema.org to their search engines to extract structured
data from web pages in order to improve the precision of search results
and to present the results in a visually more appealing way. Web develop-
ers benefit from higher click-through rates which increases the number of
people visiting their sites. Unfortunately, a similar approach for machines
talking to each other via Web services is still missing. Developers thus
still have to deal with a plethora of heterogeneous data formats, data
models, and service interfaces when interacting with Web APIs.

3.5 Missing Tooling
As outlined in section 3.2, developers instinctively use hypermedia when
building traditional Web sites but seem to ignore it completely when
building Web APIs. One of the reasons behind this might be the differ-
ent level of tooling support on both the server and the client side.

Current Web development frameworks are typically based on a Model-
View-Controller (MVC) architecture [110]. MVC is a design pattern
that separates the presentation of information from its processing to allow
code reusability and separation of concerns. The models represent the
relevant entities in the system, the views create representations of those
entities, and the controller is responsible for processing inputs, manipu-
lating the models, and finally returning an updated representation by
using the according views. Web frameworks often further modularize the
code by dividing controllers into Front Controllers, which handle all
requests for a Web site, and Page Controllers or Commands, which are
only responsible for certain requests [110]. Therefore, the front con-
troller’s job is typically to parse the received HTTP request, extract the
request IRI and method, and then pass the control to a specific page
controller or command which then, in turn, invokes specific models
and views.

In the context of this thesis, the view layer is the most critical layer as it
decouples the internals of an application from its external representation.

50

In Web development frameworks, the view layer typically consists of
templates and a rendering engine. By creating representations in a stand-
ardized and centrally owned format and targeting generic clients, i.e.,
Web browsers, internals are usually very well hidden behind a common
standardized interface. This decouples the client from the server and ena-
bles the independent evolution of the two. Unfortunately, the situation
typically looks quite different for Web APIs. Instead of a sophisticated
view layer that decouples the internals from the system’s external inter-
faces (representations), most of the time a serializer is used to marshal the
in-memory representations (often complete object graphs) into a generic
data format such as JSON. This would not be problematic per se, if the
contract were not owned by the server instead of being centrally owned.

Since the server might decide to change the contract at any time, there
are very little incentives for independent developers to invest time and
money to create sophisticated and thus more flexible and dynamic service
clients. On the technical side, the fact that JSON, e.g., has no built-in
support for hyperlinks makes it impossible to leverage hypertext as the
engine of application state (HATEOAS) [11] without additional out-of-
band information. In consequence, consumers of such Web APIs expect
that API publishers provide specialized programming libraries to simplify
the usage of their services. The result are tightly coupled systems in
which the clients are statically bound to the server’s URL space and thus
need to be updated in lockstep with the server. Not uncommonly, clients
for object-oriented programming languages directly replicate the classes
to represent the various resource types exposed by the server as native
objects on the client. Such an approach clearly inhibits the independent
evolution of components.

3.6 Discussion
The problem with the practices outlined in this chapter is that they result
in specialized implementations targeting specific use cases and not gener-
alizations that can be reused across application domains. Therefore, every
API created with such an approach is unique and needs to be docu-
mented. Even though most of the code to access such services is very
similar, there are still minor differences which make it difficult to reuse

51

code and almost impossible to write generic clients. On the human Web
this problem is addressed by a generic media type (HTML) which
decouples the clients from the servers they are accessing. Admittedly,
HTML could be used for Web APIs as well but its nature, which targets
human facing web pages that are essentially graphical user interfaces, is
fundamentally different to machine-to-machine communication. A data
interchange format such as JSON is a much better fit for use cases which
just require the transfer of structured data; having to parse HTML for
this has typically too big of an overhead. Thus, to solve this problem also
for Web APIs, a generic media type to create self-descriptive messages
with inherent support for hypermedia is needed. Just adding support for
hyperlinks to JSON, as most current approaches do, is not enough
because it only solves part of the problem. Since the interaction with
Web APIs could generally be seen as a data integration problem, other
aspects, such as globally unique identifiers for both the entities and their
properties, become important as well. By using semantic annotations, a
client would not only be able to figure out which elements in a JSON
representation represent IRIs but also what these IRIs and all the other
elements mean.

We believe that it should be feasible to standardize and streamline the
development of Web APIs by combining ideas and principles from both
the REST architectural style and the Semantic Web. Having identified
several issues and shortcomings of current best practices, we are thus able
to formalize the problem statement that integrates these issues into the
primary aim of this thesis, i.e., to support developers creating, docu-
menting, and using RESTful Web APIs.

The problem addressed in this thesis consists of three clearly defined sub-
problems that are summarized as follows:

▪ Development of a generic and extensible data interchange format or
description language specifically designed for RESTful Web APIs. This
requires support for hypermedia controls as well as a mechanism similar
to XML namespaces to enable the creation of self-describing messages.
The hypermedia support may either be included directly into the format
similar to HTML or in an external vocabulary similar to the XML
Linking Language [111]. The solution should address the problems dis-
cussed in this chapter.

52

▪ Design and implementation of plugins or programming libraries integrat-
ing support for the created data interchange format and vocabulary into
current Web frameworks in order to simplify the creation of truly
RESTful Web APIs. The aim is to make the creation of Web APIs com-
parably simple as the creation of a traditional website. The implementa-
tion of this proof of concept will help to evaluate the practical relevance
and usability of the created solution.

▪ Design and implementation of a generic client accessing such Web APIs.
This requires the dynamic evaluation of messages and service descriptions
at runtime instead of hard-coding contracts into the client at design time
as most current approaches do. The generic client will not just represent a
highly valuable tool but also demonstrate some of the features realizable
by building Web APIs based on the proposed data interchange format
and vocabulary.

Given that the solution is targeting RESTful services, it clearly has to
adhere to REST’s [11] architectural constraints which can be summarized
as follows: 1) stateless interaction, 2) uniform interface, 3) identification
of resources, 4) manipulation of resources through representations,
5) self-descriptive messages, and 6) hypermedia as the engine of applica-
tion state. Stateless interaction means that all the session state is kept
entirely on the client and that each request from the client to the server
has to contain all the necessary information for the server to understand
the request; this makes interactions with the server independent of each
other and decouples the client from the server. All the interactions in a
RESTful system are performed via a uniform interface which decouples
the implementations from the services they provide. To obtain such a
uniform interface every resource is accessible through a representation
and has to have an identifier (whether the representation is in the same
format as the raw source, or is derived from the source, remains hidden
behind the interface). All resource representations should be self-
descriptive, i.e., they are somehow labeled with their type. Finally, the
hypermedia as the engine of application state (HATEOAS) constraint
refers to the use of hyperlinks in resource representations as a way of
navigating the state machine of an application.

While all of these constraints are important when designing a RESTful
service, the most important aspects in the context of this thesis are how
resources can be accessed, how they are represented, and how they are

53

interlinked. The solution should be expressive enough to describe how
resource representation can be retrieved and manipulated, and what the
meaning of those representations is. To integrate the resulting services
into the Semantic Web, it should also be possible to transform resource
representations to RDF. An important requirement to foster adoption, to
evolve systems, and to build upon existing infrastructure is that no (or
just minimal) changes on existing systems are required; this implies a
requirement to support partial descriptions that can be completed later.
Finally, in order to lower the entry barrier for developers, the approach
has to be as simple as possible and provide instant incentives such as
increased productivity or enhanced reusability.

Chapter 4

Related Work

In order for two (or more) systems to communicate successfully there has
to be an agreement or contract on the used interfaces, data formats and
processing models as well as the semantics. In the traditional Remote
Procedure Call (RPC) model, where all differences between local and
distributed computing are hidden, usually static contracts in the form of
an Interface Description Language (IDL) are used to specify those inter-
faces. The data types that such an IDL offers are abstractions of the data
types found in actual programming languages to enable interoperability
between different platforms. SOAP-based services typically follow the
same approach by describing the interfaces with WSDL [87] and
XML Schema [112] documents. Since in such a model all the documen-
tation is machine readable, automatic code generation on both the client
and the server sides are made possible. This improves developers’
productivity but also increases coupling.

In contrast, the REST architectural style is characterized by the use of
contextual contracts where the set of actions varies over time.
Additionally, the interface variability is almost eliminated due to REST’s
uniform interface. In consequence REST-based services are almost
exclusively described by human-readable documentation describing the
URLs as well as the data expected in requests and returned by the
corresponding responses. Generally, that data is not described by
specifying media types, but by the definition of specific JSON or XML
structures. Due to a lack of formalism and the ambiguity of natural

56

language, these descriptions can neither be automatically transformed
into code nor be interpreted at runtime; they have to be hardcoded into
clients and servers at design time.

In this section we will examine the most important related work
addressing the issues outlined above and in the previous chapter. We will
begin with an overview of generic interface description languages appli-
cable to a broad range of application domains before we look at a number
of ontologies and vocabularies which extend syntactic interface descrip-
tions with semantic annotations. Such semantic descriptions typically
promise higher level of automation for tasks like discovery, negotiation,
composition, and invocation. Since most Semantic Web Service (SWS)
technologies use ontology languages as the underlying data model they
also provide the means for tackling the interoperability problem at the
semantic level instead of just at the syntactic level, enabling the integra-
tion of Web services into the greater vision of the Semantic Web. We will
also discuss some of the specialized media types that have been created to
implement RESTful systems for specific use cases. Finally, given that
JSON has become the preferred data interchange format in Web APIs,
we will also provide an overview of proposals which attempt to add sup-
port for hyperlinks and namespaces to JSON.

This section is based on our previous work in [96], [26], and [28].

4.1 Interface Description Languages
Over the years, multiple interface description languages for RESTful ser-
vices have been proposed. Most of them, such as WRDL [113],
NSDL [114], SMEX-D [115], Resedel [116], RSWS [117], and
WDL [118] were more or less ad-hoc inventions designed to solve partic-
ular problems and haven’t been updated for many years. So far none of
them managed to attain noticeable adoption and even approaches that
were the outcome of large research projects did not manage to break out
of their academic confines.

There have been very controversial discussions as to whether REST even
needs service interface description languages in the traditional sense. The
opponents typically argue that the definition of media types (although
not machine readable) eliminates the need for additional descriptions as

57

they describe the format as well as the semantics of exchanged message.
However, as we have seen in section 2.2, the creation of specialized media
types is not trivial and thus, in practice, most systems rely on generic,
application-agnostic media types instead. Furthermore, the fact that new
solutions trying to create machine readable documentations are proposed
on an almost monthly basis clearly indicates that developers are not satis-
fied with the status quo.

In this section, we will discuss the most noteworthy proposals which
define interface description languages for RESTful services. We do not
restrict our selection to purely syntactic descriptions, but also present
some approaches that either add or are based on semantic descriptions.

4.1.1 WSDL and SAWSDL

The Web Service Description Language (WSDL) [87] is an established
standard to describe the contract between a Web service provider and its
clients at a syntactic level. It documents the message formats (schemas),
transport protocols, and locations. WSDL 2.0 introduced some signifi-
cant changes to the structure of WSDL documents and added new fea-
tures such as interface inheritance and extensible message exchange pat-
terns. It was the first version which was designed with RESTful services
in mind and consequently the first WSDL version to support their
description; the WSDL 1.1 HTTP binding was inadequate to describe
RESTful services. WSDL descriptions typically use XML Schema [112]
as schema language but others, such as DTD, RelaxNG, or even non-
XML type systems, would be allowed as well.

A WSDL description consists of the following four elements: types,
interface, binding, and service. The types element describes the Web
service’s messages; even though other type systems are allowed practically
only XML Schema is used. The interface describes the supported opera-
tions (this is where WSDL exposes its RPC-orientation) with the corre-
sponding input, output, and fault messages and the respective message
exchange patterns. The purpose of the bindings element is to specify how
those messages can be exchanged. It specifies the concrete message format
(the actual serialization format in contrast to the abstract definition in the
types element) and the transmission protocol details for each operation
and fault in an interface. Finally, the service element specifies a list of

58

endpoints where the
service can be
accessed. Each end-
point is associated
with a specific
binding to indicate
what protocols and
transmission formats
have to be used.

With the introduc-
tion of Semantic Annotations for WSDL and XML Schema
(SAWSDL) [119] the W3C standardized a mechanism to associate
semantics with service interfaces and message schemas. SAWSDL defines
how to add semantic annotations to various parts of a WSDL document
such as inputs, outputs, interfaces, and operations, but it does not specify
a language for representing the semantic models. Instead, it just defines
how semantic annotation is accomplished using references to semantic
models such as ontologies, by providing three new extensibility attributes
to WSDL and XML Schema elements as shown in Figure 7.

The modelReference extension attribute defines the association between a
WSDL or XML Schema component and a concept in some semantic
model. It is used to annotate XML Schema type definitions, element
declarations, and attribute declarations as well as WSDL interfaces, oper-
ations, and faults. The other two extension attributes, named
liftingSchemaMapping and loweringSchemaMapping, are added to XML
Schema element declarations and type definitions for specifying map-
pings between semantic data and XML. SAWSDL allows multiple
semantic annotations to be associated with WSDL elements. Schema
mappings as well as model references can contain multiple pointers.
Multiple schema mappings are interpreted as alternatives whereas multi-
ple model references all apply. SAWSDL does not specify any other rela-
tionship between them [119].

The major critique of SAWSDL is that it comes without any formal
semantics. This hinders logic-based discovery and composition of Web
services described with SAWSDL but calls for “magic mediators outside
the framework to resolve the semantic heterogeneities” [120]. Similarly,

modelReference

liftingSchemaMapping

loweringSchemaMapping WSDL/XSD

SAWSDL

Figure 7. SAWSDL extension attributes

59

even though it is technically possible to use WSDL 2.0 to describe
RESTful Web services, it is not perceived as suitable by developers. Thus,
WSDL usage is limited to the description of traditional SOAP-based
services. A reason for this lack of adoption might also be the inherent
complexity of the WS-* stack compared to the lightweight model of typi-
cal RESTful services.

4.1.2 WADL

The approach of the Web Application Description Language
(WADL) [121] is closely related to WSDL. With WADL a developer
creates a monolithic XML file containing all the information about the
service interface to make it machine-accessible. Given that WADL was
specifically designed for describing RESTful services (or HTTP-based
Web applications as they are called in the specification), it models the
resources provided by the service and the relationships between them
instead of putting operations at the center as WSDL does.

In WADL each service resource is described as a request containing the
used HTTP method and the required inputs as well as zero or more
responses describing the expected service response representations and
HTTP status codes. The data format of the request and response repre-
sentations are described by embedded or referenced data format defini-
tions. Even though WADL does not mandate any specific data format
definition language, the use of RelaxNG and XML Schema are described
in the specification.

The main critique of WADL is that it is complex and thus requires
developers that have a certain level of training and tool support to enable
the usage of WADL. This complexity contradicts the simplicity of
RESTful services. In addition, WADL urges the use of specific resource
hierarchies which introduce an obvious coupling of the client and server.
Servers should have the complete freedom to control their own
namespace. In contrast to WSDL, no mechanism to semantically anno-
tate service descriptions exists for WADL. A reason for WADL’s missing
uptake might be that in practice it offers too few advantages to justify the
increased overhead, complexity and thus cost.

60

4.1.3 Swagger and Google’s API Discovery Service

Over the years a number of similar interface description languages have
been proposed and more recently most of them use JSON as their seriali-
zation format. At the time of this writing, Swagger [122], is probably the
approach that received the most traction in the community due to its
early release and the availability of open source tools. It follows quite a
similar approach to WADL. The biggest difference is that it does not
impose any specific resource hierarchy. Other than that, it allows the
association of almost exactly the same information to URI templates: an
HTTP method, request parameters, response type, hints for returned
status codes, and natural language descriptions. Swagger is mainly
intended to enrich human-facing API documentations with interactive
controls so that the various operations can be tested directly in the
browser. It also enables the automatic generation of client libraries. This
makes it very similar to Google’s API Discovery Service [123] which fol-
lows a very similar approach and is mainly used to generate client
libraries in different programming languages for Google’s numerous
Web APIs.

All of these approaches, which also include solutions like I/O Docs [124],
API Blueprint [125], and RAML [126] (some of which use Markdown or
YAML instead of JSON), have in common that everything is bound to
the URLs to access the various resources. This is clearly opposed to
REST’s hypermedia constraint which demands the dynamic discovery of
resources at runtime.

4.1.4 SA-REST, hRESTS, and MicroWSMO

Compared to the approaches presented so far, SA-REST [127] follows a
fundamentally different approach. Instead of creating description docu-
ments for machines and tools, SA-REST tries to exploit the fact that
almost all RESTful services have textual documentation in the form of
HTML pages. Its basic idea is to annotate those documents with
RDFa [128] to make the information accessible to machines.

SA-REST offers the following service annotations (depicted in Figure 8):
1) input and 2) output to facilitate data mediation; 3) lifting and
4) lowering schemas to translate the data structures that represent the
inputs and outputs to the data structure of the ontology, the grounding

61

schema; 5) action, which specifies the required HTTP method to invoke
the service; 6) operation which defines what the service does; and
7) fault to annotate errors.

Given that SA-REST is a derivative of SAWSDL, it is possible to trans-
form SA-REST descriptions into WSDL 2.0 documents that are anno-
tated with SAWSDL and vice versa (even though the information in
annotated WSDL documents is not rich enough to create meaningful
HTML documents). Similarly to SAWSDL, SA-REST does not enforce
the choice of language for representing the ontology or conceptual model
of a service.

hRESTS (HTML for RESTful Services) is an approach that is very simi-
lar to SA-REST but uses microformats [129] instead of RDFa. The main
differences between the two approaches are thus not the underlying prin-
ciples but rather the implementation techniques. A single HTML docu-
ment enriched with hRESTS microformats can contain multiple service
descriptions and conversely multiple HTML documents can together be
used to document a single service (addressing the common practice of
splitting service documentations into multiple HTML documents to
make them more digestible).

Each service is described by a number of operations, i.e., actions a client
can perform on that service, with the corresponding URL, HTTP
method, the expected inputs and outputs. While hRESTS offers a rela-

HTML +
microformats

MicroWSMO

operation

action

input,
output, fault

lifting

lowering

HTML + RDFa
(or microformats)

SA-REST lifting

model

lowering

hRESTs…

hRESTs annotations: service, operation,
address, method, input, output, label

Figure 8. SA-REST and MicroWSMO (with hRESTs)

62

tively straightforward solution to describe the resources and the sup-
ported operations, there is some lack of support for describing the data
schemas. Apart from a potential label, hRESTS does not provide any
support for further machine-readable information about the inputs and
outputs. Extensions such as MicroWSMO address this issue.

MicroWSMO [130] is an attempt to adapt the SAWSDL approach for
the semantic description of RESTful services. Just as hRESTS, on which
it relies, it uses microformats for adding semantic annotations to the
HTML service documentation. Similar to SAWSDL, MicroWSMO has
three types of annotations as illustrated in Figure 8: 1) model, which can
be used on any hRESTS service property to point to appropriate seman-
tic concepts; 2) lifting, and 3) lowering, which specify the mappings
between semantic data and the underlying technical format such as XML.
Therefore, MicroWSMO enables the semantic annotation of RESTful
services basically in the same way as SAWSDL supports the annotation of
Web services described by WSDL.

Since both MicroWSMO and SAWSDL can apply WSMO-Lite service
semantics (an ontology described later in this chapter) it is important to
note that REST-based services can be integrated with WSDL-based
ones ([26], [131]). Therefore, tasks such as discovery, composition, and
mediation can be performed independently from the underlying Web
service technology.

Even though at first glance SA-REST’s and hRESTS’ idea seems to be
fundamentally different from WSDL, their underlying models are closely
related to WSDL’s structure. In consequence, both SA-REST and
hRESTS provide, just as WSDL, an RPC-oriented view of the service
which does not really consider REST’s resource orientation.

4.1.5 RESTdesc

RESTdesc [132] is a promising effort which is based on a fundamentally
different realization. Instead of describing service interfaces in terms of
resources or operations, it expresses functional descriptions of Web APIs
in Notation3 [133], a data format extending RDF’s data model by con-
cepts such as variables. These functional descriptions are composed of
preconditions which entail certain postconditions, such as the existence
of an HTTP request. A client thus needs to express its goal in terms of

63

postconditions. If the preconditions are fulfilled, it becomes possible to
deduce an HTTP request that, when executed, results in the desired post-
conditions. It is worth noting that the HTTP request is part of the
postconditions and not of the preconditions. This means that the data
returned by a reasoner contains the HTTP request as if it would have
been part of the input data. If several potential requests (or a chain of
requests) are returned, it becomes difficult to interpret the data. This is
aggravated by the fact that no tooling exists so far, not even (public)
prototypes thereof.

RESTdesc’s strength is the elegant description of the behavioral seman-
tics of a service. The missing tooling, the unusual underlying data model
and serialization format (Notation3 is not standardized and even within
the Semantic Web community rarely used), and the dependency on
semantic reasoners however makes it difficult to use RESTdesc in prac-
tice. We believe that a more gradual introduction to Semantic Web tech-
nologies is necessary to achieve widespread adoption.

4.2 Data Interchange Formats
Almost all current Web APIs use either XML or JSON as their data
interchange format whereas for a long time RDF/XML was the only
standardized choice for Semantic Web applications. RDF/XML has been
first released in 1999 [61] at the peak of XML’s hype and revised in
2004 [64]. Today, it is widely believed that RDF/XML significantly
slowed the adoption of RDF and thus the whole vision of the Semantic
Web. Its syntax is neither optimized for humans nor for machines nor
does it allow the expression of all RDF data. In practice this means that it
is generally very difficult to understand the data by just looking at the
source code without further tooling. Similarly, standard XML technolo-
gies such as XPath [134], XQuery [135], or XSLT [136] are almost use-
less for working with RDF/XML because the same RDF graph can be
serialized in many different ways. For a detailed analysis refer to Beckett’s
retrospective on the development of RDF/XML’s revised syntax [137].

In contrast to the REST community which seems to be happy with XML
and JSON (indicated by the fact that there have not been any notable
efforts defining new data interchange formats), the Semantic Web com-

64

munity has been actively working on numerous proposals to replace
RDF/XML. In 2011, the W3C started a new working group whose
charter [138] included the serialization of Turtle, a W3C Team
Submission [139], and to either extend it to support multiple graphs or
to standardize a separate syntax doing so. Eventually, the working group
decided to standardize a whole suite of new syntaxes: Turtle [140],
TriG [141] (an extension of Turtle supporting multiple graphs) as well as
N-Triples [142] and N-Quads [143] which could be classified as line-
based counterparts of Turtle and TriG. Furthermore, the working group
agreed to standardize JSON-LD [144], a serialization format based on
JSON that follows a completely different approach.

In the following section, we will describe Turtle in more detail as it
builds the foundation of all new RDF serialization formats. JSON-LD,
which is one of the main contributions of this thesis, is described in more
detail in section 5.3.

4.2.1 Turtle

In 2003, David Beckett proposed N-Triples Plus [145], a new textual,
non-XML syntax for RDF based on the test case format N-Triples [146]
defined by the RDF Core Working Group revising RDF/XML. As the
name suggests, the syntax is, just as the 2004 revised definition of
RDF [147], triple-centric which makes it much simpler to understand
the serialized data. Furthermore, the simple syntactic constructs, make it
easy to author such documents by hand. This can be best illustrated by
an example. The snippet in Listing 2, which has been taken directly from

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:ex="http://example.org/stuff/1.0/">
 <rdf:Description
 rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"
 dc:title="RDF/XML Syntax Specification (Revised)">
 <ex:editor>
 <rdf:Description ex:fullName="Dave Beckett">
 <ex:homePage rdf:resource="http://purl.org/net/dajobe/" />
 </rdf:Description>
 </ex:editor>
 </rdf:Description>
</rdf:RDF>

Listing 2. An exemplary RDF/XML document [64]

65

the RDX/XML specification [64], not only shows how verbose
RDF/XML (still) is, but also that it is relatively difficult to author and
read such documents without tooling support. In contrast, N-Triples
Plus, which was later renamed to Turtle, feels much simpler and natural
as shown in Listing 3.

Prefixes and the constructs allowing to group triples by subject or object
or to express lists or blank nodes, eliminate a lot of N-Triples’ verbosity.
The downside of these features is the increased variability which makes
parsing and processing more complex.

Turtle is seen as one of the most important efforts of the Semantic Web
community. It finally provides a syntax which shows the simplicity of
RDF’s data model. Nevertheless, it is important to note that RDF’s data
model, which is based on triples, is alien to most developers. Developers
typically think in terms of entities and thus an entity-centric format
might be more suitable to increase the adoption of Semantic Web tech-
nologies outside the Semantic Web community. Furthermore, the fact
that Turtle defines a new grammar means that custom lexers and parsers
have to be build and developers cannot reuse their existing toolchains.

4.3 Vocabularies and Ontologies
Interface descriptions languages normally offer only syntactic descriptions
of service surfaces. In practice, however, such syntactic descriptions are
insufficient to enable the automation of tasks such as service discovery
and composition. The information that an operation requires two strings
and returns an integer does not offer any hint as to what the operation
does. Thus, in order to solve this problem, research has been done to

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ex: <http://example.org/stuff/1.0/> .

<http://www.w3.org/TR/rdf-syntax-grammar>
 dc:title "RDF/XML Syntax Specification (Revised)" ;
 ex:editor [
 ex:fullname "Dave Beckett";
 ex:homePage <http://purl.org/net/dajobe/>
] .

Listing 3. The exemplary RDF/XML document from Listing 2 converted to Turtle

66

describe services also semantically. In this section we will give a brief
overview of the most significant approaches.

4.3.1 OWL-S

OWL-S (Web Ontology Language for Web Services, formerly known as
DAML-S) [148] is an upper ontology based on the W3C standard ontol-
ogy OWL used to semantically annotate Web services. OWL-S consists
of the following main upper ontologies as shown in Figure 9: 1) the
Service Profile for advertising and discovering services; 2) the Service
(Process) Model, which gives a detailed description of a service’s operation
and describes the composition (choreography and orchestration) of one
or more services; and 3) the Service Grounding, which provides the
required details about transport protocols to invoke the service (e.g. the
binding between the logic-based service description and the service’s
WSDL description). Generally speaking, the Service Profile provides the
information needed for an agent to discover a service, while the Service
Model and Service Grounding provide enough information for an agent
to make use of a service once found [148].

The main critique of OWL-S is its limited expressiveness of service
descriptions in practice. Since it practically corresponds to OWL-DL, it
allows only the description of static and deterministic aspects; it does not
cover any notion of time and change, nor uncertainty. Furthermore, in
contrast to WSDL, an OWL-S process cannot contain any number of
completely unrelated operations [120], [149].

Service

Profile

Process Model

Grounding

presents

supports

described by

What the service does

How the service works

How to access the service

Figure 9. The OWL-S ontology

67

4.3.2 WSMO

Another approach to describe Web services semantically is the Web
Service Modeling Ontology (WSMO) [150]—the outcome of work
funded by numerous large European Union research projects. It defines a
conceptual model and a formal language called WSML (Web Service
Modeling Language) as well as a reference implementation of an execu-
tion environment (WSMX; Web Service Execution Environment) for the
dynamic discovery, selection, mediation, invocation, and interoperation
of Semantic Web services based on the WSMO ontology.

WSMO offers four top-level notions to describe the different aspects of
Web services as shown in Figure 10: 1) Ontologies that define the formal-
ized domain knowledge; 2) Goals, which specify objectives that a client
might have when consulting a Web service; 3) Service Descriptions for
describing functional, non-functional and behavioral aspects of a Web
service; and 4) Mediators for enabling interoperability and handling het-
erogeneity between all these components at data (mediation of data
structures) and process level (mediation between heterogeneous
communication patterns) to allow loose coupling between services, goals,
and ontologies.

In contrast to most other description formalisms, WSMO propagates a
goal-based approach for SWS. It is particularly designed to allow the
search for Web services by formulating the queries in terms of goals. So

Ontologies

Goals

Service Descriptions

Mediators

Formalized domain
knowledge

Objectives a client might have
when consulting the service

Description of services

Handling of heterogeneities
to enable interoperability

Figure 10. The WSMO ontology

68

the task of the system is to automatically find and execute Web services
which satisfy the client’s goal. This goes beyond the OWL-S idea whose
principal aim is to describe the service’s offers and needs.

One of the main critiques of WMO is that its development has been
done in isolation of existing W3C standards. This raised serious concerns
by the W3C which were expressed in the official response to the WSMO
submission in 2005 [151]. To address those issues, a lightweight version
called WSMO-Lite that is presented in the next section has been created.
Another critique is that guidelines for developing mediators, which seem
to be the essential contribution of WSMO in concrete terms, are missing.

4.3.3 WSMO-Lite

SAWSDL does not specify a language for representing the semantic
models but defines how to add semantic annotations to various parts of
WSDL or XML Schema documents. WSMO-Lite [152] was created as a
lightweight service ontology to fill SAWSDL annotations with concrete
service semantics to allow bottom-up modeling of services. It adopts the
WSMO model and makes its semantics lighter. The biggest difference to
WSMO is that WSMO-Lite treats mediators as infrastructure elements
and specifications for user goals as dependent on the particular discovery
mechanism used. In contrast, WSMO defines formal user goals and me-
diators. Furthermore, WSMO-Lite defines the behavior semantics only

Information Model

Functional
Descriptions

Behavioral
Descriptions

Non-functional
Descriptions

Input, output, and
fault messages

Functionality the service offers

Service choreography
and workflows

Non-functional properties
such as pricing

Figure 11. The WSMO-Lite ontology

69

implicitly. WSMO-Lite also does not exclusively use WSML, as WSMO
does, but allows the use of any ontology language with an RDF syntax.

WSMO-Lite describes the following four aspects of a Web service: 1) the
Information Model, which defines the data model for input, output, and
fault messages; 2) the Functional Semantics, which define the func-
tionality, which the service offers; 3) the Behavioral Semantics, which
define how a client has to talk to the service; and 4) the Non-functional
Semantics, which define non-functional properties such as quality of
service or price. A graphical representation of the ontology is shown
in Figure 11.

A major advantage of the WSMO-Lite approach is that it is not bound to
a particular service description format such as WSDL. As a result
WSMO-Lite can be used to integrate approaches like, e.g., hRESTS and
MicroWSMO with traditional WSDL-based service descriptions.

4.3.4 EXPRESS

Given that EXPRESS [153] follows a completely different strategy than
the other approaches mentioned so far, we believe it is another interesting
approach to look at despite the fact that we are not aware of a single
usage in the wild. Instead of a domain ontology and a separate semantic
description of a service, EXPRESS only requires the definition of a
domain ontology in OWL [66], i.e., the formal description of the con-
cepts and their relationship in the API’s application domain. An
EXPRESS “deployment engine” then analyzes that domain ontology and
creates a URI space for the found classes, instances, and properties.
Finally, the developer decides which HTTP methods are permitted for
the various created resources in order to define the supported function-
ality. It is worth noting, that EXPRESS maps the HTTP methods to the
CRUD operations (create, read, update, and delete) and thus, the func-
tionality of APIs created with EXPRESS is limited to the CRUD opera-
tions. This reduces the complexity but also the possible applications of
EXPRESS. Often, simple CRUD-style functionality is not enough.

Since EXPRESS follows a top-down approach in which concrete services
are automatically created out of semantic descriptions, it represents a dis-
ruptive approach that cannot be used to upgrade existing services and
thus makes it impossible to build upon existing infrastructure invest-

70

ments. For simple APIs it could, however, be an interesting approach to
consider presuming that powerful tooling would be available, which is
not the case at the time of this writing.

4.3.5 Linked Data Platform

Based on a member submission by IBM, the W3C decided in 2012 to
start a working group with the aim to “produce a W3C
Recommendation for HTTP-based (RESTful) application integration
patterns using read/write Linked Data” [154]. The Linked Data Platform
(LDP) vocabulary [155] defines concepts such as resources and collec-
tions but it is misses any notion of operations. Effectively this means that,
at least at the current stage, the Linked Data Platform does not go
beyond defining a standardized CRUD interface to manage resources in
collections. It could thus be characterized as an RDF version of the Atom
Publishing Protocol [47] as the interaction models are almost identical.

Collections can be used to store (more or less) opaque RDF documents.
LDP has neither built-in support for the semantic description of
operations other than CRUD nor does it allow the description of
supported properties, classes, etc. The only way for a client to find out
which properties are supported is to POST an RDF document to a col-
lection in order to create a new resource. That resource then has to be
inspected to verify that all the data has been stored and no properties
have been discarded.

Given these limitations, it is questionable whether mainstream Web
developers will see enough compelling reasons to adopt the approach
proposed by the Linked Data Platform working group. The same func-
tionality can be achieved with much simpler, proven approaches such as
the Atom Publishing Protocol [47].

4.4 Domain Application Protocols
All the approaches mentioned so far try to be as general as possible in
order to be usable for a wide range of application domains. In this sec-
tion, we will present a number of specialized solutions tailored for very
specific application domains. In contrast to the previously mentioned

71

approaches, the solutions presented in this section were able to achieve
some adoption across the Web. These approaches have in common that
they use specialized media types (even though not all of them have been
officially registered) to define message semantics and processing models
for specific use cases. In other words, they represent domain application
protocols [46].

4.4.1 Atom

Atom consists of two related standards, the Atom Syndication
Format [48] and the Atom Publishing Protocol [47] (also known as
AtomPub or APP). The Atom Syndication Format is an XML-
based format to syndicate content in the form of so called Web feeds or
news feeds. The Atom Publishing Protocol is an application-level
protocol for publishing, editing, and deleting feed entries and associated
media resources.

The Atom Syndication Format consists of two kinds of documents:
Atom Feed Documents and Atom Entry Documents. An Atom Feed
Document is, as the name suggests, the representation of an Atom feed.
It contains metadata about the feed and some or all of the entries associ-
ated with the feed. An Atom Entry Document describes exactly one feed
item outside the context of an Atom feed. It is worth mentioning that
Atom documents must be well-formed XML but are not required to be
valid XML because the specification does not include a Document Type
Definition (DTD) for them. Atom is designed to be an extensible format
and so foreign markup (markup which is not part of the Atom vocabu-
lary) is allowed almost anywhere in an Atom document.

The Atom Publishing Protocol describes how a feed can be manipulated
by a client. It defines, just as the Syndication Format, two kinds of doc-
uments: Category Documents and Service Documents. Category
Documents are used to hold the list of Atom categories as defined in the
Atom Syndication format. Those category lists are used to describe the
categories that can be applied to the members of a Collection (i.e. the
entries of an Atom Feed Document). The Service Document describes
the location and capabilities of one or more Collections which are
grouped into Workspaces. That information is needed by clients for
authoring to commence.

72

Both the Atom Syndication Format as well as the Atom Publishing
Protocol are fully based on the REST architectural style and thus inte-
grate very well in the Web’s architecture. In fact, the Atom Publishing
Protocol is often cited as the poster child of RESTful service design. Its
extensible design led to the adoption of AtomPub for the implementation
of various kinds of Web services. The most prominent examples have
been early versions of Google’s Data Protocol (GData) [156] and
Microsoft’s Open Data Protocol (OData) [157]. They used Atom’s
extensibility to implement APIs for their services but unfortunately such
an approach is not always feasible or desirable. It is also just a solution for
the description of the service’s interface; the problem of describing the
exchanged data, i.e., the feed entries, still remains unresolved. Sometimes
this approach also yields strange results, e.g. when a service provider just
serializes an Atom feed into a JSON representation. The JSON serializa-
tion of Google’s Data Protocol [156] is one of those inglorious examples.
At least its subsidiary YouTube recognized the problem and is now
offering an alternative JSON serialization [158].

4.4.2 OpenSearch

OpenSearch [159] was developed by A9, an Amazon.com subsidiary, and
was first unveiled in 2005. It is a collection of simple formats that allow
the description of search engines’ interfaces as well as the publishing of
search results in a format suitable for syndication and aggregation.
OpenSearch allows clients such as Web browsers to invoke search queries
and process the responses. By now all major Web browsers support
OpenSearch and use it to add new search engines to the browser’s search
bar. This way the user can invoke a query directly from the browser
without first having to load the search engine’s homepage.

OpenSearch consists of the following four formats: 1) the description
document, 2) the URL template syntax, 3) the response elements, and
4) the Query element. The OpenSearch description document describes
the interface of a search engine in the form of a simple XML document.
It may also contain some metadata such as the name of the search engine
and its developer. The URL template syntax represents a parameterized
form of the URL by which a search engine is queried. Simply speaking it

73

describes the used GET parameters to invoke a query. An example of
such a template looks as follows:

http://example.com/search?q={searchTerms}

All parameters are enclosed in curly braces and are by default considered
to be part of the OpenSearch template namespace. By using the XML
namespace prefix convention it is possible to add new parameter names,
which enables extensibility. The OpenSearch response elements are used
by search engines to augment existing XML formats such as Atom and
RSS with search-related metadata. Finally, the OpenSearch Query ele-
ment can be used to define specific search requests that can be performed
by a search client. The Query element attributes correspond to the search
parameters in a URL template. One use case is, e.g., the definition of
related queries in a search result element.

4.4.3 oEmbed

oEmbed [160] provides a simple interface that allows a Web site to dis-
play embedded content (such as photos or videos) when a user posts a
link to that resource without having to parse the resource directly. This
makes it possible to embed, e.g., a YouTube video on a web page without
having to extract the YouTube video player from the HTML page the
user referenced.

The interface defined by oEmbed is trivial. A provider specifies one or
more URI scheme and API endpoint pairs which a consumer then uses to
issue HTTP requests to get the necessary information to embed a specific
resource. The aforementioned URI scheme describes which URIs (wild-
cards are supported) may have an embedded representation, i.e., for
which URIs the associated API endpoint might be used by a consumer to
lookup the structured data used to embed the representation. The con-
sumer then issues an HTTP GET request to the API endpoint with the
URI of the representation it would like to embed along with the optional
maximum width and height of the embedded resource as query parame-
ters. It might also specify in which format it would like to get the
response; possible formats are JSON and XML. Finally, the provider
replies with a response containing structured data such as, among others,
a title, the author’s name, a thumbnail of the referenced image or the

74

HTML code needed to embed a video player. The client can then use
this information to display the resource referenced by the user.

oEmbed is a nice example of a clear use case that lead to a clear and sim-
ple specification and thus resulted in wide adoption. Among others,
YouTube, Flickr, Hulu, Slideshare, and Vimeo act as providers and there
are plugins and libraries which add support for oEmbed to almost every
blogging and content management system available.

4.5 Hyperlinks and Namespaces in JSON
In contrast to XML, JSON, the JavaScript Object Notation, was specifi-
cally designed as a lightweight, language-independent data-interchange
format that is easy to parse and generate. Often it is thus considered to be
simpler than XML—but this simplicity comes at a price. JSON has nei-
ther native support for hypermedia nor does it support namespaces or
semantic annotations. There have been various proposals to solve these
shortcomings; all of them have in common that they specify a set of key-
words to express certain aspects such as hyperlinks.

The most prominent examples trying to add hypermedia support to
JSON are probably JSON Schema [161] and its trimmed down counter-
part JSON Reference [162]. Both define a special keyword $ref to
denote a hyperlink. While, as the name suggests, JSON Schema puts that
type information in a schema describing the document, JSON Reference
uses the $ref keyword directly within the document. It can thus be seen
as a static serialization of the same type but it lacks support for semantic
annotation to describe its relation to the current document (which is pos-
sible with JSON Schema). Two related solutions that address this issue
are HAL and Collection+JSON, but in contrast to the previously men-
tioned approaches which augment JSON, they represent a new media
type on their own.

HAL [163] uses the _links keyword instead of $ref but, instead of setting
its value directly to the link’s target, it sets its value to an object whose
keys are the link relations and whose values are the link targets. HAL has
also support to embed external resources within a representation. Often
this is important as it allows applications to greatly decrease the number
of required HTTP requests.

75

Collection+JSON [164] is basically a JSON version of the Atom protocol
suite to manage simple lists of entities. This media type not only specifies
how links (which can be templated) are represented but also how HTTP
can be used to manipulate the various representations.

Similar to these proposals, but with a different goal in mind, various
approaches have been presented to add semantic annotations or
namespace support to JSON. These two aspects can be considered to be
roughly the same as the idea of semantic annotations to define the
semantics of a concept in a special namespace to avoid collisions when
the same terms are reused in different documents. The different proposals
can be classified into two groups based on whether namespaces are sup-
posed to be dereferenceable or not. In the first group, where namespaces
are just used to avoid collisions and are thus not expected to be
dereferenceable, often DNS-style names such as com.example.

projects.namespacesInJSON are used [165]; the syntactic differences of the
proposals are negligible. The second group of approaches assumes
namespaces to be dereferenceable to be able to retrieve further infor-
mation about them. In other words, they are based on the idea of Linked
Data and, as such, they are mostly trying to create a JSON serialization
format for RDF. Most of those approaches thus also offer other function-
ality such as data typing or string internationalization.

As part of the effort to standardize a JSON serialization format for RDF,
the RDF Working group has already compared most of the existing
approaches [166]; therefore we would like to refer the interested reader to
that document for a detailed review of the various proposed solutions.
Summarized, it can be said that most of the approaches create a new me-
dia type with specific processing models. The main difference is whether
they are triple- or entity-centric and the degree by which they rely on
microsyntaxes. This determines how familiar a representation looks to a
JSON developer; an important aspect for the acceptance of such a for-
mat. Unfortunately, most proposed solutions fall short in this respect.

4.6 Discussion
As we have shown in this chapter, multiple approaches trying to describe
RESTful services in a machine readable manner have been proposed over

76

the years. Similarly, numerous attempts have been made to extend JSON
with hypermedia controls and namespacing support to make it more
suitable for the creation of self-descriptive messages. This clearly shows a
desire to formalize the development and description of RESTful services
but, unfortunately, none of the proposed solutions managed to achieve
noticeable adoption. The only endeavors blessed with some uptake were
solutions targeting small, well-defined use cases such as the description of
search engine interfaces or content syndication.

We argue that the lack of acceptance of those approaches stems from the
fact that they do not provide any imminent incentive and thus experience
a classic chicken-and-egg problem. No services are being formally
described because there are no applications making use of that infor-
mation and no applications are developed because there are no such ser-
vice descriptions. Furthermore, a lot of the presented proposals are
complex, heavyweight solutions. Often their functioning resembles the
flawed RPC-model which is a problem especially with regard to RESTful
services that follow a fundamentally different architecture. Some seman-
tic approaches introduce new languages and most of them promote top-
down modeling, i.e., semantics first. RESTful Web APIs, however, are
often driven by bottom-up design. Analyzing the current state of the art
and taking into account our experience in creating Web services and
working with Web developers, we were able to distill a number of aspects
which we deem important to solve the issues described in Chapter 3.

A critical, yet often neglected feature is the support for hypermedia. Web
APIs need to the able to convey valid state transitions at runtime instead
of requiring developers to hardcode them into their clients. Thus, the
description of URL structures or templates generally provides little
advantages. Developers typically find it much simpler to hardcode against
those patterns instead of processing them at runtime. This leads to a tight
coupling and hinders the evolvability of Web APIs as URLs cannot be
changed without breaking clients. Thus, a number of approaches pre-
sented in this chapter define constructs to serialize hyperlinks in, e.g.,
JSON. This is definitely a step in the right direction but doing just that is
certainly not enough. It solves only part of the problem and can just as
well be achieved by simpler, standardized mechanisms such as the HTTP
Link header [57]. So, while support for hypermedia is without a doubt
critical, features such as namespacing are important as well. Without

77

namespacing, it becomes extremely difficult to reuse concepts across dif-
ferent Web APIs. This leads to the current situation in which every Web
API is effectively a snowflake, i.e., every Web API is unique and requires
documentation to be used. By supporting namespacing, it becomes pos-
sible to reuse and mix concepts from various sources in a single message.
At the same time, the message becomes self-descriptive, which is one of
REST’s fundamental constraints. The problem with most formats or
conventions supporting namespacing is that the messages become overly
verbose. Furthermore, our experience tells us that average Web develop-
ers do not want to deal with namespaces. Thus, we believe that it would
be better to let experts define “namespace bundles” similar to profiles as
described in section 2.2, which would allow developers to work with the
concepts as if they would all belong to a single namespace.

An interesting observation in analyzing the state of the art is that most
proposed solutions are either too simplistic or overly complex. It is hard
to find approaches in the middle ground of these two extremes. Solutions
in the first camp typically confine themselves to CRUD-style APIs.
While it is true that almost all functionality can be implemented by such
interfaces, the semantics the CRUD operations offer are too weak in sys-
tems that are not centrally coordinated. Clients also need to know what
the consequences of the various operations are. It is not enough to know
how to create an entity, but it is also necessary to know what implications
such a creation has. For instance, it is crucial to know whether the crea-
tion of an order entity results in the delivery of goods or not. Solutions in
the second camp typically become overly complex by features without
clear usage scenarios in practice.

A lot of proposed solutions from the Semantic Web community e.g.
included descriptions of non-functional characteristics of a service to
support matchmaking. This seems like a sensible decision per se but in
practice it generally becomes too complex to describe abstract charac-
teristics of multiple services in a uniform way. Often, the decision about
which service to use is not based on objective characteristics but on
subjective aspects such as the API publisher’s reputation, relationships
between various companies, or changes in competitive conditions. We
therefore believe that it is essential to find to find the right trade-off
between complexity and expressivity. In this thesis, we therefore concen-
trate on the functional aspects of Web APIs but try to keep the solution

78

extensible enough to support more complex functionality in the future.
Furthermore, we believe that it is imperative to allow the gradual intro-
duction of new features such as namespacing or hypermedia support as
well as the description of service interfaces and semantics. It should be
possible to update existing services with minimal changes to the service
itself. This will ensure that investments in existing systems can be lever-
aged and that developers do not have to change their toolchains due to
disruptively different base technologies.

Chapter 5

Bridging the Gap

between REST

and Linked Data

Developers have to deal with a plethora of heterogeneous data formats
and service interfaces for which little to no tooling support is available
when using RESTful Web APIs. Similarly, when implementing services
developers struggle with a number of difficult design decisions. Thus,
most Web APIs are like snowflakes, i.e., similar yet not alike. Even
though the differences are in general quite subtle, they render code reuse
impossible to a large extent. As we have seen in Chapter 3, the usage of
proprietary data formats, the reliance on static contracts written in natu-
ral language, and the fact that clients are often developed by the same
team in lockstep with the service itself are the main reasons for this situa-
tion. Simply speaking, the goal of this thesis is to break this vicious cycle.

As we have seen in the previous chapters, various issues have to be solved
to achieve this ambitious goal but the most important building block is a
data interchange format or a description language supporting the creation
of self-descriptive messages. Moreover, that format or language either

80

needs to have built-in support for hypermedia or provide extension
points to add it separately—for instance in the form of a vocabulary. It is
also important to keep data integration and reuse in mind when design-
ing a solution to these issues as it is the underlying problem to be solved
in a lot of Web API usage scenarios. This is a task RDF has proven to be
very apt at as its simple data model often represents the least common
denominator to which various different other data models can be easily
mapped to.

Even though RDF/XML, the only standardized standalone serialization
format for RDF, is widely disliked and new formats, such as Turtle, have
not been optimized for Web APIs, our hypothesis is that it should be fea-
sible to standardize and streamline the development and usage of truly
RESTful Web APIs by combining technologies from both the world of
Web APIs and the Semantic Web. We expect that such standardization
would, in the first place, result in higher productivity due to the ability to
create generic tools and libraries, and to reuse already existing RDF
vocabularies. Subsequently, it could lead to much more sophisticated
applications. It could also potentially foster the creation of tools at higher
levels of abstraction which could, hopefully, even allow non-technical
experts to create solutions fulfilling their situational needs.

Based on this hypothesis, the study and analysis of the state of the art,
and our experience in creating and using RESTful services, we began
with experiments to design a solution for the problems identified in sec-
tion 3. We first concentrated on the data interchange as it is the most vis-
ible and concrete aspect of a Web API. This led to the development of a
generic data interchange format, which we complemented with a light-
weight vocabulary defining the semantics of a number of concepts
needed in most Web APIs. This iterative process resulted in four original
contributions which are described in the following sections. JSON-LD,
the final data interchange format has become an official and well-
accepted W3C standard. Hydra, the vocabulary defining important con-
cepts for RESTful Web APIs, has also been well received and has led to
the establishment of a W3C Community Group working on its stand-
ardization and future extensions.

This chapter is based on previous work that has been published in [25],
[27], [95]–[99], [144], [167]–[170].

81

5.1 SAPS
Numerous services are implemented by exposing a simple CRUD inter-
face to manage entities of various types. All the interaction with such an
API happens through the manipulation of specific entities. An
e-commerce API, e.g., might enable clients to order goods by creating an
order entity which references a number of article entities. While a CRUD
interface is rarely enough to build sophisticated services in practice, it is a
common pattern and often the least common denominator of different
Web APIs. To prove the principal viability of our hypothesis that it
should be possible to standardize and streamline the development of Web
APIs by combining Semantic Web technologies with technologies used in
RESTful services, we started experimenting with proven, standardized
technologies.

The Atom Syndication Format [48] and its publishing protocol [47] are
often cited as poster children of RESTful service design. Along with
OpenSearch [159] they are among the few approaches that have been
widely adopted. Well aware of the fact that XML was not designed for
interchange of structured data but to markup mixed content and that
Atom often enforces a too rigid structure, we nevertheless chose them as
the base technologies for our first experiments which aimed to create a
minimum viable product [171] combining Semantic Web technologies
with technologies used in Web APIs. This finally lead to the development
of SAPS [27] which is described in this section.

Building a solution by combining different proven technologies has the
advantage of readily available, mature tooling instead of having to start
from scratch. This is quite beneficial in terms of agility as the focus can
be put on the high-level concepts and ideas instead of having to spend
time on implementation details.

5.1.1 Basic Concepts and Principles

The basic idea of SAPS (Semantic AtomPub-based Services) is to combine
the Atom Syndication Format [48], the Atom Publishing Protocol [47],
and the OpenSearch [159] format to provide a framework for the
exchange and manipulation of entities. The entities themselves, i.e., the
data the client is mainly interested in, are described by semantically

82

annotated schemas. The result
is a mostly standardized tech-
nology stack as illustrated in
Figure 12. If the payload is
encoded in XML, even the
semantic layer at the top can
be realized by using stand-
ardized technologies such as
XML Schema [89] and
SAWSDL [119]. The sole
purpose of SAPS is to define
how to integrate these
technologies.

The main entry point of a Web API built with SAPS is represented by an
Atom service document [47] consisting of a number of collections, i.e.,
Atom feeds. This allows a client to add new entities or to discover already
existing entries by browsing the various collections. Without further
knowledge, however, it is difficult for a machine client to figure out to
which collection an entry should be added and which collection should
be browsed to find a specific entity respectively. Humans typically rely on
the collection’s name or categories for this purpose but the natural lan-
guage description is semantically too weak for a machine to work with
directly. SAPS, therefore leverages the fact that Atom does not assign any
meaning to the content of the app:categories element and reuses it to
convey machine-readable hints about the data in a collection.

The category’s scheme is set to an ontology’s namespace prefix and the
term to a specific concept in that ontology. Effectively, the concept’s IRI
is split into a prefix and a suffix similar to the usage of compact URIs
(CURIEs) [172] in various RDF serialization formats or XML. This
informs a client what kind of data it may find in a specific collection.
Unfortunately, it does not convey enough information to add new enti-
ties, as it describes neither the expected syntactic structure nor the prop-
erties of such an entity (in RDF the properties define their relationship to
a class and not vice versa).

The Atom Publishing Protocol normally addresses this by defining the
acceptable payload formats in terms of media types but unfortunately this
is normally not specific enough in practice—at least not for Web APIs.

HTTP(S)

Atom + AtomPub

TCP/IP

OpenSearch

SAWSDL

XML Schema

SAPS Semantic Layer

Figure 12. The SAPS layer cake

83

The preferred media types for Web APIs are typically too general and,
most of the time, minting new proprietary media types is neither practi-
cal nor desirable. Both XML (application/xml) and JSON
(application/json), e.g., are not concrete enough to allow the automatic
construction of messages. SAPS solves this by using semantically anno-
tated schemas to define both the syntactic structure of the messages as
well as the semantics of the various elements. Via the newly introduced
attribute saps:schema the media type is augmented with a schema that
can be used to generate payloads according to the requirements of the
server. It is important to note that, since the schema is semantically
annotated, the data model used on the client can be automatically
mapped to the syntactic structure required by the server. The coupling,
however, takes places at the semantic layer instead of the syntactic layer
which improves the evolvability and reusability of the system as semantic
concepts change much less frequently than the syntactic structures to
serialize them.

Just as with Atom itself, clients of SAPS-based services typically interact
with feed entries indirectly, i.e., not by dereferencing each entry’s URL to
retrieve its representation, but by retrieving the feed in which the entries’
representations are embedded. This is much more efficient when
retrieving numerous entries but the downside is that the metadata that
could be found in the HTTP headers when retrieving each feed entry
separately is lost. To partially mitigate this limitation SAPS introduces
the saps:etag attribute.

SAPS’s etag attribute is equivalent to HTTP’s ETag header [9], a token
identifying the current version of a resource representation. The etag
attribute can be used to specify the ETag of an entry embedded in a feed
so that the need to separately dereference its URL just to get the ETag is
eliminated. This improves the efficiency by enabling conditional retriev-
als (GET using the If-None-Match HTTP header) and adds support for
optimistic concurrency control when manipulating or deleting entries
(e.g., PUT or DELETE requests using HTTP’s If-Match header).

This simple model offers a complete CRUD interface to the data exposed
by a Web API allowing entities to be created, retrieved, updated, and
deleted by standardized technologies. While this covers a lot of the func-
tionality typically needed in Web APIs, it ignores a common use case,
namely the query of data. With the interface described so far, a client has

84

to iterate through a collection in order to find a specific entry. In most
cases, however, it would be much more efficient to query the API to find
a specific entity directly. SAPS addresses this use case by describing a ser-
vice’s search interface(s) with the OpenSearch format. Given that Atom
was designed as an extensible format, it is trivial to integrate OpenSearch.
The OpenSearch document describing the search interface can either be
directly embedded in a Atom service document or feed as “foreign
markup” [48] or referenced by using Atom’s link tag with the standard-
ized search link relation. The OpenSearch document itself specifies a
URL template which is expanded to a URL by populating it with the
concrete query criteria. In SAPS, the query criteria are, most of the time,
expressed by using semantic concepts from a vocabulary. The
OpenSearch document defines a prefix (an XML namespace) identifying
the vocabulary so that the URL template’s variables can be expressed in
the form of CURIEs.

Similar to the search functionality, interaction models that do not fit
nicely in the collections/items structure can be built by including links
with specific link relations in both feeds and feed entries. Obviously a
client needs to know how to process the link relations. SAPS does not
define any mechanism to describe that, but just as Atom, relies on exter-
nal documentation that developers can use to implement their clients.

Since SAPS is based on Atom, it strictly follows its specification and the
use of most Atom elements is self-explanatory. Some elements, however,
require further clarification in the context of SAPS. For instance, in most
of the cases it is not obvious how atom:title, atom:author, and
atom:summary should be used. SAPS takes a pragmatic approach for these
fields: the title element is used to create a human-readable representa-
tion of the item (e.g., if a product is represented its name and price could
be used), the same applies for the summary element where required. The
author element is a bit trickier; most of the time it will either be empty or
set by the server to some constant value such as the API’s name.

5.1.2 Illustrative Example

In order to give a better understanding of the basic concepts and princi-
ples explained in the previous section, we will demonstrate how an illus-
trative example can be realized using SAPS in this section. The example

85

implements the Web API of an imaginary website that lets users find fes-
tivals and buy tickets to attend them. Thus, users should able to find
upcoming festivals, find out which artists perform at that festival, and get
information about the available tickets. Furthermore, it should be possi-
ble for users to buy tickets and to see all the orders they made.

The first step when implementing the Web API is to define the resources
that are needed to represent the application domain’s data. By analyzing
the user stories described in the example we are able to extract the fol-
lowing resources: festivals, performers (artists), tickets, orders, and, per-
haps, payments to complete orders. These resources are accessed by dif-
ferent actors, e.g., users and administrators. It is obvious that the actors
have different privileges and need to authenticate themselves to the sys-
tem, but for the sake of simplicity we will ignore authentication and
authorization issues.

Just like for a normal website we start by building the service’s “home-
page”. In SAPS, this is done by creating an Atom service document enu-

<?xml version="1.0" encoding="utf-8"?>
<service xmlns="http://www.w3.org/2007/app"
 xmlns:atom="http://www.w3.org/2005/Atom"
 xmlns:saps="http://www.purl.org/saps">
 <workspace>
 <atom:title>Awesome Festivals API</atom:title>
 <collection href="/festivals/" >
 <atom:title>Upcoming Festivals</atom:title>
 <accept />
 <categories fixed="yes">
 <atom:category scheme="http://schema.org/" term="Festival" />
 </categories>
 <atom:link rel="search"
 type="application/opensearchdescription+xml"
 href="/queries/festival.xml"/>
 </collection>
 <collection href="/users/4812/orders/" >
 <atom:title>Orders</atom:title>
 <accept saps:schema="/schemas/purchase-order.xsd">
 application/xml
 </accept>
 <categories fixed="yes">
 <atom:category scheme="http://schema.org/" term="Order" />
 </categories>
 </collection>
 </workspace>
</service>

Listing 4. The Atom service document representing the exemplary API’s entry point

86

merating the available collections and referencing one or more
OpenSearch description documents defining the search interface. In this
example, the service’s homepage includes collections for the upcoming
festivals and the user’s orders. Neither performers, nor tickets, nor pay-
ments are included directly on the homepage because there is no immi-
nent use case justifying it. Of course it would be possible to, e.g., also
include the collection of performers directly on the homepage to make it
easier for users to find all festival where a specific artist performs but this
decision is at the sole discretion of the API publisher.

In the Atom service document in Listing 4, the festival collection has an
empty accept element which specifies that the festival collection does not
support the creation of new entries—at least not for the currently
authenticated user. The category of the collection is set to
Schema.org’s [85] Festival class so that clients are able to understand the
meaning, i.e., the semantics, of this collection. These categories could
also be used to store information about the behavior as well as non-
functional descriptions of the service.

Furthermore, the festival collection contains a link to an OpenSearch
description document defining the interface to search for festivals either
by search terms (full-text search) or by the date it begins. As shown in the
OpenSearch description in Listing 5, the full-text query parameter is
represented by OpenSearch’s searchTerms variable whereas the date is
linked to Schema.org’s startDate property. This conveys the semantics of
the two parameters to a client, which is then able to replace them with
concrete values.

The orders collection is, in contrast to the festivals collection, writable. It
accepts new orders in the form of XML documents with the media type

<?xml version="1.0" encoding="UTF-8"?>
<OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/">
 <ShortName>Festival Search</ShortName>
 <Description>Search for festivals</Description>
 <Url xmlns:schema="http://schema.org/"
 type="application/atom+xml;type=feed"
 template="http://example.com/festivals/?q=
 {searchTerms?}&date={schema:startDate?}" />
</OpenSearchDescription>

Listing 5. An OpenSearch document describing the
query interface of the festivals collection

87

application/xml complying with the purchase-order.xsd XML schema.
Just as for the festivals collection, the category of the orders collection is
set to a concept in a vocabulary to convey the semantics of the collec-
tion’s items.

With this information from the Atom service document, a client is now
able to search for a festival and create a purchase order to buy a ticket. As
described by the OpenSearch description document, it can, e.g., search

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom"
 xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/">
 <title type="text">Search for “Ultra”</title>
 <updated>2013-11-14T12:29:29Z</updated>
 <author><name>Awesome Festivals API</name></author>
 <link rel="search" type="application/opensearchdescription+xml"
 href="/queries/festival.xml"/>
 <entry>
 <title>Ultra Music Festival</title>
 <summary>Outdoor electronic music festival</summary>
 <id>tag:example.org,2014:ultra-miami</id>
 <link rel="alternate" type="text/html"
 href="http://example.com/festivals/2014/ultra-miami.html" />
 <link rel="alternate" type="application/xml"
 href="http://example.com/festivals/umf84705.xml"/>
 <updated>2013-08-30T12:29:29Z</updated>
 <published>2013-05-13T08:29:29-04:00</published>
 <content type="application/xml"
 <festival xmlns="http://example.com/ns/festival/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://example.com/ns/festival
 http://example.com/schemas/festival.xsd">
 <id>http://example.com/festivals/umf84705</id>
 <label>Ultra Music Festival</label>
 <description>...</description>
 <from>2014-03-28</from>
 <till>2014-03-30</till>
 <performers>
 ...
 </performers>
 <tickets>
 <ticket>
 <label>General Admission</label>
 <sku>umf84705-165</sku>
 <price>399.95</price>
 </ticket>
 </tickets>
 </festival>
 </content>
 </entry>
</feed>

Listing 6. The result of querying the festivals collection

88

for a festival containing the term “Ultra” by issuing an HTTP GET request
on http://example.com/festivals/?q=Ultra. The server responds with an
Atom feed containing the search results as show in Listing 6.

The XML schema associated with the returned festival entity is defined is
shown in Listing 7 and describes not only the syntactic structure but also

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns="http://example.com/ns/festival/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:sawsdl="http://www.w3.org/ns/sawsdl"
 targetNamespace="http://example.com/ns/festival/"
 elementFormDefault="qualified" >
 <xs:element name="festival" type="festivalType" />
 <xs:complexType name="festivalType"
 sawsdl:modelReference="http://schema.org/Festival">
 <xs:sequence>
 <xs:element name="id" type="xs:anyURI" />
 <xs:element name="label" type="xs:string"
 sawsdl:modelReference="http://schema.org/name" />
 <xs:element name="description" type="xs:string"
 sawsdl:modelReference="http://schema.org/description" />
 <xs:element name="from" type="xs:date"
 sawsdl:modelReference="http://schema.org/startDate" />
 <xs:element name="till" type="xs:date"
 sawsdl:modelReference="http://schema.org/endDate" />
 <xs:element name="performers"
 sawsdl:modelReference="http://schema.org/performer">
 ...
 </xs:element>
 <xs:element name="tickets"
 sawsdl:modelReference="http://schema.org/offer">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ticket" type="ticketType" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ticketType"
 sawsdl:modelReference="http://schema.org/Offer">
 <xs:sequence>
 <xs:element name="label" type="xs:string"
 sawsdl:modelReference="http://schema.org/name" />
 <xs:element name="sku" type="xs:string"
 sawsdl:modelReference="http://schema.org/sku" />
 <xs:element name="price" type="xs:decimal"
 sawsdl:modelReference="http://schema.org/price" />
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Listing 7. The XML schema describing a festival

http://example.com/festivals/?q=Ultra

89

the mapping of the data to Schema.org using SAWSDL’s modelReference
attribute. In this case the semantic annotation is trivial as there is a direct
mapping from the syntactic elements to the concepts in Schema.org.
More complex mappings often need to leverage SAWSDL’s
liftingSchemaMapping and loweringSchemaMapping to describe the trans-
formation using technologies such as XSLT [136], XQuery [135], or
SPARQL [71].

Due to the SAWSDL annotations in both the festival and order XML
schemas, the client is able to extract the SKU of the ticket and create a
purchase order by sending an order XML document to the orders collec-
tion. Obviously the client has to have knowledge about the desired
quantities and acceptable price ranges but that is part of the client’s busi-
ness logic and thus beyond the scope of SAPS. Finally, the server can
guide the client to the payment process by returning a link for the pay-
ment as shown in Listing 8.

<link rel="next payment" href="/users/4812/orders/1684/payment"
 type="application/xml" saps:schema="/schemas/payment.xsd"
 title="Pay to complete your order" />

Listing 8. A typed and SAPS-annotated link to guide a client to the payment process

In order to guarantee a loose coupling of the client and the server, the
schemas have to be retrieved and interpreted on-the-fly at runtime and
not at design time. This is in contrast to the traditional SOAP-practice
where the schemas are used at design time to generate static proxy classes
to interact with the service. Additionally, it has to be assured that devel-
opers do not fall in the “RPC trap”. Developers need to be aware at any
point whether local or remote resources are accessed in order to treat the
differences accordingly; otherwise there is an imminent danger of signifi-
cantly reduced scale, greater client-server coupling, and more difficult
system modification and maintenance [8], [173], [174].

5.1.3 Integration into the Linked Data Cloud

SAPS relies on SAWSDL for the semantic annotation of XML schemas.
Surprisingly, however, SAWSDL, however, does not specify how the
semantic annotations can be used to convert the XML instance data to
RDF or vice versa. In fact, SAWSDL does not even specify a language for

90

representing the semantic models, meaning that RDF is just an option.
Similarly, SAWSDL does not prescribe any particular mapping language
for its liftingSchemaMapping and loweringSchemaMapping attributes.

While SAWSDL’s specification [119] contains an example illustrating
how XSLT [136] and SPARQL [71] may be used to lift XML documents
to RDF and lower RDF data to XML, other languages such as
XQuery [135] may be used as well. The translation from XML to RDF is
typically called lifting because data in RDF is on a higher level of abstrac-
tion than data in XML. This flexibility in regard to both the semantic
model and the schema mapping languages complicates the implementa-
tion of clients and impedes interoperability, as the server and the client
need to find a model and a mapping language they both support. Thus,
in practice, a server may have to offer several alternatives to increase the
likelihood of a match.

SAPS does not restrict the mapping languages but requires a mapping to
RDF in order to integrate the services into the Linked Data cloud. In our
experiments we used a pragmatic solution. We interpreted complex types
as entities that are identified with the URI that is the value of the element
with the type xs:anyURI but without modelReference. For the
festivalType in Listing 7 it is thus the id element which holds the URI
identifying the entity. The modelReference of the complex type defines
the entity’s rdf:type. All remaining elements of the complex type with a
modelReference represent properties of the entity. The festival contained
in the search result in Listing 6 would thus be converted to the represen-

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xs: <http://www.w3.org/2001/XMLSchema#> .

<http://example.com/festivals/umf84705>
 rdf:type <http://schema.org/Festival> ;
 <http://schema.org/name> "Ultra Music Festival"^^xs:string ;
 <http://schema.org/description> "..."^^xs:string ;
 <http://schema.org/startDate> "2014-03-28"^^xs:date ;
 <http://schema.org/endDate> "2014-03-30"^^xs:date ;
 <http://schema.org/performer> ...
 <http://schema.org/offer> [
 rdf:type <http://schema.org/Offer> ;
 <http://schema.org/name> "General Admission"^^xs:string ;
 <http://schema.org/sku> "umf84705-165"^^xs:string ;
 <http://schema.org/price> "399.95"^^xs:decimal .
] .

Listing 9. The festival returned by the query in Listing 6 translated to Turtle

91

tation in Turtle shown in Listing 9. Obviously such a simple approach
does not work for more complex mappings which need, e.g., to combine
two XML elements to a single property value in RDF as when merging a
first name and last name to just a name.

5.1.4 Summary and Lessons Learned

With the definition of just two attributes SAPS is able to build an exten-
sible framework by integrating a number of proven, standardized tech-
nologies. Simple services consisting of just a CRUD-style interface and a
simple query mechanism can be realized without having to rely on any
out-of-band documentation as the necessary interaction models have
already been specified by the underlying standardized technologies. For
more complex scenarios, however, new link relations have to be defined
which means that a dependency on additional out-of-band documenta-
tion describing them is introduced.

Since SAPS is based on the Atom protocol suite it is similar to previous
efforts such as Google’s Data Protocol (GData) [156] or Microsoft’s
Open Data Protocol (OData) [157]. The difference to GData is that the
allowed elements are described in a machine-readable manner in the form
of a schema instead of defining them just in a human-readable form. This
makes it more similar to Microsoft’s OData but, in contrast to OData,
SAPS uses standardized building blocks such as XML Schema and
SAWSDL to do so instead of defining a completely new and proprietary
data model as Microsoft does.

The fact the all major components of SAPS are already standardized leads
to standard-conforming, interoperable services. Unfortunately, however,
it is difficult to integrate the various components into a single product.
The situation is made even worse by the fact that some important
aspects, such as the conversion of XML documents to RDF via
SAWSDL-annotated schemas, are underspecified. Therefore, it has to be
said that the approach is of limited practical use. To be accepted by
developers, a fully specified approach covering all necessary aspects is
needed. Furthermore, a more gradual introduction has to be supported
instead of requiring developers to change their toolchains completely and
to reimplement their services from scratch. Nevertheless, from a research
point of view, SAPS was a successful project as it allowed us to experi-

92

ment with the underlying ideas without having to spend much effort on
foundational groundwork or implementation details.

5.2 SEREDASj
The experiments with SAPS confirmed that the underlying idea of com-
bining Semantic Web technologies with technologies used in RESTful
services works but also revealed a number of practical issues. The rigid
structure dictated by Atom makes it, at times, difficult to implement
intuitive Web APIs. Furthermore, the model based on XML,
XML Schema, SAWSDL etc. turned out to be overly complex in the
context of lightweight RESTful services. The feedback we received made
it strikingly clear that a more lightweight and flexible solution is required
to be of practical use. While looking for alternative serialization formats,
we quickly turned our attention to JSON [50] as it was becoming
increasingly popular at the time.

The advantage of JSON is that in most programming languages it is
much easier to work with as it can be directly parsed into an in-memory
representation sharing the same structure as the data itself. This is clearly
a big advantage but also imposes the risk of a tight coupling between cli-
ents and servers if they depend on the same data structures internally and
externally. In an attempt to eliminate this coupling we designed
SEREDASj—a language to describe SEmantic REstful DAta Services. The
“j” at the end highlights the fact that the approach is based on JSON.

Similar to SAPS, SEREDASj is optimized for CRUD-style services but
instead of forcing developers to (re)implement their services using the
Atom protocol suite and XML, SEREDASj attempts to describe existing
JSON-based services. It is thus not a data interchange format (or exten-
sion thereof) but a description language. SEREDASj descriptions docu-
ment the semantics of the representations and the relationships between
resources. Furthermore, as we will see in section 5.2.3, the descriptions
can be used to lift representations to RDF, manipulate the data with
SPARQL, and write the changes back to the service. This moves the cou-
pling from the syntactic structures of the JSON representations to the
semantics of the data, which not only change much less frequently but
can also much more easily be shared between various services.

93

In this section, we will first introduce the basic underlying ideas and their
realization in SEREDASj. Then, in section 5.2.2, we will illustrate its
usage based on a simple example. Finally, in section 5.2.3 we will show
how services based on SEREDASj can be integrated in the Linked Data
cloud before we conclude the section with a brief discussion of the
strengths and weaknesses of SEREDASj. These sections are based on pre-
vious work which has been published in [95], [97], [167].

5.2.1 Basic Concepts and Principles

To describe a RESTful service, SEREDASj specifies the syntactic struc-
ture of a specific JSON representation, similar to Zyp’s JSON Schema
draft [175]. Additionally, it allows the mapping of JSON elements to
concepts in an ontology and further describes the element itself by
semantic annotations. In contrast to the JSON Schema draft, SEREDASj
has no validation rules as such but instead allows a developer to add
arbitrary descriptions in the form of semantic annotations to a JSON
element. The rationale behind this is that we believe that the data has to
be understood semantically to be validated and used correctly; simple
validation rules as the ones proposed by Zyp are not expressive enough
and thus of limited use. In order to illustrate this, e.g., it is impossible to
define in a JSON Schema that a value has to be either between ten and
twenty or forty and fifty (think of something like frequency bands); it is
just possible to define that it has to be between ten and fifty. A program
understanding the concepts in the semantic annotations will be much
more capable of validating the data. Since our use cases are fundamentally
different from Zyp’s this should not be understood as a critique towards
Zyp’s approach; quite the contrary. SEREDASj is heavily based on Zyp’s
JSON Schema draft to describe the syntactic structure of representations.

As illustrated in Figure 13 on the next page, a SEREDASj document
consists of metadata and a description of the structure of the JSON data
it describes. The metadata describes the hyperlinks related to the JSON
instance data and defines prefixes to abbreviate long IRIs in the semantic
annotations to CURIEs [172]. The structure of the JSON data is
described in terms of nested element descriptions, which define both the
syntactic structure of the data as well the semantic meaning of those
syntactic constructs.

94

SE
R

ED
A

Sj
 d

es
cr

ip
ti

on

M
et

ad
at

a

Pr
ef

ix
es

 Prefix Name

URI

Li
nk

s
Media type & SEREDASj desc.

Request SEREDASj description

Target

Semantics Predicate Object(s)

Variables

Model reference

Binding

Name

Semantics

Predicate Object(s)

El
em

en
t d

es
cr

ip
ti

on

Model reference

Type

Semantics Predicate Object(s)

Items Element description

Properties
Element description

Name

Nested element descriptions

Figure 13. The SEREDASj description model

95

The description of links consists of a semantic description of the link, the
link’s target as either a concrete IRI reference or a IRI template, a defini-
tion of the variables to fill the target’s IRI template, a hint about the tar-
get’s media type and its SEREDASj description, and, for the construction
of requests that require a payload, the SEREDASj description describing
the expected payload. Just as the link itself, the IRI template variables can
be described by generic semantic annotations in the form of predicate-
object pairs. This can be used to describe restrictions of the value space of
IRI template variables or to define a link’s relation type. A link’s variables
can be either bound to an element in the instance data or be linked to a
conceptual model, e.g., a property in an ontology.

Thus, a link description contains all the necessary information for a client
to construct links by filling IRI templates with concrete values from the
data or to create links depending on dynamic, client-supplied infor-
mation, which is, e.g., used for query interfaces where the link contains
the query criteria. Furthermore, the link description describes how a valid
request body can be constructed in order to manipulate resources.

The syntactic structure of the data is described by nested element
descriptions as illustrated in Figure 13. Each element description defines
the element’s JSON data type(s) as well as the mapping to a semantic
concept. As we will see later in this chapter, this makes it possible to con-
vert documents to RDF and vice versa. Additionally, an element descrip-
tion may contain semantic annotations to describe the element in more
detail, and if the element represents either a JSON object or an array, it
also contains a description of the object’s properties respectively the
array’s items in term of, again, an element description.

Given that elements in different representations frequently represent the
same concept, SEREDASj allows element descriptions to be reused by
setting the type of an element description to the IRI of another element
description, even across different SEREDASj documents. Different parts
of a SEREDASj document can be referenced by using a slash-delimited
fragment resolution similar to JSON Pointer [176] (which was specified
after SEREDASj; otherwise we would have reused it) but without the
leading slash. For instance, if the top-level structure described by a
SEREDASj document called doc.seredasj is an object with a property
called name, the IRI to reference the description of that property would be
doc.seredasj#properties/name.

96

SEREDASj descriptions do not have to be complete, i.e., they do not
need to describe every element in all details. If an unknown element is
encountered in a document it is simply ignored. This way SEREDASj
allows forward compatibility as well as extensibility. It should also be
emphasized that a SEREDASj description does not imply a shared data
model between a service and a client. It just provides a description of the
service’s representations to enable the translation between the service’s
and the client’s data model. Just as in SAPS the coupling happens on the
semantic layer instead of the syntactic structure of representations.

Typically, a representation is linked to its SEREDASj description via an
HTTP Link header [57]. By following the Link header a client can easily
find the description to interpret a representation and extract hyperlinks
from the JSON data. This approach, however, works only for Web APIs
where the API publisher itself decides to use SEREDASj. Thus, in order
to avoid the classic chicken-and-egg problem of such new approaches,
SEREDASj also allows an API user to describe a service independently of
the API publisher. An API consumer can establish an overlay graph par-
allel to, but independent of the resources exposed by the service consist-
ing of SEREDASj descriptions. In such a case, the client is given the
entry point of the API and a link to the SEREDASj document describing
it. From that point onwards the client will rely on the SEREDASj docu-
ments associated to the links it decides to follow. It thus navigates simul-
taneously through the resource space of the service and the SEREDASj
descriptions, which have not been created by the API publisher but by a
third party or by the consumer himself.

Similar to SAPS, which inherits the Atom Publishing Protocol’s interac-
tion model, SEREDASj by itself does not define any interaction model
apart from untyped hyperlinks and basic CRUD operations. Instead, it
completely relies on semantic annotations to describe the semantics of
both hyperlinks and the data itself. In practice this means that without a
concrete vocabulary describing the hyperlinks and data, the functionality
of an automatic client is limited. This separation of concerns also means
that the semantics are independent of the serialization format, which
makes it possible to use exactly the same approach to describe, e.g., an
XML-based service. Furthermore, it liberates the data from the tight cor-
set that Atom enforces with its collection/entries model.

97

5.2.2 Illustrative Example

To make it easier to compare SEREDASj with SAPS and in order to
better illustrate the approach, this section shows how the festival Web
API described in section 5.1.2 can be implemented using SEREDASj. In
contrast to SAPS, which uses Atom service documents as the API’s entry
point and Atom feeds for the representation of collections, SEREDASj
does not distinguish between representations. It is a generic mechanism
to describe arbitrary JSON documents. Thus, instead of beginning with
the description of the entry point, which consists of just two links refer-
encing the collection of festivals and orders and an IRI template to
invoke search queries, we will start with the representation of a festival:

{
 "id": "umf84705",
 "label" : "Ultra Music Festival",
 "desc": "Outdoor electronic music festival",
 "from": "2014-03-28",
 "till": "2014-03-30",
 "performers": [
 {
 "id": "t6159",
 "name": "Tiësto"
 }
],
 "tickets": [
 {
 "label": "General Admission",
 "sku": "umf84705-165",
 "price": "399.95"
 }
]
}

Listing 10. Exemplary JSON representation of a festival

Without annotations the data cannot be understood by a machine, and
even for a human it is not evident that a performer’s ID is in fact a
hyperlink to a more detailed representation of that specific performer.
The SEREDASj description in Listing 11 solves these problems by
describing all the important aspects of such a representation.

The metadata section in the SEREDASj document describes two links:
one to get more details about the performers and one to order tickets.
The link to the performer’s details is defined in terms of an URI tem-
plate [177] whose only variable is bound to the performer’s id element in
the data as well as the artistId concept in the service’s vocabulary.

98

Furthermore, the description references SEREDASj documents describ-
ing both the representations that can be retrieved by dereferencing the
link and the template to use when creating or updating artist resources. It
also shows how a link can be annotated semantically. In this case, the
annotation is leveraged for the conversion to RDF, which is described in
detail in the next section. The second link specifies the interface to order
tickets and is thus not bound to any element in the instance data but
stands on its own. Again, the description describes the targets’ represen-
tations and the template to create or manipulate orders. The links’
semantic annotation defines the link relation (reusing Atom’s rel attrib-
ute) a client can use to decide whether to follow the link or not. In this
case, it tells the client that the link can be used to order. Such semantic
annotations allow developers to implement smarter clients which follow
REST’s hypermedia as the engine of application state constraint. The cli-
ent can dynamically choose among the server provided options by evalu-
ating each link’s semantics at runtime.

The rest of the SEREDASj document in Listing 11 describes the struc-
ture of the representation shown in Listing 10 (for the sake of brevity, we
omitted details such as which properties are required and which are
optional). Simply speaking, it describes the syntactic structure of the rep-
resentation by nested element descriptions and maps them to concepts
defined by Schema.org [85]. The mapping strategy is similar to the table-
to-class, column-to-predicate strategy of the R2RML standard [178]
which maps relational databases to RDF datasets. JSON objects are
mapped to classes and their properties are mapped to predicates. This not
only allows to translate the JSON representations to RDF, as described in
the next section, but also to automatically create human-readable docu-
mentation of the data by exploiting the information about the various
concepts of the used vocabulary, in this case Schema.org. The mapping
to semantic concepts thus not only reduces the coupling between the cli-
ent and the server by moving it to a centrally-owned contract but also
liberates developers from the tedious task of writing documentation.

99

{
 "meta": {
 "prefixes": {
 "owl": "http://www.w3.org/2002/07/owl#",
 "schema": "http://schema.org/",
 "atom": "http://www.w3.org/2005/Atom",
 "ex": "http://example.com/vocab#"
 },
 "links": {
 "/artists/{id}#": {
 "mediaType": "application/json",
 "seredasjDescription": "artist.json",
 "requestDescription": "artist-createupdate.json",
 "semantics": { "[owl:sameAs]": "<#properties/performers>" },
 "variables": {
 "id": {
 "binding": "#properties/performers/id",
 "model": "[ex:artistId]"
 }
 }
 },
 "/orders/": {
 "mediaType": "application/json",
 "seredasjDescription": "order.json",
 "requestDescription": "order-createupdate.json",
 "semantics": { "[atom:rel]": "[ex:order]" }
 }
 }
 },
 "type": "object", "model": "[schema:Festival]",
 "properties": {
 "id": { "type": "string", "model": "[ex:festivalId]" },
 "label": { "type": "string", "model": "[schema:name]" },
 "desc": { "type": "string", "model": "[schema:description]" },
 "from": { "type": "string", "model": "[schema:startDate]" },
 "till": { "type": "string", "model": "[schema:endDate]" },
 "performers": {
 "type": "array", "model": "[schema:performer]",
 "items": {
 "type": "object", "model": "[schema:Person]",
 "properties": {
 "id": { "type": "string", "model": "[ex:artistId]" },
 "name": { "type": "string", "model": "[schema:name]" }
 } } },
 "tickets": {
 "type": "array", "model": "[schema:offer]",
 "items": {
 "type": "object", "model": "[schema:Offer]",
 "properties": {
 "label": { "type": "string", "model": "[schema:name]" },
 "sku": { "type": "string", "model": "[schema:sku]" },
 "price": { "type": "string", "model": "[schema:price]" }
 } } } }
}

Listing 11. SEREDASj document describing the representation in Listing 10

100

5.2.3 Integration into the Linked Data Cloud

As the name suggests, one of the main goals of SEREDASj is to integrate
JSON-based services into the Semantic Web. In this section, we will not
only show how SEREDASj descriptions can be used to convert JSON
documents to RDF but also how the resulting data can be manipulated
using SPARQL and how the changes can be written back to the Web
API. This allows a seamless integration of RESTful services into the
Linked Data cloud and goes beyond the typical read-only interfaces.

Translating SEREDASj-described JSON representations to RDF triples
is a straightforward process. The translation starts at the root of the
JSON representation and considers all model references of JSON objects
to be RDF classes while all the other elements’ model references are con-
sidered to be RDF predicates; values of those elements will be taken as
objects. If a representation contains nested objects, just as the example in
Listing 10, a slash-delimited URI fragment is used to identify the nested
object. Semantic annotations in the form of the semantics property, as

@base <http://example.com/festivals/umf84705> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix schema: <http://schema.org/> .
@prefix atom: <http://www.w3.org/2005/Atom> .
@prefix ex: <http://example.com/vocab#> .

<#> rdf:type schema:Festival ;
 ex:festivalId "umf84705" ;
 schema:name "Ultra Music Festival" ;
 schema:description "Outdoor electronic music festival" ;
 schema:startDate "2014-03-28" ;
 schema:endDate "2014-03-30" ;
 schema:performer <#performers/0> .
 schema:offer <#tickets/0> .

<#performers/0> rdf:type schema:Person ;
 ex:artistId "t6159" .
 schema:name "Tiësto" .

<#tickets/0> rdf:type schema:Offer ;
 schema:name "General Admission" ;
 schema:sku "umf84705-165" ;
 schema:price "399.95" .

</artists/t6159#> owl:sameAs <#performers/0> .
</orders/> atom:rel ex:order .

Listing 12. The example from Listing 10 translated to RDF

101

the one shown in the artist details link in Listing 11, contain the predi-
cate and the object. The object might point to a specific element in the
SEREDASj description and is eventually translated to a link in the
instance data.

Listing 12 shows the result of the automatic translation of the example
from Listing 10 to RDF. The event, the performers, and the tickets are
nicely mapped to Schema.org’s ontology. For every array item a new IRI
is created by using a slash-delimited IRI fragment. Eventually, those IRIs
are mapped to the performer’s “real” IRI by an OWL’s sameAs
assertion [179] taken from the link’s semantic annotation. This allows
the JSON data to be integrated in the Linked Data cloud.

In fact, a big part of the current Semantic Web consists of data that is
extracted from Web APIs, relational databases, or traditional Web sites
and transformed to RDF. Unfortunately, this also means that the vast
majority of the current Semantic Web is just read-only, i.e., changes can-
not be stored back to the original source. Thus, we will show in the next
sections how SEREDASj allows data to be updated and transferred back
to the originating Web API.

In the following description we assume that all data of interest and the
corresponding graph of interlinked SEREDASj descriptions have already
been retrieved (whether this means crawled or queried specifically is irrel-
evant). The objective is then to manipulate the harvested data or to add
new data by using SPARQL Update.

SPARQL Update [72] manipulates data by either adding or removing tri-
ples from a graph. The INSERT DATA and DELETE DATA operations respec-
tively add and remove a set of triples from a graph by using concrete data
(no named variables). In contrast, the INSERT and DELETE operations also
accept templates and patterns. SPARQL has no operation to change an
existing triple as triples are considered to be binary: the triple either exists
or it does not. This is probably the biggest difference between SQL and
Web APIs and complicates the translation between a SPARQL query and
the equivalent HTTP requests to interact with a Web service.

Translating INSERT DATA and DELETE DATA Operations

In regard to a Web service an INSERT DATA operation can either result in
the creation of a new resource or in the manipulation of an existing

102

resource if just a previously unset attribute of an already existing resource
is set. The same applies to a DELETE DATA operation which could unset an
attribute of a resource or delete the whole resource. A resource is only
deleted if all the triples describing the resource are deleted. This mis-
match, or rather, conceptual gap between triples and resource attributes
implies that constraints imposed by the Web service’s interface are trans-
ferred to SPARQL’s semantic layer. In consequence some operations that
are completely valid if applied to a native triple store are invalid when
applied to a Web API. If these constraints are documented in the inter-
face description, i.e., the SEREDASj document, a client is able to con-
struct valid requests or to detect invalid requests and give meaningful
error messages. If these constraints are not documented, a client has no
choice but to try and issue requests to the server and evaluate its
responses. This is similar to HTML forms with and without client-side
form validation.

In order to better explain the translation algorithm we will use the festival
Web API whose interface is partially described in Listing 11 but ignore
the tickets to keep the examples simple. We will assume that the CRUD
operations to store and manipulate festivals and their respective perform-

1 do
2 requests ← retrievePotentialRequests(triples)
3 progress ← false
4 while requests.hasNext() = true do
5 request ← requests.next()
6 request.setData(triples)
7 request.setData(tripleStore)
8 if isValid(request) = true then
9 if request.submit() = success then

10 resp ← request.parseResponse()
11 triples.update(resp.getTriples())
12 tripleStore.update(resp.getTriples())
13 requests.remove(request)
14 progress ← true
15 end if
16 end if
17 end while
18 while progress = true
19 if triples.empty() = true then
20 success()
21 else
22 error(triples)
23 end if

Algorithm 1. Translate SPARQL INSERT DATA/DELETE DATA to HTTP requests

103

ers are mapped to the HTTP verbs POST, GET, PUT, and DELETE. Festival
representations can be accessed at /festivals/{id} URLs while the per-
formers are accessible at /artists/{id} URLs. Both can be edited by
PUTing an updated JSON representation to the respective URL. New
festivals and artists can be created by POSTing a JSON representation to
their respective collection URL.

Since SPARQL differentiates between data and template operations, we
split the translation algorithm into two parts. Algorithm 1 translates
SPARQL INSERT DATA/DELETE DATA operations to HTTP requests inter-
acting with the Web service and Algorithm 2 deals with SPARQL’s
DELETE/INSERT operations using patterns and templates.

Listing 13 contains an exemplary INSERT DATA operation which we will
use to explain Algorithm 1. It creates a new festival and a new artist. The
festival is linked to the newly created artist as well as to an existing one.

To convert the operations in Listing 13 to HTTP requests interacting
with the Web service, in the first step (line 2 in Algorithm 1) all potential
requests are retrieved. This is done by retrieving all SEREDASj descrip-
tions that contain model references corresponding to classes or predicates
used in the SPARQL triples; this step also takes into consideration
whether an existing resource should be updated or a new one created.
Since Listing 13 does not manipulate existing resources (/artists/t6159#
in line 11 is just used as an object), all potential HTTP requests have to
create new resources, i.e., have to be POST requests in our example. In our
example we get two potential requests, one for the creation of a new festi-

1 BASE <http://example.com/>
2
3 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
4 PREFIX schema: <http://schema.org/>
5
6 INSERT DATA {
7 _:greatg rdf:type schema:Festival ;
8 schema:name "Great Gig" ;
9 schema:startDate "2014-02-14" ;

10 schema:endDate "2014-02-15" ;
11 schema:performers </artists/t6159#> ;
12 schema:performers _:williams .
13 _:williams rdf:type schema:Person ;
14 schema:name "Robbie Williams" .
15 }

Listing 13. Exemplary INSERT DATA operation

104

val resource and one for a new person/artist resource. These request tem-
plates are then filled with information from the SPARQL triples (line 6)
as well as with information stored in the local triple store (line 7). Then,
provided a request is considered to be valid (line 8), it will be submitted
(line 9).

As shown in Listing 14, in our example the first valid request creates a
new event (lines 1-5). Since the ID of the blank node _:williams is not
known yet (it gets created by the server), it is simply ignored. Provided
the HTTP request was successful, the response is subsequently parsed,
and the new triples exposed by the Web service are removed from the
SPARQL triples (line 11) and added to the local triple store (line 12).
Furthermore, the blank nodes in the remaining SPARQL triples are
replaced with concrete terms. In our example this means that the triples
in lines 7-11 in Listing 13 are removed and the blank node subject of the
triple in line 12 is replaced by the /festivals/gg51972# URL returned by
the server. Finally, the request is removed from the potential requests list
and a flag is set (line 13-14, Algorithm 1) signaling that progress has been
made within the current do while iteration. If in one loop iteration,
which cycles through all potential requests, no progress has been made,
the process is stopped (line 18). In our example the process is repeated for
the request to create a person, which again results in an HTTP POST
operation (line 7-8, Listing 14). Since there are no more potential
requests available, the next iteration of the do while loop begins.

1 → POST /festivals/
2 { "name": "Great Gig", "from": "2014-02-14",
3 "till": "2014-02-15", "performers": [{ "id": "t6159" }] }
4 ← 201 Created
5 Location: /festivals/gg51972#
6
7 → POST /artists/
8 { "name": "Robbie Williams" }
9 ← 201 Created

10 Location: /artists/k92167#
11
12 → PUT /festivals/gg51972
13 { "name": "Great Gig",
14 "performers": [{ "id": "t6159" },
15 { "id": "k92167" }] }
16 ← 200 OK)

Listing 14. INSERT DATA operation from Listing 13 translated to HTTP requests

105

The only remaining triple is the previously updated triple in line 12
(Listing 13), thus the only potential request this time is a PUT request to
update the newly created /festivals/gg51972#. As before, the request
template is filled with “knowledge” from the local triple store and the
remaining SPARQL triples and eventually processed. Since there are no
more SPARQL triples to process, the do while loop terminates and a suc-
cess message is returned to the client (line 20, Algorithm 1) as all triples
have been successfully processed.

Translating DELETE/INSERT Operations

In contrast to the DATA-form operations that require concrete data and do
not allow the use of named variables, the DELETE/INSERT operations are
pattern-based and use templates to delete or add groups of triples. These
operations are processed by first executing the query patterns in the WHERE
clause that bind values to a set of named variables. These bindings are
then used to instantiate the DELETE and the INSERT templates and finally
the concrete deletes are performed followed by the concrete inserts. Thus,
the DELETE/INSERT operations are effectively transformed to concrete
DELETE DATA/INSERT DATA operations before execution. We exploit this fact
in Algorithm 2, which transforms DELETE/INSERT operations to DELETE
DATA/INSERT DATA operations that are then translated by Algorithm 1 into
HTTP requests.

Listing 15 contains an exemplary DELETE/INSERT operation which replaces
the name of all persons whose ID equals k92167 with Lenny Kravitz;

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX schema: <http://schema.org/>
3 PREFIX ex: <http://example.com/vocab#>
4
5 DELETE {
6 ?person schema:name ?name .
7 }
8 INSERT {
9 ?person schema:name "Lenny Kravitz" .

10 }
11 WHERE {
12 ?person rdf:type schema:Person ;
13 ex:artistId "k92167" ;
14 schema:name ?name .
15 }

Listing 15. Exemplary DELETE/INSERT operation

106

regardless of what it was before. This operation is first translated to a
DELETE DATA/INSERT DATA operation by Algorithm 2 and then to HTTP
requests by Algorithm 1.

The first step (line 1, Algorithm 2) is to create a SELECT query out of the
WHERE clause. This query is then executed on the local triple store return-
ing the bindings for the DELETE and INSERT templates (line 2). This
implies that all relevant data has to be included in the local triple store
(an assumption made earlier in this section), otherwise the operation
might be just partially executed. For each of the retrieved bindings
(line 4), one DELETE DATA (line 5) and one INSERT DATA (line 7) operation
is created. In our example, the variable person is bound to the URL
/artists/k92167# and name to Robbie Williams. Therefore, only one
DELETE DATA and one INSERT DATA operation are created as shown in
Listing 16. The operations are then sorted (line 11) as deletes have to be
executed before inserts and finally translated into HTTP requests
(line 12) by Algorithm 1.

1 select ← createSelect(query)
2 bindings ← tripleStore.execute(select)
3
4 for each binding in bindings do
5 deleteData ← createDeleteData(query, binding)
6 operations.add(deleteData)
7 insertData ← createInsertData(query, binding)
8 operations.add(insertData)
9 end for

10
11 operations.sort()
12 translateDataOperations(operations)

Algorithm 2. SPARQL DELETE/INSERT operations to HTTP requests translation
algorithm

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX schema: <http://schema.org/>
3 PREFIX ex: <http://example.com/vocab#>
4
5 DELETE DATA {
6 </artists/k92167#> schema:name "Robbie Williams" .
7 }
8 INSERT DATA {
9 </artists/k92167#> schema:name "Lenny Kravitz" .

10 }

Listing 16. DELETE DATA/INSERT DATA operations generated
from Listing 15 by Algorithm 2

107

In many cases, just as demonstrated in the example, a DELETE/INSERT
operation will actually represent a replacement of triples. Thus, the effi-
ciency of the algorithm can be improved by performing both the DELETE
DATA and the INSERT DATA locally before issuing the actual HTTP request.
This optimization reduces the number of HTTP requests since attributes
do not have to be reset before getting set to the desired value. In our
example this consolidates the two PUT requests into one.

5.2.4 Summary and Lessons Learned

SEREDASj is a semantic description language that has been specifically
designed for JSON-based RESTful services. It focuses on the description
of JSON representations and their semantic annotation. Representations
can be augmented with links and semantically annotated, which makes it
possible to build hypermedia-driven APIs and convert the data to inter-
linked RDF, i.e., Linked Data. We have also shown how the data can be
manipulated with SPARQL Update on a semantic level, abstracting away
the serialization details, and how the changes can be written back to the
Web API. Effectively, this introduces a standardized interface, which not
only has the potential to increase the productivity of developers but also
to improve code reusability and reduce the coupling between the client
and the server. Unlike SAPS, SEREDASj does not require any changes
on the described services and thus provides a smooth upgrade for existing
Web APIs. This also implies that developers can continue to use tools
and knowledge they are already familiar with.

Despite the fact that we put a strong emphasis on simplicity in order to
lower the entry barrier for developers, we found that in practice the fol-
lowed approach is suboptimal. Developers struggle with the separation of
data into representations and descriptions thereof. The layer of intercon-
nected SEREDASj descriptions that sits on top of the JSON representa-
tions exposed by the service increases the cognitive load put on develop-
ers substantially. These lifting and lowering schema mappings to translate
between serialization formats such as JSON to namespaced, interlinked
graphs in RDF, require not only an understanding of the exchanged data
but also how that data gets lifted to a representation in an abstract syntax
such as RDF. It is thus difficult for developers to understand the repre-
sentations and the links connecting them without looking at the corre-

108

sponding SEREDASj description documents at the same time.
Developers also complained that the syntax, which follows JSON
Schema’s approach, is too verbose and that the reliance on semantic
annotations to realize services whose functionality goes beyond simple
CRUD operations is problematic as no vocabulary defining the necessary
concepts is available—even guidelines to create one are still missing.
Similarly, using the CRUD operations as the main interaction model is
often problematic as their semantics are not explicit enough. Clients need
to know whether the creation of, e.g., an order entity is just that or
whether it also implies the delivery of goods.

Summarized, the lesson we learned from building SAPS and SEREDASj
and by working with developers is that the underlying ideas are practical
and accepted by developers but that the concrete realizations we chose to
follow were suboptimal. In our research, we came to the conclusion that
it is generally better to put more effort in the messages themselves instead
of applying the intelligence to message translation mechanisms such as
lifting and lowering schema mappings. What is needed is a clear separa-
tion of the solution into a generic data interchange format and vocabu-
laries defining the semantics of both the data to be exchanged and the
domain application protocol, i.e., a description of the behavioral model.

5.3 JSON-LD
Both SAPS and SEREDASj provide a more or less integrated solution for
CRUD-based services but their expressivity and extensibility are limited
by the lack of a clear separation between the interaction model, the
semantics of the data, and the serialization format. If developers need to
step outside the interaction models of the simple CRUD-based service
interfaces that these approaches were optimized for, the lack of separation
results in increased complexity and thus cognitive load. The experience
we gained from working with SAPS and SEREDASj and teaching them
to other developers revealed that it is necessary to introduce a clear sepa-
ration between these aspects in order to build a scalable and extensible
solution. After getting started with such work, we discovered the
JSON-LD project. As it had almost the same goals that we were trying to
achieve and followed a very similar approach, we joined the, back then,

109

still small community. Consequently, we decided to discontinue our
work on refining SEREDASj in favor of JSON-LD as we believed we
could achieve more by joining forces instead of working on similar, yet
different approaches competing to solve similar problems.

In spite of being a comparatively young project, JSON-LD has already
had a turbulent history. According to Manu Sporny [180], the chair of
the JSON-LD community group, the work was started internally at
Digital Bazaar in March 2010. This was shortly before the W3C RDF
Next Steps Workshop where the desire for a JSON-based RDF format
was expressed [181]. Consequently, the RDF Working Group at W3C
started working on a JSON-based RDF serialization on two fronts. It
decided to quickly standardize Talis’ triple-centric RDF/JSON [182] for
RDF experts needing a JSON-based serialization and to incubate on
JSON-LD for average Web developers without RDF background.
Unsurprisingly, this strategy soon ended in general confusion as to the
exact target group it is attempting to address and what the final outcome
should be. The group did not share a common vision. Finally, in
August 2011, Thomas Steiner, the appointed co-editor of the JSON-
based RDF serialization format pulled the “emergency brake” [183] and
the work in the RDF Working Group was stopped. Despite these hap-
penings we continued to work as part of the JSON-LD community to
improve the syntax. Instead of waiting for the RDF Working Group to
decide on how to proceed the work was moved into a W3C Community
Group, a lightweight alternative to a full-grown W3C Working Group.

Over the years we contributed several ideas to turn JSON-LD from a
language that resulted in documents as the one shown in Listing 17 into
a language allows documents to be created that look almost indistin-
guishable from the idiomatic JSON used in current Web APIs. As usual
in open development projects, we started by asking questions, raising
issues, and providing ideas to earn the trust and respect of the commu-
nity. Over the years, the author of this dissertation went from contrib-
uting test cases and minor text proposals for the specification to become
the lead editor of the JSON-LD 1.0 Processing Algorithms and
API [168] and co-editor of the JSON-LD 1.0 syntax specification [144].
As JSON-LD was brought back to the RDF Working Group for stand-
ardization the author of this thesis was invited by the W3C to join the
group as an expert. This allowed him to directly participate in the devel-

110

opment of the RDF Working Group’s other specifications. After several
contributions the author of this thesis eventually also became a co-editor
of the central RDF specification RDF 1.1 Concepts and Abstract
Syntax [63]. Even though we were not able to achieve everything we
wanted, especially not in the RDF Working Group, these opportunities
gave us a unique chance to influence—and hopefully improve—the
further development of the Semantic Web and Linked Data.

The insights we have gained by creating SAPS and SEREDASj clearly
helped us to shape and improve JSON-LD, which we will present in this
section, and to design a vocabulary, which we will present in section 5.4.
The division of the solution into a data format and a vocabulary not only
reduces the overall complexity but has also the positive side effect that
both parts can be used independently of each other. Just as JSON-LD
can be used in conjunction with any RDF vocabulary (easily also with
multiple vocabularies at the same time), Hydra, the vocabulary that we
will present in section 5.4, can be used with any concrete RDF syntax.

Additional to the features JSON provides, JSON-LD supports hyper-
links, universal identifiers for entities and their properties in the form of
IRIs, string internationalization, definition and use of arbitrary data
types, support for unordered sets and ordered lists, and, last but not least,
a facility to express named graphs. These features not only simplify data
integration, which is the underlying problem in many Web API usage
scenarios, but also enable developers to express their data with much
stronger semantics.

{
 "#": {
 "foaf": "http://xmlns.com/foaf/0.1/"
 }
 "@": "<http://example.com/people/markus>",
 "foaf:name": "Markus Lanthaler",
 "foaf:homepage": "<http://www.markus-lanthaler.com/>",
 "foaf:knows": {
 "@": "</people/john>",
 "foaf:name": "John Doe"
 }
}

Listing 17. The structure of a JSON-LD document at
the time we joined the JSON LD community

111

Just as in the previous sections, we will start with introducing
JSON-LD’s basic concepts and principles before we illustrate how it can
be used to realize our exemplary festival API. Finally, we will show how
JSON-LD documents can be interpreted as RDF and discuss JSON-LD’s
relationship to other Semantic Web technologies before we conclude the
section with some final remarks. This section is based on material that
has been published in [98], [99], [144], [168].

5.3.1 Basic Concepts and Principles

JSON-LD is an attempt to create a simple method to not only express
Linked Data in JSON but also to make existing JSON documents self-
descriptive. Given the reluctance of average Web developers to use
Semantic Web technologies, one of the primary design goals in the
development of JSON-LD was to require as little effort as possible from
developers to create and understand JSON-LD documents. Therefore,
great efforts were put in its simplicity, terseness, and human readability.
Furthermore, it was a goal to require as little effort as possible from
developers to transform their plain old JSON to semantically rich
JSON-LD. Instead of the normally triple-centric approach that other
common serialization formats for Linked Data use, an entity-centric
approach was chosen for JSON-LD. The rationale was to resemble the
programming models most developers are familiar with and to reflect the
way JSON is used. This, and the fact that JSON-LD is 100% compatible
with traditional JSON, allows developers to build on existing infrastruc-
ture investments—which is especially important for enterprises as it
allows them to add meaning to their JSON documents in a way that is
not disruptive to their operations and is transparent to their current cus-
tomers. Thus, in many respects, JSON-LD forms an entire ecosystem for
developers to work with Linked Data without the high entry barrier that
other Linked Data and Semantic Web technology stacks entail. While
initial versions [184] of JSON-LD looked more or less like a direct trans-
lation of Turtle to JSON, we changed the syntax substantially in subse-
quent versions to allow data to be serialized in a way that is often indis-
tinguishable from traditional JSON. This is a remarkable feature of
JSON-LD given that JSON, whose native data model is a tree, is used to
serialize directed graphs which potentially even contain cycles.

112

Given its focus on simplicity, a developer familiar with JSON generally
needs to know only two keywords in order to use JSON-LD’s basic
functionality, namely @context and @id. The @context keyword is used to
include or reference a so-called context which allows JSON properties to
be mapped to IRIs in order to make them uniquely identifiable across the
Web and, typically, dereferenceable. The @id keyword does the same for
entities by assigning identifiers to JSON objects. Thus, it can also be used
to express hyperlinks between resources. Using just these two keywords,
information about two persons and their relationship can be expressed as
follows in JSON-LD:

{
 "@context": "http://example.com/contexts/person.jsonld",
 "@id": "http://example.com/people/markus",
 "name": "Markus Lanthaler",
 "homepage": "http://www.markus-lanthaler.com/",
 "knows": {
 "@id": "/people/john",
 "name": "John Doe"
 }
}

Listing 18. A simple JSON-LD document serializing information about two persons

The document in Listing 18 contains information about a person identi-
fied by the IRI http://example.com/people/markus with the name Markus
Lanthaler. It also contains a reference to another person whose identifier
is http://example.com/people/john (the relative IRI is resolved against the
document’s base IRI, which can, if needed, be set explicitly using the
@base keyword). This reference also shows how some of the properties (in
this case the name) of a referenced entity can be directly embedded. This
allows developers to fine-tune the performance of Web APIs by reducing
the number of HTTP requests necessary for clients to retrieve the desired
information. The referenced context maps the JSON properties in the
document to IRIs which enables clients to retrieve more information
about them by simply following those links; this principle is known as
Follow Your Nose [185]. Assuming that FOAF [108] is used as the vocab-
ulary, the context would look something like Listing 19.

The fact that plain old JSON documents can be interpreted as JSON-LD
by referencing a context via an HTTP Link header provides a smooth
upgrade path for existing infrastructure as it allows most of the function-
ality without having to change the contents of an existing document. API

113

publishers can thus continue to serve the same documents so that existing
clients do not break, while at the same time, newer, more sophisticated
clients able to leverage the additional information from the context are
made possible. This mechanism is even more powerful when combined
with JSON-LD’s keyword aliasing feature. Apart from @context, every
keyword can be aliased to any arbitrary string. This way it is e.g. possible
to use url instead of @id. Aliases are mapped to keywords just as proper-
ties are mapped to IRIs.

If documents are served with JSON-LD’s media type
application/ld+json, it is also possible to embed the context directly in
the document instead of just referencing it in an HTTP Link header.
This saves additional HTTP requests at the cost of increasing the docu-
ment’s size. The developer is thus able to control the trade-off between
bandwidth usage and latency. This control is very fine-grained as it is also
possible to include or reference multiple contexts by wrapping them in an
array. Developers can thus reference an external context and overwrite
some of the mappings locally in the document.

Looking at the example in Listing 18, the alert reader might notice that
the document contains a link to the person’s homepage
(http://www.markus-lanthaler.com/) without using the @id construct—
and also the context in Listing 19 does not contain any further
information to disambiguate that IRI from a regular string. This is where
the @type keyword comes into play. It allows type information to be
assigned to properties as well as to individual values and entities. The
mapping for homepage in the context above can therefore be rewritten to
include such type information to tell clients that the property’s values
represent IRIs.

In Listing 21, @id is used as the value of @type to express that the data
type is an IRI—all other types are identified, just as everything else, with

{
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": "http://xmlns.com/foaf/0.1/homepage",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 }
}

Listing 19. The JSON-LD context mapping the properties in Listing 18 to IRIs

114

IRIs. The most commonly used data types are already standardized as
part of XML Schema [186] and it is recommended to reuse them when-
ever possible to improve interoperability. It is also possible to use @type
directly in a document to express a value or entity type. The person entity
in Listing 18 can, for instance, be enriched with its type and a typed
creation date:

{
 "@context": "http://example.com/c/person.jsonld",
 "@id": "http://example.com/people/markus",
 "name": "Markus Lanthaler",
 "@type": "http://xmlns.com/foaf/0.1/Person",
 ...
 "created_at": {
 "@value": "2012-09-05",
 "@type": "http://www.w3.org/2001/XMLSchema#date"
 }
}

Listing 20. Usage of @type to specify the type of values and entities

The first use of @type in the example above associates a class (FOAF’s
Person class) with the entity identified by the @id keyword. The second
use of @type associates a data type (XML Schema’s date) with the value
expressed using the @value keyword. This is similar to object-oriented
programming languages where both scalar and structured types use the
same typing mechanism, even though scalar types and structured types
are inherently different. As a general rule the @type keyword is expressing
a data type to be used with scalars when @value and @type are used in the
same JSON object; otherwise it is expressing an entity type, i.e., a class. If
it is used within a context, it always expresses a data type.

Another use of @value is to language-tag strings, which is essential for
multilingual applications. This can be done with the @language keyword

{
 "@context": {
 ...
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 }
}

Listing 21. Type-coercion of the homepage property

115

which tags a string with the supplied language code. Just as the @type
keyword, it can either be used in the context or, along with @value, in a
document’s body. The example below shows how the academic title of
the person can be added in both English and German:

{
 "@context": "http://example.com/c/person.jsonld",
 "@id": "http://example.com/people/markus",
 "name": "Markus Lanthaler",
 ...
 "title ": [
 { "@value": "MSc", "@language": "en" },
 { "@value": "Dipl. Ing.", "@language": "de" }
]
}

Listing 22. Expressing language-tagged strings

This brings us to the only case were JSON-LD differs from traditional
JSON, i.e., arrays are generally considered as being unordered sets instead
of ordered lists. This stems from the fact that JSON-LD’s underlying
data model is based on directed graphs in which edges are inherently
unordered. In most cases, this is a minor detail that only matters when
JSON-LD is transformed to other serialization formats or, e.g., persisted
into a database. JSON-LD, however, also has built-in support for ordered
lists in the form of the @list keyword which can be used to express that
an array has to be interpreted as an ordered list. It can either be used
directly in the document by wrapping an object with only an @list prop-
erty around the array or be mapped to a property in the context by set-
ting @container to @list (@set can be used to express explicitly that an
array has to be interpreted as an unordered set and can be classified as
syntactic sugar). Both methods are outlined in the following example:

{
 "@context": {
 "propertyA": "http://example.com/vocab#a",
 "propertyB": {
 "@id": "http://example.com/vocab#b",
 "@container": "@list"
 }
 },
 "propertyA": { "@list": ["a", "b", "c"] },
 "propertyB": ["a", "b", "c"]
}

Listing 23. Serializing lists using @container and inline @list-objects

116

JSON-LD’s container feature is not limited to sets and lists; there are two
more container types. The first allows to index language-tagged strings by
their language. This makes the usage of JSON-LD in multilingual envi-
ronments much more efficient since the desired language can be accessed
directly instead of having to filter an array of language-tagged strings to
find the desired entry. This is illustrated in Listing 24 which indexes the
person’s academic title from Listing 22 by language. Since indexing pro-
vides very compelling benefits in terms of performance and ease of use,
JSON-LD also allows indexing by arbitrary string values using the @index
keyword instead of @language. Adding an index does not affect the
semantics of the data, it just provides a mechanism to bring the data into
the most advantageous form for further processing or usage.

{
 "@context": {
 ...
 "title": {
 "@id": "http://xmlns.com/foaf/0.1/title",
 "@container": "@language"
 }
 },
 "@id": "http://example.com/people/markus",
 "name": "Markus Lanthaler",
 ...
 "title ": {
 "en": "MSc",
 "de": "Dipl. Ing."
 }
}

Listing 24. Language maps allow language-tagged strings to be indexed by language

The @reverse keyword goes in the same direction. As the name already
suggests, it allows the direction of the arc that a property is spanning to
be inverted. Sometimes vocabularies define inverse properties but most of
the time they do not and thus inadvertently enforce a certain serialization
structure onto JSON-LD documents. By using @reverse such restrictions
can easily be sidestepped. Thus, regardless of the fact that FOAF does not
define an inverse property for knows, the example from Listing 18 can be
serialized in a way so that the person John Doe is the top-level object, as
shown in Listing 25.

As the examples shown so far already suggest, it is often cumbersome and
error-prone to spell out the IRIs in full to transform a JSON document
to Linked Data. To mitigate that JSON-LD has two mechanisms to

117

minimize the need to type full IRIs. The first one is to define prefix
mappings in the context to shorten long IRIs. By using prefixes, the
context in Listing 19 can be simplified by defining a prefix for FOAF’s
vocabulary namespace and consequently use it to considerably shorten
the IRIs as shown in Listing 26.

This not only makes the context much smaller but also much more read-
able and hence reduces the cognitive load put on developers. Prefixes can
also be used directly in properties in the body of a document. A
JSON-LD processor expands all compact IRIs (that is how IRIs using
prefixes are called in JSON-LD) by first splitting them into a prefix and a
suffix at the colon and then concatenating the IRI mapped to the prefix
to the suffix. JSON-LD’s compact IRIs are thus effectively
CURIEs [172] but any of their restrictions.

The second approach to minimize the amount of long IRIs goes a step
further by eliminating the need to manually map terms to full IRIs
altogether—at least if a single vocabulary is used. JSON-LD’s @vocab
keyword can be used to define an implicit global prefix which is used for
properties that are not explicitly mapped to an IRI. Since this method

{
 "@context": {
 ...
 "isKnownBy": { "@reverse": "http://xmlns.com/foaf/0.1/knows" }
 },
 "@id": "/people/john",
 "name": "John Doe",
 "isKnownBy": {
 "@id": "http://example.com/people/markus",
 "name": "Markus Lanthaler",
 "homepage": "http://www.markus-lanthaler.com/"
 }
}

Listing 25. Reshaping documents by reversing the direction of properties

{
 "@context": {
 "foaf": "http://xmlns.com/foaf/0.1/",
 "name": "foaf:name",
 "homepage": "foaf:homepage",
 "knows": "foaf:knows"
 }
}

Listing 26. Defining prefixes to abbreviate IRIs

118

automatically affects every non-mapped property in a document (it is
possible to override this behavior by explicitly defining which properties
should not be expanded), it is recommended to use this mechanism only
when a) all or at least most properties are mapped to an IRI and b) most
properties are mapped to the same vocabulary sharing a common IRI
prefix. By using @vocab the initial example can be simplified as shown in
Listing 27. Please note that no external context is referenced and that the
homepage property definition in the context just defines the type coercion
but not the IRI mapping.

{
 "@context": {
 "@vocab": "http://xmlns.com/foaf/0.1/",
 "homepage": { "@type": "@id" }
 },
 "@id": "http://example.com/people/markus",
 "name": "Markus Lanthaler",
 "homepage": "http://www.markus-lanthaler.com/",
 "knows": {
 "@id": "/people/john",
 "name": "John Doe"
 }
}

Listing 27. Defining a global prefix using @vocab

Data serialized with JSON-LD has the form of a graph, and, at times, it
becomes necessary to make statements about the graph itself rather than
just about the entities, i.e., the nodes, it contains. That is exactly the pur-
pose of the last remaining keyword: @graph. It makes it possible to assign
properties and an identifier to the graph itself. The example in Listing 28
shows how a graph can be annotated with its creation date. It is
important to note that while RDF 1.1 [63] introduces the notion of
named graphs and datasets it does not define their semantics. Thus,
looking at it from an RDF perspective, strictly speaking the IRI /graphs/1
does not denote the graph consisting of the information about the two
persons; it is undefined what it denotes.

As the examples already illustrated, it is possible to serialize the same data
in multiple ways. This is an inevitable consequence of the underlying
graph based data model. Furthermore, JSON-LD’s mechanisms to make
the data look like idiomatic JSON, introduce additional variability.
While this flexibility has many advantages, it also makes it more difficult
to process the data. Thus, additional to the serialization format, we also

119

created and standardized a number of algorithms and an application
programming interface (API) to simplify the processing of JSON-LD
documents [168].

The algorithms allow JSON-LD documents to be expanded, compacted,
and flattened. Expansion is the process of taking a JSON-LD document
and applying all embedded and referenced contexts such that all IRIs,

{
 "@context": {
 ...
 "generatedAt": {
 "@id": "http://www.w3.org/ns/prov#generatedAtTime",
 "@type": "xsd:date"
 }
 },
 "@id": "/graphs/1",
 "generatedAt": "2012-09-05",
 "@graph": {
 "@id": "/people/markus",
 "name": "Markus Lanthaler",
 "homepage": "http://www.markus-lanthaler.com/",
 "knows": {
 "@id": "/people/john",
 "name": "John Doe"
 }
 }
}

Listing 28. Named graphs in JSON-LD

[
 {
 "@id": "http://example.com/people/markus",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Markus Lanthaler" }
],
 "http://xmlns.com/foaf/0.1/homepage": [
 { "@id": "http://www.markus-lanthaler.com/" }
],
 "http://xmlns.com/foaf/0.1/knows": [
 {
 "@id": "http://www.markus-lanthaler.com/people/john",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "John Doe" }
]
 }
]
 }
]

Listing 29. The example from Listing 27 converted to expanded document form

120

types, and values are expanded in a way so that the contexts can be elimi-
nated from the document without losing any information. Furthermore,
all properties that allow multiple values are converted to array form to
harmonize their representation. By doing so, expansion thus makes it
much easier to write tools and libraries on top of a JSON-LD processor
as it has already processed all the information contained in the context.
Listing 29 shows how the document in Listing 27 looks when converted
to expanded document form. While all the properties have been replaced
with the full IRIs they are mapped to and the values are expanded to
either @value- or @id-objects, the overall structure of the document is still
the same.

This is not the case for flattened documents. Flattening simplifies pro-
cessing even more as it also normalizes the document’s structure. It is
thus possible to bring any JSON-LD document to a deterministic shape.
This makes it possible to program against a single structure instead of
having to adapt to the various possible document shapes. As shown in
Listing 30, flattening removes the nesting of the two person-objects by
replacing it with a hyperlink connecting them. While the data stays the
same, the syntactic structure of the document is brought into a deter-
ministic shape. This makes it much easier for machines to process the
document at the cost of making it more difficult to read and understand

[
 {
 "@id": "http://example.com/people/markus",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Markus Lanthaler" }
],
 "http://xmlns.com/foaf/0.1/homepage": [
 { "@id": "http://www.markus-lanthaler.com/" }
],
 "http://xmlns.com/foaf/0.1/knows": [
 { "@id": "http://www.markus-lanthaler.com/people/john" }
]
 },
 {
 "@id": "http://example.com/people/john",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "John Doe" }
]
 }
]

Listing 30. The example from Listing 27 converted
to expanded, flattened document form

121

for humans. Thus, we also created algorithms to reverse this process. The
counterpart to expansion is compaction.

Compaction takes a JSON-LD document and applies a supplied context
such that the most compact form of the document is generated, i.e., all
IRIs are translated to short terms (as specified by the supplied context)
and all array values with a single entry are unwrapped from that array
form. Compacting Listing 29 with the initial context from Listing 19
(please note the missing type-coercion for the homepage property) results
in a document equal to Listing 31. Compaction is, however, not always
the exact inverse operation of expansion; it is, e.g., impossible to split
properties that have been merged to the same IRI during expansion.
Since expansion and compaction can be used together, applications can
use them to harmonize data representations by translating between differ-
ent contexts in order to, e.g., rename properties.

{
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": "http://xmlns.com/foaf/0.1/homepage",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@id": "http://example.com/people/markus",
 "name": "Markus Lanthaler",
 "homepage": { "@id": "http://www.markus-lanthaler.com/" },
 "knows": {
 "@id": "http://example.com/people/john",
 "name": "John Doe"
 }
}

Listing 31. The document in Listing 29 compacted with the context from Listing 19

For greater flexibility, we also started designing a framing algorithm [187]
which allows a developer to reshape and query a document using
templating and query-by-example. This declarative definition of the
desired syntactic structure of the document fits very well with the way
developers typically work with JSON, i.e., they program directly against
the structure of the document instead of going through an API. Thus,
framing usually means that all existing JSON tools and workflows can be
retained and the JSON-LD data can be processed as JSON by bringing
the document to the most advantageous form prior its use.
Unfortunately, due to concerns from the RDF WG, whose expertise is
not the definition of APIs or processing algorithms, the framing algo-

122

rithm and the corresponding API were not put on the recommendation
track and are thus not part of JSON-LD 1.0 as standardized at the W3C.
That being said, most available JSON-LD processors implement it and
there already exists a fairly complete test suite ensuring interoperability of
most aspects.

Last but not least, the JSON-LD 1.0 Processing Algorithms and API
specification [168] also defines how JSON-LD can be converted to
RDF’s abstract syntax and vice versa. We will describe the basic princi-
ples of the algorithm separately in section 5.3.3.

5.3.2 Illustrative Example

JSON-LD is just a data interchange format. As such, it is by itself not
enough to implement a Web API. It also needs a vocabulary defining the
semantics of the concepts serialized as JSON-LD. Most concepts needed
to express the data managed by the exemplary festival Web API are
already defined by Schema.org; what is missing, however, is a vocabulary
to describe the hypermedia controls necessary to implement a truly
RESTful Web service. Thus, in practice, developers need to define their
own proprietary concepts similar to how they define their own link rela-
tions if none of the standardized relation types fits.

The JSON-LD context in Listing 32 shows the concepts we need to
implement our exemplary festival API. It includes properties to link from

{
 "@context": {
 "ex": "http://example.com/vocab#",
 "festivals": { "@id": "ex:festivals", "@type": "@id" },
 "orders": { "@id": "ex:orders", "@type": "@id" },
 "totalItems": "ex:totalItems",
 "member": "ex:member",
 "search": "ex:search",
 "template": "ex:template",
 "mapping": "ex:mapping",
 "variable": "ex:variable",
 "property": { "@id": "ex:property", "@type": "@vocab" },
 "@vocab": "http://schema.org/"
 }
}

Listing 32. The JSON-LD context used to describe
representations of the exemplary festival API

123

the API’s entry point to the collection of festivals and orders, properties
to express those collections, and some concepts to realize the search func-
tionality. For the sake of simplicity, we have tried to keep the number of
concepts to a bare minimum. Features such as paging or the typing of the
resources have thus been omitted. All the other concepts come directly
from the Schema.org vocabulary which is why the context sets @vocab to
http://schema.org/.

Using this context, the API’s main entry point can be realized as illus-
trated in Listing 33. Just as the Atom service document acting as main
entry point for SAPS-based services, the JSON-LD document in
Listing 33 references the main collections. While the reference to the
orders collection consists of just a relative IRI, the reference to the festi-
vals collection also includes information about how the collection can be
queried. The variables in the IRI template to query the collection are
mapped to properties from both the proprietary vocabulary (searchTerms)
and Schema.org (startDate). In contrast to the OpenSearch description
as used by SAPS, the variables themselves are just string tokens. The
mapping happens separately. The reason for this seemingly arbitrary and
insignificant decision is that by doing so, the JSON-LD processor will
automatically take care of the expansion to the full IRIs. If the template’s
variables were to represent the properties directly, the processing would
have to be adapted to take care of the expansion. Additionally, the trans-
formation to other RDF serialization formats would be made more diffi-
cult as the template would have to be transformed as well—which is
something no off-the-shelf JSON-LD processor would be able to do.

{
 "@context": "/context.jsonld",
 "festivals": {
 "@id": "/festivals/",
 "search": {
 "template": "/festivals/?q={query}&date={date}",
 "mapping": [
 { "variable": "query", "property": "searchTerms" },
 { "variable": "date", "property": "startDate" }
]
 }
 },
 "orders": "/users/4812/orders/"
}

Listing 33. The festival API's main entry point using the context from Listing 32

124

Provided the client “understands” the used vocabularies, the representa-
tion in Listing 33 provides enough information for the client to invoke a
query to find a specific festival. The result of such a query might look like
the document shown in Listing 34, which, apart from @context and @id,
looks like an idiomatic JSON document as it can be found in numerous
current Web APIs. The difference, however, is that it is completely self-
descriptive. All properties apart from totalItems and member were reused
from an already existing vocabulary (Schema.org), which reduces the risk
of leaking implementation details and thus introducing unnecessary cou-
pling. An additional advantage is that, since all these properties are
already documented and widely used, they do not need to be further
described by the API publisher.

These examples not only highlight JSON-LD’s strengths but also reveal
its weaknesses regarding RESTful Web APIs. On one hand, JSON-LD
makes it simple to create representations that feel like idiomatic JSON,
which is important to achieve wide adoption. In many cases, existing
JSON representations require very little or no changes at all. On the

{
 "@context": "/context.jsonld",
 "@id": "",
 "totalItems": 1,
 "member": [
 {
 "@id": "/festivals/umf84705#",
 "name" : "Ultra Music Festival",
 "description": "Outdoor electronic music festival",
 "startDate": "2014-03-28",
 "endDate": "2014-03-30",
 "performer": [
 {
 "@id": "/artists/t6159#",
 "name": "Tiësto"
 }
],
 "offer": [
 {
 "name": "General Admission",
 "sku": "umf84705-165",
 "price": "399.95"
 }
]
 }
]
}

Listing 34. The representation of a search result in JSON-LD

125

other hand, JSON-LD by itself is not expressive enough to implement
Web APIs. It needs vocabularies which define concepts to do so. The
representation of the API’s entry point in Listing 33 illustrates this prob-
lem. If a client does not know what the orders property stands for, all it
can do is to try to dereference the IRI which is the value thereof or the
property itself. Unfortunately, however, no vocabulary specifically
designed for RESTful Web APIs exists yet to describe the fact that a new
order can be created by POSTing a representation of the order to
/users/4812/orders/. Thus, clients effectively need to be hardcoded
against such properties similar to how clients for the Atom Publishing
Protocol clients are hardcoded against the edit link relation or the
app:collection element.

5.3.3 Integration into the Linked Data Cloud

Ignoring a few extensions such as the support of blank node properties or
data indexing, JSON-LD represents an ordinary RDF 1.1 dataset seriali-
zation format. As such, it integrates seamlessly into the Linked Data
cloud. If those features are not used, a lossless conversion of JSON-LD
documents to other RDF serialization formats is possible. Conversions in
the other direction, i.e., from any other concrete RDF serialization for-
mat to JSON-LD, are always possible. We specified the conversion to
and from RDF in detail in the JSON-LD 1.0 Processing Algorithms and
API specification [168]. Thus, we will confine ourselves to a high-level
description of the process in this section. To keep the explanation simple,
we will use the expanded and flattened document from Listing 30, which
expresses the relationship of the two persons “Markus Lanthaler” and
“John Doe”.

All JSON properties have been transformed to the IRIs they are mapped
to during expansion. Properties (and their values) which are not mapped
to IRIs, keywords, or blank node identifiers are dropped during expan-
sion. Flattening then removed the nesting by replacing nested nodes with
node references, i.e., objects consisting of just an @id-member. Node
objects that are not identified by an IRI or blank node identifier get
assigned a newly minted blank node identifier. This is possible because
blank node identifiers only have local scope and can thus be systemati-

126

cally replaced. The remaining steps to convert such a document to RDF’s
abstract syntax are straightforward.

Each JSON object either represents a node, i.e., an IRI or blank node
with its associated properties, or a value, i.e., a literal. If it is a node, the
value of the @id member represents the subject of the RDF triples which
can be built by taking the remaining key-value pairs. The keys, i.e., the
properties’ names, represent the predicates, whereas the values represent
the objects. Each JSON object having an @id member is transformed to
an IRI or blank node, depending on whether its value begins with _: or
not. If the object has an @value member, it represents an RDF literal
along with its type (in the form of an @type member) or language (in the
form of an @language member). It may also represent an ordered list, in
which case the JSON object consists of an @list-member. Lists are con-
verted to linked lists using the rdf:first/rdf:rest properties as specified
by RDF Schema [65]. In case JSON objects with an @graph property are
encountered, a named graph has to be created. The value of the @id-
member of the JSON object containing @graph is taken as the graph
name. The value of @graph represents the graph itself which is converted
to triples as just explained. Named graphs cannot be nested and thus
there is only ever one level of nesting in the flattened JSON-LD docu-
ment as well.

The result of converting the document in Listing 30 to Turtle is shown
in Listing 35. In order to illustrate the triples as interpreted by RDF’s
abstract syntax [63] we do not use any of Turtle’s syntactic shortcuts.

<http://example.com/people/markus>
 <http://xmlns.com/foaf/0.1/name>
 "Markus Lanthaler"^^<http://www.w3.org/2001/XMLSchema#string> .

<http://example.com/people/markus>
 <http://xmlns.com/foaf/0.1/homepage>
 <http://www.markus-lanthaler.com/> .

<http://example.com/people/markus>
 <http://xmlns.com/foaf/0.1/knows>
 <http://www.markus-lanthaler.com/people/john> .

<http://example.com/people/john>
 <http://xmlns.com/foaf/0.1/name>
 "John Doe"^^<http://www.w3.org/2001/XMLSchema#string> .

Listing 35. The document shown in Listing 30 converted to Turtle

127

It should be noted that JSON-LD allows the serialization of generalized
RDF, i.e., it represents a superset of RDF because it allows blank nodes
to be used as properties. Unless a flag is set, the JSON-LD processing
algorithms and API will, however, by default eliminate such triples when
converting JSON-LD to RDF.

5.3.4 Summary and Lessons Learned

Similar to SEREDASj, JSON-LD tries to provide a smooth upgrade path
from existing JSON-based services to self-descriptive services built on
Linked Data principles. This is enabled by a 100% JSON-conformant
syntax which creates idiomatic representations that are very similar to
how JSON is typically used by Web developers. Developers therefore
neither have to change their workflows nor their toolchains or program-
ming libraries, which considerably lowers the entry barrier to publish
Linked Data in the form of RESTful services. This is exactly what
JSON-LD was designed for. It has built-in support for domain semantics
yet its syntax is completely independent thereof. Instead of having to
design new media types, which are often just specializations of existing
syntaxes, developers can thus fully concentrate on defining and describ-
ing the application’s domain semantics and its behavioral model when
creating Web APIs. Since every concept gets assigned an IRI whose defi-
nition can be looked up, the need for out-of-band knowledge is elimi-
nated as the semantics are brought in band. By leveraging existing vocab-
ularies such as RDFS [65] and OWL [66], detailed machine-processable
definitions that enable automated consistency checks of domain applica-
tion protocols become possible. Furthermore, since JSON-LD
documents can be directly interpreted as RDF, no complex mappings or
algorithms are necessary to manipulate the data and to transfer the
changes back to the server. The additional complexity due to the graph-
based data model and the fact that there exist multiple valid representa-
tions for the same data is significantly outweighed by the achievable
benefits in terms of loose coupling, evolvability, scalability, self-
descriptiveness, and maintainability.

Given that the JSON-LD syntax specification, the processing algorithms
and the API were put on the recommendation track at the World Wide
Web Consortium (W3C) and thus became officially endorsed Internet

128

standards, JSON-LD could become the lingua franca for Web APIs sim-
ilar to how HTML is the dominant language on the human Web. Our
experiments in the context of a large-scale Web of Things project [98],
[188] and the positive feedback from numerous early adopters, some of
which we will present in Chapter 6, attest that the presented approach is
practical. In fact, JSON-LD could be a first step toward standardizing
semantic RESTful Web services and form the basis for various efforts that
previously could not seem to find any common ground. As we have
shown, JSON-LD itself, however, is not a complete technology stack—it
needs to be used with vocabularies that define the domain semantics.
Therefore, in the next section we will introduce a lightweight vocabulary
that can be used with JSON-LD to created truly RESTful, hypermedia-
driven Web APIs.

5.4 Hydra
RDF has, despite its use of IRIs for identifiers, no inherent support for
hypermedia. Whether an IRI is intended to be dereferenced or not
depends implicitly on what it represents. FOAF’s [108] homepage prop-
erty, e.g., suggests that its values are dereferenceable IRIs. The Linked
Data principles postulated by Berners-Lee [17] go a step further and rec-
ommend that all IRIs are dereferenceable (unlike all other RDF concrete
syntax specifications, JSON-LD’s specification [144] recommends the
same). This enables the creation of large interconnected graphs of data.
Most of these graphs, however, are read-only representations—just as
most of the document-based human Web was read-only at the begin-
ning. To change this and add hypermedia support to RDF-driven appli-
cations, a shared vocabulary able to describe affordances beyond simple
dereferenceability is needed. Hydra is an attempt to define a minimal
vocabulary to address these issues. By specifying a number of concepts
that are commonly used in Web APIs it can be used as the foundation to
build truly RESTful, hypermedia-driven services that can be accessed
with generic clients.

Simply speaking, a RESTful Web API consists of a number of interlinked
resources whereby each is identified by an IRI. In order to find its way
through the resource space, a client has to understand the semantics of a

129

hyperlink, i.e., be able to identify in which relation a resource stands to
another resource. Typically, those relationships and resource types them-
selves are domain-specific but it is, nevertheless, possible to extract a
number of such link relations and resource types that are generic enough
to be applicable to a wide range of application domains. Collections as
defined by, e.g., Atom, are a good example for this.

Web APIs use collections to reference a number of related resources.
Taking a blog as example, most developers would probably choose to
expose a collection containing all individual blog posts. Similarly, all
comments related to a specific post, would be grouped in a dedicated
collection. Such collections typically also expose functionality such as the
creation of new resources by POSTing representations to the collection’s
IRI or searching for specific resources in the collection by accessing the
collection with specific URL parameters describing the query criteria.

Unlike JSON-LD, which was a collaborative effort from the very begin-
ning, Hydra was a personal project for a long time. This allowed us to
iterate more quickly than would have been possible if several people
would have been involved at this early stages. After having published the
first more or less stable version of Hydra in we decided it was time to
open the further development of Hydra to a wider public and established
a W3C Community Group.

Most parts of this section have already been published in [96], [99],
[169], [170].

5.4.1 Basic Concepts and Principles

The basic idea behind Hydra is to provide a vocabulary which enables a
server to advertise valid state transitions. A client then proceeds through
the service by looking at one response at a time, each time evaluating how
best to proceed given its overall goal and the available transitions. The
Hydra descriptions provide enough information for the client to con-
struct HTTP requests manipulating the server’s state in order to achieve a
certain application-specific goal. Since all the information about the valid
state transitions is exchanged in a machine-processable way at runtime
instead of being hardcoded into the client at design time, clients can be
decoupled from the server and are able adapt to changes more easily.

130

Figure 14 illustrates the Hydra core vocabulary (the figure’s intention is
to show how Hydra is used rather than its precise definition). At the
center stands the ApiDocumentation class which represents, just as its name
suggests, the documentation of a Web API. It enables a server to define
the main entry point and to document the classes and properties as well
the operations it supports. Furthermore, it enables HTTP status codes to
be associated with additional information. Such descriptions may also be
constructed and returned dynamically in response to client requests. This

Link

supportedOperation

Operation

method
expects
returns
statusCodes

Error

title
description

StatusCodeDescription

statusCode
title
description

Class

supportedProperty
supportedOperation

SupportedProperty

property
required
readonly
writeonly

Collection

member
search

apiDocumentation

IriTemplate

template
mapping

PagedCollection

member
itemsPerPage
firstPage
nextPage
previousPage
lastPage
totalItems
search

TemplatedLink

supportedOperation

CreateResourceOperation

DeleteResourceOperation

ReplaceResourceOperation

rdf:Property

rdfs:Resource

rdfs:Class

Resource

operation

ApiDocumentation

title
description
supportedClass
statusCodes
entrypoint

IriTemplateMapping

variable
property
required

freetextQuery

rdfs:subClassOf rdfs:range

rdf:type

Figure 14. The Hydra core vocabulary

131

may sometimes be necessary as HTTP status codes are often not specific
enough, making it difficult to understand the real cause of an error. For
instance, a 400 Bad Request response is rarely informative enough
by itself.

Even though entities are identified by IRIs in RDF, clients cannot relia-
bly assume that IRIs are dereferenceable. In fact, neither RDF itself nor
RDF Schema or OWL defines a concept to describe dereferenceable IRIs.
Hydra’s Resource class, however, does just that. It is a subclass of
RDF Schema’s Resource class and can thus be used to signal a client that
an IRI is dereferenceable and can be used to retrieve further information.
This allows Linked Data to be distinguished from data where IRIs are
used exclusively as identifiers. Similarly, the Link class can be used to
define properties whose values are known to be dereferenceable IRIs.

It is not always possible for a server to create a complete link. For
instance, links to query a server often require parameters which have to
be filled at runtime by the client. To support such functionality, Hydra
uses URI Templates [177]. An IriTemplate (URI templates are allowed
to contain all characters that are legal in IRIs; for consistency we thus
decided to name the class IriTemplate instead of UriTemplate) consists of
a template and a number of mapping declarations. Each IriTemplate-
Mapping maps a variable in the IRI template to a property. This allows a
client to understand the meaning of the various variables and to replace
them with concrete values in order to expand the IRI template to an IRI.
Analogous to Link, there exists a property class TemplatedLink to create
recognizable properties whose value is an IriTemplate.

To enable clients to interact with a Web API beyond simple GET
requests, Hydra contains a notion of operations. An Operation represents
the information necessary for clients to construct valid HTTP requests in
order to manipulate the server’s resource state. As such, each Operation
consists of a required HTTP method and optional expects and returns
types. Similar to the ApiDocumentation itself, operations may also docu-
ment statusCodes that might be returned. This allows a developer to
understand what to expect when invoking an operation. It is, however,
not to be considered as an extensive list of all potentially returned status
codes; it is merely a hint. Developers should expect to encounter other
HTTP status codes and return types as well.

132

The alert reader might wonder why operations have no property to spec-
ify the target IRI. The reason for this is that operations are either bound
to classes or link properties or directly associated with the resources they
apply to. This means that the target IRI is communicated at runtime in-
stead of being defined at design time. If an operation is bound to a class,
it will apply to all its instances, which will be dereferenceable resources
(they are ignored for blank nodes). Similarly, if an operation is bound to
a Link or a TemplatedLink, it will apply to the corresponding IRI value.

A difficult design decision we had to make was how to inform a client
which data a server expects for a certain operation. Classes would lend
themselves but, as we discussed earlier, in RDF it is practically impossible
to say which properties belong to a class. This, in turn, makes it impossi-
ble for a client to know which data it has to send to a server in order to
achieve a certain goal. It also makes it difficult to inform a client (or a
developer for that matter) what it might expect in responses from a
server. We decided to choose the simplest and most pragmatic solution,
i.e., to augment a class definition with supportedProperty, i.e., an enu-
meration of the properties known to be supported. This not only solves
the problem at hand but also enables properties from other vocabularies
to be reused directly.

Each SupportedProperty consists of a property and optionally some flags
specifying whether it is required, readonly, or writeonly. Read-only prop-
erties cannot be modified by a client and are useful for information such
as creation dates or authorship information that gets set by the server
based on login credentials. Write-only properties, on the other hand, are
useful for things like passwords that a client can change but not retrieve.

To ensure Hydra helps bootstrap Web API development, it includes a
small number of commonly used concepts. Since a lot of APIs deal with
basic CRUD functionality, Hydra has three built-in operation types,
namely CreateResourceOperation, DeleteResourceOperation, and
ReplaceResourceOperation. As their names suggest, they can be used to
indicate to a client that an operation results in a resource being created,
deleted, or replaced. Hydra does not restrict the mapping of these opera-
tion types to certain HTTP methods, which means that a concrete delete
operation might be mapped to a POST request. This is an intentional
design decision to not unnecessarily restrict Hydra’s expressivity. The
user is responsible for the mapping of operations to sensible HTTP

133

requests respecting their semantics. It is purely the HTTP method which
defines whether a method is idempotent or safe. The operation describes
the result at a higher level of abstraction and can easily be reused across
different Web APIs. This is one of the aspects which enable the creation
of generic clients.

Similar to the predefined operation classes, Hydra defines classes for col-
lections, another commonly used concept in Web APIs. A Collection is
simply a container pointing to a number of member items. In Hydra, each
of those members is a dereferenceable Resource. Since it is frequently
desired not to serve the whole collection at once, but to separate it into
pages instead, Hydra also defines a specialized PagedCollection. Addi-
tional to its member items, it may also specify the number of itemsPerPage,
the totalItems and links to the firstPage, the nextPage, the previousPage,
or the lastPage. This way, a client can easily navigate through a collec-
tion. Furthermore, Hydra’s search property, whose value is an
IriTemplate, can be used to query such a collection. The only property
Hydra defines to use in such a mapping is freetextQuery but of course
properties defined by other vocabularies can be used as well.

Table 1 and Table 2 summarize the most important information about
the classes respectively the properties that Hydra defines.

Table 1. The classes defined by Hydra

Class Subclass of Description

Resource rdfs:Resource The class of dereferenceable
resources.

Class hydra:Resource,

rdfs:Class

The class of Hydra classes.
Hydra classes and their instances
are dereferenceable resources.

ApiDocumentation hydra:Resource The Hydra API documentation
class

SupportedProperty hydra:Resource A property known to be sup-
ported by a Hydra class.

Operation hydra:Resource An operation.

134

Class Subclass of Description

CreateResource-

Operation

hydra:Operation A CreateResourceOperation is an
HTTP operation which expects
an input of the type specified by
hydra:expects and creates a
resource of the type specified by
hydra:returns.

ReplaceResource-

Operation

hydra:Operation A ReplaceResourceOperation is an
HTTP operation which over-
writes a resource. It data of the
type specified in hydra:expects
and results in a resource of the
type specified by hydra:returns.

DeleteResource-

Operation

hydra:Operation A DeleteResourceOperation is an
HTTP operation that deletes a
resource.

Collection hydra:Resource A collection holding references
to a number of related resources.

PagedCollection hydra:Collection A PagedCollection is a subclass
of Collection with the only dif-
ference that its members are
sorted and only a subset of all
members are returned in a single
PagedCollection. To get the
other members, the nextPage and
previousPage properties have to
be used.

Link hydra:Resource,

rdf:Property

The class of properties repre-
senting links.

TemplatedLink hydra:Resource,

rdf:Property

A templated link.

IriTemplate hydra:Resource The class of IRI templates.

IriTemplate-

Mapping

hydra:Resource A mapping from an IRI tem-
plate variable to a property.

135

Class Subclass of Description

StatusCode-

Description

hydra:Resource Additional information about a
status code that might be
returned.

Error hydra:Status-

CodeDescription

A runtime error, used to report
information beyond the returned
status code.

Table 2. The properties defined by Hydra

Property Domain Description

Range

apiDocumentation A link to the API docu-
mentation

hydra:ApiDocumentation

entrypoint hydra:ApiDocumentation A link to main entry
point of the Web API

hydra:Resource

supportedClass hydra:ApiDocumentation A class known to be sup-
ported by the Web API

hydra:Class

statusCodes Additional information
about status codes that
might be returned by the
Web API

hydra:StatusCode-

Description

statusCode hydra:StatusCode-

Description

The HTTP status code

xsd:integer

supportedProperty hydra:Class A property known to be
supported by the Hydra
class hydra:SupportedProperty

property A property

rdf:Property

136

Property Domain Description

Range

required True if the property is
required, false otherwise.

xsd:boolean

readonly hydra:SupportedProperty True if the property is
read-only, false other-
wise.

xsd:boolean

writeonly hydra:SupportedProperty True if the property is
write-only, false other-
wise.

xsd:boolean

supported-

Operation

 An operation supported
by instances of the
Hydra class or the target
of the Hydra link

hydra:Operation

operation hydra:Resource An operation supported
by the Hydra resource

hydra:Operation

method hydra:Operation The HTTP method.

xsd:string

expects hydra:Operation The information ex-
pected by the Web API.

hydra:Class

returns hydra:Operation The information
returned by the Web
API on success

hydra:Class

title A title, often used along
with a description.

xsd:string

description A description.

xsd:string

member hydra:Collection A member of the
collection

hydra:Resource

137

Property Domain Description

Range

totalItems hydra:Collection The total number of
items referenced by a
collection or a set of
interlinked
PagedCollections.

xsd:integer

itemsPerPage hydra:PagedCollection The maximum number
of items referenced by
each single
PagedCollection in a set
of interlinked
PagedCollections.

xsd:integer

firstPage hydra:PagedCollection The first page of an
interlinked set of
PagedCollections hydra:PagedCollection

lastPage hydra:PagedCollection The last page of an
interlinked set of
PagedCollections

hydra:PagedCollection

nextPage hydra:PagedCollection The page following the
current instance in an
interlinked set of
PagedCollections

hydra:PagedCollection

previousPage hydra:PagedCollection The page preceding the
current instance in an
interlinked set of
PagedCollections

hydra:PagedCollection

search A IRI template that can
be used to query a
collection hydra:IriTemplate

freetextQuery A property representing
a freetext query.

xsd:string

138

Property Domain Description

Range

template hydra:IriTemplate An IRI template as
defined by RFC6570.

xsd:string

mapping hydra:IriTemplate A variable-to-property
mapping of the IRI
template.

hydra:IriTemplate-

Mapping

variable hydra:IriTemplate-

Mapping

An IRI template variable

xsd:string

5.4.2 Illustrative Example

As explained in the previous section, Hydra defines several key concepts
for the creation of hypermedia-driven Web APIs. As shown in Listing 36,
we can therefore replace almost all proprietary concepts in the context in
Listing 32 with concepts defined by Hydra. This simple change is
enough to eliminate most of the out-of-band knowledge required to use
the API presented in section 5.3.2. Any client supporting Hydra is thus
able to expand the IRI template to query the festivals collection in
Listing 33 without requiring any additional information. Similarly, the

{
 "@context": {
 "ex": "http://example.com/vocab#",
 "festivals": { "@id": "ex:festivals", "@type": "@id" },
 "orders": { "@id": "ex:orders", "@type": "@id" },
 "hydra": "http://www.w3.org/ns/hydra/core#",
 "totalItems": "hydra:totalItems",
 "member": "hydra:member",
 "search": "hydra:search",
 "template": "hydra:template",
 "mapping": "hydra:mapping",
 "variable": "hydra:variable",
 "property": { "@id": "hydra:property", "@type": "@vocab" },
 "@vocab": "http://schema.org/"
 }
}

Listing 36. Hydra replaces most proprietary concepts
of the context shown in Listing 32

139

rest of the API’s functionality can be described in a machine-readable way
using Hydra.

The proprietary orders property, for instance, can be defined as a link
pointing to a collection. Furthermore, it is possible to describe that a POST
request to that collection can be used to create a new order entity. The
whole definition can be seen in Listing 37.

This example reveals an interesting question, namely what the semantics
of a specific HTTP request are. The documentation in Listing 37 only
tells that a new resource is being created if an HTTP POST request with a
payload containing an Order entity is invoked on the orders collection.
These are enough semantics to describe simple CRUD-style interfaces. In
our example, however, the consequence of sending such an HTTP
request is that a ticket is being ordered. To convey those semantics to a
client, a more specific operation type has to be used. Obviously this is out
of scope for Hydra itself but nothing prevents a developer to either sub-
class Hydra’s CreateResourceOperation to specialize it or to reuse a con-
cept someone else has already defined. Luckily in a recent initiative (long
after Hydra has been first presented) it was decided to add “actions” to
Schema.org which can be leveraged by Hydra-powered APIs. Thus, we
can simply type the operation as http://schema.org/BuyAction, which is
defined as the “act of giving money to a seller in exchange for goods or
services rendered”. Since Hydra and Schema.org can be used so well
together, we have been discussing the inclusion of Hydra into
Schema.org or a closer alignment with the Schema.org team for several

{
 "@context": "http://www.w3.org/ns/hydra/core",
 "@id": "http://example.com/vocab#orders",
 "@type": "Link",
 "rdfs:range": "Collection",
 "title": "The orders collection",
 "description": "A link to the current user’s order collection.",
 "supportedOperation": {
 "@type": "CreateResourceOperation",
 "title": "Create a new order",
 "method": "POST",
 "expects": "http://schema.org/Order",
 "returns": "http://schema.org/Order"
 }
}

Listing 37. The definition of the orders property

140

months. Recently we also published a first draft proposing the integration
of a subset of Hydra directly into Schema.org [189].

The operation in Listing 37 expects and returns an Order entity. This
information by itself is not enough, as RDF vocabularies typically do not
link from classes to properties but vice versa. Thus, the Hydra API doc-
umentation also documents the properties known to be supported by
instances of the Order class as shown in Listing 38. To keep the examples
simple, the orders in our exemplary festival API consist of just the ticket’s
SKU number, its price, and a link to complete the payment. While the
SKU number can be set by a client when creating the order, the price and
the payment URL are filled in by the server and are therefore marked as
read-only properties.

{
 "@context": "http://www.w3.org/ns/hydra/core",
 "@id": "http://schema.org/Order",
 "@type": "Class",
 "title": "A ticket purchase order",
 "description": "All we need is the ticket’s SKU.",
 "supportedProperty": [
 {
 "@type": "SupportedProperty",
 "property": "http://schema.org/sku",
 "required": true
 },
 {
 "@type": "SupportedProperty",
 "property": "http://schema.org/price",
 "readonly": true
 },
 {
 "@type": "SupportedProperty",
 "property": "http://schema.org/paymentUrl",
 "readonly": true
 }
]
}

Listing 38. The definition of the Order class

This describes the whole API in a machine-readable and interoperable
manner. The few remaining proprietary concepts such as the festivals
and orders properties referencing the corresponding collections could be
further described using other, already existing and standardized vocabu-
laries such as RDF Schema and OWL. For instance, using RDF Schema’s
range [65] along with OWL restrictions [190] makes it possible to

141

describe that the festivals property points to a Hydra Collection whose
member items are instances of Schema.org’s Festival class. Listing 39
shows how such information can be expressed in JSON-LD (omitting
the context definition).

{
 "@id": "http://example.com/vocab#festivals",
 "rdfs:range": [
 "hydra:Container",
 {
 "owl:equivalentClass": {
 "@type": "owl:Restriction",
 "owl:onProperty": "hydra:member",
 "owl:allValuesFrom": "schema:Festival"
 }
 }
]
}

Listing 39. Specifying the type of the Hydra collection
members of the festivals property

5.4.3 Integration into the Linked Data Cloud

Hydra is an ordinary RDFS/OWL vocabulary and as such, it integrates
seamlessly into the Linked Data cloud. In fact, it can be used to improve
data in the Linked Data cloud by explicitly expressing which IRIs are
dereferenceable and which are just used as identifiers. Furthermore, it
allows the enrichment of the typically read-only data found in the Linked
Data cloud with affordances in order to support read/write and other,
more sophisticated interaction models. This opens the door for Linked
Data to many applications that previously have been mainly reserved for
classic Web APIs. In this context is also worth to highlight again that
Hydra can be used with any concrete RDF syntax; it does not depend
on JSON-LD.

5.4.4 Summary and Lessons Learned

Normally, when using Linked Data, a machine-client has no choice but
to try whether a specific IRI dereferences to a document providing fur-
ther information about the concept or not. The reason is that RDF lacks
any notion of hypermedia or interaction models since IRIs are solely used
as identifiers. This is one of the most fundamental hurdles to overcome

142

when combining the Representational State Transfer (REST) architec-
tural style with the Linked Data principles. Other formats such as
HTML have multiple hypermedia controls that can be embedded in the
representations returned by a server. Hydra therefore provides generic
concepts such as links and operations that can be used to augment
Linked Data representations with actionable information. Clearly, this
goes far beyond what is achievable with the traditional definition of me-
dia types as the descriptions can be reasoned with by computer programs.

An important principle to follow when developing clients using such
information is to be prepared that everything might change or even
break. The machine-readable description of the API should be retrieved
and analyzed at runtime and not embedded directly into the client. All
the documentations about things such as available operations or possible
errors should be seen as hints rather than static contracts. At the moment
they are used they might already be outdated and the server might
respond in a totally different way than expected. Clients should be able to
detect and possibly recover from such errors. As a last resort, the client
might need to ask its user for assistance, report an error, or automatically
file a bug report.

One of the design decisions was whether these controls should be opti-
mized to be embedded directly into every single representation, or
whether a separate document should be the preferred way to describe
those affordances. We choose the latter approach for a number of rea-
sons. First of all, the responses from most Web APIs are rather uniform,
meaning that in a Web API there usually exist a small number of
response “types” that are all completely consistent. This is quite different
from human-facing Web sites where different pages differ heavily in
order to keep their users engaged. Secondly, in contrast to a human user,
a machine agent has no problems to remember a number of affordances
and to apply them consistently to elements contained in responses. A
similar approach would be prohibitive on the human Web since the
resulting cognitive load put on humans would be way too heavy. Finally,
an approach collecting the affordances supported by a server in a single
description document is what programmers are already familiar with.
This is not only the predominant form of documentation for Web APIs,
but for APIs in general as it allows developers to quickly understand the

143

capabilities of a server or programming library without having to traverse
the whole state space.

This knowledge concentration of supported affordances in a central
description leads to another interesting question that is left open for most
current Web APIs, namely how to discover that description. The typical
approach is to fall back to a human operator which browses an API pub-
lisher’s website to locate the API description. That is a valid approach
given that the API description is rarely machine-readable anyway. How-
ever, if the API document is machine-readable, as it is the case for Hydra,
it would be a serious limitation if the discovery of that description docu-
ment would require human intervention. Therefore, Hydra uses an
HTTP Link header [57] to direct a client to the corresponding API
document. The link relation used in such a Link header corresponds to
the IRI of Hydra’s apiDocumentation property. This enables the dynamic
discovery of the API description at runtime and works across different
APIs. As soon as an API links to resources of a different API, a client can
recognize the different API description and adapt itself accordingly. Since
the API description is not bound to the API’s host it becomes possible to
rely on central, standardized API descriptions resulting in an even looser
coupling between the client and the server. Furthermore, RDF’s use of
globally unique identifiers allows parts of API descriptions to be shared
and reused, which improves interoperability and reduces costs. Hydra’s
predefined operation types are a first step in that direction. We believe
that it is possible to extract and standardize similarly reusable concepts
for a wide variety of application domains and we are already working
with both the Schema.org and the Activity Streams community to do so.

Considering Hydra’s focus on reusability of concepts between different
APIs, the question may arise why Hydra itself does not rely more on
other existing vocabularies apart from RDF Schema and OWL. The rea-
son is simple. Hydra tries to address Web developers which do not neces-
sarily have profound knowledge of Semantic Web technologies. As such,
a simple, coherent, and self-contained vocabulary is easier to understand.
Using, e.g., OWL class expressions [66] to specify required properties in
the request class used in an operation would simply be too complex for
average Web developers. In other cases, the potential reuse from vocabu-
laries is too small to be justifiable. The HTTP vocabulary [191] is such
an example. The only overlapping concepts are Hydra’s HTTP method

144

and statusCode properties. Such a small overlap does not represent a rea-
sonable argument to include a dependency to a vocabulary. We did,
however, align Hydra’s concepts with the corresponding concepts in the
HTTP vocabulary, which results in almost the same benefits without
producing an unnecessary dependency.

As soon as IRIs in RDF are dereferenced to retrieve further information
about a resource, the question of whether the IRI identifies the returned
representation or some abstract entity arises. Hydra is deliberately silent
on this issue because it is an aspect that has to be solved at a different
layer. All Hydra is concerned about is to describe potential state transi-
tions by providing concepts to describe the interaction model of a Web
API. As history has shown, discussions around issue httpRange-14 [81]
quickly transform into painful philosophical debates making it difficult
to work on technical solutions mitigating the inherent problem. We do
not believe that the Technical Architecture Group’s resolution [192] is a
practical way forward as the recommended mechanism is brittle and
costly to implement. A quick look at the Web also reveals that it is rarely
implemented and therefore cannot be relied upon. Unfortunately, until
an agreed solution to this problem has been found, the only sensible
advice that can be given to developers is to clearly document what IRIs
and properties associated to them denote. As already mentioned earlier,
Tennison’s blog post describing punning [83] and her “URLs in Data
Primer” [84] gives some good advice and shows how it might be done in
a machine-readable way.

5.5 Discussion
In this chapter we presented the approaches we developed to simplify and
standardize the creation of truly RESTful Web APIs. While JSON-LD
has become an official and widely used W3C standard, Hydra’s further
development has been moved to a W3C Community Group to open it to
the wide public. At the same time, we are already discussing its inclusion
(or parts thereof) into Schema.org.

In this section, which is based on previous work published in [25], we
will discuss how JSON-LD and Hydra can be used for the domain-
driven design and implementation of RESTful Web APIs. We will dis-

145

cuss a number of crucial design decisions and show how it is possible to
create Web APIs in which almost all aspects are documented in a
machine-processable form. Not only does this result in an improved reus-
ability of domain models, either as a whole or parts thereof, but also in
composable contracts that enhance the interoperability between systems.
The fact that all data, including the data describing the system, is man-
aged in a unified form allows testing to commence in much earlier stages
of the development process and typically increases the productivity of
developers and the quality of the built solution.

Data Modeling

The first and most important step when creating a RESTful API, or an
application in general, is to understand the problem domain. Based on
that understanding it is then possible to design the data model repre-
senting the various domain entities and their properties. The shared
understanding gained by the formalization of the data model is funda-
mental to enable collaboration between the various stakeholders working
on the realization of a Web API. Given that REST is a resource-oriented
architecture it should not come as a surprise that the modeling of the
resources, i.e., the exposed entities, is a fundamental part of the design
process. The outcome of this process should be a formal description of
the entities, their properties, and their relationships in the problem
domain. This is a task RDF has proven to be very successful at.

Standardized RDF vocabularies such as RDF Schema [65] or the Web
Ontology Language (OWL) [66] formalize the necessary concepts to
describe an API’s data model or, more formally, ontology. The advantage
of using RDF, which is based on a simple graph-based data model, is that
the description can be created in exactly the same format as all other data
in the system. The resulting unified view makes it possible to use the
same tools for both the definition of the data models and the data itself.
Another advantage of an RDF-based system is the drastically simplified
reuse of domain models—either as a whole or parts thereof. Such reuse
not only reduces the inherent costs and risks but also results in concrete
benefits in terms of interoperability and adoption. RDF’s data model
uniquely embraces the inevitable heterogeneity encountered when work-
ing with data at Web scale. Furthermore, its schemalessness ensures the
required agility in today’s fast-moving world.

146

The most important aspect developers have to keep in mind is to not
expose implementation details. That means that a change in the imple-
mentation on the server should not result in changes in the API it exposes
over the Web. In practice, this means that developers should introduce
an abstraction layer decoupling the internals from the data exposed in the
Web API. There exist a number of well-known design patterns to achieve
that; e.g., the Adaptor or the Composite pattern [193]. The fact that
there exists a generic client (which we will present in the next chapter)
from the very beginning allows API “usability tests” to be run similar to
the usability tests that are typically done for Web sites. This helps to
ensure that the API is usable without knowledge of server internals.

From a Linked Data perspective, a vital principle is to reuse existing
vocabularies as much as possible. This allows code reuse on the client-side
and simplifies data integration. Nevertheless, developers often want to
keep full control over the vocabularies they use to provide a unified expe-
rience. In such cases, specific concepts should either be sub-typed or
declared as being equivalent to concepts in existing vocabularies. This
allows more elaborated clients to interpret the data even if they only
support the already existing vocabulary. There are significant research
efforts to support users in this mapping process, which is typically
referred to as ontology alignment.

Related to the reuse of existing vocabularies is the reuse of existing
instance data. Just as Web sites typically link to other related Web sites,
data exposed by a Web API should link to other relevant data on the
Web; otherwise services will continue to remain islands in the vast infor-
mation sea of the Web. This is also a cost-effective opportunity for devel-
opers to provide their customers with additional data outside of their
main business focus. As paradoxical as it may sound, the more data there
is, and the more interconnected it is, the easier it becomes to integrate it
with other data.

After the data model has been defined, it has to be decided how the data
is serialized. Fortunately, there exist already a number of serialization
formats for RDF. As JSON has become the prevalent serialization format
used in Web APIs, it clearly makes sense to choose a format such as
JSON-LD, which combines the best of both worlds the simplicity of
JSON with the semantic expressivity of RDF. A special challenge lies in
the fact that, in contrast to trees as used in traditional JSON, graphs can

147

be serialized in a number of ways while still expressing the same data.
While this imposes no issues for clients processing the data as JSON-LD,
it requires special attention if JSON-only clients that rely purely on the
structure of the serialized data have to be supported as well. The solution
is to formalize the conventions used to serialize the data and document
them in a profile as described in section 2.2.1. The JSON-LD processing
algorithms [168] and framing [187] make it possible to define these pro-
files declaratively and to automatically reshape documents to bring them
into the desired shape. Both JSON-only and JSON-LD aware clients can
then seamlessly work with the same data representations.

Behavioral Modeling

The data model defines how data is represented in the system. This, in a
sense, provides a static view of the system. To be able to access and
manipulate data through an API, the domain application protocol [46],
or more formally speaking, the behavioral model needs to be defined as
well. Despite significant research and development efforts, most Web
APIs are still solely documented in the form of human-targeting, natural-
language documents. Since such documentations do not represent
machine-processable information, the creation of generic clients is made
almost impossible and the results are costly and hard to maintain. To
address these issues we designed Hydra, a lightweight vocabulary to cap-
ture and document the behavioral model of hypermedia-driven Web
APIs in a machine-processable way.

Since Hydra makes the affordances supported by the various resources
exposed by a Web API explicit, it becomes possible to either build
machine agents that navigate Web APIs completely autonomously or to
create generic programming libraries at a much higher level of abstraction
that simplify developers’ lives. Given that all the descriptions are repre-
sented in the same format as the data itself, even the code to access an
API can be transformed to a declarative description that can be analyzed
and worked with using the same tools—a very powerful feature often
referred to as the Principle of Least Power [194].

The combination of a formal data model and a holistic documentation of
the behavioral model based on Hydra enable the creation of declarative
contracts capturing all aspects of a Web API. It is worthwhile to note

148

that, in the spirit of domain-driven design, it is possible to map the con-
cepts defined in the model to those in the code implementing it. Thus, it
would be possible to automatically generate code stubs from these
descriptions. Automatic code generation, however, always imposes the
risk of either introducing unnecessary coupling or leaking implementa-
tions details, which is especially risky if the contract is owned by the
server. Solutions based on JSON-LD and Hydra mitigate this issue by
allowing the problem domain to be decomposed into smaller sub-
problems that are significantly easier to standardize, which shifts the cou-
pling to a central standard (or a combination of multiple standards in the
form of a profile).

Test Early, Test Often

While it is important to test early in the development process it is often
disproportionally difficult to do so when developing Web APIs. Apart
from low-level HTTP libraries, there typically exist no off-the-shelf tools
assisting developers in testing their API. The situation is similar when
developing API clients. Given that the proposed approach provides a
unified view of the system, where all information is represented in the
same format, testing is drastically simplified.

The existence of standardized tools allows the verification of different
aspects of the system at very early stages—way before the system has been
implemented as a whole. This reduces risks and costs while, at the same
time, improving the quality of the system. Using off-the-shelf quad
stores, e.g., it is possible to ensure that the data model is expressive
enough and structured in a way to facilitate its usage by the various
stakeholders. By augmenting the behavioral model with sample responses
for the various operations, it becomes possible to easily create mock ser-
vices that can help in developing clients even when the server does not
exist yet. Just as everything else, the test cases become an integrated part
of the data providing a holistic view of the system. This also allows
verifying that all required interactions are supported by the system
being built.

To further streamline and assist the development of Web APIs, we devel-
oped generic clients for Hydra-based services which can be used to run
API “usability tests” similar to usability tests as usually used for Web

149

sites. This helps to ensure that the API is usable without knowledge of
server internals. Both the human-facing single-page Web application
HydraConsole, which we will present in the next chapter, and an early
version of the generic programming library HydraClient have been
released as open source software [170].

Documenting Services

It takes time to convince developers to use such a new approach to build
their systems. Thus, everything that allows an iterative introduction of
these techniques helps to foster adoption. It is, at least for the foreseeable
future, still important to provide human-targeting documentation in
addition to the machine-processable service descriptions. Most developers
are still better in understanding prose than formal descriptions
and proofs.

The process outlined in the previous sections has the unique advantage
that a lot of the otherwise implicit information about the system is
explicitly expressed in a machine-processable form. The information
from the data model and behavioral model can be used to automatically
generate large parts of human-targeting documentations. By utilizing
technologies such as HTML and RDFa or HTML with embedded
JSON-LD, it is even possible to combine the machine-processable and
the human-targeting documentation into a single document. Since most
of the lower-level details are either standardized or already documented,
humans can thus focus on augmenting the documentation with infor-
mation that really matters for developers: the rationales behind design
decisions, the assumptions made, the mental models, and the overall
goals of a Web API.

Chapter 6

Evaluation

In this chapter we will evaluate JSON-LD and Hydra by looking at them
from different angles. We will begin by evaluating which of the problems
discussed in Chapter 3 have been addressed. Then we will demonstrate
how easily the proposed approach can be integrated into current Web
frameworks. This is a very important aspect for the acceptance of new
technology. If the integration is too difficult or even impossible, devel-
opers will be reluctant to use these technologies as they have to discard
their existing work and start from scratch. Consequently, very few devel-
opers would decide to build Web APIs based on JSON-LD and Hydra.
While this relates mainly to the server side and is thus of most interest for
API publishers, the client side must also not be ignored. In fact, most of
the problems of current Web APIs manifest themselves on the client side
and not on the server side. Thus, in section 6.3 we will present a proto-
type of a completely generic client for JSON-LD/Hydra-powered Web
APIs, which supports browsing the data exposed by the API and inter-
acting with the various resources. As we will see, all the information to
render the user interface is retrieved dynamically at runtime. It thus rep-
resents a highly adaptive solution similar to Web browsers. Given that
JSON-LD has already been well adopted and Hydra is starting to gain
traction, we will present a number of early adopters from both the
industry and academia using JSON-LD and Hydra for public as well as
internal Web APIs in section 6.4 before we conclude the chapter with
some final remarks.

152

The sections 6.2 and 6.3 in this chapter are based on previous work pub-
lished in [99] and [169].

6.1 Problems Addressed
As discussed in detail in Chapter 3, current Web APIs and Semantic Web
technologies suffer from a number of problems. The main issues are that
current Web APIs often rely on proprietary data formats and models and
that the contracts are documented solely in natural language. This makes
them inaccessible for machines and means that they are mostly written
manually which is a tedious and error-prone process. From the perspec-
tive of the REST architectural style, these issues mostly stem from viola-
tions of two important architectural constraints, namely the requirement
of messages to be self-descriptive and the usage of hypermedia as the
engine of application state. Consequently, it is almost impossible to cre-
ate generic, standardized tooling support for Web APIs similar to how
standardized browsers exist for the human Web. Semantic Web tech-
nologies address some of these issues but are perceived as overly complex
and have no inherent hypermedia support (IRIs in RDF are, strictly
speaking, not hyperlinks but identifiers), which typically leads to read-
only interfaces to the data.

The main idea underlying this thesis is to bridge the gap between tech-
nologies used in RESTful Web APIs and Semantic Web technologies.
After several experiments, this led to the development of JSON-LD and
Hydra that address the discussed problems.

RDF underpins the proposed solution by defining a simple, yet powerful
and expressive data model. JSON-LD allows RDF to be serialized as
JSON, the prevalent data format in current Web APIs. As illustrated in
the previous chapter, in most cases JSON-LD documents look almost
exactly the same as their JSON counterparts but are completely self-
descriptive. Developers therefore do not have to spend any effort on
defining proprietary data formats or data models. Instead, they can focus
on building their solution around standardized and interoperable tech-
nologies. If desired, it also opens the door to other Semantic Web
technologies such as quad stores, SPARQL query engines, and reasoners.
Unlike other Semantic Web technologies, however, JSON-LD does not

153

force developers to use them. It also works well with popular NoSQL
solutions such as MongoDB [195] or Elasticsearch [196]. This makes it a
highly flexible technology which looks familiar to most Web developers
and provides a smooth upgrade path for existing infrastructure invest-
ments. We are confident that JSON-LD, together with the clear separa-
tion of the data model from the various serialization formats and the
overall much more accessible RDF 1.1 specifications, will help to alleviate
Semaphobia, the fear of developers to use Semantic Web technologies as
described in section 3.4.

Hydra extends JSON-LD with hypermedia controls going far beyond
simple hyperlinks. This enables the machine-readable communication of
affordances at runtime instead of having to rely on static contracts writ-
ten in natural language at design time. At the same time, the structured
nature of these descriptions and the fact that they are based on Linked
Data principles improves the reusability of definitions and thus reduces
the need to manually write documentation. Developers can therefore
reuse concepts defined by Schema.org instead of having to design their
own vocabulary. This not only reduces the amount of work necessary to
design a Web API but also improves interoperability. Furthermore, it
prevents the leakage of internals, which in turn reduces the coupling
between clients and the server.

The fact that all representations returned by a Web API based on
JSON-LD and Hydra are self-descriptive and contain actionable hyper-
media affordances makes it possible to implement powerful generic
clients instead of having to rely on specialized clients or low-level HTTP
libraries and tools such as cURL [197]. Given also that the API descrip-
tions are just data, they can be used in various ways as discussed in sec-
tion 5.5. It is the usage of IRIs as unambiguous and globally-valid
identifiers, RDF’s generic data model, and the machine-readable seman-
tics that enable serendipity. Similar to mashups, developers will find ways
to use the data in unanticipated ways and integrate it with other data to
make it even more useful.

The clear separation of concerns and the fact that JSON-LD, the data
format, and Hydra, the vocabulary, can be used independently is another
important aspect fostering serendipity. Hydra can, e.g., also be used with
other RDF serialization formats such as Turtle, thus turning hypermedia
into a first-class citizen in Linked Data in general. Hydra clearly describes

154

which IRIs in an RDF graph are just identifiers and which IRIs are, at
the same time, hyperlinks that are intended to be interacted with. Conse-
quently, it renders it possible to turn the currently mostly read-only
Linked Data cloud into fully interactive Web APIs or to seamlessly inte-
grate Web APIs into the Linked Data cloud.

6.2 Ease of Integration into Web Frameworks
Armed with JSON-LD and Hydra, we developed a prototype to demon-
strate the feasibility of the approach presented in the previous chapter. It
shows how easily the proposed building blocks can be integrated in real-
world systems.

The prototype is based on Symfony2 [198], a Web development frame-
work implemented in PHP [199]. It is, as most other current Web
frameworks, based on the Model-View-Controller (MVC) [200] design
pattern. By separating the presentation of information from its pro-
cessing, MVC improves code reusability and separation of concerns. The
models represent the relevant entities in the system, the views (typically
defined by templates) are used to create representations of those entities,
and the controller is responsible for processing inputs, manipulating the
models, and finally returning an updated representation by using the
associated views. Symfony2 further modularizes the code by Page Con-
trollers, which are only responsible for certain requests [110]. Symfony2’s
HttpKernel and Routing components parse the received HTTP request,
extract the request URL and method, and then pass the processing to a
specific page controller, which in turn invokes specific models and views.

Figure 15 illustrates how Symfony2 processes an HTTP request. Incom-
ing requests are parsed by a front controller and subsequently passed on
to the framework’s kernel. The kernel then invokes its routing compo-
nent to retrieve the page controller responsible for the requested resource.
Finally, the page controller constructs a response which is sent back to
the client. Typically, the controller uses various models and a view con-
sisting of one or more templates to construct the response.

While for human-facing Web sites the view layer is crucial and the tem-
plates vary widely, it is rarely required in Web APIs. Instead, for Web
APIs the view layer is typically much simpler and consists of just a

155

serializer turning the models, i.e., the entities, directly into representa-
tions following a specific format. The prototype we implemented thus
replaces Symfony2’s default templating engine with a serializer. Thus,
instead of having to create templates to render the responses, developers
can directly serialize the entities as JSON-LD. In fact, developers do not
even need to call the serializer manually as the prototype directly hooks
into Symfony2’s request lifecycle to serialize the return value of the con-
troller function. So, instead of having to return a response object, devel-
opers can choose to simply return the entity and our prototype will take
care of the serialization.

The serialization component relies on code annotations to control the
serialization of entities and their documentation. While this is more
complex than simply serializing all public members of an entity (not least
because PHP has no built-in support for annotations), it provides the
flexibility that is often required in practice. Not all members should be
exposed (all the time) and sometimes transformations, such as converting
a numeric identifier into a URL, are necessary. The advantage of using
annotations is that the information is kept close to the source code it
describes, which makes it much easier to keep the two in sync. Symfony2
developers are generally used to annotations because several crucial com-
ponents such as the routing component [201] or Symfony2’s default
object-relational mapper Doctrine [202] support them and recommend

Request URL

Request

Parse
request

Retrieve page controller

Invoke
controller

Page
controller

View

Model

Response

HTTP Kernel

Routing

manipulates

updates

instantiates
and returns

Figure 15. Symfony2's request-response flow

156

their use. That being said, it is worth noting that the prototype has been
designed to support other mapping mechanism as well. If developers
prefer to define the mapping from the internal objects to external repre-
sentations by using, e.g., XML files, all they have to do is to implement a
driver that reads those files and populates a class metadata registry with
the extracted information.

The annotations not only specify which properties are to be exposed, but
also describe the affordances supported by the entities. Thus, in addition
to the serialization of entities as JSON-LD, it becomes possible to gener-
ate a machine-readable API documentation based on Hydra. As we will
demonstrate in section 6.3, this makes it possible to create completely
generic clients that are, e.g., able to automatically render forms in order
to gather the necessary data for the creation of valid requests or to pro-
vide additional information about the semantics of the representations
returned by the service. Since this data closely resembles the information
available in current Web API documentations, exactly the same data can
also be used to automatically generate such documentation.

To make its integration as simple as possible, we realized the prototype
integrating JSON-LD and Hydra into Symfony2 in the form of a
so-called bundle, i.e., a plugin in Symfony2-speak. Thanks to
Composer [203] and the modularity of Symfony2, the installation
involves a couple of trivial steps. After adding the HydraBundle as a
Composer dependency and registering it in Symfony2’s kernel, the only
remaining step is to import its routes into Symfony2’s routing collection.
All this requires just a couple of lines of code and is documented in detail
at the bundles homepage [204].

In order to demonstrate how the bundle can be used in practice, we
implemented a hypermedia-driven Web API featuring an issue tracker as
a case study. This not only allows us to show how easily Web APIs can be
implemented using such an approach but also to describe the implemen-
tation of our prototype in more detail.

As we discussed in section 5.5, JSON-LD and Hydra can be used for the
domain-driven design and implementation of RESTful Web APIs.
According to that approach, the first step in the development of a Web
API is to define the required domain concepts. For our issue tracker, the
application domain consists of issues, comments on those issues, and

157

users. Issues have a title, a description, a state (open/closed), a creation
date, and a reference to the user who created it. Comments associated to
an issue have a description, a reference to the user who created it, and a
creation date. Finally, users have a name, an e-mail address, and a pass-
word. Using the user type as an example, we will show how classes can be
augmented with the annotations necessary for their serialization and the
generation of a machine-readable vocabulary.

As shown in the extract of the User class definition in Listing 40, the
fields to be exposed when an instance is being serialized are annotated
with an @Hydra\Expose() annotation. The password will never be serial-
ized, as it is marked as write-only. It will, nevertheless, be documented in
the automatically generated API documentation and be used when
deserializing requests. The class itself has an @Hydra\Id() annotation
which converts the internal identifier (an integer) to a globally valid
identifier in the form of an IRI. This is done by referencing the corre-
sponding route which essentially represents an IRI template—in this case
/users/{id}. The class also has an @Hydra\Operations() annotation which
documents the supported operations on this entity. In this example it ref-
erences routes to replace (update) and delete users.

The raised_issues property in Listing 40 returns an array of the issues
the user raised. The @Hydra\Collection() annotation tells the serializer
that it should wrap that array in a Hydra Collection that can be accessed
via the specified route. The alert reader might wonder why there is no
variable mapping as in the class’ ID annotation. The reason is that the
serializer is smart enough to create those mappings itself if the IRI
template variables correspond directly to a property of the class. In this
case, there is a direct correspondence to the id property. This approach is
commonly known as convention over configuration and is used to decrease
the amount of code/annotations a developer has to write. The same rea-
soning applies to the automatic code generation of simple CRUD-
controllers. All a developer has to do to generate a controller for the just
defined User class is to invoke the following command in the shell:

php app/console hydra:generate:crud --entity=MLDemoBundle:User
 --route-prefix=/users/ --with-write --no-interaction

This will create a page controller supporting all CRUD operations and
listening to requests on the /users/ IRI prefix. If a developer omits the

158

parameters, a wizard will ask for the required information step-by-step.
The code to retrieve the issues raised by a user cannot be generated

namespace ML\DemoBundle\Entity;
use ML\HydraBundle\Mapping as Hydra;

/**
 * User
 *
 * @Hydra\Expose()
 * @Hydra\Id(
 * route = "user_retrieve",
 * variables = { "id" : "id" }
 *)
 * @Hydra\Operations({"user_replace", "user_delete"})
 */
class User
{
 /**
 * @var integer An internal unique identifier
 */
 private $id;

 /**
 * @var string The user's full name
 * @Hydra\Expose()
 */
 private $name;

 /**
 * @var string The user's email address
 * @Hydra\Expose()
 */
 private $email;

 /**
 * @var string The user's password
 * @Hydra\Expose(writeonly = true)
 */
 private $password;

 /**
 * The issues raised by this user
 *
 * @var ArrayCollection<ML\DemoBundle\Entity\Issue>
 * @Hydra\Expose()
 * @Hydra\Collection("user_raised_issues_retrieve")
 */
 private $raised_issues;

 // ... getters, setters, and other methods
}

Listing 40. An annotated entity class

159

automatically and has thus to be added manually. This is simple as the
code in Listing 41 shows.

The @Hydra\Operation() annotation above shows how to document an
operation. In this case, the operation would be exposed as
GetRaisedIssuesOperation and contain the additional information when a
response with a status code of 404 is returned and what it means in this
context (in this case not that no raised issues exist, but that the user does
not exist). In the long term, we envision that a large number of such
operations are “standardized” and thus recognized by generic clients—
Hydra’s built-in CRUD operations are just the beginning. The methods
generated by the CRUD controller code generator are automatically
mapped to Hydra’s built-in operations. This allows the prototype API
console we implemented to pre-fill the form generated for a
ReplaceResourceOperation with the data of the entity.

Implementing the rest of the API is just a matter of implementing the
domain concepts and documenting them with the appropriate annota-
tions. The system is then able to automatically generate both a human-
readable documentation in the form of an HTML page and a machine-
readable vocabulary in JSON-LD for the client. As the response in
Listing 42 shows, it also allows the system to automatically serialize the
entities returned by page controllers into JSON-LD documents that look
almost exactly the same as responses of current JSON-based Web APIs,

 /**
 * Retrieves the issues raised by a User
 *
 * @Route("/{id}/raised_issues",
 * name="user_raised_issues_retrieve")
 * @Method("GET")
 * @Hydra\Operation(
 * status_codes = {
 * "404" = "If the User entity wasn't found."
 * })
 * @Hydra\Collection()
 * @return ArrayCollection<ML\DemoBundle\Entity\Issue>
 */
 public function getRaisedIssuesAction(User $entity)
 {
 return $entity->getRaisedIssues();
 }

Listing 41. An annotated controller function

160

apart from the link to a context definition and the @id and @type key-
words, which could also be aliased to something else.

{
 "@context": "/contexts/User.jsonld",
 "@id": "/users/1",
 "@type": "User",
 "name": "Markus Lanthaler",
 "email": "mail@markus-lanthaler.com",
 "raised_issues": {
 "@id": "/users/1/raised_issues",
 "@type": "hydra:Collection"
 }
}

Listing 42. A sample response as rendered by the HydraBundle

6.3 Support for Generic Clients
The advantage of JSON-LD and Hydra manifests itself most apparently
in the fact that it is possible to implement fully generic and adaptive
clients. To demonstrate this, we implemented an API console or browser
which allows the user to navigate the service presented in previous section
and to invoke operations on the various resources. Furthermore, the con-
sole displays the relevant element documentation which is also used to
dynamically create forms to gather the required data for the construction
of valid HTTP requests.

The HydraConsole [205], as we named our API browser, is implemented
as a single-page JavaScript Web application using a number of well-
known libraries such as jQuery [206], Bootstrap [207],
Backbone.js [208], and Underscore.js [209]. Even though it would prob-
ably have made the implementation slightly simpler we made the delib-
erate design decision to not use any RDF-specific library such as a triple
store or a SPARQL engine. We believe that it is important to demon-
strate to Web developers without Semantic Web background that it is
possible to implement such a generic client without having to buy into
the typical RDF stack. Instead, our implementation shows that such a
client can be realized with tools and libraries most Web developers are
already familiar with.

Following a similar reasoning we kept the user interface quite simple.
Thus, instead of rendering the responses in the form of abstract graphs—

161

as it is often done in Semantic Web tools and demos—we decided to
display the retrieved JSON-LD representations more or less as they were
received. As shown in Figure 16, the only formatting we apply to
responses are whitespace changes, such as the addition of line breaks and
indentations, and the underlining and coloring of hyperlinks in their
typical blue. To aid the understanding of the rendered responses as
JSON-LD we added some unobtrusive interactivity.

When the user moves his mouse over a property in the response pane to
the left, a tooltip showing the IRI it is expanded to appears. Additionally,
the API console dereferences the property’s IRI in the background, looks
for its definition in the response, displays the documentation of the class
associated with the property in the pane at the right, and finally high-
lights the property itself in the displayed documentation. The result of
this process is shown in Figure 16 in which the user’s mouse is over the
raised_issues property that, as the tooltip shows, expands to the IRI
http://hydra.test/vocab#raisedIssues.

To realize this in-place expansion with tooltips we had to modify the
expansion algorithm of our JSON-LD processor [210] to not only emit
the expanded document, but also combine it with the input document.
Thus, behind the scenes the sample response shown in Listing 42 and
Figure 16 is transformed to the document shown in Listing 43 (context
omitted). As the document in Listing 43 illustrates, properties are not
removed during expansion but their value is instead transformed to an
object consisting of an __iri and a __value member. The value of the

Figure 16. The HydraConsole showing a response and its documentation

162

__iri member represents the expanded property. Therefore, the value of
the __iri member of the name property is set to http://hydra.test/↩

{
 "@context": ... ommitted for clarity ...
 "@id": {
 "__iri": "@id",
 "__value": {
 "__orig_value": "/users/1",
 "__value": { "@id": "http://hydra.test/users/1" }
 }
 },
 "@type": {
 "__iri": "@type",
 "__value": {
 "__orig_value": "User",
 "__value": { "@id": "http://hydra.test/vocab#User" }
 }
 },
 "name": {
 "__iri": "http://hydra.test/vocab#User/name",
 "__value": {
 "__orig_value": "Markus Lanthaler",
 "__value": { "@value": "Markus Lanthaler" }
 }
 },
 "email": {
 "__iri": "http://hydra.test/vocab#User/email",
 "__value": {
 "__orig_value": "mail@markus-lanthaler.com",
 "__value": { "@value": "mail@markus-lanthaler.com" }
 }
 },
 "raised_issues": {
 "__iri": "http://hydra.test/vocab#User/raisedIssues",
 "__value": {
 "@id": {
 "__orig_value": "/users/1/raised_issues",
 "__value": {
 "@id":"http://hydra.test/users/1/raised_issues"
 }
 },
 "@type": {
 "__orig_value": "hydra:Collection",
 "__value": {
 "@id": "http://www.w3.org/ns/hydra/core#Collection"
 }
 }
 }
 }
}

Listing 43. The sample response from Listing 42 as expanded for
the rendering in the HydraConsole (context omitted for clarity)

163

vocab#User/name. As the name suggests, the __value member keeps the
value of the property, which, again is split into a __value member holding
the expanded value and a __orig_value member keeping the property’s
original, unexpanded value. This representation of both the expanded
and the original, unexpanded document at the same time is what enables
the HydraConsole to render the tooltips mentioned previously and to
distinguish between ordinary strings and strings representing IRIs.

Given that our JSON-LD processor is implemented in PHP and not in
JavaScript, it runs as a remote service that is invoked by the
HydraConsole. Similarly, we implemented a simple proxy to work
around the same-origin policy of browsers which, for security reasons,
typically block network requests to all servers except the one that served
the original web page. This was especially important at the beginning,
before Hydra’s namespace was moved from purl.org to w3.org, as
purl.org still does not set the necessary Cross-Origin Resource
Sharing (CORS) headers [211] which would allow modern browsers to
make cross-origin requests.

When a user decides to load a new resource into the HydraConsole, a
number of steps happen in the background. First of all, the resource is
loaded via the proxy described above. If it yields a JSON-LD representa-
tion, the representation is expanded using the modified expansion algo-
rithm in order to be rendered in the HydraConsole. Then, if the response
contained an HTTP Link header to a Hydra API documentation, that
documentation is loaded and framed via the proxy. If available, the doc-
umentation of the type of the top-level resource contained in the
response is loaded and rendered. The result of retrieving the
http://hydra.test/users/1 resource is illustrated in Figure 16.

Navigating the Web API by following hyperlinks or sending HTTP
requests other than GET is as easy as clicking on a link and selecting the
desired operation. The HydraConsole presents a dialog in which the user
can select the desired operation. The HydraConsole takes into considera-
tion operations embedded directly in the representation as well as opera-
tions bound to the property (i.e., the link relation) whose target the
resource is and operations bound to the types the resource is an instance
of. It is important to note that the client is stateless in the sense that it
forgets information from previous requests. This implies that clicking on
a hyperlink in different contexts may result in different operations being

164

shown. In any case, if the user selects an operation whose expected data is
documented, a form to gather the required data for the creation of a valid
request, as the one shown in Figure 17, is constructed on-the-fly. In
order to make the navigation consisting of just GET requests more effi-
cient, clicking on a link with the shift key pressed directly invokes an
HTTP GET request on the target resource.

6.4 Adoption
Even the best technology is useless if it is not accepted by users. While
this important aspect is usually neglected in research projects, it was a
major concern in our work. Our focus on simplicity is fueled by studies
that have shown that the perceived usefulness and the perceived ease of
use are key drivers of technology acceptance and adoption [212]–[214].
The perceived usefulness is defined by Davis [214] as “the degree to which
a person believes that using a particular system would enhance his or her
job performance” whereas the perceived ease of use is defined as “the

Figure 17. A form rendered by the HydraConsole to invoke an operation

165

degree to which a person believes that using a particular system would be
free of effort”. Therefore, we spent a lot of time to find the right balance
between feature-richness and simplicity in order to maximize the chance
of adoption. While these two determinants are important, they are rarely
enough by themselves. In general, further motivation is needed to
overcome user resistance to change [212]. Hence, it is vital to understand
the typical technology adoption lifecycle. As Tim Berners-Lee, the
inventor of the Web, said, “the web is more a social creation than a
technical one.” [94]

Adopter groups can be categorized by their degree of resistance to a new
idea or technology. In his seminal book “Diffusion of
Innovations” [215], Rogers divides adopters into five categories based on
their innovativeness: innovators, early adopters, early majority, later
majority, and laggards. Innovators play an important gatekeeping role in
the adoption process as they import a technology into their community
(they are not necessarily respected by other members of their commu-
nity). Early adopters on the other hand are a more integrated part of a
community than their innovators. Thus, this adopter category has the
highest degree of opinion leadership in most communities. Given that
they are not too far ahead of the average individual in innovativeness,
they typically serve as a role model in their community. Early adopters
decrease the uncertainty about a new technology by adopting it and
thereby help to trigger the critical mass. The early majority follows “with
deliberate willingness in adopting innovations but seldom lead” [215]. By
adopting new technologies just before the average member of a commu-
nity does, they form an important link to adopters with longer inno-
vation-decision periods. The late majority is driven by the pressure of

Late
Majority

Early
Majority

Early
Adopters

LaggardsInno-
vators

34%34%14% 16%2%

Figure 18. Adopter categorization on the basis of innovativeness [215]

166

peers and the early majority as well as economic necessity. Most of the
uncertainty about a new technology must be eliminated before the late
majority adopts it. Together, the early and late majority make up roughly
two thirds of the members of a community as illustrated in Figure 18.
The only remaining group is the laggards or late adopters. According to
Rogers, they tend to be suspicious of innovations and thus extremely
cautious in adopting them.

Following this model we reached out to innovators in different commu-
nities very early in the development of both JSON-LD and Hydra. While
JSON-LD managed to attract notable early adopters such as Google and
the BBC, Hydra, being a very young technology, is a step behind in the
adoption lifecycle and is still concentrating on innovators. The
W3C Community Group into which Hydra’s further development was
moved grew within the first six months of its existence to over fifty mem-
bers [216]. The participants’ backgrounds range from academia over
startups to large companies.

In the following sections, we will present a number of notable adopters
broadly categorized into academia, industry, and standardization efforts.
This is by no means intended to be an exhaustive list. The motivation is
to present a number of different use cases for which these technologies
have been adopted and to create a historical reference of the early days of
JSON-LD and Hydra.

6.4.1 Academia

Among the first adopters of
JSON-LD was IKS (Interac-
tive Knowledge Stack) [217],
a multi-million euro research
project funded mostly by the
European Union [218]. IKS
was developed by a core con-
sortium of seven research and
six industrial partners. The
main outcome of the project
is a reference architecture for
semantic content management systems [219] and a set of open source

Web framework

Web editing tool

Content repository

HTML+RDFa JSON-LD

Figure 19. Decoupled CMS architecture

167

software components that both represent the reference implementation
and extend traditional content management systems (CMS) with
Semantic Web technologies.

The open source components can be divided into two main projects: the
VIE project [220], focusing on presentation and user interaction, and the
Apache Stanbol project [221], providing services such as named entity
extraction and reasoning to enhance unstructured content with metadata
about related entities and links. The two projects are loosely coupled via a
RESTful service interface resulting in a so called “decoupled content
management system” [222]. In contrast, most traditional CMS are
implemented as a monolithic block. As illustrated in Figure 19, the IKS
project breaks this block into a classic three-tier architecture. The com-
munication between the logic tier and the data tier can be realized by
standardized interfaces such as the Content Repository API for
Java (JCR) [223]. Similarly, the communication between the logic tier
and the presentation tier can be realized with standardized technologies.
Given that the IKS project concentrates mainly on web content man-
agement systems, it decided to send data from the logic to the presenta-
tion tier as HTML annotated with RDFa. These semantic annotations
make it possible to extract the content model of the CMS into JavaScript
models on the client, i.e., the browser. The presentation tier then imple-
ments the user interface to manage the content, which includes features
such as rich text editing, semantic annotations, and image handling. The
changes are then sent back to the logic tier using JSON-LD. The service
interface itself is hardcoded into the client and predates Hydra. It would
be interesting to describe it using Hydra in future versions.

An interesting feature of VIE is the ability to load additional information
about an entity from DBpedia; another project adopting JSON-LD quite
early. DBpedia [224] is one of the most well-known Linked Data pro-
jects. Several hundred data sets on the Web reference DBpedia entities
making it one of the central interlinking hubs in the Linked Open Data
cloud [80]. Its main idea is to extract structured data from Wikipedia
articles and turn it into a rich, multi-lingual knowledge base by mapping
the extracted concepts to an ontology. The result is a knowledge base
consisting of almost 1.5 billion facts about more than 13 million things.
Using HTTP content negotiation, all that data can be retrieved from
DBpedia as JSON-LD.

168

While these efforts either concentrate on read-only access to data or rely
on out-of-band documentation for their APIs, the Educational System
Group [225] of the Galileo University Guatemala goes a step further. In
their Cloud Educational Interoperability Service project they are building
an e-learning platform powered by popular online tools. Instead of cre-
ating, e.g., word processors or mind mapping editors themselves, they
integrate popular, free tools such as Google Docs [226],
MindMeister [227], or Cacoo [228] by transforming their responses to
JSON-LD and describing them with Hydra. These machine-readable
descriptions allow them to semi-automatically create widgets that can be
used by non-technical experts to build personal learning environments.

The project is a highly interesting test bed for both Hydra and JSON-LD
as it tries to convert real-world APIs into APIs powered by JSON-LD
and Hydra. Instead of programming directly against the underlying API,
all requests go to through a transformation layer harmonizing the APIs.
The advantage is that integration becomes much more efficient and pro-
gramming can happen on a higher level of abstraction. The system is
built on a layered architecture that helps to concentrate the transfor-
mations on a single layer instead of having to spread them throughout
the whole code base. As soon as the third-party APIs adopt JSON-LD
and Hydra themselves, it becomes possible to completely eliminate that
intermediary layer. Since the project is still under heavy development
unfortunately no publicly accessible publications are available yet at the
time of this writing.

6.4.2 Industry

Large media organizations and libraries typically maintain sophisticated
metadata catalogs to manage their information. Since this is one of the
core features of the Semantic Web technologies, media organizations
started to embrace them relatively early. The BBC is one of the pioneers
in this field by launching “the first large scale, mass media site using
concept extraction, RDF, and a triple store to deliver content” [229] for
the 2010 FIFA World Cup. The use of Semantic Web technologies
helped, among others, to improve navigation, content re-use and re-
purposing, and search engine rankings. Furthermore, the system enabled
the automated publication of web pages that require minimal journalist

169

management, as they automatically aggregate and render links to relevant
stories and assets.

A challenge the BBC was dealing with was the usage of RDF data in the
frontend. As discussed in section 3.4, web developers find RDF and its
serialization formats such as RDF/XML confusing and hard to code with.
Thus, over the years the BBC refined its architecture and created a
“linked data platform” (not to be confused with the Linked Data
Platform [155] being standardized at the W3C) as illustrated in
Figure 20. In its latest versions, Turtle and RDF/XML have been
replaced with JSON-LD [230]. As David Rogers, senior technical archi-
tect at BBC Future Media, News & Knowledge, told us in personal
communication, the linked data platform’s APIs are planned to form the
foundation of a “BBC open API” and JSON-LD will be the default for-
mat serialization format.

The platform used by globo.com, the web portal of Organizações Globo,
the largest media group in Latin America, went through a similar trans-

Content providers
(CMS, external
data syncs, etc.)

Clients
(service layer apps, 3rd party apps etc.)

Linked Data
Sports API

Triple store

Log

Linked Data
Knowledge &
Learning API

Linked Data
Core API

Linked Data
Writer

…

JSON-LD, Turtle, HTML
XML
Turtle

SPARQL
Update
queries

read-only SPARQL queries

Figure 20. Architecture of the BBC Linked Data Platform

170

formation. As Ícaro Medeiros reported at the 2nd International Workshop
on Web of Linked Entities (WoLE) [231], the Semantic Web team at
globo.com re-architected their system to increase the data quality and to
make access to data simpler, more secure, and performant by introducing
a RESTful Web API built on JSON-LD. The API uses hypermedia but
does not offer any hypermedia controls apart from simple hyperlinks. All
operations are being described out-of-band in natural language. Since
Hydra is able to address this issue, globo.com was among the first partici-
pants of the W3C Hydra Community Group [216] and is currently
evaluating its usage.

Coincidentally, exactly one day after we presented Hydra for the first
time to a larger audience at the 22nd International World Wide Web
Conference, Google announced arguably the most high-profile adoption
of JSON-LD at the Google I/O 2013 [232]. They released a new feature
for Gmail, Google Search, and Google Now that leverages JSON-LD to
embed structured data into e-mails. This data allows them to understand
what an e-mail is about and thus to process it more intelligently. When a
user, e.g., opens a flight confirmation e-mail in Gmail, all the important
information about the flight is extracted from the e-mail and displayed
prominently above the e-mail itself as shown in Figure 21. The same
information is used to display the so-called Google Now cards on
Android and iOS and is also integrated into Google’s search engine so
that users can easily find it. Figure 22 illustrates how the result looks like
when users search for their hotel reservations.

The most interesting aspect of this new feature is that it is not limited to
just displaying data. Google went a step further and also allows users to
take action on e-mails without needing to open them first [233].

Figure 21. Gmail displays information embedded as JSON-LD in e-mails

171

Responding to an invitation thus becomes as simple as pressing two but-
tons as illustrated in Figure 23. The code to render an RSVP button in
Gmail is shown in Listing 44. It describes an event and declares three ac-
tions of type RsvpAction with different values for the attendance property.

While Google uses Schema.org as the vocabulary to describe actions in
e-mails, the concepts have not yet been added to Schema.org. In fact, we
are in contact with Google and other Schema.org partners in order to
improve the vocabulary and to align it or replace it with Hydra. We also
published a first draft [189] explaining how a subset of Hydra could be
integrated into Schema.org. By making descriptions of actions with
Schema.org less RPC-oriented, the same vocabulary could be reused to
describe RESTful Web APIs.

The usage of JSON-LD by Google for Actions in Gmail and the subse-
quent enthusiastic announcement by the Schema.org partners [235] that
JSON-LD has been added to the list of recommended serialization for-
mats for Schema.org is an important proof for the trust in the technology.

Figure 22. Google queries may return information embedded in e-mails

172

<html>
 <body>
 <script type="application/ld+json">
 {
 "@context": "http://schema.org//",
 "@type": "Event",
 "name": "Taco Night",
 "startDate": "2013-05-18T19:00-07:00",
 "endDate": "2013-05-18T20:50-07:00",
 "location": {
 "@type": "Place",
 "address": {
 "@type": "PostalAddress",
 "name": "Taco Joe",
 "streetAddress": "Tortilla Heights",
 "addressLocality": "San Francisco",
 "addressRegion": "CA",
 "postalCode": "94107",
 "addressCountry": "USA"
 }
 },
 "action": [{
 "@type": "RsvpAction",
 "handler": {
 "@type": "HttpActionHandler",
 "url": "http://example.com/rsvp?eventId=123&value=yes",
 "method": "http://schema.org/HttpRequestMethod/GET"
 },
 "attendance": "http://schema.org/RsvpAttendance/Yes"
 }, {
 "@type": "RsvpAction",
 "handler": {
 "@type": "HttpActionHandler",
 "url": "http://example.com/rsvp?eventId=123&value=no",
 "method": "http://schema.org/HttpRequestMethod/GET"
 },
 "attendance": "http://schema.org/RsvpAttendance/No"
 }, {
 "@type": "RsvpAction",
 "handler": {
 "@type": "HttpActionHandler",
 "url": "http://example.com/rsvp?eventId=123&value=maybe",
 "method": "http://schema.org/HttpRequestMethod/GET"
 },
 "attendance": "http://schema.org/RsvpAttendance/Maybe"
 }
]
 }
 </script>
 <p>Please let me know if you join our Taco Night on Saturday.</p>
 </body>
</html>

Listing 44. A marked-up e-mail declaring an event
with an RSVP action (adapted from [234])

173

As discussed in the introduction, these early adopters play a crucial role
in triggering the critical mass by decreasing the uncertainty about a new
technology such as JSON-LD. The official ratification of JSON-LD as a
W3C standard is another important milestone to convince more risk-
averse adopters with longer innovation-decision processes.

6.4.3 Standardization

Due to the need for stable base technologies, standardization efforts are
typically among the last to adopt new technologies. Nevertheless,
JSON-LD is already being used as the serialization format in a number of
specifications and recommended by others.

The IMS Global Learning Consortium, e.g., announced in a press release
in 2012 [236] to use JSON-LD as the main serialization format in the
second version of their Learning Tools Interoperability standard. Simi-
larly, the Image API 1.1 specification [237] of the International Image
Interoperability Framework (IIIF) working group requires that
conformant implementations use JSON-LD. Other specifications, such
as Open Annotation [238] or the Open Digital Rights Language [239]
do not require the usage of JSON-LD but recommend it.

Another interesting standardization effort to keep an eye on are JSON
Activity Streams 2.0 [240] and the corresponding draft specifying action
handlers [241]. They are relevant for both JSON-LD and Hydra. JSON

Figure 23. Actions in Gmail can be invoked directly from the inbox

174

Activity Streams 2.0 is not directly based on JSON-LD but has been
“designed to be closely compatible with JSON-LD” [240]. Furthermore,
the IETF Internet Draft contains an appendix explaining how a JSON
Activity Stream can be processed as JSON-LD. Action handlers could be
classified as a mixture of the approach Google used to describe actions in
e-mails and Hydra. Consequently, they are highly interesting for the
further development of Hydra.

6.5 Discussion
The combination of the REST architectural style with the Linked Data
principles builds a foundation to bring many of the key success factors of
the human Web to the Web of machines. Instead of building Web APIs
with highly specialized interfaces, all the modeling happens on a semantic
layer completely independent of the underlying serialization format. By
using a format such as JSON-LD to serialize the data, a gradual intro-
duction of such a (at first sight) disruptive approach becomes possible.
Apart from a few additional properties, the responses from a Web API
using JSON-LD and Hydra look almost exactly the same as the ones of
current JSON-based APIs. As shown in this chapter, this greatly simpli-
fies the integration into current Web frameworks and provides a smooth
upgrade path for developers that have to build on existing infrastructure
investments.

The standardized data format provided by JSON-LD along with the
concepts defined by Hydra enables the creation of completely generic
clients. Together they are thus capable of addressing all issues that have
been discussed in Chapter 3. JSON-LD has become an official World
Wide Web Consortium standard that has been well accepted and
adopted. Hydra, being the much younger technology, has been moved
into a W3C Community Group for further development and is starting
to gain traction.

Summarized, the combination of JSON-LD and Hydra is, to our best
knowledge, the first practical solution to successfully bridge the gap
between REST and Linked Data. By combining the REST architectural
style with the Linked Data principles and the rich semantic framework
established by RDF and related technologies, JSON-LD and Hydra are

175

able to solve problems that API publishers and consumers are increasingly
struggling with. This, hopefully, not only helps to solve the issues of cur-
rent Web APIs, but also to advance the World Wide Web as a whole, as
Martin Hepp, creator of the widely used GoodRelations e-commerce
vocabulary [242], suggested in a recent tweet [243].

Chapter 7

Conclusions and

Future Work

For many companies RESTful Web APIs have become an integral part of
their strategy and products. Just as it became clear in the early 2000s that
a company has to have a website in order to stay competitive it is nowa-
days almost mandatory for businesses to provide APIs. In fact, for a lot of
companies the API has become the main product instead of being just an
add-on for other products. Yet, by looking at the APIs such companies
expose, history seems to repeat itself. Similar to how businesses at the
beginning of the last decade struggled to embrace the Web as a different
medium and wondered why their websites, which closely resembled their
print products, failed to engage users, nowadays API publishers try to
reuse their existing implementations by exposing them directly and won-
der why developers have troubles accessing their services. However,
instead of addressing the problem at its core, most API publishers confine
themselves to cure the symptoms by also implementing the clients them-
selves; mostly in the form of software development kits (SDKs) or librar-
ies. Actually, a whole industry emerged to cure the symptoms. There exist
API integrators harmonizing various APIs in a specific vertical by creating
generalized wrappers, API orchestration platforms allowing even non-
technical users to connect different APIs to create simple applications,
API portal providers formalizing API documentation, access token man-

178

agement, etc. by creating developers portals, API testing and monitoring
solutions helping companies to fulfill their service level agreements
(SLAs), API security gateways providing single sign-on solutions or
enforcing access control, and API marketplaces helping publishers to
monetize their services. Since such offerings are typically based on propri-
etary technology, their usage normally results in vendor lock-in. Switch-
ing to another vendor is not only complex, but also labor intensive and
thus costly.

As analyzed in detail in Chapter 3, the root causes that led to this situa-
tion are the usage of proprietary data formats and data models and the
reliance on static, manually written, natural language contracts docu-
mented out of band at design time instead of negotiating and communi-
cating them dynamically at run time. From the perspective of the
Representational State Transfer architectural style this corresponds to a
violation of the self-descriptive messages constraint and a negligence of
hypermedia as the engine of application state. This means that crucial
information is not available in a machine-processable form, which makes
it almost impossible to implement powerful, generic tooling. While
Semantic Web technologies would at least be able to offer a solution to
make messages self-descriptive, they suffer from a number of problems
themselves—including a lack of hypermedia support. Most problematic,
however, is their disruptiveness and (perceived) complexity.

For a long time the Semantic Web community derailed into the artificial
intelligence domain instead of concentrating on more practical data-
oriented applications. This resulted in technologies that are, admittedly,
powerful, but also very alien and difficult to understand for typical devel-
opers. Gradually adopting Semantic Web technologies is very challenging
as the underlying data model with its open world assumption is funda-
mentally different from what developers are used to. RDF/XML, which
was standardized at the peak of XML’s popularity, certainly tried to
appeal to developers by being based on XML but it is widely disliked
even by XML enthusiasts. It is neither optimized for humans nor for
machines and, most critically, standard XML tools are almost useless
when working with RDF/XML documents. RDF/XML can thus be con-
sidered as one of the main barriers to the adoption of Semantic Web
technologies. Another important factor is that the “Web” in “Semantic
Web” got little attention. Instead of building a hypermedia-driven Web

179

of Data, IRIs in RDF were often just non-dereferenceable identifiers. In
an attempt to refocus on the importance of the main principles of the
Web, Tim Berners-Lee formulated the Linked Data principles in 2006.
Simply speaking, he advocated the usage of dereferenceable URLs and
the interlinking of data. This was an important turning point in the his-
tory of the Semantic Web and resulted in huge amounts of data being
published. Unfortunately, however, this data is typically not exposed in
the form of Web APIs but as static read-only dumps or centralistic
SPARQL endpoints. While there have been many efforts to change that,
no practical solution that addresses all the issues identified in Chapter 3
exists yet. The state of the art presented in Chapter 4 either addresses just
some of the problems or is not practical enough—as confirmed by the
lack of adoption. Thus, rather than focusing on a particular problem we
looked at the bigger picture in this thesis.

In an iterative process we set out to bridge the gap between REST and
Linked Data in order to build a practical solution for these issues. Based
on experiences gained by implementing and analyzing various Web APIs,
and the lessons learned from designing and experimenting with SAPS
and SEREDASj, we were finally able to come up with JSON-LD and
Hydra. Together, this loosely coupled combination of data format and
vocabulary is able to offer a holistic solution for the identified issues. The
clear separation of concerns helped to keep the complexity as low as pos-
sible while still providing all necessary functionality. For example, users
that do not need the features Hydra provides because they just want to
publish read-only data can choose to adopt only JSON-LD. Similarly,
users which prefer another serialization format such as RDFa or Turtle
may decide to adopt Hydra but not JSON-LD. This was very beneficial
in terms of adoption as has been shown in Chapter 6. JSON-LD is
already used by hundreds of millions of people across the globe; most of
them use it without knowing it. Furthermore, it has become an official
World Wide Web Consortium standard. Such quick adoption and
standardization would likely have been very difficult to achieve if the two
technologies were merged into one. Hydra, being the younger technology
is not as widely adopted yet but is quickly gaining traction. The W3C
Community Group into which its further development has been moved
is continuously growing and there is interest to integrate parts of Hydra
directly into Schema.org.

180

As demonstrated in section 6.2, current Web frameworks can be easily
extended to support JSON-LD and Hydra. This is a major selling point
compared to most related approaches, which are interesting but rarely
practical in real-world scenarios. The design of JSON-LD ensures a
smooth upgrade path from JSON tooling that couples on the syntactic
structure of representations to more sophisticated tools such as the
HydraConsole presented in section 6.3 that work on a higher level of
abstraction. Together these two prototypes nicely illustrate what is
achievable with JSON-LD and Hydra. The client, represented by the
HydraConsole is completely generic. There exist no static contracts that
are hardcoded into the client. Instead, all necessary information is
exchanged dynamically at runtime. This allows the independent evolu-
tion of both the server and the client, and is beneficial in terms of
adaptivity and reusability. By reusing existing vocabularies such as
Schema.org, interoperability can be increased without having to com-
promise on extensibility. In many cases, developers do not have to define
custom concepts at all but will be able to entirely base their services on
existing vocabularies. This prevents the leakage of implementation details
which in turn helps to reduce the coupling between clients and servers.

Bridging the gap between REST and Linked Data is an ambitious
endeavor. The technologies and prototypes developed as part of this the-
sis are an important first step but there are still a number of limitations
that have to be overcome to fully unfold their potential. Broadly speak-
ing, these issues can be classified into concrete limitations of JSON-LD
or Hydra, or general problems such as a lack of tooling and accessible
documentation which lead to limited understanding of the underlying
principles and ideas. Some of these issues are discussed below and pave
the way for future work.

7.1 JSON-LD
The standardization of JSON-LD took many years and was the result of
an extremely transparent, open, and consensus-driven process. Most of
the development happened in a W3C Community Group which indi-
viduals as well as companies could easily join with a couple of mouse
clicks. All e-mails were publicly archived, the teleconferences were scribed

181

and recorded, the source code repository and issue tracker are open
(everyone can file new issues and file so-called pull requests to contribute
code). This ensured that all legitimate views and objections have been
considered, which undoubtedly increased the quality of the final specifi-
cation. Taking into consideration different, and sometimes conflicting,
opinions is not always straightforward and frequently requires compro-
mises to be made. Reaching consensus takes time and at some point it
becomes necessary to stop the work on new features and concentrate on
stabilizing and improving existing ones. This was no different in the
development of JSON-LD and resulted in a number of features post-
poned to future versions of JSON-LD.

The indexing feature of JSON-LD is a great example of this. It is very
flexible but nevertheless its realization was a compromise. When working
with JSON, developers typically structure their documents in a specific
way to simplify data access. In most current programming languages,
parsed JSON data can be directly accessed without having to use special
programming libraries. The JSON data is directly converted to an in-
memory representation. JSON-LD’s @index keyword allows data to be
indexed by arbitrary strings. These strings, however, stand in no relation-
ship with the data; they are just structural annotations (which is why the
@index keyword was called @annotation for some time). In other words,
indexes can be discarded without losing any information (in fact they are
when JSON-LD data is being converted to RDF). In a lot of cases, how-
ever, developers would like to index their data based on the entities’ IRIs
or on specific properties.

Listing 45 illustrates how such a feature might look like in the future.
Additional to setting the @container of the knows property to @index, the
“index key” is set to name, which in this example would correspond to
http://schema.org/name. Thus, instead of having to duplicate the data by
using the @index feature as currently specified, it would become possible
to index the data directly. This would allow more existing JSON
documents to be interpreted as JSON-LD by just adding a context. It
would also reduce the file size of certain JSON-LD documents as no data
would have to be duplicated. Following the same motivation, various
features have been proposed to simplify the conversion of certain values
to IRIs. A lot of current Web APIs expose JSON which does not include
the IRIs of entities directly, but just some sort of identifiers such as

182

primary keys taken directly from the database. In order to convert those
strings or numbers to IRIs, a client needs to have knowledge of an IRI
template. Instead of having to rely on out-of-band documentation, that
information could be directly embedded into a JSON-LD context. There
are various proposals ranging from directly including support for IRI
templates to allowing the creation of nested contexts, similar to how
SEREDASj works. Describing all these proposals is beyond the scope of
this section and thus we would like to refer the interested reader to our
issue tracker [244] or the mailing list archives [245].

Making JSON-LD more flexible and expressive is important, but just as
important is the tooling around it. The standardized JSON-LD
API [168], which has been implemented in all major programming lan-
guages, lays the foundation for more sophisticated tooling to be built in
the future. We have already started working on that with Framing [187].
The algorithm, however, is not fully up to date with the latest JSON-LD
specification as work on it was stopped when the JSON-LD syntax and
the rest of the API was brought into the RDF Working Group for stand-
ardization at the World Wide Web Consortium. Therefore, the framing
algorithm does not support reverse properties or named graphs yet. It will
be interesting to see how JSON-LD is used in practice and how users can
be supported with tooling. Some of these observations have already led to

{
 "@context": {
 "@vocab": "http://schema.org/",
 "homepage": { "@type": "@id" },
 "knows": { "@container": "@index", "@index": "name" }
 },
 "@id": "http://example.com/people/markus",
 "name": "Markus Lanthaler",
 "homepage": "http://www.markus-lanthaler.com/",
 "knows": {
 "Jane Doe": {
 "@id": "/people/jane",
 "homepage": "http://doe.example.com/jane/"
 },
 "John Doe": {
 "@id": "/people/john",
 "homepage": "http://doe.example.com/john/"
 }
 }
}

Listing 45. Using arbitrary properties to index data in JSON-LD

183

discussions to change some aspects of the framing algorithm in order to
make it more useful and practical. There also exist prototypes of tools
that automatically generate JSON-LD contexts out of vocabulary defini-
tions or attempt to convert various data formats (not just RDF-based
ones) to JSON-LD.

7.2 Hydra
In contrast to JSON-LD, Hydra is not fully stable yet. The different
backgrounds of the various members of the Hydra W3C Community
Group and the discussions regarding the inclusion of parts of Hydra into
Schema.org resulted in interesting debates, new feature proposals, and
also revealed a number of weaknesses.

A frequently asked question is how Hydra can be used with media types
other than JSON-LD. It is, e.g., not trivial to describe that an operation
expects or returns an image file. There are various proposals on the table
but no decision has yet been made of how to address this issue. One
option would be to create a dedicated class—something like Blob—that
could then be further refined by media type ranges.

The most often misunderstood and criticized aspects of Hydra, however,
are the three predefined operation types. It was never the intention to
include specific operation types directly in the Hydra core vocabulary but
we deemed it necessary to include some very generic operations to illus-
trate how the whole concept can be used. Apparently, the inclusion of
CreateResourceOperation, ReplaceResourceOperation, and DeleteResource-
Operation was counterproductive. A lot of people are confused by these
concepts by thinking that they are the only available operation types.
Especially people without knowledge of RDF and other Semantic Web
technologies do not realize that it is trivial to add additional operation
types. Furthermore, the semantics of these operations are very weak. The
typing of an operation as a DeleteResourceOperation, e.g., does not add
much value if the HTTP method of that operation is set to DELETE. Given
that the concept of “actions” has been added to Schema.org since the
initial release of Hydra, it is likely that we will remove these three prede-
fined operation types from the Hydra core vocabulary.

184

The assumption that collections are a much-needed feature in most Web
APIs seems to vindicate. In many discussions their usefulness was reiter-
ated and some members of the Hydra W3C Community Group pro-
posed extensions to make it even more useful. An interesting proposal is
to add a memberTemplate property to Hydra which associates an
IriTemplate with a Collection. That way, clients would be able to directly
construct the URL of specific members, which is much more efficient
than having to query the collection or iterate through all members. The
same motivation triggered a request for a feature to control the sorting of
paged collections. At the moment, the sorting order of members of paged
collections is neither specified nor can it be directly influenced by a
client. It is at the sole discretion of the server.

Since we are actively discussing the inclusion of parts of Hydra directly
into Schema.org, some concepts might also get renamed to more closely
align with the rest of Schema.org or extended to support other use cases.
An important feature request from Schema.org was to support not only
HTTP operations but also operations that cause mobile applications to
be launched. This could be included directly in the core vocabulary, but
as Hydra was designed to be a modular suite of vocabularies form the
beginning, it is more likely that such functionality would be realized by a
dedicated vocabulary. Similarly, there are plans to create a vocabulary
extending Hydra to allow operations to be annotated with sample
requests and responses in order to facilitate API and client testing as
described in section 5.5.

While extensions and refinements such as the ones presented above are
important in the long term, the most pressing concern is to improve
tooling support. Due to Hydra’s nature, it is probably even more
important than for JSON-LD. The HydraBundle for Symfony2 as well
as the HydraConsole are important first steps but both have to be
improved to be usable in production and complemented by additional
tools and libraries. A crucial missing piece we are already working on is a
client library for programmatic access to Hydra-powered Web APIs. Its
aim is to provide developers with a generic library instead of requiring
them to either use a special library for each API they are accessing or a
very low level HTTP library. The long-term goal is to allow a more
declarative, goal-oriented usage of Web APIs. If the used vocabularies are
based on formal semantics (just as RDF’s core vocabularies are), it

185

becomes possible to implement reasoners that are able to infer conclu-
sions which are not expressed explicitly in the data. That, combined with
techniques such as hierarchical state machines or behavior trees that allow
the creation of reusable blocks of logic, could pave the way for much
smarter clients than possible today.

7.3 Related Topics
A yet unresolved issue for the creation of smarter clients, which is not
directly related to JSON-LD or Hydra but more to RDF in general, is
data integration. The transformation of data from different sources to
RDF is just the first and simplest step. To be fully integrated, however,
all the data has to be expressed eventually in a vocabulary supported by
the application processing it. This process is typically called ontology
alignment and is a heavily researched area. Instead of requiring a manual
mapping as the HydraBundle does, a similar approach could be used to
automatically map object-oriented implementations to vocabularies such
as Schema.org. Currently, such alignment and integration is mostly still
done in an imperative way by writing data mediation code. To be able to
cope with the exponentially growing amount of data it will become inevi-
table to automate these processes. It is also necessary to research on how
to deal with incomplete or inconsistent data and which data sources can
be trusted.

Talking about the Semantic Web stack in general, the biggest remaining
hurdle to a more widespread adoption apart from missing tooling is, in
our opinion, a lack of accessible documentation. When writing the
JSON-LD specifications we took a radically different approach than most
existing specifications. We tried our best to avoid complex terminology
while still being technically accurate. Instead of just enumerating and
describing features, we built the entire specification around examples.
The specification contains very few sections that consist of mostly nor-
mative language. Instead, much of the document reads more like a tuto-
rial or a primer rather than a specification. This makes the specification
much longer (it was indeed criticized by a minority of people for its
length) but it also means that the average Web developers do not need to
read any other document to understand and begin using JSON-LD; the

186

document is completely self-contained. We tried to advocate a similar
simplification for the rest of the specifications the RDF Working Group
produced, but unfortunately many of our proposals were turned down.
Thus, even though the new standards are much clearer and simpler than
their previous versions, even our editorship of the central RDF specifi-
cation RDF 1.1 Concepts and Abstract Syntax [63] did not allow us to
fully achieve our goal. It is regrettable that this unique opportunity was
not fully exploited at such an important turning point of the Semantic
Web. Thus, much more community outreach and the publication of
accessible educational material will be needed in the coming years to fos-
ter adoption. The new RDF 1.1 Primer [246], to which we contributed
several ideas and feedback, is a great first step in that direction.

References

[1] J. Manyika, M. Chui, P. Groves, D. Farrell, S. Van Kuiken, and E. A. Doshi,
“Open data: Unlocking innovation and performance with liquid information,”
McKinsey Quarterly, no. October, McKinsey Global Institute, 2013.

[2] E. Berkowitz and R. Paradise, “Innovation in government: Kenya and Georgia,”
McKinsey Quarterly, pp. 1–9, Sep-2011.

[3] B. Obama, “Executive Order 13642 of May 9, 2013 Making: Making Open
and Machine Readable the New Default for Government Information,” Fed.
Regist., vol. 78, no. 93, pp. 28111–28113, 2013.

[4] IBM, “Bringing big data to the enterprise.” [Online]. Available:
http://www.ibm.com/software/in/data/bigdata/. [Accessed: 10-Feb-2014].

[5] T. Samson, “Ex-Amazonian urges Google to sample Amazon’s secret sauce,”
InfoWorld, 2011. [Online]. Available: http://www.infoworld.com/t/service-
oriented-architecture/ex-amazonian-urges-google-sample-amazons-secret-sauce-
175906. [Accessed: 12-Feb-2014].

[6] P. Ranade, D. Scannell, and B. Stafford, “Ready for APIs? Three steps to
unlock the data economy’s most promising channel,” Forbes, 2014. [Online].
Available: http://www.forbes.com/sites/mckinsey/2014/01/07/ready-for-apis-
three-steps-to-unlock-the-data-economys-most-promising-channel/.
[Accessed: 04-Feb-2014].

[7] N. Mitra and Y. Lafon, “SOAP Version 1.2 Part 0: Primer (Second Edition),”
W3C Recommendation, 2007. [Online]. Available:
http://www.w3.org/TR/soap12-part0/.

[8] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, “A Note on Distributed
Computing,” Mountain View, California, USA, 1994.

[9] R. T. Fielding, J. Gettys, J. C. Mogul, H. Frystyk Nielsen, L. Masinter, P. J.
Leach, and T. Berners-Lee, “RFC2616: Hypertext Transfer Protocol --
HTTP/1.1,” Internet Engineering Task Force (IETF) Request for Comments,
1999. [Online]. Available: http://tools.ietf.org/html/rfc2616.

[10] I. Jacobs and N. Walsh, “Architecture of the World Wide Web, Volume One,”
W3C Recommendation, 2004. [Online]. Available:
http://www.w3.org/TR/webarch/.

188

[11] R. T. Fielding, “Architectural Styles and the Design of Network-based Software
Architectures,” University of California, Irvine, 2000.

[12] D. Berlind, “ProgrammableWeb’s Directory Hits 10,000 APIs. And
Counting,” ProgrammableWeb, 2013. [Online]. Available:
http://blog.programmableweb.com/2013/09/23/programmablewebs-directory-
hits-10000-apis-and-counting/. [Accessed: 08-Oct-2013].

[13] S. Willmott, “API Predictions 2014,” 2013. [Online]. Available:
http://www.3scale.net/2013/12/api-predictions-2014/.
[Accessed: 10-Jan-2014].

[14] S. Vinoski, “Serendipitous Reuse,” IEEE Internet Comput., vol. 12, no. 1,
pp. 84–87, Jan. 2008.

[15] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” Sci. Am.,
vol. 284, no. 5, pp. 34–43, 2001.

[16] J. Anderson and L. Rainie, “The Fate of the Semantic Web,” Pew Research
Center, Washington, D.C., 2010.

[17] T. Berners-Lee, “Linked Data,” Design Issues for the World Wide Web, 2006.
[Online]. Available: http://www.w3.org/DesignIssues/LinkedData.html.
[Accessed: 06-Jun-2010].

[18] R. T. Fielding and J. F. Reschke, “Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing,” Internet Engineering Task Force (IETF) Draft,
2014. [Online]. Available: http://tools.ietf.org/html/draft-ietf-httpbis-p1-
messaging-26.

[19] E. Wilde, “RFC6906: The ‘profile’ Link Relation Type,” Internet Engineering
Task Force (IETF) Request for Comments, 2013. [Online].
Available: http://tools.ietf.org/html/rfc6906.

[20] M. Lanthaler, “The Profile URI Registry,” Internet Engineering Task Force
(IETF) Draft, 2014. [Online]. Available: http://tools.ietf.org/html/draft-
lanthaler-profile-registry-05.

[21] Information Sciences Institute/University of Southern California, “RFC793:
Transmission Control Protocol - DARPA Internet Program Protocol
Specification,” Internet Engineering Task Force (IETF) Request for Comments,
1981. [Online]. Available: http://tools.ietf.org/html/rfc793.

[22] Information Sciences Institute/University of Southern California, “RFC791:
Internet Protocol - DARPA Internet Program Protocol Specification,” Internet
Engineering Task Force (IETF) Request for Comments, 1981. [Online]. Available:
http://tools.ietf.org/html/rfc791.

[23] T. Berners-Lee, “Information Management: A Proposal,” CERN, 1989.
[Online]. Available: http://www.w3.org/History/1989/proposal.html.
[Accessed: 23-Apr-2011].

[24] International Telecommunication Union (ITU), “The World in 2013: ICT
Facts and Figures,” Geneva, Switzerland, 2013.

189

[25] M. Lanthaler and C. Gütl, “Model Your Application Domain, Not Your JSON
Structures,” in Proceedings of the 4th International Workshop on RESTful Design
(WS-REST 2013) at the 22nd International World Wide Web Conference
(WWW2013), 2013, pp. 1415–1420.

[26] M. Lanthaler and C. Gütl, “Towards a RESTful Service Ecosystem -
Perspectives and Challenges,” in Proceedings of the 2010 4th IEEE International
Conference on Digital Ecosystems and Technologies (DEST), 2010, pp. 209–214.

[27] M. Lanthaler and C. Gütl, “SAPS: Semantic AtomPub-based Services,” in
Proceedings of the 11th IEEE/IPSJ International Symposium on Applications and
the Internet (SAINT), 2011, pp. 382–387.

[28] M. Lanthaler, M. Granitzer, and C. Gütl, “Semantic Web Services: State of the
Art,” in Proceedings of the IADIS International Conference on Internet
Technologies & Society (ITS 2010), 2010, pp. 107–114.

[29] R. Cailliau, “A Little History of the World Wide Web,” W3C, 1995. [Online].
Available: http://www.w3.org/History.html. [Accessed: 16-Oct-2013].

[30] W. Hoogland and H. Weber, “Statement Concerning CERN W3 Software
Release into Public Domain,” CERN, 1993. [Online]. Available:
http://tenyears-www.web.cern.ch/. [Accessed: 17-Oct-2013].

[31] The Minnesota Gopher Team, “University of Minnesota Gopher software
licensing policy,” 1993. [Online]. Available: http://www.funet.fi/pub/vms/
networking/gopher/gopher-software-licensing-policy.ancient.
[Accessed: 17-Oct-2013].

[32] F. Anklesaria, M. McCahill, P. Lindner, D. Johnson, D. Torrey, and B. Alberti,
“RFC1436: The Internet Gopher Protocol (a distributed document search and
retrieval protocol),” Internet Engineering Task Force (IETF) Request for Com-
ments, 1993. [Online]. Available: http://tools.ietf.org/html/rfc1436.

[33] “Information processing -- Text and office systems -- Standard Generalized
Markup Language (SGML),” International Organization for Standardization
(ISO), ISO 8879:1986, 1986.

[34] T. Berners-Lee, “The Original HTTP as defined in 1991,” W3C, 1991.
[Online]. Available: http://www.w3.org/Protocols/HTTP/
AsImplemented.html. [Accessed: 17-Oct-2013].

[35] T. Berners-Lee, “W3 Naming Schemes,” 1992. [Online]. Available:
http://info.cern.ch/hypertext/WWW/Addressing/Addressing.html.
[Accessed: 17-Oct-2013].

[36] T. Berners-Lee and D. Connolly, “Hypertext Markup Language (HTML),”
Internet Engineering Task Force (IETF) Draft, 1993. [Online].
Available: http://tools.ietf.org/html/draft-ietf-iiir-html-00.

[37] T. Berners-Lee, J.-F. Groff, and R. Cailliau, “Universal Document Identifiers
on the Network,” CERN, 1992. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.1836.
[Accessed: 03-Mar-2013].

190

[38] T. Berners-Lee, “RFC1630: Universal Resource Identifiers in WWW,” Internet
Engineering Task Force (IETF) Request for Comments, 1994. [Online].
Available: http://tools.ietf.org/html/rfc1630.

[39] T. Berners-Lee, L. Masinter, and M. McCahill, “RFC1738: Uniform Resource
Locators (URL),” Internet Engineering Task Force (IETF) Request for Comments,
1994. [Online]. Available: http://tools.ietf.org/html/rfc1738.

[40] T. Berners-Lee, R. T. Fielding, and L. Masinter, “RFC2396: Uniform Resource
Identifiers (URI) - Generic Syntax,” Internet Engineering Task Force (IETF)
Request for Comments, 1998. [Online].
Available: http://tools.ietf.org/html/rfc2396.

[41] T. Berners-Lee and D. Connolly, “RFC1866: Hypertext Markup Language -
2.0,” Internet Engineering Task Force (IETF) Request for Comments, 1995.
[Online]. Available: http://tools.ietf.org/html/rfc1866.

[42] T. Berners-Lee, R. T. Fielding, and H. Frystyk Nielsen, “RFC1945: Hypertext
Transfer Protocol -- HTTP/1.0,” Internet Engineering Task Force (IETF)
Request for Comments, 1996. [Online].
Available: http://tools.ietf.org/html/rfc1945.

[43] R. T. Fielding, J. Gettys, J. C. Mogul, H. Frystyk Nielsen, and T. Berners-Lee,
“RFC2068: Hypertext Transfer Protocol -- HTTP/1.1,” Internet Engineering
Task Force (IETF) Request for Comments, 1997. [Online].
Available: http://tools.ietf.org/html/rfc2068.

[44] M. Duerst and M. Suignard, “RFC3987: Internationalized Resource Identifiers
(IRIs),” Internet Engineering Task Force (IETF) Request for Comments, 2005.
[Online]. Available: http://tools.ietf.org/html/rfc3987.

[45] R. T. Fielding, “REST APIs must be hypertext-driven,” Untangled musings of
Roy T. Fielding, 2008. [Online]. Available: http://roy.gbiv.com/untangled/
2008/200brest-apis-must-be-hypertext-driven. [Accessed: 02-Jun-2010].

[46] S. Parastatidis, J. Webber, G. Silveira, and I. S. Robinson, “The Role of
Hypermedia in Distributed System Development,” in Proceedings of the 1st
International Workshop on RESTful Design (WS-REST 2010), 2010, pp. 16–22.

[47] J. Gregorio and B. de HOra, “RFC5023: The Atom Publishing Protocol,”
Internet Engineering Task Force (IETF) Request for Comments, 2007. [Online].
Available: http://tools.ietf.org/html/rfc5023.

[48] M. Nottingham and R. Sayre, “RFC4287: The Atom Syndication Format,”
Internet Engineering Task Force (IETF) Request for Comments, 2005. [Online].
Available: http://tools.ietf.org/html/rfc4287.

[49] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, and J.
Cowan, “Extensible Markup Language (XML) 1.1 (Second Edition),” W3C
Recommendation, 2006. [Online]. Available: http://www.w3.org/TR/xml11/.

[50] D. Crockford, “RFC4627: The application/json Media Type for JavaScript
Object Notation (JSON),” Internet Engineering Task Force (IETF) Request for
Comments, 2006. [Online]. Available: http://tools.ietf.org/html/rfc4627.

191

[51] S. Perreault, “RFC6351: xCard - vCard XML Representation,” Internet
Engineering Task Force (IETF) Request for Comments, 2011. [Online].
Available: http://tools.ietf.org/html/rfc6351.

[52] C. Daboo, M. Douglass, and S. Lees, “RFC6321: xCal - The XML Format for
iCalendar,” Internet Engineering Task Force (IETF) Request for Comments, 2011.
[Online]. Available: http://tools.ietf.org/html/rfc6321.

[53] T. Bray, D. Hollander, A. Layman, R. Tobin, and H. S. Thompson,
“Namespaces in XML 1.0 (Third Edition),” W3C Recommendation, 2009.
[Online]. Available: http://www.w3.org/TR/xml-names/.

[54] “IANA XML Registry,” IANA. [Online]. Available: http://www.iana.org/
assignments/xml-registry-index.html. [Accessed: 22-Feb-2013].

[55] D. Raggett, A. Le Hors, and I. Jacobs, “HTML 4.01 Specification: Meta data
profiles,” W3C Recommendation, 1999. [Online].
Available: http://www.w3.org/TR/html401/struct/global.html#h-7.4.4.3.

[56] T. A. Inkster, “The Profile Media Type Parameter,” 2009. [Online]. Available:
http://buzzword.org.uk/2009/draft-inkster-profile-parameter-00.html.
[Accessed: 21-Feb-2013].

[57] M. Nottingham, “RFC5988: Web Linking,” Internet Engineering Task Force
(IETF) Request for Comments, 2010. [Online].
Available: http://tools.ietf.org/html/rfc5988.

[58] C. Daboo, “jcardcal Working Group - JSON data formats for iCalendar and
vCard: Proposed charter,” IETF Applications Area Working Group Wiki, 2013.
[Online]. Available: http://trac.tools.ietf.org/wg/appsawg/trac/wiki/jcardcal.
[Accessed: 24-Feb-2013].

[59] H. Halpin, R. Iannella, B. Suda, and N. Walsh, “Representing vCard Objects
in RDF,” W3C Member Submission, 2010. [Online].
Available: http://www.w3.org/Submission/vcard-rdf/. [Accessed: 24-Feb-2013].

[60] T. Berners-Lee, “W3 Future Directions,” Plenary talk at the First International
World Wide Web Conference, 1994. [Online].
Available: http://www.w3.org/Talks/WWW94Tim/. [Accessed: 24-Oct-2013].

[61] O. Lassila and R. R. Swick, “Resource Description Framework (RDF) Model
and Syntax Specification,” W3C Recommendation, 1999. [Online]. Available:
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

[62] N. Shadbolt, W. Hall, and T. Berners-Lee, “The Semantic Web Revisited,”
Intell. Syst. IEEE, vol. 21, no. 3, pp. 96–101, May 2006.

[63] R. Cyganiak, D. Wood, and M. Lanthaler, “RDF 1.1 Concepts and Abstract
Syntax,” W3C Recommendation, 2014. [Online].
Available: http://www.w3.org/TR/rdf11-concepts/.

[64] D. Beckett, “RDF/XML Syntax Specification (Revised),” W3C
Recommendation, 2004. [Online].
Available: http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/.

192

[65] D. Brickley and R. V. Guha, “RDF Vocabulary Description Language 1.0:
RDF Schema,” W3C Recommendation, 2004. [Online].
Available: http://www.w3.org/TR/rdf-schema/.

[66] W3C OWL Working Group, “OWL 2 Web Ontology Language,” W3C
Recommendation, 2009. [Online]. Available: http://www.w3.org/TR/owl2-
overview/.

[67] M. Kifer and H. Boley, “RIF Overview (Second Edition),” W3C Working
Group Note, 2013. [Online]. Available: http://www.w3.org/TR/2013/NOTE-
rif-overview-20130205/.

[68] D. Reynolds, “OWL 2 RL in RIF (Second Edition),” W3C Working Group
Note, 2013. [Online]. Available: http://www.w3.org/TR/2013/NOTE-rif-owl-
rl-20130205/.

[69] S. Hawke and A. Polleres, “RIF In RDF (Second Edition),” W3C Working
Group Note, 2013. [Online]. Available: http://www.w3.org/TR/2013/NOTE-
rif-in-rdf-20130205/.

[70] D. Beckett, “Re: what does SPARQL stand for?
(issues#languageProtocolName),” public-rdf-dawg@w3.org Mail Archives, 2004.
[Online]. Available: http://lists.w3.org/Archives/Public/public-rdf-
dawg/2004OctDec/0453.html. [Accessed: 25-Oct-2013].

[71] S. Harris and A. Seaborne, “SPARQL 1.1 Query Language,” W3C
Recommendation, 2013. [Online]. Available: http://www.w3.org/TR/sparql11-
query/.

[72] P. Gearon, A. Passant, and A. Polleres, “SPARQL 1.1 Update,” W3C
Recommendation, 2013. [Online]. Available: http://www.w3.org/TR/sparql11-
update/.

[73] A. Seaborne, A. Polleres, L. Feigenbaum, and G. T. Williams, “SPARQL 1.1
Federated Query,” W3C Recommendation, 2013. [Online]. Available:
http://www.w3.org/TR/sparql11-federated-query/.

[74] G. T. Williams, “SPARQL 1.1 Service Description,” W3C Recommendation,
2013. [Online]. Available: http://www.w3.org/TR/sparql11-service-
description/.

[75] L. Feigenbaum, G. T. Williams, K. G. Clark, and E. Torres, “SPARQL 1.1
Protocol,” W3C Recommendation, 2013. [Online].
Available: http://www.w3.org/TR/sparql11-protocol/.

[76] C. Ogbuji, “SPARQL 1.1 Graph Store HTTP Protocol,” W3C
Recommendation, 2013. [Online]. Available: http://www.w3.org/TR/sparql11-
http-rdf-update/.

[77] S. Hawke, “SPARQL Query Results XML Format (Second Edition),” W3C
Recommendation, 2013. [Online]. Available: http://www.w3.org/TR/rdf-sparql-
XMLres/.

[78] K. G. Clark, L. Feigenbaum, and E. Torres, “SPARQL 1.1 Query Results
JSON Format,” W3C Recommendation, 2013. [Online]. Available:
http://www.w3.org/TR/sparql11-results-json/.

193

[79] A. Seaborne, “SPARQL 1.1 Query Results CSV and TSV Formats,” W3C
Recommendation, 2013. [Online]. Available: http://www.w3.org/TR/sparql11-
results-csv-tsv/.

[80] R. Cyganiak and A. Jentzsch, “The Linking Open Data cloud diagram,” 2011.
[Online]. Available: http://lod-cloud.net/. [Accessed: 04-Mar-2013].

[81] W3C, “httpRange-14: What is the range of the HTTP dereference function?,”
W3C TAG Issues List, 2005. [Online].
Available: http://www.w3.org/2001/tag/issues.html?type=1#httpRange-14.
[Accessed: 24-Oct-2013].

[82] L. Sauermann and R. Cyganiak, “Cool URIs for the Semantic Web,” W3C
Note, 2008. [Online]. Available: http://www.w3.org/TR/2008/NOTE-cooluris-
20081203/.

[83] J. Tennison, “Using ‘Punning’ to Answer httpRange-14,” Jeni’s Musings, 2012.
[Online]. Available: http://www.jenitennison.com/blog/node/170.
[Accessed: 04-Jun-2012].

[84] J. Tennison, “URLs in Data Primer,” W3C Working Draft, 2013. [Online].
Available: http://www.w3.org/TR/2013/WD-urls-in-data-20130604/.

[85] “Schema.org,” 2011. [Online]. Available: http://www.schema.org/.
[Accessed: 24-Aug-2013].

[86] “The Open Graph protocol,” 2010. [Online]. Available:
http://opengraphprotocol.org/. [Accessed: 07-Jul-2010].

[87] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, “Web Services
Description Language (WSDL) Version 2.0 Part 1: Core Language,” W3C
Recommendation, 2007. [Online]. Available: http://www.w3.org/TR/wsdl20/.

[88] L. Clement, A. Hately, C. von Riegen, and T. Rogers, “UDDI Version 3.0.2,”
OASIS Standard, 2004. [Online]. Available: http://uddi.org/pubs/uddi_v3.htm.

[89] S. (Sandy) Gao 高殊镝, C. M. Sperberg-McQueen, and H. S. Thompson,
“W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures,” W3C
Recommendation, 2012. [Online].
Available: http://www.w3.org/TR/xmlschema11-1/.

[90] D. Peterson, S. (Sandy) Gao 高殊镝, A. Malhotra, C. M. Sperberg-McQueen,
and H. S. Thompson, “W3C XML Schema Definition Language (XSD) 1.1
Part 2: Datatypes,” W3C Recommendation, 2012. [Online]. Available:
http://www.w3.org/TR/xmlschema11-2/.

[91] S. Loughran and E. Smith, “Rethinking the Java SOAP Stack,” in IEEE
International Conference on Web Services (ICWS), 2005, vol. 5, no. July.

[92] T. Vitvar and J. Musser, “ProgrammableWeb.com: Statistics, Trends, and Best
Practices,” in Keynote of the Web APIs and Service Mashups Workshop at the
European Conference on Web Services (ECOWS 2010), 2010, vol. 234.

[93] M. Fowler, “Richardson Maturity Model - steps toward the glory of REST,”
2010. [Online]. Available: http://martinfowler.com/articles/
richardsonMaturityModel.html. [Accessed: 28-Oct-2013].

194

[94] T. Berners-Lee, Weaving the Web: The Original Design and Ultimate Destiny of
the World Wide Web, 5th ed. HarperBusiness, 2000.

[95] M. Lanthaler and C. Gütl, “A Semantic Description Language for RESTful
Data Services to Combat Semaphobia,” in Proceedings of the 2011 5th IEEE
International Conference on Digital Ecosystems and Technologies (DEST), 2011,
pp. 47–53.

[96] M. Lanthaler and C. Gütl, “Hydra: A Vocabulary for Hypermedia-Driven Web
APIs,” in Proceedings of the 6th Workshop on Linked Data on the Web
(LDOW2013) at the 22nd International World Wide Web Conference
(WWW2013), 2013.

[97] M. Lanthaler and C. Gütl, “Aligning Web Services with the Semantic Web to
Create a Global Read-Write Graph of Data,” in Proceedings of the 9th IEEE
European Conference on Web Services (ECOWS 2011), 2011, pp. 15–22.

[98] M. Lanthaler and C. Gütl, “On Using JSON-LD to Create Evolvable RESTful
Services,” in Proceedings of the 3rd International Workshop on RESTful Design
(WS-REST 2012) at the 21st International World Wide Web Conference
(WWW2012), 2012, pp. 25–32.

[99] M. Lanthaler, “Leveraging Linked Data to Build Hypermedia-Driven Web
APIs,” in REST: Advanced Research Topics and Practical Applications, C.
Pautasso, E. Wilde, and R. Alarcón, Eds. Springer New York, 2014,
pp. 107-123.

[100] “Standard ECMA-262 3rd Edition - December 1999,” ECMA International,
1999.

[101] “XML Core Working Group Public Page– Pubblications,” XML Core Working
Group, 2012. [Online]. Available:
http://www.w3.org/XML/Core/#Publications. [Accessed: 17-Aug-2013].

[102] “MIME Media Types,” IANA. [Online]. Available:
http://www.iana.org/assignments/media-types. [Accessed: 22-Feb-2013].

[103] T. Hansen and A. Melnikov, “RFC6839: Additional Media Type Structured
Syntax Suffixes,” Internet Engineering Task Force (IETF) Request for Comments,
2013. [Online]. Available: http://tools.ietf.org/html/rfc6839.

[104] M. Murata, S. St. Laurent, and D. Kohn, “RFC3023: XML Media Types,”
Internet Engineering Task Force (IETF) Request for Comments, 2001. [Online].
Available: http://tools.ietf.org/html/rfc3023.

[105] R. Berjon, S. Faulkner, T. Leithead, E. D. Navara, E. O’Connor, S. Pfeiffer,
and I. Hickson, “HTML5: 4.10.19.8 Autofilling form controls: the
autocomplete attribute,” W3C Candidate Recommendation, 2014. [Online].
Available: http://www.w3.org/TR/2014/CR-html5-
20140204/forms.html#association-of-controls-and-forms.

[106] D. van Heesch, “Generate documentation from source code,” Doxygen, 2012.
[Online]. Available: http://www.stack.nl/~dimitri/doxygen/.
[Accessed: 31-Jul-2012].

195

[107] K. R. Page, D. C. De Roure, and K. Martinez, “REST and Linked Data: a
match made for domain driven development?,” in Proceedings of the 2nd
International Workshop on RESTful Design (WS-REST 2011), 2011, pp. 22–25.

[108] D. Brickley and L. Miller, “FOAF Vocabulary Specification 0.98,” 2010.
[Online]. Available: http://xmlns.com/foaf/spec/20100809.html.
[Accessed: 17-Jan-2011].

[109] I. Hickson, “HTML Microdata,” W3C Working Group Note, 2013. [Online].
Available: http://www.w3.org/TR/2013/NOTE-microdata-20131029/.

[110] M. Fowler, Patterns of Enterprise Application Architecture, 1st ed. Addison-
Wesley Professional, 2002.

[111] S. DeRose, E. Maler, D. Orchard, and N. Walsh, “XML Linking Language
(XLink) Version 1.1,” W3C Recommendation, 2010. [Online]. Available:
http://www.w3.org/TR/xlink11/.

[112] “XML Schema 1.0,” W3C Recommendation. W3C, 2004.

[113] P. Prescod, “Web Resource Description Language (‘Word-dul’).”[Online].
Available: http://www.prescod.net/rest/wrdl/wrdl.html.
[Accessed: 23-Jan-2010].

[114] N. Walsh, “WITW: NSDL,” 2005. [Online]. Available:
http://norman.walsh.name/2005/03/12/nsdl. [Accessed: 10-Oct-2010].

[115] T. Bray, “SMEX-D,” ongoing, 2005. [Online]. Available:
http://www.tbray.org/ongoing/When/200x/2005/05/03/SMEX-D.
[Accessed: 06-Jul-2010].

[116] J. Cowan, “Resedel,” Recycled Knowledge, 2005. [Online]. Available:
http://recycledknowledge.blogspot.it/2005/05/resedel.html.
[Accessed: 05-Jul-2010].

[117] R. Salz, “Really Simple Web Service Descriptions,” XML.com, 2003. [Online].
Available: http://www.xml.com/pub/a/ws/2003/10/14/salz.html.
[Accessed: 07-Jul-2010].

[118] D. Orchard, “Web Description Language (WDL),” 2006. [Online]. Available:
http://pacificspirit.com/Authoring/WDL/. [Accessed: 05-Jul-2010].

[119] J. Farrell and H. Lausen, “Semantic Annotations for WSDL and XML
Schema,” W3C Recommendation, 2007. [Online]. Available:
http://www.w3.org/TR/sawsdl/.

[120] M. Klusch, “Semantic Web Service Description,” in CASCOM: Intelligent
Service Coordination in the Semantic Web, M. Schumacher, H. Schuldt, and H.
Helin, Eds. Basel: Birkhäuser Basel, 2008, pp. 31–57.

[121] M. J. Hadley, “Web Application Description Language,” W3C Member
Submission, 2009. [Online]. Available: http://www.w3.org/Submission/wadl/.
[Accessed: 05-Mar-2010].

[122] “Swagger: A simple, open standard for describing REST APIs with JSON,”
Reverb Technologies, 2013. [Online]. Available:
https://developers.helloreverb.com/swagger/. [Accessed: 04-Mar-2013].

196

[123] “Google APIs Discovery Service,” Google Inc., 2013. [Online]. Available:
https://developers.google.com/discovery/. [Accessed: 07-Mar-2013].

[124] Mashery, “I/O Docs,” 2011. [Online]. Available:
http://www.mashery.com/product/io-docs. [Accessed: 01-Sep-2013].

[125] Apiary, “API Blueprint - Connecting the dots in API development,” 2011. .

[126] RAML Workgroup, “RAMLTM Version 0.8: RESTful API Modeling
Language,” 2013. [Online]. Available: http://raml.org/spec.html.
[Accessed: 02-Feb-2014].

[127] J. Lathem, K. Gomadam, and A. P. Sheth, “SA-REST and (S)mashups: Adding
Semantics to RESTful Services,” in International Conference on Semantic
Computing 2007 (ICSC2007), 2007, pp. 469–476.

[128] B. Adida, M. Birbeck, S. McCarron, and I. Herman, “RDFa Core 1.1 - Second
Edition,” W3C Recommendation, 2013. [Online].
Available: http://www.w3.org/TR/rdfa-core/.

[129] R. Khare and T. Çelik, “Microformats: A Pragmatic Path to the Semantic Web
CommerceNet Labs,” Palo Alto, CA, USA, Tech. Rep. CN-TR 06-01, 2006.

[130] J. Kopecký, T. Vitvar, and D. Fensel, “WSMO Deliverable D38V0.1 -
MicroWSMO: Semantic Description of RESTful Services,” 2008.

[131] M. Maleshkova and J. Kopecký, “Adapting SAWSDL for Semantic
Annotations of RESTful Services,” in On the Move to Meaningful Internet
Systems: OTM 2009 Workshops, 2009, pp. 917–926.

[132] R. Verborgh, T. Steiner, D. Van Deursen, S. Coppens, J. G. Vallés, and R. Van
de Walle, “Functional Descriptions as the Bridge between Hypermedia APIs
and the Semantic Web,” in Proceedings of the 3rd International Workshop on
RESTful Design (WS-REST 2012) at the 21st International World Wide Web
Conference (WWW2012), 2012, pp. 33–40.

[133] T. Berners-Lee and D. Connolly, “Notation3 (N3): A readable RDF syntax,”
W3C Team Submission, 2011. [Online].
Available: http://www.w3.org/TeamSubmission/n3/. [Accessed: 07-Mar-2013].

[134] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, and
J. Siméon, “XML Path Language (XPath) 2.0 (Second Edition),” W3C
Recommendation, 2010. [Online].
Available: http://www.w3.org/TR/2010/REC-xpath20-20101214/.

[135] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and J.
Siméon, “XQuery 1.0: An XML Query Language (Second Edition),” W3C
Recommendation, 2010. [Online].
Available: http://www.w3.org/TR/2010/REC-xquery-20101214/.

[136] M. Kay, “XSL Transformations (XSLT) Version 2.0,” W3C Recommendation,
2007. [Online]. Available: http://www.w3.org/TR/2007/REC-xslt20-
20070123/.

197

[137] D. Beckett, “A retrospective on the development of the RDF/XML Revised
Syntax,” Institute for Learning and Research Technology, University of Bristol,
Bristol, United Kingdom, Research Report 1017, 2003.

[138] W3C, “RDF Working Group Charter,” 2011. [Online]. Available:
http://www.w3.org/2011/01/rdf-wg-charter. [Accessed: 06-Oct-2013].

[139] D. Beckett and T. Berners-Lee, “Turtle - Terse RDF Triple Language,” W3C
Team Submission, 2011. [Online]. Available:
http://www.w3.org/TeamSubmission/turtle/. [Accessed: 06-Oct-2013].

[140] E. Prud’hommeaux and G. Carothers, “RDF 1.1 Turtle - Terse RDF Triple
Language,” W3C Recommendation, 2014. [Online].
Available: http://www.w3.org/TR/turtle/.

[141] G. Carothers and A. Seaborne, “RDF 1.1 TriG - RDF Dataset Language,”
W3C Recommendation, 2014. [Online]. Available: http://www.w3.org/TR/trig/.

[142] G. Carothers and A. Seaborne, “RDF 1.1 N-Triples - A line-based syntax for an
RDF graph,” W3C Recommendation, 15-Jul-2014. [Online].
Available: http://www.w3.org/TR/n-triples/.

[143] G. Carothers, “RDF 1.1 N-Quads - A line-based syntax for an RDF datasets,”
W3C Recommendation, 2014. [Online]. Available: http://www.w3.org/TR/n-
quads/.

[144] M. Sporny, G. Kellogg, and M. Lanthaler, “JSON-LD 1.0 - A JSON-based
Serialization for Linked Data,” W3C Recommendation, 2014. [Online].
Available: http://www.w3.org/TR/json-ld/.

[145] D. Beckett, “New Syntaxes for RDF,” Paper submitted to the 2004 World Wide
Web Conference (WWW2004) but rejected, 2003. [Online]. Available:
http://www.dajobe.org/2003/11/new-syntaxes-rdf/paper.pdf.
[Accessed: 10-Oct-2013].

[146] J. Grant and D. Beckett, “RDF Test Cases,” W3C Recommendation, 2004.
[Online]. Available: http://www.w3.org/TR/rdf-testcases/.

[147] G. Klyne and J. J. Carroll, “Resource Description Framework (RDF): Concepts
and Abstract Syntax,” W3C Recommendation, 2004. [Online]. Available:
http://www.w3.org/TR/rdf-concepts/.

[148] “OWL-S Semantic Markup for Web Services,” W3C Member Submission, 2004.
[Online]. Available: http://www.w3.org/Submission/OWL-S/.
[Accessed: 20-Jun-2010].

[149] R. Lara, A. Polleres, H. Lausen, D. Roman, J. De Bruijn, and D. Fensel, “A
Conceptual Comparison between WSMO and OWL-S,” 2005.

[150] D. Roman, U. Keller, H. Lausen, and J. De Bruijn, “Web Service Modeling
Ontology,” Appl. Ontol., vol. 1, no. 1, pp. 77–106, 2005.

[151] C. Bournez, “Team Comment on Web Service Modeling Ontology (WSMO)
Submission,” W3C Submissions, 2005. [Online].
Available: http://www.w3.org/Submission/2005/06/Comment.html.
[Accessed: 10-Jul-2010].

198

[152] T. Vitvar, J. Kopecký, J. Viskova, and D. Fensel, “WSMO-Lite Annotations for
Web Services,” in 5th European Semantic Web Conference (ESWC 2008), LNCS
5021, 2008, pp. 674–689.

[153] A. Alowisheq and D. E. Millard, “EXPRESS: EXPressing REstful Semantic
Services,” in Proceedings of the 2009 IEEE/WIC/ACM International Joint
Conference on Web Intelligence and Intelligent Agent Technology, 2009,
pp. 453-456.

[154] W3C, “Linked Data Platform (LDP) Working Group Charter,” 2012.
[Online]. Available: http://www.w3.org/2012/ldp/charter.
[Accessed: 03-Sep-2013].

[155] S. Speicher, J. Arwe, and A. Malhotra, “Linked Data Platform 1.0,” W3C Last
Call Working Draft, 2013. [Online].
Available: http://www.w3.org/TR/2013/WD-ldp-20130730/.

[156] “Google Data Protocol,” 2010. [Online].
Available: http://code.google.com/apis/gdata/. [Accessed: 07-Jul-2010].

[157] “Open Data Protocol,” 2010. [Online]. Available: http://www.odata.org/.
[Accessed: 09-Jul-2010].

[158] “Developer’s Guide: JSON-C / JavaScript,” 2010. [Online]. Available:
http://code.google.com/apis/youtube/2.0/developers_guide_jsonc.html.
[Accessed: 07-Jul-2010].

[159] D. Clinton, “OpenSearch 1.1 Draft 5,” 2012. [Online]. Available:
http://www.opensearch.org/Specifications/OpenSearch/1.1/Draft_5.
[Accessed: 25-Jul-2012].

[160] C. Henderson, M. Malone, L. Culver, and R. Crowley, “oEmbed,” 2012.
[Online]. Available: http://www.oembed.com/. [Accessed: 25-Jul-2012].

[161] F. Galiegue, K. Zyp, and G. Court, “JSON Schema: core definitions and
terminology,” Internet Engineering Task Force (IETF) Draft, 2013. [Online].
Available: http://tools.ietf.org/html/draft-zyp-json-schema-04.

[162] P. C. Bryan and K. Zyp, “JSON Reference,” Internet Engineering Task Force
(IETF) Draft, 2012. [Online]. Available: http://tools.ietf.org/html/draft-
pbryan-zyp-json-ref-03.

[163] M. Kelly, “JSON Hypertext Application Language,” Internet Engineering Task
Force (IETF) Draft, 2013. [Online]. Available: http://tools.ietf.org/html/draft-
kelly-json-hal-06.

[164] M. Amundsen, “Collection+JSON - Hypermedia Type,” 2011. [Online].
Available: http://amundsen.com/media-types/collection/.
[Accessed: 29-Oct-2012].

[165] Y. Y. Goland, “Adding Namespaces to JSON,” 2006. [Online]. Available:
http://www.goland.org/jsonnamespace/. [Accessed: 31-Aug-2013].

[166] RDF Working Group, “JSON Serialization By Example,” 2011. [Online].
Available: http://www.w3.org/2011/rdf-wg/wiki/JSON-Serialization-Examples.
[Accessed: 31-Aug-2013].

199

[167] M. Lanthaler and C. Gütl, “Seamless Integration of RESTful Services into the
Web of Data,” Adv. Multimed., vol. 2012, pp. 1–14, 2012.

[168] M. Lanthaler, G. Kellogg, and M. Sporny, “JSON-LD 1.0 Processing
Algorithms and API,” W3C Recommendation, 2014. [Online]. Available:
http://www.w3.org/TR/json-ld-api/.

[169] M. Lanthaler, “Creating 3rd Generation Web APIs with Hydra,” in Proceedings
of the 22nd International World Wide Web Conference (WWW2013), 2013,
pp. 35-37.

[170] M. Lanthaler, “Hydra Core Vocabulary Specification,” 2014. [Online].
Available: http://www.markus-lanthaler.com/hydra/. [Accessed: 22-Feb-2014].

[171] E. Ries, The Lean Startup: How Today’s Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses, 1st editio. New York, NY,
USA: Crown Business, 2011.

[172] M. Birbeck and S. McCarron, “CURIE Syntax 1.0 - A syntax for expressing
Compact URIs,” W3C Working Group Note, 2010. [Online].
Available: http://www.w3.org/TR/2010/NOTE-curie-20101216.

[173] S. Vinoski, “Demystifying RESTful Data Coupling,” IEEE Internet Comput.,
vol. 12, no. 2, pp. 87–90, Mar. 2008.

[174] S. Vinoski, “RPC Under Fire,” IEEE Internet Comput., vol. 9, no. 5, pp. 93–95,
Sep. 2005.

[175] K. Zyp and G. Court, “A JSON Media Type for Describing the Structure and
Meaning of JSON Documents,” 2010. [Online].
Available: http://tools.ietf.org/html/draft-zyp-json-schema-03.

[176] P. C. Bryan, K. Zyp, and M. Nottingham, “RFC6901: JavaScript Object
Notation (JSON) Pointer,” Internet Engineering Task Force (IETF) Request for
Comments, 2013. [Online]. Available: http://tools.ietf.org/html/rfc6901.

[177] J. Gregorio, R. T. Fielding, M. Hadley, M. Nottingham, and D. Orchard,
“RFC6570: URI Template,” Internet Engineering Task Force (IETF) Request for
Comments, 2012. [Online]. Available: http://tools.ietf.org/html/rfc6570.

[178] S. Das, S. Sundara, and R. Cyganiak, “R2RML: RDB to RDF Mapping
Language,” W3C Recommendation, 2012. [Online].
Available: http://www.w3.org/TR/r2rml/.

[179] J. Bao, E. F. Kendall, D. L. McGuinness, and P. F. Patel-Schneider, “OWL 2
Web Ontology Language Quick Reference Guide,” W3C Recommendation,
2009. [Online]. Available: http://www.w3.org/TR/2009/REC-owl2-quick-
reference-20091027/.

[180] M. Sporny, “Linked JSON: RDF for the Masses,” The Beautiful, Tormented
Machine, 2011. [Online]. Available: http://manu.sporny.org/2011/linked-json/.
[Accessed: 28-Apr-2011].

[181] I. Herman, “W3C Workshop — RDF Next Steps Workshop Report,” 2010.
[Online]. Available: http://www.w3.org/2009/12/rdf-ws/Report.html.
[Accessed: 05-Aug-2010].

200

[182] Talis Systems Ltd., “RDF/JSON,” 2011. [Online].
Available: http://docs.api.talis.com/platform-api/output-types/rdf-json.
[Accessed: 15-Jan-2012].

[183] T. Steiner, “JSON Emergency Brake,” RDF Working Group mailing list, 2011.
[Online]. Available: http://lists.w3.org/Archives/Public/public-rdf-
wg/2011Aug/0131.html. [Accessed: 23-Aug-2011].

[184] M. Birbeck and M. Sporny, “JSON-LD - Linked Data Expression in JSON,”
Unofficial Draft 30 May 2010, 2010. [Online]. Available: http://json-
ld.org/spec/ED/json-ld-syntax/20100529/. [Accessed: 06-Aug-2012].

[185] L. Dodds and I. Davis, “Linked Data Patterns - A pattern catalogue for
modelling, publishing, and consuming Linked Data,” 2012. [Online].
Available: http://patterns.dataincubator.org/book/linked-data-patterns.pdf.
[Accessed: 06-Aug-2012].

[186] P. V. Biron and A. Malhotra, “XML Schema Part 2: Datatypes Second
Edition.” W3C, 2004.

[187] M. Sporny, G. Kellogg, D. Longley, and M. Lanthaler, “JSON-LD Framing
1.0,” W3C Community Group Draft Report, 2013. [Online]. Available:
http://json-ld.org/spec/latest/json-ld-framing/. [Accessed: 28-Mar-2013].

[188] M. Lanthaler and C. Gütl, “A Web of Things to Reduce Energy Wastage,” in
Proceedings of the 10th IEEE International Conference on Industrial Informatics
(INDIN), 2012, pp. 1050–1055.

[189] M. Lanthaler, “Integration of Hydra into Schema.org,” Unofficial Draft, 2014.
[Online]. Available: http://www.hydra-cg.com/spec/latest/schema.org/.
[Accessed: 22-Feb-2014].

[190] B. Motik, P. F. Patel-Schneider, and B. Parsia, “OWL 2 Web Ontology
Language Structural Specification and Functional-Style Syntax (Second
Edition),” W3C Recommendation, 2012. [Online].
Available: http://www.w3.org/TR/owl2-syntax/.

[191] J. Koch, C. A. Velasco, and P. Ackermann, “HTTP Vocabulary in RDF 1.0,”
W3C Working Draft, 2011. [Online].
Available: http://www.w3.org/TR/2011/WD-HTTP-in-RDF10-20110510/.

[192] R. T. Fielding, “[httpRange-14] Resolved,” W3C Technical Architecture Group
Mailing List, 2005. [Online].
Available: http://lists.w3.org/Archives/Public/www-tag/2005Jun/0039.html.
[Accessed: 13-Jun-2010].

[193] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns - Elements of
Reusable Object-Oriented Software, 1st ed. Addison-Wesley, 1994.

[194] T. Berners-Lee, “Principles of Design,” Design Issues for the World Wide Web,
1998. [Online]. Available: http://www.w3.org/DesignIssues/Principles.html.
[Accessed: 21-Feb-2013].

[195] MongoDB Inc., “MongoDB.” [Online].
Available: https://www.mongodb.com/products/mongodb.

201

[196] Elasticsearch BV, “Elasticsearch.” [Online].
Available: http://www.elasticsearch.org/.

[197] D. Stenberg, “cURL.” [Online]. Available: http://curl.haxx.se/.

[198] “Symfony2.” [Online]. Available: http://symfony.com/.
[Accessed: 04-May-2013].

[199] “PHP: Hypertext Preprocessor.” [Online]. Available: http://www.php.net/.
[Accessed: 04-May-2013].

[200] T. M. H. Reenskaug, “The original MVC reports,” 1979. [Online].
Available: http://heim.ifi.uio.no/~trygver/2007/MVC_Originals.pdf.
[Accessed: 06-Dec-2013].

[201] “Symfony2 Routing Component.” [Online]. Available:
http://symfony.com/doc/current/components/routing/index.html.
[Accessed: 04-May-2013].

[202] “Doctrine Object-Relational Mapper.” [Online]. Available:
http://www.doctrine-project.org/projects/orm.html. [Accessed: 04-May-2013].

[203] “Composer - Dependency Manager for PHP.” [Online].
Available: http://getcomposer.org/. [Accessed: 05-May-2013].

[204] M. Lanthaler, “HydraBundle.” [Online].
Available: https://github.com/lanthaler/HydraBundle. [Accessed: 07-Jan-2014].

[205] M. Lanthaler, “HydraConsole.” [Online]. Available:
https://github.com/lanthaler/HydraConsole. [Accessed: 10-May-2013].

[206] “jQuery.” [Online]. Available: http://jquery.com/. [Accessed: 10-May-2013].

[207] “Bootstrap.” [Online]. Available: http://getbootstrap.com/.
[Accessed: 10-May-2013].

[208] “Backbone.js.” [Online]. Available: http://backbonejs.org/.
[Accessed: 10-May-2013].

[209] “Underscore.js.” [Online]. Available: http://underscorejs.org/.
[Accessed: 10-May-2013].

[210] M. Lanthaler, “JsonLD.” [Online].
Available: https://github.com/lanthaler/JsonLD. [Accessed: 10-May-2013].

[211] A. van Kesteren, “Cross-Origin Resource Sharing,”
W3C Proposed Recommendation, 2013. [Online].
Available: http://www.w3.org/TR/2013/PR-cors-20131205/.

[212] A. J. Hester, “Socio-technical systems theory as a diagnostic tool for examining
underutilization of wiki technology,” Learn. Organ., vol. 21, no. 1, pp. 48–68,
2014.

[213] V. Venkatesh, “Determinants of Perceived Ease of Use: Integrating Control,
Intrinsic Motivation, and Emotion into the Technology Acceptance Model,”
Inf. Syst. Res., vol. 11, no. 4, pp. 342–365, Dec. 2000.

[214] F. D. Davis, “Perceived usefulness, perceived ease of use, and user acceptance of
information technology,” MIS Q., vol. 13, no. 3, pp. 319–340, 1989.

202

[215] E. M. Rogers, Diffusion of Innovations, 5th ed. New York, NY, USA: Free Press,
2003.

[216] “Hydra Community Group,” W3C Commnunity and Business Groups. [Online].
Available: http://www.w3.org/community/hydra/. [Accessed: 19-Nov-2013].

[217] “IKS—The Semantic CMS Community.” [Online]. Available: http://www.iks-
project.eu/. [Accessed: 05-Jan-2014].

[218] European Commission, “IKS: Interactive knowledge stack for small to medium
CMS/KMS providers,” Community Research and Development Information
Service (CORDIS). [Online]. Available:
http://cordis.europa.eu/projects/rcn/89486_en.html. [Accessed: 05-Jan-2014].

[219] F. Christ and B. Nagel, “A Reference Architecture for Semantic Content
Management Systems,” in Proceeding of the Enterprise Modelling and
Information Systems Architectures Workshop 2011 (EMISA’11), 2011,
vol. 231527, no. 231527, pp. 135–148.

[220] IKS Project, “VIE.js: Semantic Interaction Framework.” [Online].
Available: http://viejs.org/. [Accessed: 05-Jan-2014].

[221] “Apache Stanbol,” Apache Software Foundation. [Online].
Available: http://stanbol.apache.org/. [Accessed: 05-Jan-2014].

[222] S. Grünwald and H. Bergius, “Decoupling Content Management,” in
Proceedings of the 21st International World Wide Web Conference (WWW2012),
2012.

[223] “Content Repository for JavaTM Technology API 2.0 Specification,” 2009.
[Online]. Available: https://jcp.org/en/jsr/detail?id=283.

[224] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S.
Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer, “DBpedia – A
Large-scale, Multilingual Knowledge Base Extracted from Wikipedia,” Semant.
Web J. (in Press., 2014.

[225] Galileo University, “Galileo Educational System.” [Online].
Available: http://ges.galileo.edu/geswiki/research.

[226] Google Inc., “Google Docs.” [Online]. Available: https://docs.google.com/.

[227] MeisterLabs GmbH, “MindMeister.” [Online].
Available: http://www.mindmeister.com/.

[228] Nulab Inc., “Cacoo.” [Online]. Available: https://cacoo.com/.

[229] J. O. Donovan, “The World Cup and a call to action around Linked Data,”
BBC Internet Blog, 2010. .

[230] D. Rogers, “Introducing the BBC’s Linked Data Platform and APIs,”
Presentation at the QCon London Software Development Conference, 2013.
[Online]. Available: http://qconlondon.com/london-
2013/presentation/Introducing the BBC’s Linked Data Platform and APIs.
[Accessed: 05-Jan-2014].

203

[231] Í. Medeiros, “Linked Data at globo.com,” Presentation at the 2nd International
Workshop on Web of Linked Entities (WoLE), 2013. [Online].
Available: http://www.slideshare.net/icaromedeiros/linked-data-at-globocom.
[Accessed: 15-Jan-2014].

[232] C. Cherubino and S. Agarwal, “Actions in the inbox, powered by schemas,”
Presentation at the Google I/O 2013, 2013. [Online].
Available: https://developers.google.com/events/io/sessions/327735537.
[Accessed: 08-Jun-2013].

[233] S. Agarwal, “Take action right from the inbox,” Official Gmail Blog, 2013.
[Online]. Available: http://gmailblog.blogspot.com/2013/05/take-action-right-
from-inbox.html. [Accessed: 08-Jun-2013].

[234] “Actions in the Inbox: Rsvp Action,” Google Developers, 2013. [Online].
Available: https://developers.google.com/gmail/actions/reference/rsvp-action.
[Accessed: 16-Jan-2014].

[235] D. Brickley, “Schema.org and JSON-LD,” schema blog—Official blog for
schema.org, 2013. [Online].
Available: http://blog.schema.org/2013/06/schemaorg-and-json-ld.html.
[Accessed: 08-Jun-2013].

[236] IMS Global Learning Consortium, “IMS Global Learning Consortium Releases
Initial Public Draft of Learning Tools Interoperability 2,” Press Release, 2012.
[Online]. Available: http://www.imsglobal.org/pressreleases/pr121113.html.
[Accessed: 16-Jan-2014].

[237] International Image Interoperability Framework (IIIF) Working Group,
“International Image Interoperability Framework: Image API 1.1,” 2013.
[Online]. Available: http://www-sul.stanford.edu/iiif/image-api/1.1/.
[Accessed: 16-Jan-2014].

[238] R. Sanderson, P. Ciccarese, and H. Van de Sompel, “Open Annotation Data
Model,” W3C Community Group Draft, 2013. [Online].
Available: http://www.openannotation.org/spec/core/20130208/.
[Accessed: 16-Jan-2014].

[239] J. Öberg and S. Myles, “ODRL 2 JSON Encoding,” W3C Community Group
Draft, 2014. [Online]. Available:
http://www.w3.org/community/odrl/work/json/. [Accessed: 18-Jan-2014].

[240] J. M. Snell, “JSON Activity Streams 2.0,” Internet Engineering Task Force
(IETF) Draft, 2013. [Online]. Available: http://tools.ietf.org/html/draft-snell-
activitystreams-05.

[241] J. M. Snell and M. Marum, “JSON Activity Streams 2.0 - Action Handlers,”
Internet Engineering Task Force (IETF) Draft, 2014. [Online].
Available: http://tools.ietf.org/html/draft-snell-activitystreams-actions-03.

[242] M. Hepp, “GoodRelations: An Ontology for Describing Products and Services
Offers on the Web,” in Proceedings of the 16th International Conference on
Knowledge Engineering and Knowledge Management (EKAW 2008), LNCS 5268,
2008, pp. 329–346.

204

[243] M. Hepp, “i think that #hydra and #json-ld are very promising candidates for
really advancing the #www in 2014,” Twitter, 2014. [Online].
Available: https://twitter.com/mfhepp/status/421320663920807937.
[Accessed: 21-Jan-2014].

[244] JSON-LD Community Group, “json-ld/json-ld.org Issues.” [Online].
Available: https://github.com/json-ld/json-ld.org/issues.

[245] JSON-LD Community Group, “public-linked-json@w3.org Mail Archives.”
[Online]. Available: http://lists.w3.org/Archives/Public/public-linked-json/.

[246] G. Schreiber and Y. Raimond, “RDF 1.1 Primer,” W3C Working Group Note,
2014. [Online]. Available: http://www.w3.org/TR/rdf11-primer/.

[247] B. Nowack, “The Semantic Web Technology Stack (not a piece of cake...),”
BNode, 2009. [Online]. Available: http://bnode.org/blog/2009/07/08/the-
semantic-web-not-a-piece-of-cake. [Accessed: 14-Oct-2013].

	Statutory Declaration
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Basic Concepts and Technologies
	2.1 The Architecture of the World Wide Web
	2.1.1 The Representational State Transfer Architectural Style

	2.2 Contracts on the Web
	2.2.1 An Alternative Approach

	2.3 Linked Data and the Semantic Web
	2.3.1 The Semantic Web Technology Stack
	2.3.1 Linked Data

	2.4 Services on the Web
	2.4.1 SOAP-based Services
	2.4.2 RESTful Services

	2.5 Discussion

	3 Problem Definition
	3.1 Proprietary Data Formats and Models
	3.2 Static Contracts in Natural Language
	3.3 Manually Written Documentation
	3.4 The Semantic Web: Complex, Read-Only, and No Links?
	3.5 Missing Tooling
	3.6 Discussion

	4 Related Work
	4.1 Interface Description Languages
	4.1.1 WSDL and SAWSDL
	4.1.2 WADL
	4.1.3 Swagger and Google’s API Discovery Service
	4.1.4 SA-REST, hRESTS, and MicroWSMO
	4.1.5 RESTdesc

	4.2 Data Interchange Formats
	4.2.1 Turtle

	4.3 Vocabularies and Ontologies
	4.3.1 OWL-S
	4.3.2 WSMO
	4.3.3 WSMO-Lite
	4.3.4 EXPRESS
	4.3.5 Linked Data Platform

	4.4 Domain Application Protocols
	4.4.1 Atom
	4.4.2 OpenSearch
	4.4.3 oEmbed

	4.5 Hyperlinks and Namespaces in JSON
	4.6 Discussion

	5 Bridging the Gap between REST and Linked Data
	5.1 SAPS
	5.1.1 Basic Concepts and Principles
	5.1.2 Illustrative Example
	5.1.3 Integration into the Linked Data Cloud
	5.1.4 Summary and Lessons Learned

	5.2 SEREDASj
	5.2.1 Basic Concepts and Principles
	5.2.2 Illustrative Example
	5.2.3 Integration into the Linked Data Cloud
	Translating INSERT DATA and DELETE DATA Operations
	Translating DELETE/INSERT Operations

	5.2.4 Summary and Lessons Learned

	5.3 JSON-LD
	5.3.1 Basic Concepts and Principles
	5.3.2 Illustrative Example
	5.3.3 Integration into the Linked Data Cloud
	5.3.4 Summary and Lessons Learned

	5.4 Hydra
	5.4.1 Basic Concepts and Principles
	5.4.2 Illustrative Example
	5.4.3 Integration into the Linked Data Cloud
	5.4.4 Summary and Lessons Learned

	5.5 Discussion
	Data Modeling
	Behavioral Modeling
	Test Early, Test Often
	Documenting Services

	6 Evaluation
	6.1 Problems Addressed
	6.2 Ease of Integration into Web Frameworks
	6.3 Support for Generic Clients
	6.4 Adoption
	6.4.1 Academia
	6.4.2 Industry
	6.4.3 Standardization

	6.5 Discussion

	7 Conclusions and Future Work
	7.1 JSON-LD
	7.2 Hydra
	7.3 Related Topics

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Europe General Purpose)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

