

400年以上前にさかのぼる、 私たちの源流。

多様な事業をグローバルに展開し、 世界約40カ国で、約28万人の企業へと 成長を遂げてきた私たち住友電エグループ。 その源流である住友の銅事業は、 400年以上前にさかのぼります。

当時、世界有数の銅生産国だった日本において、 画期的な精錬技術「南蛮吹き」と

その後の別子銅山の発見によって 住友の礎が築かれていきました。

さらに時代が進み、電燈や電信・電話が発明されると、

銅線の需要が高まります。

そうした中、1897年に別子産の銅を使って電線を製造する 私たち住友電エグループが誕生しました。

時代の進展とともに、

モノづくりを通じて社会に貢献しようと挑んだ 先人たちの熱い想いがあったのです。

住友事業精神

第一条 我が住友の営業は、信用を重んじ確実を旨とし、 はてその鞏固降盛を期すべし

営業の要旨

(1928年制定 住友合資会社社則より)

萬事入精

ばんじにっせい

「文殊院旨意書」の前文、「商事は不及言候へ共、万事情(精)に可被入候」に由来する言葉で、まず一人の人間として、何事に対しても誠心誠意を尽くす人であれと諭しています。この教えは「住友事業精神」の基本となり、住友では一人ひとりが安易な利益追求に走ることなく、人間を磨き、人格豊かに成熟することが求められています。

文殊院旨意書※

信用確実

しんようかくじつ

第一条では、「住友事業精神」の基本は、「何よりも信用を重んじる」こと、すなわち「常に相手の信頼に応える」ことを表しています。

ふすうふり

第二条の前段では、社会の変化に迅速、的確に対応して利潤を 追求すべきであり、既存の事業に安住することなく常に事業の 興廃を図るという積極進取の重要性を説明しています。しかし 常に公共の利益との一致を求め、浮利を追い、軽率、粗略に行 動することを厳に戒めています。浮利とは、一時的な目先の利 益あるいは安易な利益追求のことですが、道義にもとる不当 な利益の意味が込められています。

住友家法

また、住友には下に示すような脈々と受け継がれている考え方があります。

『技術の重視』、『人材の尊重』、『企画の遠大性』、『自利利他、公私一如』

※出所:住友史料館

住友電エグループ 経営理念

住友電エグループは

- 顧客の要望に応え、最も優れた製品・サービスを提供します
- 技術を創造し、変革を生み出し、絶えざる成長に努めます
- 社会的責任を自覚し、よりよい社会、環境づくりに貢献します
- 高い企業倫理を保持し、常に信頼される会社を目指します
- 自己実現を可能にする、生き生きとした企業風土を育みます

1900

1916 エナメル線

1922

逓信省に 硅銅線を納入 1908

世界最長の海底ケーブルを 製造·布設 (愛媛県新居浜~四阪島間21km)

特殊金属線 製造開始

1931

1932

超硬合金工具(イゲタロイ®) 製造開始

1943

1948

1949

防振ゴム 製造開始

焼結製品 製造開始

白動車用 ワイヤーハーネス事業 開始 架空送電線工事部門 進出

鉄道車両用空気ばね 製造開始

1964

電子線照射製品(チューブ・電線) 製造開始

1968

交通管制システム 事業化

1969

フレキシブルプリント回路事業 開始

1970

化合物半導体 製造開始 CATV事業 開始

1973

コートアルミ(スミフロン®) 製造開始

1976

ナイジェリア 大規模通信網工事 受注

1978

世界初双方向光CATVシステム (Hi-OVIS) 運用開始

1960

世界最先端 光LANシステム (10Mbpsトークンリング方式) 高温超電導線材の 初納入

1982

1981

世界最大級1.2カラット ダイヤモンド 単結晶合成に成功

2003

1996 酸化物系 長尺化技術 開発

世界初 窒化ガリウム(GaN)基板 量産開始

2006

世界初 高性能窒化ガリウム トランジスタ(GaN HEMT) 量産化

世界初 実用送電路で 超電導ケーブルによる送電を開始 2015

世界最大級レドックスフロー電池 実証運転開始

2016

世界最多心3456心 光ケーブル 販売開始

2017

光ファイバの 低伝送損失世界記録 更新 (0.1419dB/km:波長1560nm)

1600

1890

1900

1910

1920

1930

1940

50

1970

1980

1990

2000

2010

2020~

会社の沿 (出所:住友史料館)

1600頃 銀を含む銅鉱石から

銀を分離する 銅精錬技術

「南蛮吹き」を完成 1690

別子銅山 発見(翌年開坑)

住友伸銅場 開設(住友電工の創業)

1911

住友電線製造所 開設 (住友電工の創立)

1941 伊丹製作所 開設

1946 東京支社 開設 (現 東京本社) 名古屋出張所 開設 (現 中部支社)

1920

株式会社住友電線製造所に改組 (住友電工の設立)

1961 横浜製作所 開設

1969

タイに海外で初となる製造拠点を設立 (Siam Electric Industries Co., Ltd.)

創業100周年を機に 「住友電エグループ経営理念」 を明文化

2006

ドイツの自動車用 ワイヤーハーネスメーカー (現 Sumitomo Electric Bordnetze SE)を買収

2007

住友電装株式会社 完全子会社化 日新電機株式会社 連結子会社化

2008

すみでんフレンド 設立(特例子会社)

2011

人材に関する基本方針を明確化した 「グローバルHRM*ポリシー」を制定 **HRM:Human Resource Management

2019

株式会社テクノアソシエ 連結子会社化

Business Development of Sumitomo Electric

独自技術の開発、新規事業への挑戦で、 5つの事業分野が確立

銅電線(裸銅線)の製造技術を基に、

「電力用ケーブル」「通信用ケーブル」をはじめ

[電子ワイヤー製品]など幅広い新製品を開発。

一方、こうした電線の伸線技術を応用した「特殊金属線」、

伸線に必要な線引きダイスの内製化を機に

「超硬合金工具」の開発など、非電線分野へ進出。

さらに、この粉末冶金技術を生かして

「焼結部品」などを世に送り出しました。

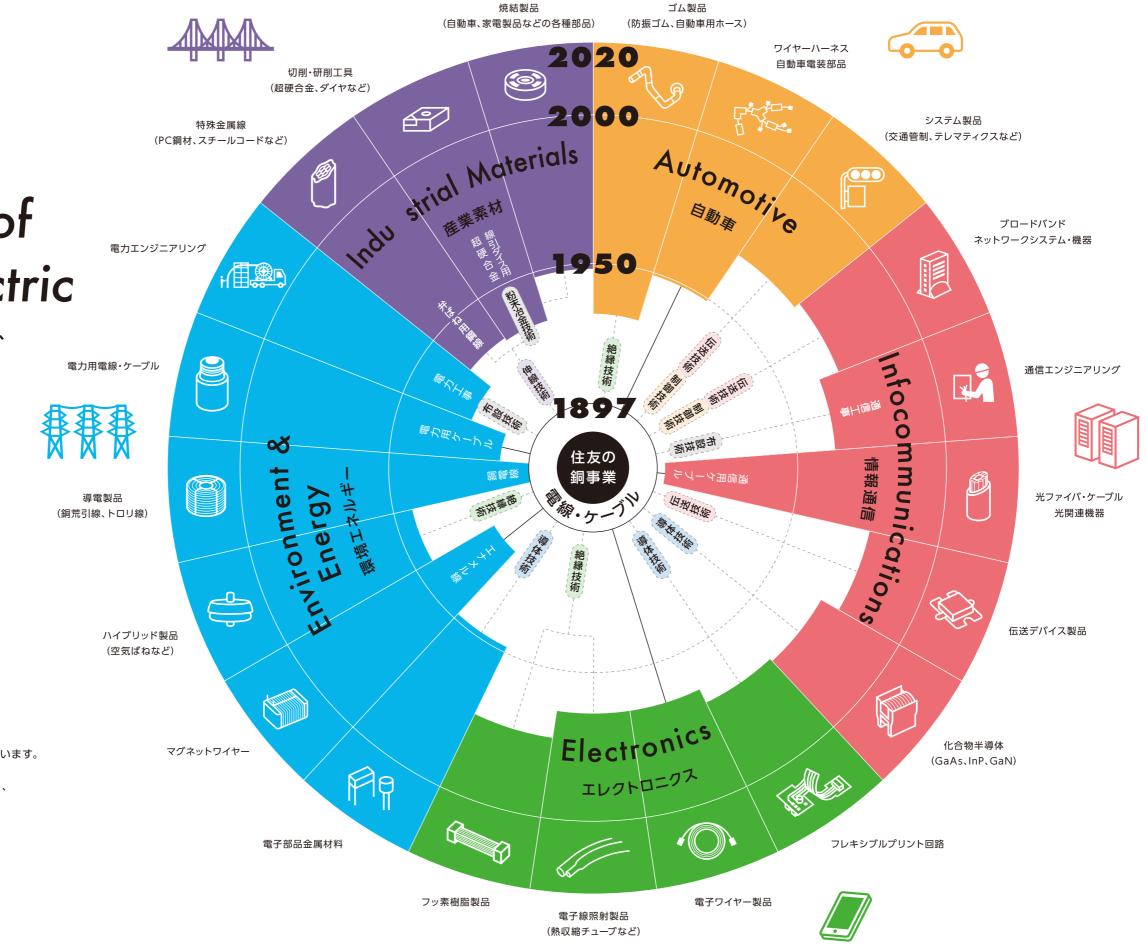
また、銅電線の導体技術は「化合物半導体」

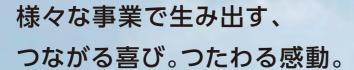
「フレキシブルプリント回路」など、

絶縁技術は「電子線照射製品」や

「ゴム製品」「ハイブリッド製品」の開発に繋がりました。

さらに、電線製造に関する制御技術や伝送技術の応用により、


「システム製品」などの分野に領域を広げ、


現在、「自動車」「情報通信」「エレクトロニクス」

「環境エネルギー」「産業素材」という5つの事業分野を確立しています。

今後もこれらの技術をベースに、新しい事業領域に展開・挑戦し、

よりよい社会の実現に貢献していきます。

たとえば、

山を越え、谷を越え、海を越え、電気を届ける電力ケーブル。

世界中の工場でモノづくりを支える切削工具。

自動車の中で血管や神経のような働きをするワイヤーハーネス。

モバイル端末の小型化・高機能化を実現するフレキシブルプリント回路。

高度情報化社会の欠かせないインフラとなっている光ファイバ。

現代の社会になくてはならないものとなっている、

住友電エグループの多種多様な製品群。

見えないところで、今日も私たちの技術が活躍しています。

もっとつなぎ、もっとつたえるため、

たゆみない挑戦を続けています。

Business Segment

社会課題の解決に技術で挑む5つの事業分野

Serving Servin

CASEの加速的進展と モビリティの進化に貢献する。

Automotive ebb

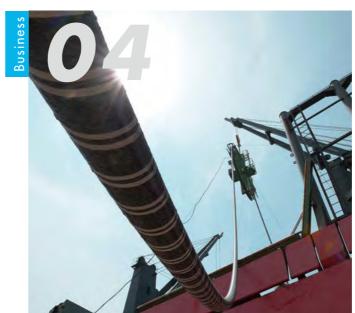
世界の自動車販売台数は増加しており、 環境規制の強化による環境対応車も増えています。 CASE*の加速的進展、異業種の参入など、 自動車業界が大きな変革期を迎えている今、 私たち住友電エもグループ内リソースを結集し、 モビリティの進化に貢献していきます。

**CASE:自動車業界のトレンドを表す言葉で、 Connected (つながる)、Autonomous (自動運転)、 Shared (シェアリング)、Electric (電動化) の頭文字をとったもの。

増加するデータトラフィックに応え、 大容量高速通信の実現に挑む。

Info-communications frade

映像配信やAI・IoT関連需要などを支えるクラウドサービスの拡大や、ネットワーク高速化の鍵となる第5世代移動通信システム(5G)時代の到来により、データトラフィックは格段に増加していきます。 住友電エグループは、強みとする光ファイバ製造技術、 伝送デバイス、化合物半導体、アクセス機器技術などで、 大容量高速通信を実現し、高度情報化社会を支えていきます。



モバイル端末・自動車・航空機器の さらなる進化を支える。

Electronics **TUDEDED**

モバイル端末の伝送情報量の飛躍的な増加により、 新たな機能や規格の開発が加速しています。 また、電気自動車や自動運転の実現に向けて カーエレクトロニクス製品や航空機器向けのニーズも増えています。 成長市場を支えると共に、高機能配線と高機能部材の グローバルトップサプライヤーを目指します。

再生可能エネルギーの普及など、 新しいエネルギーシステムを構築する。

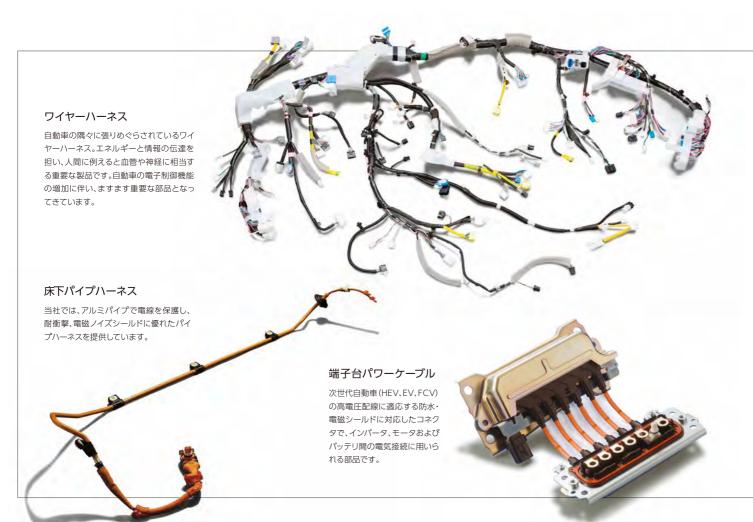
Environment & Energy 環境エネルギー


ヨーロッパでは大型国際連系線プロジェクトが立ち上がり、 新興国においては電力インフラの需要が伸びています。 再生可能エネルギーの導入が増え、電気自動車も普及する中、 環境エネルギーに関わる住友電エグループの 豊富な経験と技術が必要とされています。 日本国内トップの事業基盤、実績を、世界へ。 グローバルなプレゼンス向上を目指します。

高機能な素材を開発・提供し、 産業や社会インフラの発展に寄与する。

Industrial Materials **EXERTIAL**

自動車の電動化進展に伴い、軽量化材料が求められ、 医療や航空機市場でも住友電エグループ製品に対するニーズが高まっています。 私たち住友電エグループは世界トップレベルの材料技術を活かし、 高性能・高機能製品のグローバルサプライヤーを目指します。



Automotive

自動車

世界33カ国へのグローバル展開力が強み。今後も自動車業界の大変革に貢献。

主力製品は自動車内部の隅々に張り巡らされ、電力と情報を伝える「ワイヤーハーネス」。多くの情報を、激しい振動や熱に耐えながら確実に行き渡 らせるハーネスには高度な技術が必要で、住友電エグループは大きく先行。住友電工、住友電装、オートネットワーク技術研究所が一体となって、世 界の車の4台に1台のハーネスが当社製という高い市場プレゼンスを確立しています。自動車の軽量化に貢献するハーネスのアルミ化も着実に進展。 ハイブリッド車、電気自動車の普及はもちろん、車が膨大な情報を扱うコネクテッドカー、自動運転車の実現にも私たちの「つなげる、つながる」技術 が欠かせないものとなっていきます。自動車と人や社会がつながる次世代に向け、ワイヤーハーネスをコアとするメガサプライヤーを目指します。

ゲートウェイ (GW)

車載機器の動作を制御する複数の ECU(エレクトロニクスコントロー ルユニット)の情報交換を仲立ち し、整理する通信基地局の役割を

交通管制システム・ 安全運転支援システム (DSSS)

人・車・社会を情報でつなぐ高度道路交通システム(ITS)は、安全・ 安心や環境に貢献する、新しいシステムを実現します。例えば、交 通管制システムは信号機をコントロールすることで、安全で円滑な 交通流を実現します。また、安全運転支援システム(DSSS)は、交 差点周辺の情報をITS無線でドライバーに提供することで、交通事 故の低減を目指します。

防振ゴム

エンジンや路面からの振動を吸収・抑制 し、安全快適なドライブを実現する重要 な機能部品です。近年では電子制御方式 による高機能な製品も増加しています。

Infocommunications

情報通信

光ファイバ製造技術は世界トップレベル。大容量高速通信時代をリードする。

社会基盤として欠かせない通信インフラ。そこで活躍しているのが住友電エグループの光ファイバ・ケーブルや通信を支える部品や機器。1970年代から製造を始めた「光ファイバ」の中でも、優れた伝送特性や高信頼性が求められる1万kmを超えるような超長距離海底システム用途で開発された光ファイバ(Zファイバ)で低伝送損失の世界記録を更新するなど、高い技術力でプレゼンスを確立しています。その他にも超多心光ケーブル製造技術、映像・光アクセス機器のソフトウェア開発が私たちの強み。世界を行き交う情報がさらに拡大している今、光・無線用化合物半導体での材料からデバイスまでの垂直統合による連携開発など、大切な接続を担う私たちの技術で、様々なユーザーの期待の一歩先を実現する独創的な製品を開発し、大容量高速通信時代をリードしていきます。

データ通信を可能としています。

ブロードバンド ネットワークシステム・機器

EPONシステムやWi-Fiルーター内蔵型ケーブルモデム、4Kセットトップボックスなど新しい通信・放送サービスの中核を担う機器の提供や、お客様のご要望にきめ細かくお応えするシステムインテグレーションを通じて、快適な情報通信社会の実現に貢献しています。

光トランシーバ・光デバイス 光で動画や音声などの情報を伝える光通信に欠かせない部品です。高速・低消費電力・小型の光送受信用デパイス、そのデバイスを集積化した光トランシーバで、家庭と局、都市・大陸間など、長距離・大容量の

電子デバイス

無線通信を実現する重要部品です。低消費電力化、小型化が要求される第5世代移動通信システム(5G)などの基地局、高い信頼性が求められる衛星通信、航空管制や自動車の衝突回避・気象観測用のレーダーにも採用されています。

Wi-Fi は、米国Wi-Fi Allianceの米国及びその他の国における商標または登録商標です。

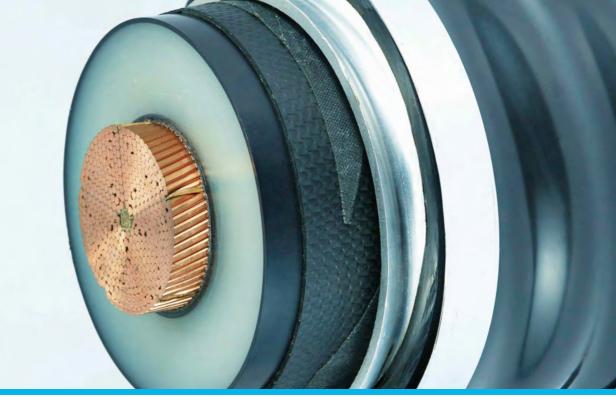
16

Electronics

エレクトロニクス

スマートフォンなど世界中のモバイル端末や自動車、航空機器のさらなる進化に貢献。

様々な電子機器の発展を内側から支えてきた住友電工グループの多彩な素材・配線材・部材。主力製品の「フレキシブルプリント回路」は、小さな面積の中に高密度で自由度の高い回路形成が可能で、複雑化するあらゆる機器内配線に対応できる配線材料です。電子ワイヤー製品や熱収縮チューブなどの電子線照射技術やプリンター用定着ローラなどのフッ素樹脂加工技術といった独自の材料開発・設計・加工技術に加え、高速伝送技術にも強みを持ち、高機能化のニーズに応える製品を生み出し続けています。これらの技術を磨き続けると共に、グローバル競争に対応すべく、サプライチェーンの強化を進め、高性能配線と高機能部材のグローバルサプライヤーを目指します。


Thunderbolt™3ケーブル

Thunderbolt™ 3は、従来品の2倍にあたる双方向40Gbpsの伝送スピードに対応する高速伝送規格です。当社開発品は、電線に独自の高性能極細同軸電線を採用しており、柔軟で耐屈曲性に優れることから、省スペース配線が求められる4Kディスプレイやゲーム用PCなど、様々な用途で大容量高速通信を可能としています。

Thunderbolt、Thunderbolt ロゴ は、米国 Intel Corporationの米国及びその他の国における商標または登録商標です。 V-by-Oneは、ザインエレクトロニクス株式会社の登録商標です。

Environment & Energy

環境エネルギー

送配電用電線・ケーブル

発電所とユーザーの間を結ぶ送配電 ネットワーク向けに各種の電線・ケーブ ル類を提供しています。特に電力会社 や各国間の電力連系、大規模洋上風力 用に、超高圧の直流海底ケーブルの需要 が増加しており、布設工事も含め電力の 安定供給に貢献しています。

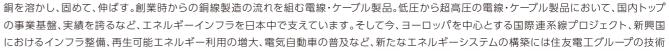
マグネットワイヤー

電気エネルギーを磁気エネルギーに変換 させるために使うマグネットワイヤー。ハ イブリッド自動車や電気自動車、家電製 品、電子機器のモータやコイルなどに幅広 く使用されています。

銅荒引線製造の原点は当社の創業時にまでさかのぼり ます。以来、銅荒引線が「原料」となり数多くの当社グ ループ製品が生まれました。超高圧・大容量の「地中・海 底ケーブル」、自動車の神経や血管とも呼ばれる「ワイ ヤーハーネス」、各種モータ・コイル等に使用される「マ グネットワイヤー」など、当社グループ製品を幅広く支え

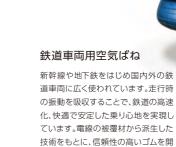
多孔質金属体(セルメット®)

3次元網目構造を持つ多孔質金属体です。ニッケル (Ni) だけ でなく、Ni-Cr、Ni-Snといった合金系のラインナップがありま す。ハイブリッド車用ニッケル水素電池の正極集電体や燃料 電池の構成部材、水素発生装置の電極材などに適用され、省 エネと環境負荷低減に大きく貢献します。


世界のエネルギーシステム構築に貢献。

レドックスフロー電池

イオンの酸化還元反応を利用して充放電を行う蓄電池です。長寿命で 安全性も高く、太陽光や風力などの再生可能エネルギーの導入を拡大 していく上で必要となる技術として期待されています。


架空送電線

発電所から変電所を経て需要地まで遠距離 の電力輸送を行います。送電による電力ロス を抑えるものや、錆びにくく長寿命のものな どを取り揃えています。

の事業基盤、実績を誇るなど、エネルギーインフラを日本中で支えています。そして今、ヨーロッパを中心とする国際連系線プロジェクト、新興国 におけるインフラ整備、再生可能エネルギー利用の増大、電気自動車の普及など、新たなエネルギーシステムの構築には住友電エグループの技術 が必要とされています。付加価値の高い多様な製品群とサービス、企画提案力、重電機器・エンジニアリング分野の関係会社を含む総合力、原材 料から製品までの一気通貫での開発体制を強みに、グローバルなプレゼンス向上を目指します。

発し、本製品に使用しています。

総合電力ケーブルメーカーとしての事業基盤や技術力を海外へ。

集光型太陽光発電装置(CPV)

高日射・高温な地域において有効な発電設備で す。変換効率が高く、太陽を正確に追尾し、安定的 な発電やパネル下のスペースも活用できるなど、次 世代の太陽光発電装置として期待されています。

Industrial Materials

産業素材

が削工具 (イヴタロイ®、スミボロン®、スミダイヤ®) 金属を切る。関る、穴をあける、などの切削加工を行う際に用いられるのが、切削工具です。ダイヤモンド、立方最整化ホウ薬に次や 使さと飼のような強動さを兼ね備えた超接合金工具「イグタロイ®」、立方品整化ホウ素に定めてに入って、スミボロン®、スミダイヤ®」などがあり、機械加工分野における生産性向上と加工コスト低減に貢献しています。

世界トップレベルの材料技術で、社会の課題に対する新たな解決策を形に。

銅線を細く伸ばす伸線技術を基盤に発展した住友電エグループの材料。ダイヤモンドや立方体窒化ホウ素、超硬合金といった素材を用いた「切削・研削工具」は、今、あらゆる領域で、世界のモノづくりを支えています。他にもコンクリート構造物やタイヤなどを補強する「特殊金属線」、主に自動車に使用される「焼結機械部品」は社会や産業の発展に欠かせないものとなっています。自動車の軽量化ニーズの増加、医療・航空機市場の伸長に応え、世界トップレベルの材料開発力、生産技術力を活かして、お客様や社会の課題に対する新たな解決策を形にしていきます。

焼結機械部品

などに使われています。

金属粉末を圧縮した成形体を焼き固める(=焼結)粉末冶金技術で作られた部品は、高い寸法精度が得られる複雑形状部品の大量生産に適しているなどの特徴を活かし、自動車のエンジン部品、駆動系部品からエアコン部品

高性能 ヒートシンク材料

電動自動車(HEV、EV)や電力分野、通信機器、照明用LEDなど、ハイパワー半導体デバイスの放熱部材として、銅モリブデン、銅タングステン、セラミックスやダイヤなどの高性能ヒートシンク材料が利用されています。

研削ホイール

高速回転させた砥石を用いて、材料の表面を削る研削工具です。 ダイヤモンドや立方晶窒化ホウ素を用いて、高能率・高品位の加 工を実現。自動車、航空機、精密機械から半導体産業まで幅広く 活躍しています。

自動車エンジンの弁ばねなどに使用されるばね用鋼線や、ラジアルタイヤの 補強材に使用されるスチールコード。自動車業界からの、省エネ・安定性・安全 性・快適性のニーズに応え、私たちの快適なドライブを支えています。また、PC 鋼材はコンクリート構造物、LNGタンク、枕木などの強度や耐久性の向上のために使用され、広く社会を支えています。

本書に記載されている会社名・製品名などは各社の商標または商標登録です。

THE RESIDENCE OF THE STATE OF T

President's Message

"Glorious Excellent Company"の実現に向けて

私たち住友電エグループは、

「住友事業精神」と「住友電エグループ経営理念」という、 不変の企業の人格的価値を堅持しながら、グループの成長・発展を通じて

社会に貢献する"Glorious Excellent Company"をありたい姿とし、 その実現に向けて取り組んでおります。

現在、モビリティ、エネルギー、コミュニケーションの分野では、 技術の革新や融合が進み、大きな変革期を迎えようとしています。 IoT技術が行き渡り、エネルギーネットワークがスマート化し、 電動化したクルマをはじめ、さまざまなモノがつながることで、 新しいサービスが生まれ、それにより持続可能で、安心・安全、

豊かで快適な暮らしが実現してゆくと考えます。

この変革期を成長機会と捉え、グループの総力を結集し、 創業以来育んできた「つなぐ、つたえる技術」をもって、 イノベーションを起こし、

新たな技術や製品、サービスを提供してまいります。 それによって、さらなる成長をめざし、

より良い社会の実現に貢献してゆきたいと考えております。

皆様におかれましては、

引き続きのご支援、ご鞭撻をよろしくお願い申し上げます。

祖 井上 治

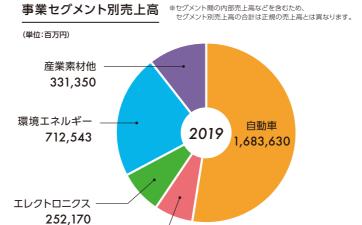
Company Profile

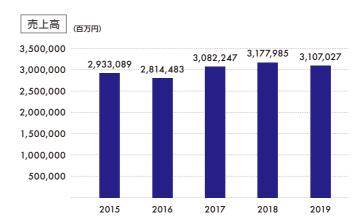
住友電気工業株式会社 商号

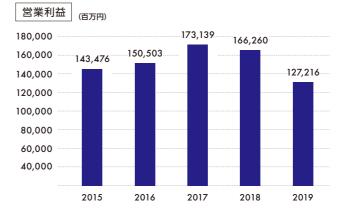
大阪市中央区北浜4-5-33(住友ビル)

1897年4月 創業 99,737百万円 社長

従業員数






井上 治 単独 6,020人 連結 283,910人(2020年3月末)

_ 情報通信 217,401

業績推移(連結) (2020年3月末)

Global Network

世界各地に展開し、社会を支える住友電エグループ

世界 約 40カ国へ展開 関係会社 416社 グループ社員数 約 28万人

Europe and Others

アルバニア (1) スロバキア(2) ベルギー (1) (7) セルビア (1) ポーランド(4) イタリア (2) チェコ (1) モルドバ (1) (1) チュニジア(4) モロッコ (4) (2) ドイツ (12) ルーマニア(3) (3) トルコ (4) ロシア (5) サウジアラビア(1) ハンガリー(3) 南アフリカ(2) (1) フランス (4) (1) ブルガリア(1) スペイン

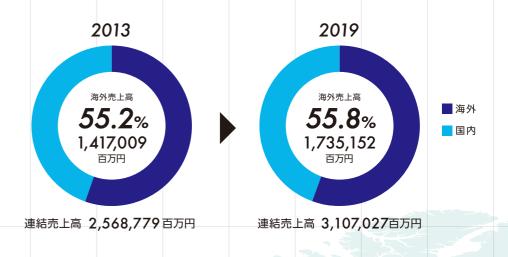
Asia, Oceania

インド (7) フィリピン(12) インドネシア (14) ベトナム (10) オーストラリア(2) マレーシア(6) カンボジア (1) 韓国 (7) シンガポール (5) 中国 (96) (27)

国と国を結ぶ海底ケーブル

ヨーロッパでは、出力が不安定な再生可能エネルギー を国家間で融通し合うため、多くの国際連系線の運営 が開始されています。現在布設中の、イギリスとベル ギー国家連系線には、当社が開発した世界初の最高電 圧400kV直流XLPE絶縁ケーブルが採用され、両国の 将来のエネルギー政策に大きく寄与しています

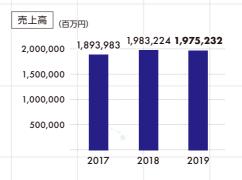
海底ケーブル布設のようす


[TOPICS] -

限られた水資源を守る 水処理技術

世界的な人口増加、新興国の経済発展などの要因に より、世界で深刻化している水不足。当社グループで は一度汚れた水を浄化して再利用する水処理技術を 開発。台湾大手石油精製企業の水処理施設にも採用 され、水資源の保全に貢献します。

台湾大手石油精製企業に導入された水処理設備



Japan

North and South America

107_社

アメリカ (28) パラグアイ(1) アルゼンチン(1) ブラジル (7)

[TOPICS] -

持続可能な社会の実現に向けた PC鋼材

経済活動や社会生活の基盤となる道路網。山間部や河川が 多い日本は橋梁が不可欠であり、その橋梁の長寿命化の追 求や耐久性の確保のためPC鋼材が使われています。世界最 高の強度を誇る当社グループのPC鋼材は、新名神高速道 路の武庫川橋や安威川橋、楊梅山高架橋などに採用され、 社会インフラを支えています。

当社のPC鋼材が採用されている新名神高速道路(武庫川橋)

[TOPICS] —

世界同一品質を実現する ワイヤーハーネス

自動車の電力や情報の伝達を担うワイヤーハーネス。当社グ ループでは、電線素材を銅からアルミに変えたワイヤーハーネ スを開発し、大幅な軽量化を実現しました。また、世界中のど の製造拠点からも「同一かつ最高品質」の製品をお届けできる よう、日々モノづくりに取り組んでおり、最新の量産工場があ るパラグアイでも、その実現に向けた活動が行われています

世界同一品質のワイヤーハーネスをつくるための訓練風景

プロジェクトの詳細はこちら https://sei.co.jp/id/

主要グループ会社(エリア別・セグメント別)の詳細はこちら https://sei.co.jp/company/group/



地域別売上高の合計は正規の売上高とは異なります。 関係会社数:連結子会社及び持分法適用会社の合計

Our Vision

中期経営計画 22VISION (2018~2022年度) の全体構想

総力を結集し、つなぐ、つたえる技術で、 よりよい社会の実現に貢献する

22VISION 成長戦略

5つの現事業セグメントの強化・伸長

当社グループがこれまで取り組んできた『モビリティ』、『エネルギー』、『コミュニケーション』及びこれらを支える素材・製品・ソリューション群の各事業セグメントをそれぞれ成長させ、収益基盤の強化と資本効率の改善を図るとともに、バランスのよい事業ポートフォリオを目指します。

イノベーションによりさらなる成長へ

自動車の大変革、再生エネルギーの普及、ビッグデータの活用など、さまざまな変革に伴い、多くの新たな社会ニーズが生まれている中、当社グループは、これまでに培ってきた事業、技術などの多様性を活かし、総合的な取り組みによりイノベーションを創出し、よりよい社会の実現加速に向けて新たな技術・製品・サービスを提供します。

モノづくり力のさらなる強化

SEQCDD*の進化と深化

- ・ "世界トップの安全企業"を目指す
- ・継続的カイゼンによる"強い工場"づくり
- 技術、ベストプラクティスのグローバルな 共有/横展開による強み発揮

*SEQCDD:

- **S** (Safety:安全)
- **E** (Environment:環境)
- **Q**(Quality:品質) **C**(Cost:価格)
- C(Cost:価格)
- **D**(Delivery:物流、納期) **D**(Research & Development:研究開発)

グローバルプレゼンスの向上

- グローバル顧客のシェア向上
- グローバルな市場環境の変化を先取りした新しいビジネスモデルの創出
- マーケティング機能の強化

トップテクノロジーの創出・強化

- 材料からプロセスに至る幅広いコア技術のさらなる強化
- 自動車、エネルギー分野の変革を先取りするイノベーション創出と迅速な事業化
- 社会変革をもたらす革新技術へのチャレンジ

モノづくり基盤

基盤整備•体質強化

安全・安心・クリーンかつ 安定・信頼性のある効率的な 生産体制の維持・向上

人材育成

全員教育による基礎力の 強化、実践教育による プロ人材の育成

人材•組織基盤

ダイバーシティ マネジメント推進

(グローバルHRM* ポリシーの実現)

グローバル共通の 人材・組織基盤 (インフラ)構築

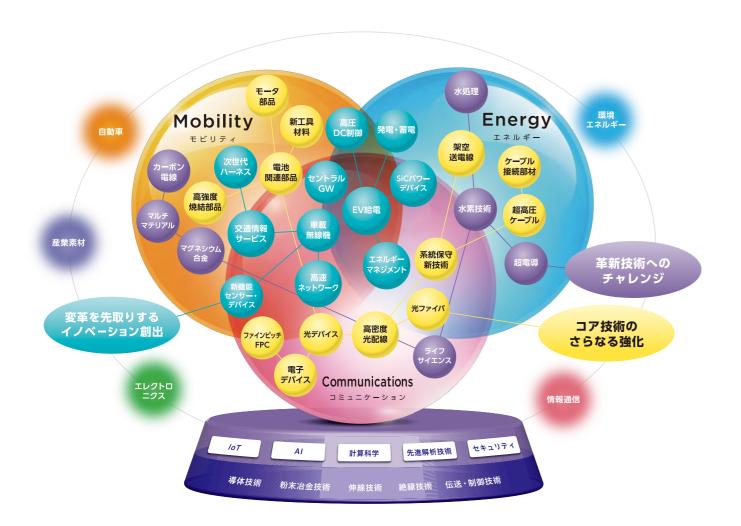
«HRM:Human Resource Managemen

財務基盤

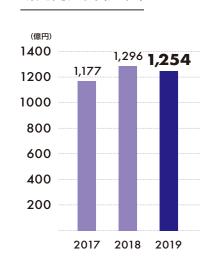
企業体質の強化、 健全かつ強固な 財務体質を追求

自己資本比率 50%水準を維持する

配当性向 4割程度を目指す


住友事業精神と住友電エグループ経営理念

これらを基本的な価値軸とし、事業を通じて企業としての社会的責任を果たしていきます。


Research & Development

次世代を担う研究開発テーマ

モビリティ、エネルギー、コミュニケーションの領域を中心に、幅広く保有するコア技術の強化、自動車やエネルギー分野の大変革と これらの融合に応えるイノベーションの創出、大きな社会変革をもたらすと期待される革新技術へのチャレンジに取り組みます。

研究開発費(連結)

マグネシウム合金

構造用金属で最も軽いマグ ネシウム合金の中で、耐食性 に優れたAZ91合金の板材 化に独自の製法で成功。堅牢 で軽量なPC筐体で適用が進 んでいます。豊富な埋蔵量の あるマグネシウムの魅力をさ らに高めていきます。

新規事業

ビスマス系超電導線材

当社が世界で初めて量産に成功 した低損失(電気抵抗ゼロ)で高 電流密度(銅と比べて断面積比 200倍)の特性を持つビスマス系 超電導線材(DI-BSCCO®)です。 電力ケーブルやマグネットなどに 使用して、エネルギー効率を高め、

医療機器・健康介護製品

歩行状態を,動き,体重移動, 前後・左右バランス、速さ、リ ズムの6つの指標で見える化 し、転倒リスクなどを評価す る歩行モニタリングシステム (Q'z TAG® walk)は、□コ モティブシンドローム予防や 省エネルギー社会に貢献します。 リハビリを支援しています。

研究開発体制

サイバーセキュリティ 研究開発室

当社の各事業領域において、ネットワーク に接続される電子製品群を対象に、サイ バー攻撃への対策技術の研究開発を行っ ています。また、産業総合技術研究所と連 携したサイバーセキュリティにおける先進 技術の研究活動を実施しています。

パワーシステム 研究開発センター

電力インフラ分野の技術変革(再生可能 エネルギー活用拡大、情報通信技術を用 いた電力インフラの高度化) に対応した 新技術、新製品を開発しています。

解析技術研究センター

国内3ヶ所に活動拠点を置き、外部の先 端研究施設(九州シンクロトロン光研究 センターなど)も活用しながら、高度な分 析・解析技術とCAEで、当社グループのモ ノづくり、新製品開発を支えています。ま た、中国にも拠点を置き、海外の技術基盤 を支えています。

エネルギー・ 電子材料研究所

金属無機材料、高分子材料、電気化学を コア技術として、当社グループの幅広い 事業分野の新製品・新技術の開発に貢献 しています。

パワーデバイス開発部

次世代のパワー素子として期待されてい る炭化ケイ素(SiC)デバイスについて、そ の結晶(基板)からエピ基板、デバイスに 至るまでの技術開発と事業化を推進して います。

電力ケーブル開発推進室

長距離送電や再生可能エネルギー関連の 需要伸長に対応して、超高圧直流ケーブル、 洋上風力向けケーブルや送電線路の保守 監視を支援するシステム製品を開発してい ます。

情報ネットワーク 研究開発センター

高速ブロードバンド通信を支える光通信 と5G無線通信をはじめ、当社の無線技術 を活用したインフラミリ波レーダ、プロー ブ車両情報、AIを活用した次世代信号機 制御、モビリティサービスの研究開発を 行っています。

新領域技術研究所

世の中の「技術革新・社会変革」における 当社事業への影響を見据え、次世代の線 材や水素エネルギー関係の研究開発を 国家プロジェクトも活用しつつ行ってい

光通信研究所

光ファイバ関連技術を中心に、光通信網 やデータセンタを支える高機能製品を開 発しています。更に民生・産業分野への 展開によりスマート社会の発展に貢献し ます。

研究企画業務部

当社の経営の方向性を定めた中期経営 計画(22VISION)を実行するために、研 究開発部門における計画の取りまとめや 実績管理・調整を行うとともに、技術・事 業領域を発展させていくための取り組み を進めています。

自動車新領域 研究開発センター

住友電工が培ってきた材料技術、情報通 信技術を活用して、次世代の自動車に求 められるコネクティッド技術やEV技術を 開発し、自動車事業に貢献しています。

IoT研究開発センター

当社グループの各工場と密接に連携して、 「生産性向上」、「検査自動化」、「予兆保 全」、「安全確保」をテーマに、各種センシン グ、無線通信、AI・ビッグデータ分析技術 など、製造現場を支えるIoT/AI技術の開 発を推進しています。

アドバンストマテリアル研究所

金属材料、無機材料分野でオンリーワン の新材料創製と、当社独自の超高圧技術 や粉末冶金技術などを駆使したプロセス 革新を実現しています。

伝送デバイス研究所

化合物半導体結晶、エピ・プロセス、光・電 子部品の精密実装技術などを用いて、先 進的な化合物半導体材料、光と無線の2 大情報通信市場に向けた製品を開発して います。

Innovation Core SEI, Inc. (ICS)

米国シリコンバレーに設立されたICSは、 米国における新技術・新市場の調査・研 究、次世代グローバル新事業の創出を目 指した将来のシーズ技術の発掘・育成を ミッションとしています。

Al·loTの普及、

エネルギーネットワークのスマート化、

車の自動運転や電動化など、

様々なものがつながることで

新しい時代が始まろうとしています。

より安心で安全な社会をつくる。

より環境にやさしい社会をつくる。

より<mark>快適</mark>で成長力のある社会<mark>を</mark>つくる。

つなぐ、つたえる幅広い技術を融合し、

たゆみないイノベーションで、よりよい社会の実現に貢献する。

住友電エグループはさらなる高みを目指し、邁進します。

Connect with Innovation

