
Windows IoT Core: RCE as System

A SafeBreach Labs research by
Dor Azouri, Security Researcher, SafeBreach
March 2019

Contents
Intro
Windows IoT
	 Core//Enterprise
	 Usage Statistics
	 Supported Boards
	 Official Installation
		 Windows 10 IoT Core Dashboard
	 Stock Image / Custom Image
	 Remote Interfaces
		 Windows Web Device Portal
	 Windows IoT Remote Server (Remote display)
	 SSH
	 PowerShell
	 Visual Studio Debugging
	 Windows Hardware Lab Kit (HLK)

What is HLK?
	 Test Setup
	 Running Tests
	 Protocol Name Ambiguity: WPCon/Sirep/TShell

HLK on Windows IoT
	 The Service’s Main Dll: testsirepsvc.dll
	 Network Signature
		 Device Advertisement
	 Open Ports in the Firewall
	 Interesting Functions and Logic
		 Incoming Connection Authorization
	 Commands Interface
	 Ping

Sirep/WPCon protocol abuse
	 Protocol “Handshake”
	 Packet Structure
	 Command Structures
		 Info Command: GetSystemInformationFromDevice
	 RCE Command: LaunchCommandWithOutput
	 Launch Command Packet Structure
	 Advanced Options
	 Download Command: GetFileFromDevice
	 File Command: GetFileInformationFromDevice
	 Upload Command: PutFileOnDevice
	 WriteRecord Structure
	 Command Structure
	 Result Packet Structure

SirepRAT
	 Command Parsing: Template Files

Intro
In this paper, we will present a new exploit that provides you with remote command execution (RCE) as the SYSTEM user. This exploit
works on cable-connected Windows IoT Core devices, running Microsoft’s official stock image. The achieved execution can be performed
as either the SYSTEM user or the currently logged on user (usually “DefaultAccount”), without any needed authentication.

Moreover, we will break down the Sirep/WPCon protocol that is abused for this purpose in granular detail. We will show how this protocol
exposes a remote command interface for attackers, including RAT capabilities such as get/put arbitrary files in arbitrary locations, and
obtaining system information.

In addition, we will provide an easy-to-use tool, SirepRAT, which implements the techniques laid out in this paper.

The method described in this paper exploits the Sirep Test Service that’s built-in and running on the official images offered at Microsoft’s
site. This service is the client part of the HLK setup one may build in order to perform driver/hardware tests on IoT devices. It serves the
Sirep/WPCon protocol1.

Although Microsoft officially intends for this OS edition to be used by hobbyists and developers, and suggests building a custom image
for increased security in commercial products, all other interfaces are password protected (SSH, PowerShell, Web Device Portal...). In
contrast, this undocumented method shows a new way to control the device with no authentication required, and provides the simplest
known way to run programs as SYSTEM on Windows IoT Core devices.

The research was performed on a Windows IoT Core installed on a Raspberry Pi 3, but is probably not limited to this board as it abuses a
Windows service and protocol, which should be platform independent.

1 The name ambiguity is explained later in this paper

Windows IoT
Windows IoT is Microsoft’s operating system for embedded and IoT devices, and already runs in enterprise environments and
commercial handheld products, as well as in cool DIY projects.

Windows IoT shares much of the Windows 10 binaries, but it cannot be identical, right? Right! It needs to be efficient resource-wise,
ignore irrelevant features, and surely add new IoT-oriented features. Moreover, it is set to be deployed on various boards and sets of
hardware, so low-level access for developers is necessary to make it dev-friendly.

It is the first free version of Windows and can be thought of as both the successor of Windows Embedded, and the lightweight version of
Windows 10.

Another major novelty Windows IoT features is the support for ARM CPUs, such as the Raspberry Pi’s CPU, used in this research.

Core//Enterprise
Windows IoT comes in 2 editions: IoT Core and IoT Enterprise. The 2 major differences lay in:

	 1.	 The target user audience
	 2.	 Application format and interface

Another difference to note is that only the IoT Core edition supports the ARM architecture.

The following table, taken from Microsoft’s site, details the differences between the editions:

2 http://wincom.blob.core.windows.net/documents/Windows_10_IoT_Platform_Overview.pdf

http://wincom.blob.core.windows.net/documents/Windows_10_IoT_Platform_Overview.pdf

Usage Statistics
We were curious to see how popular the Windows IoT OS is in the overall IoT market. One wide and comprehensive survey3 was
conducted by The Eclipse IoT Working Group, AGILE IoT, IEEE, and the Open Mobile Alliance. The above organizations have co-sponsored
an online survey to better understand how developers are building IoT solutions.

This survey was conducted annually, 3 years back, and the latest 2018 edition showed us the following relevant conclusions:

	 •	 Windows has the second largest (22.9%) share in IoT solutions development (after Linux, 71.8%).

	 •	 One of the major IoT sectors in which Windows is used is IoT gateways.

	 •	 A large share of the IoT solutions in development are built on top of ARM architecture. This probably justifies the new support 		
		 of ARM by Windows IoT. We assume this may drive more extensive use of Windows IoT Core edition upon others, given the fact 	
		 that IoT Core is the only Windows IoT edition that support ARM.

	 •	 Security is the top concern for developing IoT solutions.

Supported Boards
Microsoft officially suggests4 using one of the following boards as development devices:

	 1.	 AAEON Up Squared
	 2.	 DragonBoard 410c
	 3.	 MinnowBoard Turbot
	 4.	 Raspberry Pi 2
	 5.	 Raspberry Pi 3B

Microsoft provides the most comprehensive documentation around these devices.

Official Installation
Windows 10 IoT Core Dashboard
Apart from the documentation support for the suggested development boards, Microsoft streamlines the installation process for 4 out of
the 5 by providing the IoT Dashboard, a wizard tool for managing devices and OS images:

3 https://www.slideshare.net/kartben/iot-developer-survey-2018
4 https://docs.microsoft.com/en-us/windows/iot-core/tutorials/quickstarter/prototypeboards

https://up-board.org/upsquared/specifications/
https://developer.qualcomm.com/hardware/dragonboard-410c
https://minnowboard.org/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.slideshare.net/kartben/iot-developer-survey-2018
https://docs.microsoft.com/en-us/windows/iot-core/tutorials/quickstarter/prototypeboards

Using this simple tool, one may choose an image to install on an SD card and define initial configuration for it. As the method described in
this paper requires the IoT device to be connected by Ethernet and not WiFi, the following screenshot shows the relevant step where the
user is instructed to use one of the connectivity options:

5 available only to users who register to the Windows Insider Program
6 16299, 17134, 17661, 17763, 17692 (Windows Insider Preview)

Stock Image / Custom Image
Windows IoT Core installation is performed using bootable images that are flushed to the board’s SD card. Different images are built with
various sets of features enabled. In general, there are 2 categories of images: stock images, and custom images. Given that the exploit
presented in this paper is directed to the stock images and may not influence custom images, it is crucial to present the role, use cases
and availability of both categories.

The stock images are the ones available publicly by Microsoft, and come shipped with a load of developer features enabled (called test
images). One single image is available for each OS build release + Windows Insider Preview builds5.

These images are also the only ones available for installation when using the IoT Dashboard.

Due to the fact that this method exploits the Sirep protocol (that is handled by the Sirep service) the IOT_SIREP feature must be enabled
as a prerequisite.

The full list of available features is maintained here.

Note: All stock images we have tested6 have the IOT_SIREP feature enabled, and thus are prone to this attack.

Custom images are built by a vendor, OEM, or a manufacturing company that plans to commercialize its product. Building a custom
image is a non-trivial process described here, that includes purchasing a code-signing certificate from a Certificate Authority (CA) and
signing the final files. Microsoft draws the process in the following flow chart:

https://docs.microsoft.com/en-us/windows-hardware/manufacture/iot/iot-core-feature-list
https://docs.microsoft.com/en-us/windows-hardware/manufacture/iot/iot-core-manufacturing-guide

In summary, users such as hobbyists who build DIY projects, along with internal utilizations an organization might build on top of the
IoT Core platform - will likely use the stock images, that are vulnerable to SirepRAT. When commercialization comes into place, the
developers are instructed to build their own custom image responsibly, disabling any developer features. Thus, it will be unlikely to exploit
a released IoT Core based product.

Remote Interfaces
Out of the box, Windows IoT Core exposes several remote control and administrative interfaces. A thorough research by IBM7 presented
all the public interfaces and examined possible attack surfaces on each. Let us list these interfaces in short. An important point to notice
is that using all of these public interfaces requires Administrator authentication.

7 https://www.blackhat.com/docs/us-16/materials/us-16-Sabanal-Into-The-Core-In-Depth-Exploration-Of-Windows-10-IoT-Core-wp.pdf

https://www.blackhat.com/docs/us-16/materials/us-16-Sabanal-Into-The-Core-In-Depth-Exploration-Of-Windows-10-IoT-Core-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Sabanal-Into-The-Core-In-Depth-Exploration-Of-Windows-10-IoT-Core-wp.pdf

Windows Web Device Portal
A web interface is served on port 80808. WDP9 lets you configure and manage your device remotely over your network. It features apps
and process management, file explorer, networking information, and much more.

WDP requires HTTP authentication with an Administrator user.

Windows IoT Remote Server (Remote display)
The Windows IoT Remote Client app, installed on a connected Windows 10 desktop machine, shows the display output of the IoT Core
device and allows MSTSC-like control over it. A known bug10 currently prevents it from working on Raspberry Pi boards, but it should be
operational on other boards.

This feature is installed on the stock image by default, but it must be enabled using WDP, that requires Administrator privileges.

SSH
Windows IoT Core serves SSH connection, for remote administration.

As expected, it requires Administrator login.

PowerShell
A PowerShell command can be obtained from a remote Windows computer, using the “Enter-PSSession” cmdlet.

Connection requires Administrator credentials.

Visual Studio Debugging
The Visual Studio Remote Debugger allows a remote VS instance on a debugger computer to debug running processes on the device.

Similar to the Remote Display feature, it must also be enabled from WDP by an Administrator.

Windows Hardware Lab Kit (HLK)
This is the less known command interface exposed for testing hardware using HLK. It only exists to internally serve test execution, and it
is at the heart of this research paper.

8 https://docs.microsoft.com/en-us/windows/uwp/debug-test-perf/device-portal
9 https://docs.microsoft.com/en-us/windows/iot-core/manage-your-device/deviceportal
10 https://docs.microsoft.com/en-us/windows/iot-core/release-notes/commercial/fallcreatorsupdate

https://docs.microsoft.com/en-us/windows/uwp/debug-test-perf/device-portal
https://docs.microsoft.com/en-us/windows/iot-core/manage-your-device/deviceportal
https://docs.microsoft.com/en-us/windows/iot-core/release-notes/commercial/fallcreatorsupdate

Let us introduce HLK in the next section.

What is HLK?
The Windows Hardware Lab Kit11 (Windows HLK) is a test framework used to test hardware devices for Windows 10 and Windows Server
2006. It is composed of a server and client software: the server is called the HLK Controller and the client is a software installed on the
target test device.

Vendors who aim to get their hardware and drivers officially compatible with those Windows versions, must qualify through the Windows
Hardware Compatibility Program. This program requires the product to pass a set of tests composed by Microsoft. Passing those tests
ensures that the product meets Microsoft’s requirements.

In fact, HLK is the successor of HCK12 (Hardware Certification Kit), and plays the exact same role. The only difference is the list of target
Windows versions. While HLK addresses Windows 10 and Windows Server 2006, HCK addresses the following previous versions:

	 •	 Windows
	 •	 Windows 8
	 •	 Windows Server 2008 R2
	 •	 Windows Server 2012

The HLK controller runs a server software called HLK Studio, that provides a GUI for managing the test devices, building test scenarios
(playlists), and running the actual tests.

Test Setup
Running tests on any system requires a dedicated setup. Firstly, one HLK Controller must connect to the target devices, in one of many
ways. The connection can be done through Ethernet, USB, or by using Aries (a dedicated Ethernet-to-USB bridge dongle by Microsoft).

Microsoft states that choosing the right setup depends mainly on the test network and the number of test devices. The environment may
either be domain-joined, or workgroup-joined.

When testing mobile/embedded/IoT devices, an HLK proxy client must be used. This proxy handles the communication between the HLK
Controller and other test devices. Along with other roles, the proxy aids in discovering applicable mobile/IoT devices on the network. This
is done using the device advertisement mechanism described later in this paper.

More detailed proxy setup explanation is available on Microsoft HLK docs.

11 https://docs.microsoft.com/en-us/windows-hardware/test/hlk/windows-hardware-lab-kit
12 And HCK, in its turn, is the successor of WTT (Windows Test Technologies)

https://docs.microsoft.com/en-us/windows-hardware/test/hlk/getstarted/hlk-proxy-client-prerequisites
https://docs.microsoft.com/en-us/windows-hardware/test/hlk/windows-hardware-lab-kit

Running Tests
After assembling the correct test setup, one can use the HLK Studio program, installed on the HLK Controller, in order to onboard test
systems. When the onboarding process ends, you can run the desired tests.

HLK Studio offers management and control of the test devices. It allows grouping test devices into pools. and provides the user with full
freedom in choosing the desired tests (playlists) to run on desired test systems.

Microsoft provides predefined test playlists for the certification process, along with other playlists anyone can use to test their product.
Moreover, a vendor might choose to use this framework to run his own tests, making HLK an integral part of the development and testing
cycle of the product.

In general, tests and their results are delivered over IP communication. While some setups involve USB connections, an IPOverUSB
protocol is used. The HLK communication is done using a proprietary protocol. This is the protocol that we abuse in this paper.

Protocol Name Ambiguity: WPCon/Sirep/TShell
The correct name of the protocol addressed in this paper is somewhat unclear, at least from the point we managed to get to. It
is referenced in multiple names across different sources: WPCon, Sirep and TShell. Let us do our best in trying to explain this
ambiguity:

The different names are found on the internet and in the local firewall configuration, as well as in testsirepsvc.dll’s symbols.

An official explanation for this ambiguity was not found on the internet, but it seems to come from the evolution of this service
and protocol, that apparently started as a dev tool for Windows Embedded/Windows Mobile: TShell (Texus Shell). This is the
protocol used for running commands from a debugger computer over IP.

The “WP” prefixes and “mobile” string found in symbol names support its existence on Windows Phone devices.

Due to the unique hardware those devices have, Microsoft offered test images for OEMs of mobile phones, with an
implementation of the IPOverUSB stack. Microsoft then offered dev and debugging tools on top of this IP over USB stack.

We reached Microsoft for clarification but it refuses to share this kind of internal information to the public.

HLK on Windows IoT
The IoT device takes the role of a test system in the HLK test setup described above. It accepts test tasks from the HLK controller, and
sends back the results. It also serves special ping requests (service-specific pings, not ICMP), and advertises itself using UDP broadcast
packets.

All of the above functionality is implemented in one DLL, using 3 TCP ports, that are allowed by default on the device’s Windows firewall:

The Service’s Main Dll: testsirepsvc.dll
The Sirep service’s image path leads to this DLL at C:\Windows\System32\testsirepsvc.dll. The core service functionality is implemented
in it, including the communication and execution of tasks sent from the HLK controller.

Notice the confusing ambiguity of the “client” and “server” terms here. The HLK server acts as a Sirep client of this Windows IoT service. To
avoid confusion, we will refer to the Sirep service on the Windows IoT device as the “Sirep server” and the HLK controller as the “Sirep client”, as
described in the following drawing:

We will go over the logic and implementation of the main features this service offers.

13 https://www.pinterest.com/pin/416301559284668200/

13

https://www.pinterest.com/pin/416301559284668200/

Network Signature
Device Advertisement
The service has a very bold network signature, that actually acted as the bait to start digging, resulting in this research paper.

By default, Windows IoT core sends periodic gratuitous UDP packets to advertise the device on the LAN. It is a simple broadcast packet
with the unique device ID: a 12-character hex string (Unicode). It is sent to the broadcast address on relevant subnets and interfaces. The
filtering of relevant interfaces is done similarly to how the command connections are filtered, as described further below in this paper.

In its turn, the HLK controller waits for these advertisement packets and builds a list of the available devices’ IDs. These discovered
devices will be available for the user to choose from, in the HLK studio app that runs on the HLK test server.

Tracing the source of those packets uncovers the sender identity: Sirep Test Service.

More specifically, it is sent from a dedicated thread, running ControllerWSA::NameBroadcasterThreadProc. This eventually calls
ControllerWSA::SendBroadcastForDevice, which uses ws2_32!sendto as follows:

Open Ports in the Firewall
Windows IoT Core, in its default configuration, allows several incoming connections through its firewall. 3 of them are the ones used by
this service. The service continuously listens on these ports, each for a different purpose.

As mentioned above, the descriptions found for the different ports are ambiguous due to the protocol evolution. In the following list, both
versions of names are given: first the IoT oriented name, then the Windows Phone oriented name:

	 1.	 29820: Sirep-Server-Protocol2/WPConProtocol2
		 Used for the command communication exploited in this paper
	 2.	 29819: Sirep-Server-Ping/WPConTCPPing/WPPingSirep
		 Used for the simple echo service described above
	 3.	 29817: Sirep-Server-Service/WPCon
		 Its unique purpose was not investigated and is left for future research (after objectives were achieved using services on port 		
		 WPConProtocol2)

Interesting Functions and Logic
Before describing the RCE method and RAT abilities exposed by the protocol, let us present the core parts of the service flow, that are at
the heart of the abuse presented here. Surprisingly, the flow is very insecure and exposes a network interface for remote clients to send
commands to the device, and get back their output, with no authentication at all.

Ultimately, an attacker can send commands to execute arbitrary programs on the device, that will be run by the SYSTEM account or by
the logged on user, to the attacker’s choosing.

Incoming Connection Authorization
The service listens on the Sirep-Server-Protocol2 port and accepts commands sent to it in a unique binary structure. Results are sent
back to the command initiator in a simple binary structure.

Let us describe the logic that decides whether a new connection is allowed to send commands to the device. This logic is implemented in
the ControllerWSA::IsConnectionAllowed function.

Surprisingly, the filtering is not based on any form of authentication or even identification. Basically, any remote client can send
commands to the device, with the only requirement being that the device’s relevant network interface is connected with an Ethernet cable
(not wirelessly). The check is based solely on the details of the local socket that received the new TCP connection. More specifically, the
function performs its checks on the SOCKADDR_IN structure that’s returned from an API call to getsockname:

This authorization form is very permissive, and we spent time looking for the reasoning behind it. Our best guess relies on the fact
described above, that is: this IoT service is a kind of a porting made from the old Windows Phone test service. At that time, testing and
debugging tools were made functional only using IPOverUSB, when the phone is connected to the dev computer through a USB cable.
Now, the IoT equivalent of this limiting requirement, is cable connection (as opposed to the easier option of WiFi connection).

We couldn’t confirm this assumption with Microsoft as they naturally refuse disclosing this kind of internal information.

Commands Interface
A service routine accepts command packets in a binary form that’s revealed below. This is the gate that routes the packet buffers to the
right path in code, in a switch manner. The routing is done based on the first integer of the received packet, that represents the command
code. Each command code is mapped to its handling function:

The switch tree continues to the second level:

Ping
The controller listens on the Sirep-Server-Ping (29819) port and serves as an echo server, simply responding with a “PING” payload to
every incoming TCP connection, then terminates the connection with RST:

Sirep/WPCon protocol abuse
In this part we will describe the structure of the different commands packets, that are then sent through a regular TCP connection to the
device, in order to mimic a test server and send commands to the IoT device. The result packets that are sent back from the IoT device
also come in a unique structure, that will be described.

Protocol “Handshake”
On any new connection, the Sirep service immediately responds with a packet containing a GUID in its payload. This GUID is a hard-
coded constant in the service DLL, and represents the Sirep Protocol Version Guid. In our tests, the used GUID is:

So before sending the desired command packet, the attacker side must receive these 0x10 bytes.

Packet Structure
The general top-level structure of the packet is the common Type-Length-Value format:

	 1.	 The 1st integer represents the command type to perform.
	 2.	 The 2nd is the overall payload length, starting from the 3rd Integer.
	 3.	 The rest of the payload forms the command data, and is command-type-specific.
		 Some of the inner content structures are described below in detail.

Command Structures
In this section, we will describe in detail some of the binary command structures. The details here are accompanied by a convenient
definition file - “010 Editor” template file. It allows one to parse and build their own packet payloads with the right structure.

Listed below are the commands supported by the Sirep service and their corresponding result codes:

Info Command: GetSystemInformationFromDevice
The simplest command supported is the GetSystemInformationFromDevice command. It requires no special arguments, and actually no
data at all. The packet is nothing more than 2 integers: the first being the command type (0x32) and the second is the payload length (0x0):

00 01 02 03 04 05 06 07 08 ... Payload Length

Command Type Payload Length Command Data

Name Code Result Code

1 GetSystemInformationFromDevice 0x32 0x33

2 LaunchCommandWithOutput 0x0A 0x0C

3 GetFileFromDevice 0x1E 0x1F

4 PutFileOnDevice 0x14 0x01

5 GetFileInformationFromDevice 0x3C 0x3D

Sending this through a TCP connection to port 29820 of the Windows IoT device returns a binary block that represents different
properties of the target system. Full details about the result structure will be given in the next section, but for the sake of this example,
let’s present the result data:

Notice the 0x0A byte - this is the Windows OS version: 10. In general, the output consists of the buffers returned from API calls to
GetVersionExW (OSVERSIONINFOEXA) and GetSystemInfo. The SirepRAT tool takes care of parsing this result struct into meaningful
properties.

RCE Command: LaunchCommandWithOutput
The launch command is probably the strongest of all the RAT-like abilities that the Sirep service exposes. It gets a program path,
command line parameters and other arguments that correspond to some of the parameters needed for the API call to
CreateProcess/CreateProcessAsUser. Since the service is the one spawning the process, the created process is given the LocalSystem
user context which means it runs with SYSTEM privileges. Alternatively, it supports running it as the currently logged on user.

Launch Command Packet Structure

The following drawing and table describe the packet structure an attacker can build to run processes on the target device.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682429(v=vs.85).aspx

In general, string arguments are specified using a pair of integers representing <offset, length>. The offset is calculated starting from
offset 0x9 of the whole packet (the green boxes above).

The following table specifies the exact offsets of each field, and an example value for each. In this example, “hostname.exe /?” will be run
in a new process with the currently logged on user, having a current directory set as “C:\Users\Public”. Both the output and error streams
will be returned in the result (result structure explained below), as specified in the ReturnOutputFlag and ReturnErrorFlag fields.

All that is left to do, is send this payload through a TCP connection to port 29820 of the target device (after performing the protocol
“handshake” described above).

Advanced Options

The Launch command supports the following advanced options as well:

		 1.	 Command line parameters - corresponds to IpCommandLine
		 2.	 Base directory to run from - corresponds to IpCurrentDirectory
		 3.	 Result records - it is possible to specify which of the output/error streams we want in the response (details further below)
		 4.	 Execution user context:
			 a.	 Run as SYSTEM - the default behaviour
			 b.	 Run as the currently logged on user - corresponds to using CreateProcessAsUser
				 To use this feature, the command line string must start with the following constant substring:

Download Command: GetFileFromDevice
This is a simple command, requiring only a remote path of a file to download:

File Command: GetFileInformationFromDevice
This command is almost identical to the former GetFileFromDevice, but has a different command code. And of course, it returns
information about the specified remote file, and not the file data (the returned data is similar to the WIN32_FIND_DATAA structure and is
parsed by SirepRAT).

The command structure is as follows:

Upload Command: PutFileOnDevice
This command lets the client specify a remote path along with data to write to that path. The path is a regular Sirep packed string, and
the data is represented with WriteRecords that are described below.

WriteRecord Structure

The data to write is given in WriteRecord structures that are appended to the command payload.

These records have 2 possible types: one is a regular chunk of data, and the other is the last chunk, as shown in the following snippet
from the Sirep template file:

https://github.com/SafeBreach-Labs/SirepRAT/blob/master/payloads/Sirep_Command_Payload.bt

Result Packet Structure
The result is returned as multiple records of different types. Each record is built in the TLV format. There are several record types, the
main ones are listed in the following table:

Command Structure

Unlike all other commands, the “Payload Length” header field specifies the remote file path length and not the whole payload length.

The remote path and the WriteRecord data records are composed in the following structure, to form the full command:

Record #1 should be interpreted as follows:

		 1.	 Result record type is 00000001
		 2.	 Result record data length is 00000004 bytes
		 3.	 Result record data is 00000000 - meaning that running the command ended with HRESULT = S_OK

For example, after running the Launch command example given before, we get 3 result records:

SirepRAT
Based on the findings we have extracted from this research about the service and protocol, we built a simple python tool that allows
exploiting them using the different supported commands. We called it SirepRAT.

The tool code, along with related artifacts, can be found on SafeBreach-Labs github repository.

It features an easy and intuitive user interface for sending commands to a Windows IoT Core target. It works on any cable-connected
device running Windows IoT Core with an official Microsoft image, or any other image with IOT_SIREP feature enabled.

SirepRAT Features full RAT capabilities without the need of writing a real RAT malware on target.

Command Parsing: Template Files
Along with the python tool comes a set of 010 Editor template file, used to parse payloads for the different command supported.
Example command payloads are also given.

https://github.com/SafeBreach-Labs/SirepRAT
https://github.com/SafeBreach-Labs/SirepRAT/blob/master/payloads/Sirep_Command_Payload.bt
https://github.com/SafeBreach-Labs/SirepRAT/blob/master/payloads

	Intro
	Windows IoT
	Core//Enterprise
	Usage Statistics
	Supported Boards
	Official Installation
	Windows 10 IoT Core Dashboard
	Stock Image / Custom Image

	Remote Interfaces
	Windows Web Device Portal
	Windows IoT Remote Server (Remote display)
	SSH
	PowerShell
	Visual Studio Debugging
	Windows Hardware Lab Kit (HLK)

	What is HLK?
	Test Setup
	Running Tests

	HLK on Windows IoT
	The Service’s Main Dll: testsirepsvc.dll
	Network Signature
	Device Advertisement
	Open Ports in the Firewall

	Interesting Functions and Logic
	Incoming Connection Authorization
	Commands Interface
	Ping

	Sirep/WPCon protocol abuse
	Protocol “Handshake”
	Packet Structure
	Command Structures
	Info Command: GetSystemInformationFromDevice
	RCE Command: LaunchCommandWithOutput
	Launch Command Packet Structure
	Advanced Options

	Download Command: GetFileFromDevice
	File Command: GetFileInformationFromDevice
	Upload Command: PutFileOnDevice
	WriteRecord Structure
	Command Structure

	Result Packet Structure

	SirepRAT
	Command Parsing: Template Files

