
Linux is a registered trademark of Linus Torvalds.

Multi-threading QEMU
or Ingo might be right.. sort of

Anthony Liguori – aliguori@us.ibm.com

IBM Linux Technology Center

Aug 2010

Ideal KVM Architecture

VCPU2
Thread

VCPU3
Thread

VCPU0
Thread

VCPU1
Thread DEV

DEV
Thread

DEV
Thread

Process

Design
• One thread per-VCPU
• Device models run concurrent
in VCPU thread
• Long running operations run
in additional device thread

Goals
• Maximize CPU affinity
• Minimize PIO/MMIO latency

QEMU/KVM Architecture

VCPU2
Thread

VCPU3
Thread

VCPU0
Thread

VCPU1
Thread DEV

IO
Thread

Process

Curr
Thread

Design
• One thread per-VCPU
• One I/O thread
• All threads run in lock step
protected by qemu_mutex

Goals
• Avoid rewriting QEMU
• Find a TCG-compat design

TCG Considerations
● Tiny Code Generator (TCG) is the emulator part

of QEMU
● Cannot preserve atomicity of instructions

– Due to design issues
– Due to architectural issues (PPC vs. x86)

● QEMU's single thread design is ideal for TCG

● Device models are unlikely to ever run in
parallel with TCG emulation

Evolving QEMU
● I/O thread gets our foot in the door
● Reduce granularity of locking

– Push qemu_mutex out of kvm-all.c, exec.c,
apic.c, …

● Add locking to common infrastructure
– Push qemu_mutex out of vl.c, async.c,

block/*
● Start adding device specific threads

Easy, right?

Worlds Colliding

KVM

TCG

Two different worlds

● Performance
● Scalability
● Reliability
● External tooling

● Functionality over
quality

● Performance doesn't
matter

● All-in-one tool

KVM TCG

● We want to continue to share code
● Supporting multiple use-cases and architectures

makes our code better
● We struggle to accommodate both worlds

Time for a change
● QEMU is bloated with lots of useful features
● We struggle to scale in every possible way

● VNC server
● virtual disk formats
● network interconnects
● generic transports
● multi-architecture device mode
● multi-architecture CPU emulation
●

libqemu-*.so
● Much of qemu would be better suited as

libraries maintained as separate projects
● Let KVM develop a stand alone userspace that

fits it's architecture model
● Multiple libraries to accommodate different

architectures
– With different emphasis on quality/features

● Continue to share code when it make sense

● Open QEMU code base to a wider audience

QEMU 2.x

libqemu-block.so

libqemu-net.so

libqemu-vnc.so

libqemu-dm-pc.so

QEMU 2.x

qemu-img

qemu-nbd

qemu-io

qemu-next

libqemu-block.so
● qemu-img is very popular outside of QEMU
● Many tools have developed over the years with

a few making it into QEMU (qemu-nbd, qemu-
io)

● These tools should be separate projects to
allow other communities to contribute

● Patches on the list

libqemu-dm-pc.so
● Fork internal device models

– Improve interfaces
– Extensive unit tests

● As device models improve, we can replace the
internal device models

● Experiment with radical to difficult problems
– Migration
– Versioning

● Some prototypes will be available soon

Other considerations
● Major concerns of split

– KVM community ignores TCG; this is the point
– QEMU has historically avoided dependencies

● Does fit general direction of QEMU
– Single executable with pluggable CPU

translation

● Split will not be successful without major changes
– Test driven development
– Rely more on external code

Questions
● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

