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ABSTRACT What electronic structure provides the larg-
est figure of merit for thermoelectric materials? To answer
that question, we write the electrical conductivity, ther-
mopower, and thermal conductivity as integrals of a single
function, the transport distribution. Then we derive the
mathematical function for the transport distribution, which
gives the largest figure of merit. A delta-shaped transport
distribution is found to maximize the thermoelectric proper-
ties. This result indicates that a narrow distribution of the
energy of the electrons participating in the transport process
is needed for maximum thermoelectric efficiency. Some pos-
sible realizations of this idea are discussed.

Thermoelectric materials can be used to make refrigerators or
power generators (1, 2). These solid state devices have no
moving parts and are extremely reliable. Their efficiency is
low, so they are used in products where reliability is more
important than efficiency. Thermoelectric refrigerators are
used to spot cool electronic components such as infrared
sensors or computer chips. Power generators are used in space
stations and satellites.

There has been much effort to find the best thermoelectric
materials (1-3). There has also been numerous discussion of the
physical limits-i.e., what are the best possible thermoelectrics
allowed by nature (4)? Here we provide a new and simple
estimate of the maximum efficiency of thermoelectric materials.
The efficiency of thermoelectric energy converters depends

on the transport coefficients of the constituent materials
through the figure of merit (1):

a-S2
Ke + Kl

[1]

where a- is the electrical conductivity and S is the Seebeck
coefficient. The quantity in the denominator is the thermal
conductivity; it is given by the sum of contributions from the
electronic carriers Ke and the lattice KI. The efficiency is
increased by making ZT as large as possible, where T is the
mean operating temperature of the device.
At room temperature, the best thermoelectric material now

known is Bi2Te3, which has ZT 1 (1, 2). With this value, the
coefficient of performance of thermoelectric coolers is about
one-third the value for conventional compressor systems. At
room temperature, with the current design, thermoelectric
refrigerators will be competitive with conventional compressor
systems if a material is found with ZT 4. However, any small
increment in this value (ZT 2 1) will result in many new
applications for these devices. This technology is environmen-
tally cleaner and more reliable than traditional compressor
systems. Therefore, it is worth exploring the possibility of increas-
ing ZT to find a material with ZT > 1. No materials are found at
lower temperature with ZT = 1, although several are known at
much higher temperatures: they are used in power generators.

From the definition of the figure of merit given in Eq. 1, it
is clear that, to increase Z, we have to decrease the thermal
conductivity of the material and/or increase the thermopower
and electrical conductivity. Among the four quantities involved
in Eq. 1, three of them are mainly related to the electronic
structure of the material (o-, S, and Ke) and one is mainly
related to the lattice (KI). One possible way to improve the
figure of merit is to reduce the lattice thermal conductivity
without significantly altering the electronic properties of the
material. This approach has been explored extensively in the
past (5, 6) through the enhancement of phonon scattering.
However, a very comprehensive review done by Spitzer (7)
shows that 2 mW/cm-K is the practical lower limit for the
lattice thermal conductivity of semiconductors. Another tra-
ditional way to improve the thermoelectric properties of a
material is to maximize a-S2 by varying the doping concentra-
tion, which varies the electron density.
The methods mentioned in the previous paragraph are rea-

sonable approaches to the optimization of a given material.
However, in this study, we want to formulate the problem from
a different point of view. We will try to answer the following
question. What is the best electronic structure a thermoelectric
can have? In other words, for a given lattice thermal conductivity,
if we are given the freedom to choose the distribution of energy
levels and scattering of the carriers, what would be our choice?
To answer the question formulated in the previous para-

graph, we will first note that the transport coefficients can be
written as a functional of a single kernel function. The trans-
port coefficients are given by solutions of the Boltzmann
equation as (8):

0oo fo

or = e2 sds - ) (s),
_x

TKO={__ d£(- - 1)af
ToS=e dEx )

[2]

[3]

[4]

where ,u is the chemical potential, e the electron charge,

(- fo- (e(k +

a3s kBT(-'L) + 1)2' [5]

and (£), which we will call the transport distribution function,
is given by:
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s(s) = v,(k)2T(k)8(s - e(k)), [6]
k

where the summation is over the first Brillouin zone, vX(k) is
the group velocity of the carriers with wave vector k in the
direction of the applied field (x), T(k) is the carrier's lifetime,
and s(k) is the dispersion relation for the carriers. In the case
that many bands contribute to the transport process, the
summation has to be extended to all the bands. In some
particular cases, such as for parabolic bands, the transport
distribution defined in Eq. 6 takes a much simpler form:

I(s) = N(s)VX(S)2T(S), [7]

where N(s) is the density of states. However, we will not be
limited to this particular case; we will analyze the transport
distribution in its general form.
The electronic thermal conductivity Ko is when the electro-

chemical potential gradient inside the sample is zero and is
related to the thermal conductivity for zero electric current Ke
by:

Ke = K0o- T0S2. [8]

Our strategy for finding the maximum figure of merit is to start
from the above definitions, and ask the following question:
What functional form of i(s) gives the largest value of Z?
Previous workers (1-4) have treated this as a physics problem
and tried to find the form of the electron lifetime T(s) or
density of state N(s) that gives the largest Z. Here we treat it
as a problem in mathematics. Given this functional form, what
mathematical function 1(s) gives the largest Z? This is a simple
question, to which we have found a simple answer.

After some rearrangement, the transport coefficients can be
written as:

0f = volo,

orS = ( Coll, [9]

B(k2)K0o = - TcroI2,

where 0-0 = e2/1(iao) 46,000 (flcm)-', with h being the
reduced Plank's constant, and ao being the Bohr's radius. The
dimensionless integrals I,, have been defined as:

where a = (kB/e)2To-o/Kl is related to the parameter ,B, defined
by Chasmar and Stratton (9). In our definition of a, a0 is
completely determined by physical constants, whereas in the
definition of (3 by Chasmar and Stratton, a0 preserves some
characteristics of the material. We prefer to keep all the
properties characterizing the material inside the transport
distribution function.

In this way, given a and a nonnegative function s(x), we can
obtain a unique value for the figure of merit. The largest value
ofZT is found by making g large andA small. It is known that
.c 1; i.e., its largest value is 1. We have made a two-

dimensional map of ZT as a function of (6, A) and found that
the largest value ofZT is when 6 -- 1 andA -- 0. The case that
= 1 gives that ZT = 1/A. It is easy to start from Eq. 12 to

prove that

ZT=1 _K0
1- +A A Kl-

[15]

The proof of the inequality demands that 0 . (1 - ()(1 + A),
which is always obeyed. So ZT is always bounded by Ko/Kl.
What is the transport distribution function that fulfills the

condition g = 1? In this case, we know that we will obtain the
largest possible value of the figure of merit. We have found that
the Dirac delta function is the only transport distribution
function that fulfills this condition. To show this we first notice
that the dimensionless integrals I, are the moments of the
function:

P(x) = D(x)s(x)

ex
D(x) =

(e + 1)2.

[16]

[17]

The variable x is the energy of the carriers measured in units
of kBT. This function, P(x), quantifies the contribution of
carriers of a given energy to the transport process. In this
language, the thermal conductivity Ke is proportional to the
variance of the distribution P(x)-i.e.,

Ke x (XW) - (X). [18]

The condition Ko = To-S2, equivalent to Ke = 0, is fulfilled by
a distribution P(x) with zero variance, no spread around the
mean value. This is the Dirac delta distribution.

In the case of a transport distribution given by a delta
function, all the integrals in Eq. 9 can be easily calculated. Let's
assume that the transport distribution has the form:

+0 ex
In = dx (ex + 1 )2 5 (x)x,

-x

[10]

where s(x) = haol(,u + xkBT) is the dimensionless transport
distribution function, measured from the chemical potential
and scaled by the inverse temperature.

In terms of these integrals, ZT can be written as:

ZT= TcrS2/K a/b [11
KO/KI- T IS2/Ki + 1 - a2- aN2/Jo + 1

[12]1 -g+A

==IaI2'
1

A =

s(x) =f(x)8(x - b), [19]

wheref(x) is any arbitrary function and b indicates the position
of the peak with respect to the Fermi level. The transport
coefficients for this case are given by:

o(-= o-oD(b)f(b),

[20]

tkB\2
Ko= (-) To-D(b)f(b)b2.

This oive fnr the nntimql fisrnire nf merit 7T =Illlai r,11,7;5 IUI LII, UIJLiiiiai iiruvlW VI 1119116 1-i - I%U/ Alk

Next we find the smallest value of A, which is the largest
value of Ko/KI. We assume that KI iS fixed, and find the

[13] maximum of KO. First consider the case f(x) = C, a constant
independent of x. We maximize the function b2D(b), which is
0.439 at b = ±2A4 This is equivalent to having the resonance

[14] be 2.4kBT above or below the Fermi level. It is clear that iff(x)
is not a constant, the position of the maximum will be different.
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However, since only variations of f(x) in an interval of width
kBT around the Fermi level are important, a constant is in
general a good approximation.
As follows from Eq. 20, using b = 2.4, the value that

optimizes the figure of merit, we obtain S = 207 p,V/K, in
reasonable agreement with typical experimental values for
good thermoelectrics. The optimal value of ZT is:

(kB2 o__T(ZT)max = 0.439(- T
e KI

[21]

The transport distribution that maximizes the figure of merit
is the Dirac delta function. An ideal delta function is not
achievable in real materials. However, electronic f-levels are
tightly bound in atoms, and bind little in solids (10-11). They
give a contribution to the density of states in solids, which is
a Lorentzian of very narrow width. This is nature's closest
approximation to a delta function. YbAl3 is a metallic con-
ductor that has the highest value ever reported (12) for the
"power factor" oS2. Photoemission data (13-15) shows that
the f-level of the Yb is quite close to the chemical potential,
although experimental groups argue (16) about its exact
location. We offer this as experimental support for the idea
that the best thermoelectric is found in materials which have
a sharp singularity in the density of states very near to the
chemical potential.

If we assume that the delta function comes from the density
of states N(s) = ni8(s - bkBT), where ni is the concentration
of rare-earth energy levels, then we find:

(ZT)max= 0.146 'k [22]

where the mean-free-path is = vT. It is interesting that this
quantity is independent of temperature. We have tried to
estimate these parameters. A simple estimate to choose v = 1
Mm/s and KI = 1 W/m-K. The latter is typical of good
thermoelectrics. We give each rare earth a volume of ni = 1/a3
and set = a = 0.3 nm. These values give ZT = 14, which is
ten times larger than any known material at any temperature.
We think these values are achievable in rare-earth compounds.
Most theories of electron transport in rare-earth compounds

note that the electron lifetime T varies inversely as the density
of states, so that the dependence on these parameters is quite
complicated. (We shall take up these issues in a longer paper.)

In practice, the density of states has other terms besides a

single delta function. We tried two delta functions, but they
had lower ZT than a single one. A more realistic example has
the addition of a constant background to the delta-shaped
transport distribution. The function we are going to use has the
form:

1
N(s) = ni[(s bkBT) + W [23]

ni
k= [8(x-b)+ a], [24]
kBT

kBT
a= [25]

ZT=
b2D(b)
1 T2

(a + D) +a 3 + ab2D
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FIG. 1. Thermoelectric figure of merit ZT calculated for a trans-
port distribution given by a delta plus a background versus the intensity
of the background a. The values of aC in Eq. 27 are 1 (lower line), 3
(middle line), and 5 (upper line).

represents a crude model for the density of states of mixed-
valence alloys. However, again we expect that only energy
states near to the chemical potential are important, and in that
narrow energy region, the background is nearly a constant.
Note that the dimensionless constant a is quite small, since it
is a thermal energy divided by an electron band width.

In Fig. 1, we show ZT as a function of the background
contribution a. For each value of a, we have found the optimal
value of b. We have used aC = 1 (lower curve), aC = 3 (middle
curve), and aC = 5 (top curve). As can be appreciated in the
figure, the effect of the background contribution is dramatic.
A 10% contribution of the background, corresponding to a =

0.1, reduces the figure of merit to 25% of its original value for
a = 0. However, in mixed-valence alloys, the f-level contribu-
tion to the density of states is typically larger than 100 times the
background value (10, 11). In this case, the negative effect on
ZT of the background contribution is small.

In summary, we have written the thermoelectric figure of
merit as a functional of the transport distribution. This func-
tion must be a Dirac delta function to maximize the figure of
merit. Of course, this exact situation is not found in nature.
However, our results indicate that we have to search for
materials where the distribution of energy carriers is as narrow
as possible, but with high carrier velocity in the direction of the
applied electric field.
The addition of a constant background to delta-shaped

transport distribution decreases dramatically the figure of
merit. The physical meaning of this results is that a peak on top
of a background density of states will not be our optimal choice
to increase the figure of merit, unless the background is <1%
of the integrated contribution of the peak.

We are grateful to Dr. Brian Sales for many encouraging conver-

sations and for the careful reading of our manuscript. This research
was sponsored by the Division of Material Sciences, U.S. Department
of Energy under Contract DE-AC05-960R22464 with Lockheed
Martin Energy Research Corporation, and Cooperative Research and
Development Agreement (CRADA) ORNL92-0116 between Marlow
Industries and Lockheed Martin Energy Research Corporation.

Here we added a constant given by the inverse bandwidth W.
In most metals this ranges in value form 1-10 eV. This
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