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2. Stored Sample Methods

3. Kernel Functions
Dual Representations
Constructing Kernels

4. Extension to Symbolic Inputs
5. Fisher Kernel
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Linear Models vs Memory-based models

» Linear parametric models for regression and
classification have the form y(z,w)

* During learning we either get a maximum likelihood
estimate of w or a posterior distribution of w

 Training data is then discarded
* Prediction based only on vector w

* This is true of Neural networks as well
* Memory-based methods keep the training

samples (or a subset) and use them during the
prediction phase
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Memory-Based Methods

Training data points are used in prediction

Examples of such methods
» Parzen probability density model

- Linear combination of kernel functions centered on each training data point

* Nearest neighbor classification
These are memory-based methods

They require a metric to be defined
» Fast to train, slow to predict
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Kernel Functions

* Linear models can be re-cast

* into equivalent dual where predictions are based on
kernel functions evaluated at training points

 Kernel function is given by
k(z,z”) = ¢(2)" ¢(z’)
- where ¢(x) is a fixed nonlinear mapping (basis function)
- Kernel is a symmetric function of its arguments
k(z,z”) =k (z",2)
 Kernel can be interpreted as similarity of zand =’
- Simplest is identity mapping in feature space ¢(x) = x

* In which case k (z,z”) = 'z’
« Called Linear Kernel 5



Machine Learning Srihari

Kernel Trick

- Formulated as inner product allows extending
well-known algorithms

* by using the kernel trick

- Basic idea of kernel trick

- If an input vector x appears only in the form of
scalar products then we can replace scalar
products with some other choice of kernel

- Used widely
* in support vector machines
* in developing non-linear variant of PCA
* |In kernel Fisher discriminant
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Other Forms of Kernel Functions

 Function of difference between arguments
k(z,z”) =k (z-z)

- Called stationary kernel since invariant to
translation

« Radial basis functions

k(zyz’) =k (||z-z'|])

- Depends on magnitude of distance between arguments
« Note that the kernel function is scalar while x is M-dimensional

For these to be valid kernel
functions they should be
shown to have the property

k(xx) =@ (x)" p(x)
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Dual Representation

 Linear models for regression/classification can
be reformulated in terms of dual representation

* In which kernel function arises naturally
- Plays important role in SVMs

- Consider linear regression model
» Parameters from minimizing sum-of-squares

J(w) = %E{WT(])(X”) - tn}z + %WTW

where w = (Wo,.. W) s &= (d,or ) ¢ is the set of M
v e 0- 1 basis functions

we have N samples {x,,..x,} or feature vector
A 1s the regularization coefficient

- Minimum obtained by setting gradient of J(w) wrt w equal to zero
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Solution for w: linear combination of ¢ (x,)
- Equating derivative J(w) wrt w to zero we get

w=—%§b¢¢@g—awwg

= Y a,6(x,)

=d’a

- Solution for w: linear combination of ¢ (x,) whose
coefficients are functions of w where
« @ is design matrix whose n' row is given by ¢ ()T

[ oo(x) . Py(x) -
o= ¢0(.xn) . ¢M_1.(xn) is a N x M matrix
900 - - ()

- Vector a=(ay,..,ay)" has the definition

a = —%{ngb(a;n) — tn}
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Transformation from wto a

 Thus we have w=d"a

» |Instead of working with parameter vector w we
can reformulate least squares algorithm in
terms of parameter vector a

» giving rise to dual representation

a = —%{qub(a:n) — tn}

» Although the definition of a still includes w
It can be eliminated by the use of the kernel function

10
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Gram Matrix and Kernel Function

« Gram matrix K=®dT is N x N matrix
« with elements

- where kernel function k (z,z2”) = ¢ ()T ¢ (x)

ka,z) . . kz,z,) Gram Matrix Definition:
K — Given N vectors, it is the
- _ matrix of all inner products
| Kx,, ) Kx,,z,,) _
* Notes:

e ®is NxM and Kis NxN Note: N X Mtimes M X N
« K is a matrix of similarities of pairs of samples (thus it is symmetric) .
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“"Efror Function in Terms of Gram Matrix
Error Function is

J(w) = E EN: {wT¢(xn) —t }2 + %’wT'w

2 n=1
» Substituting w=®Ta into J(w) gives
J(w) = %aTCIDCI)TCI)CI)Ta —a' OD't + %tTt — %aTCIDCI)Ta

where t = (t,..,ty)7T

Error function is written in terms of Gram matrix as

J(a)= laTKKa, —a' Kt + ltTt + %aTKa

Solving for @ by combining w=®Taand =—%{WT¢(Xn)—tn}

a— (K +}\IN)_1t

Solution for a can be expressed as a linear combination of elements of @(x)
whose coefficients are entirely in terms of kernel k(z,z”) from which we can
recover original formulation in terms of parameters w
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Prediction Function

 Prediction for new input x
» We can write a =(K +Aly)'t by combining w =®Ta and
Ly 7
a,=-—{w'¢(x,)-1,}
» Substituting back into linear regression model,
y(x) = w'¢(z)

=a' 0¢(z)
= k(xz) (K + Al ,)"'t where k(z) has elements k (x) = k(z_, )

* Prediction is a linear combination of the target
values from the training set.
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Advantage of Dual Representation

» Solution for a is entirely in terms of k(z,x")
* From a we can recover w using w = ®'a

* In parametric formulation, solution is w,, = @) 's"
« We invert M x M matrix, since ®is Nx M

 In dual formulation, solution IS a =(k +A1y) 't
» We are inverting an N x N matrix
- An apparent disadvantage, since N >>M

- Advantage of dual: work with kernel k(x,z"), so:
- avoid working with a feature vector ¢(x) and

* problems associated with very high or infinite
dimensionality of x "
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Constructing Kernels

- To exploit kernel substitution need valid kernels

» Two methods:
* (1) from ¢ (x) to k(x,x’)
* (2) from k(zx,x’) t0 ¢ (x)
- First Method

- Choose ¢ (x) and use it to find corresponding kernel
Ka,2') = ¢(x)" ()
=6 (@)o (=)

- where ¢,(x) are basis functions

- One-dimensional input space is shown next
15
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Kernel Functions from basis functions
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Method 2: Direct Construction of Kernels

- Kernel has to correspond to a scalar product in
some (perhaps infinite dimensional) space

» Consider kernel function k(z,z) = (z'2)?
o In 2—D SpaCe k(m,z):(mTz)2:(xlzl+x2z2)2

= a:lzzf +2z 232, + a:;z;

= (a7, \/53:1332, z))(2, \/52122, 22)'
= ¢(z)" ¢(2) _ )

- Feature mapping takes the Torm ¢(z) = (22,222, 22)

1

- Comprises of all second order terms with a specific weighting
 Inner product needs computing 6 feature values, 9 multiplications

 Kernel function k(x,z) has 2 multiplies and a squaring
- For(x'z+c)? we get constant, linear, second order terms
 For (xz'z+c)™ we get all powers of & (monomials)

17
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Testing whether a function is a valid kernel

- Without constructing ¢(x), Necessary and
sufficient condition for k(xz,z”) to be a kernel is

» Gram matrix K, with elements k(x,,x,,) is positive
{x, }semi-definite for all possible choices of the set

- Positive semi-definite is not the same thing as a matrix whose elements are non-
negative
It means

z"' Kz = 0 for non - zero vectors z with real entries

1e., E EKanan =0 for any real numbers z,,z,,
n m

-+ Mercer’ s theorem: any continuous, symmetric, positive semi-definite kernel
function k(x, y) can be expressed as a dot product in a high-dimensional

space

* New kernels can be constructed from simpler
kernels as building blocks .
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Techniques for Constructing Kernels

Given valid kernels k(z,z”) and k(z,z ) the following new
kernels will be valid

1. k(z,z”) =ck/(z,x”) ——
2. Mz, )=fz)k(z,2")f(x) f () is any function
3. k( £L,L ’) — Q( ]ﬁ(m,m ’)) q(.) is a polynomial with non-negative coefficients
4 k(m7m’):exp(kl(m7m l))
5. kx,2)=k(x,2")+k(z,2”)
6. k(xz,2’)=k(z,2")k(x,z")
7. k( T,T ') =33 (f( ;c) f( r )) f(x) is a function from x to RM
y T , ks is a valid kernel in RM
8. k’( &L, ):ZE Ax A is a symmetric positive semidefinite matrix
9. k( £L,L ’):ka(maamb’ )"‘kb(mbamb, ) x, and x, are variables with a::.(a:a, 2,)
10. k( T, T ’) :ka(wmma’ )kb(mbawb’ ) k, and k, are valid kernel functions
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Kernels for specific applications

» Requirements for k(z,z")
* It Is symmetric
- Its Gram matrix is positive semidefinite

» It expresses the appropriate similarity between =z
and = for the intended application

20
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(Gaussian Kernel

- Commonly used kernel is
k(z,z”) = exp (-||z-2 ||/20?)
» It is seen as a valid kernel by expanding square
|z-2 ||2 = 2Tz + ()72 -22Tx
- To give
k(xz,2 ) = exp (-2'x/20%) exp (-x'x /02) exp (-(z )Tz /202)
* From kernel construction rules 2 and 4
- together with validity of linear kernel k(xz,z )=x'x

 Can be extended to non-Euclidean distances
k(mam’ ) — €XP {('1/20-2)[]((33737, )"’K (m;,m’ )'2K (m7m, )]}

21
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Use of a kernel method
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Extension of Kernels to Symbolic Inputs

 Important contribution of kernel viewpoint:

* Inputs are symbolic, not vectors of real numbers
- Kernels defined for graphs, sets, strings, text documents

* |If A; and A, are two subsets of objects
+ A simple kernel is [k(4,4 )= 24"
* where |4 | indicates no of elements in A

- A valid kernel since it can be shown to correspond to an
inner product in a feature space

A={12345}

A1:{2,3,4,5}, A2:{1,274,5}, AlﬂA2:{2,4,5}
Hence k(A;,A;)=8

Example feature vectors:
d(A)=[2222] and d(A,) =[111 1]
such that

b(A1)"P(A)=8
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Kernels for Complex Objects

ML methods studied so far require input
represented as a fixed-size feature vector zg R?
* For certain objects it is not clear how best to

represent them as feature vectors, E.g.,

* Text or protein sequence of variable length
* Molecular structure with complex 3-D geometry
» Evolutionary tree which has variable size and shape

o Solutions

* Define generative model, whose parameters are
features. Plug these features into standard models

* Measure similarity between objects which does not
require preprocessing into feature vector format 2
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Kernels for Comparing Documents

* In IR and document classification, need a way
of comparing documents x;, and z;;

» Bag of words representation: z;; is the no of times
word j occurs in document ¢ | z=[z,,0) ]

» Cosine similarity Mow,) = — T

)
IEAINE Cosie Distance
i 112 i 112

IIIII

* It measures cosine of angle between z; and «;:

» Since x; is a count vector (and hence non-negative) the
cosine similarity is between 0 and 1

* Where 0 means the vectors are orthogonal and therefore have no
words in common

25
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Disadvantage of Cosine Similarity

o It does not work well for two reasons
1.  Stop words

. If ; has any word in common with z;-it is deemed similar,
even though some words such as the, and occur commonly
In many documents and are not discriminative

2. High frequency words in a document

. If a discriminatory word occurs many times in a document,
the similarity is artificially boosted

Even though word usage would be bursty, i.e., once a word is used
In a document it is very likely to be used again

26
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TF-IDF

» Cosine similarity performance can be improved
with some preprocessing

» Use feature vector called TF-IDF representation

« Term frequency-Inverse document frequency
» TF is a log-transform of the count [tf(z,) = log( + )

N

° IDF |S deflned as idf(j)éloglez{v Iz >0) 7;; is the no of times word j occurs in document 4
 Where N is the total no of documents
« Denominator counts how many documents contain term j

 Finally we define tfidf(zi) = [tf(z, ) x idf(5)]"_,

* We use this inside cosine similarity measure

kx,z,)= oz) o)
T @) Ll ez,

* Where ¢ (x)=tf-idf(x) 27
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String Kernels

» Real power of kernels: inputs are structured

» Compare two variable-length strings

« Strings x, and x’ of length D, D’ defined over A

* E.g., two amino acid sequences defined over 20-letter
alphabet A={A RN,D,CEQ,GHILKMFPSTW,Y,\V}

e x is the sequence of length 110
IPTSALVKETLALLSTHRTLLIANETLRIPVPVHKN...... VNQFLDYLQEFLGVMNTEWI

e x’ is a string of length 153

e PHRRDLCSRSIWLARKIRSDLTALTESYVKHQGLWSELTEAERLQENLQAYRTFHVLLA........
* The strings have the substring LQE in common

* We can define the similarity of two strings to be the no of
substrings they have in common

* Definition given next

28
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Mercer Kernel

* If sis a substring of x we can write z=usv for
some (possibly empty) strings u,s and v

 ¢,(x) is no of times substring s appears in x

» Define kernel between two strings rand z’ as
=Y we ()6, (z)

 Where w,>0 and A* is the set of all strings from alphabet A
(known as Kleene * operator)

« Can be computed in O(|z|+]|2’|) time

e Cases of interest:

e w,=0 for |s|>1 we get bag-of-characters kernel- defines
d(x) as no of times each character in A occurs in z

* If we require s to be bordered by white space we get bag-
of- words kernel
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Combining Discriminative and
Generative Models

» Generative models deal naturally with missing
data and with HMM of varying length

« Discriminative models such as SVM have better
performance

- Can use a generative model to define a kernel
and use kernel in discriminative approach

30
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Kernels based on Generative Models

» For a model p(x) we define a kernel by
k(z,2”) = p(z) p(z’)

A valid kernel since an inner product in 1-dimensional
feature space defined by the mapping p(x)

e Two inputs zand = are similar if they have
high probabilities

31
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Kernel Functions based on Mixture Densities

o Exten3|on to sums/products of distributions

=3 pla | pla | () N
- where p(¢) are positive weighting coefficients A[\A

* A valid kernel based on two rules of kernel construction:
k(xz,2”) =cki(z,z”) and k(z,z" )=k (z,2")+k(z,z")
* Two inputs z and = will give a large value of &£, and

hence appear similar, if they have a significant
probability under a range of different components

» Taking the limit to infinite sum

= [ p@| 2)p('| 2)p(2)iz

« where zis a continuous latent variable
32
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Kernels for Sequences

» Data consists of ordered sequences of length L

X:{xly"yajl)}
» Generative model for sequences is HMM
- Hidden states Z={z,,..,z; }

» Kernel Function for measuring similarity of
sequences X and X' is

KX, X) =) p(X|Z)p(X'|2)p(Z)

» Both observed sequences are generated by same
hidden sequence Z

33
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Fisher Kernel

Alternative technique for generative models
» In document retrieval, protein sequences

» Consider parametric generative model p(x|6)
where # denotes vector of parameters

 Goal: find kernel that measures similarity of two
vectors zand x” induced by the generative model

Define Fisher score as gradient wrt 6

g(0,x)=V,Inp(x10) A vector of same dimensionality as 6

Fisher Kernel IS k(x,x") = g(6,x)"F'g(h,x’) Fisher score is more
. generally the gradient
F=E,[20.x)g06.%) ] of the log-likelihood

where F is the Fisher information matrix 34
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Fisher Information Matrix

* Presence of Fisher information matrix causes
kernel to be invariant under non-linear
parametrization of the density model 6 2> (06)

* |n practice, infeasible to evaluate Fisher Information
Matrix. Instead use the approximation

F~—Eg<9x )g0.x,)"  k(x,x") = g(0,x)" F'g(0,x")
* Thisis the covariance matrix of the Fisher scores
- So the Fisher kernel corresponds to whitening of the

Fisher scores g (x,x") = g(6,x)" g(6,x")
* More simply omit F and use non-invariant kernel

35
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A link between SVMs and neural network
k(z,x”) = tanh (ax'xz + b)
- Its Gram matrix is not positive semidefinite

 But used in practice because it gives SVMs a
superficial resemblance to neural networks

- Bayesian neural network with an appropriate
prior reduces to a Gaussian process

* Provides a deeper link between neural networks
and kernel methods

36



