
Model-based Boosting in R
A Hands-on Tutorial Using the R Package mboost

Benjamin Hofner∗† Andreas Mayr† Nikolay Robinzonov‡

Matthias Schmid†

This is an extended and (slightly) modified version of the manuscript
Benjamin Hofner, Andreas Mayr, Nikolay Robinzonov and Mattthias Schmid (2014), Model-based Boosting in R – A

Hands-on Tutorial Using the R Package mboost. Computational Statistics, 29:3–35.
DOI 10.1007/s00180-012-0382-5.

The final publication is available at http://link.springer.com.

Changes to the results in the original manuscript are due to changes in some defaults of mboost (most notably the
definition of degrees of freedom has changed in mboost 2.2-0). See NEWS for details.

We provide a detailed hands-on tutorial for the R add-on package mboost. The package
implements boosting for optimizing general risk functions utilizing component-wise (penalized)
least squares estimates as base-learners for fitting various kinds of generalized linear and gener-
alized additive models to potentially high-dimensional data. We give a theoretical background
and demonstrate how mboost can be used to fit interpretable models of different complexity.
As an example we use mboost to predict the body fat based on anthropometric measurements
throughout the tutorial.

1 Introduction

A key issue in statistical research is the development of algorithms for model building and variable selection
(Hastie et al. 2009). Due to the recent advances in computational research and biotechnology, this issue has
become even more relevant (Fan and Lv 2010). For example, microarray and DNA sequencing experiments
typically result in high-dimensional data sets with large numbers of predictor variables but relatively small
sample sizes. In these experiments, it is usually of interest to build a good prognostic model using a small
subset of marker genes. Hence, there is a need for statistical techniques to select the most informative features
out of a large set of predictor variables. A related problem is to select the appropriate modeling alternative
for each of the covariates (“model choice”, Kneib et al. 2009). This problem even arises when data sets are
not high-dimensional. For example, a continuous covariate could be included into a statistical model using
linear, non-linear or interaction effects with other predictor variables.

In order to address these issues, a variety of regression techniques has been developed during the past
years (see, e.g., Hastie et al. 2009). This progress in statistical methodology is primarily due to the fact
that classical techniques for model building and variable selection (such as generalized linear modeling with
stepwise selection) are known to be unreliable or might even be biased. In this tutorial, we consider component-
wise gradient boosting (Breiman 1998, 1999, Friedman et al. 2000, Friedman 2001), which is a machine learning
method for optimizing prediction accuracy and for obtaining statistical model estimates via gradient descent
techniques. A key feature of the method is that it carries out variable selection during the fitting process
(Bühlmann and Yu 2003, Bühlmann 2006) without relying on heuristic techniques such as stepwise variable
selection. Moreover, gradient boosting algorithms result in prediction rules that have the same interpretation

∗E-mail: benjamin.hofner@imbe.med.uni-erlangen.de
†Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg
‡Department of Statistics, Ludwig-Maximilians-Universität München

1

http://dx.doi.org/10.1007/s00180-012-0382-5
http://link.springer.com

as common statistical model fits. This is a major advantage over machine learning methods such as random
forests (Breiman 2001) that result in non-interpretable “black-box” predictions.

In this tutorial, we describe the R (R Development Core Team 2012) add-on package mboost (Hothorn
et al. 2010, 2012), which implements methods to fit generalized linear models (GLMs), generalized additive
models (GAMs, Hastie and Tibshirani 1990), and generalizations thereof using component-wise gradient
boosting techniques. The mboost package can thus be used for regression, classification, time-to-event
analysis, and a variety of other statistical modeling problems based on potentially high-dimensional data.
Because of its user-friendly formula interface, mboost can be used in a similar way as classical functions
for statistical modeling in R. In addition, the package implements several convenience functions for hyper-
parameter selection, parallelization of computations, and visualization of results.

The rest of the paper is organized as follows: In Section 2, we provide a brief theoretical overview of
component-wise gradient boosting and its properties. In Section 3, the mboost package is presented in
detail. Here we present the infrastructure of the package and show how to use mboost to obtain interpretable
statistical model fits. All steps are illustrated using a clinical data set that was collected by Garcia et al.
(2005). The authors conducted a study to predict the body fat content of study participants by means of
common anthropometric measurements. The response variable was obtained by Dual X-Ray Absorptiometry
(DXA). DXA is an accurate but expensive method for measuring the body fat content. In order to reduce
costs, it is therefore desirable to develop a regression equation for predicting DXA measurements by means
of anthropometric measurements which are easy to obtain. Using the mboost package, we provide a step-
by-step illustration on how to use gradient boosting to fit a prediction model for body fat. A summary of
the paper is given in Section 4.

2 A Brief Theoretical Overview of Component-Wise Gradient Boosting

Throughout the paper, we consider data sets containing the values of an outcome variable y and some predictor
variables x1, . . . , xp. For example, in case of the body fat data, y is the body fat content of the study
participants (measured using DXA) and x1, . . . , xp represent the following anthropometric measurements:
age in years, waist circumference, hip circumference, breadth of the elbow, breadth of the knee, and four
aggregated predictor variables that were obtained from other anthropometric measurements.

The aim is to model the relationship between y and x := (x1, . . . , xp)
>, and to obtain an “optimal”

prediction of y given x. This is accomplished by minimizing a loss function ρ(y, f) ∈ R over a prediction
function f (depending on x). Usually, for GLMs and GAMs, the loss function is simply the negative log-
likelihood function of the outcome distribution. Linear regression with a continuous outcome variable y ∈ R
is a well-known example of this approach: Here, ρ corresponds to the least squares objective function (which
is equivalent to the negative log-likelihood of a Gaussian model), and f is a parametric (linear) function of
x.

In the gradient boosting framework, the aim is to estimate the optimal prediction function f∗ that is
defined by

f∗ := argminf EY,X
[
ρ(y, f(x>))

]
, (1)

where the loss function ρ is assumed to be differentiable with respect to f . In practice, we usually deal with
realizations (yi,x

>
i), i = 1, . . . , n, of (y,x>), and the expectation in (1) is therefore not known. For this

reason, instead of minimizing the expected value given in (1), boosting algorithms minimize the observed
mean R :=

∑n
i=1 ρ(yi, f(x>i)) (also called the “empirical risk”). The following algorithm (“component-wise

gradient boosting”) is used to minimize R over f :

1. Initialize the function estimate f̂ [0] with offset values. Note that f̂ [0] is a vector of length n. In the
following paragraphs, we will generally denote the vector of function estimates at iteration m by f̂ [m].

2. Specify a set of base-learners. Base-learners are simple regression estimators with a fixed set of input
variables and a univariate response. The sets of input variables are allowed to differ among the base-
learners. Usually, the input variables of the base-learners are small subsets of the set of predictor
variables x1, . . . , xp. For example, in the simplest case, there is exactly one base-learner for each
predictor variable, and the base-learners are just simple linear models using the predictor variables as
input variables. Generally, the base-learners considered in this paper are either penalized or unpenalized
least squares estimators using small subsets of the predictor variables as input variables (see Section 3.2.1
for details and examples). Each base-learner represents a modeling alternative for the statistical model.
Denote the number of base-learners by P and set m = 0.

2

3. Increase m by 1, where m is the number of iterations.

4. a) Compute the negative gradient − ∂ρ
∂f of the loss function and evaluate it at f̂ [m−1](x>i), i = 1, . . . , n

(i.e., at the estimate of the previous iteration). This yields the negative gradient vector

u[m] =
(
u
[m]
i

)
i=1,...,n

:=

(
− ∂

∂f
ρ
(
yi, f̂

[m−1](x>i)
))

i=1,...,n

.

b) Fit each of the P base-learners to the negative gradient vector, i.e., use each of the regression
estimators specified in step 2 separately to fit the negative gradient. The resulting P regression
fits yield P vectors of predicted values, where each vector is an estimate of the negative gradient
vector u[m].

c) Select the base-learner that fits u[m] best according to the residual sum of squares (RSS) criterion
and set û[m] equal to the fitted values of the best-fitting base-learner.

d) Update the current estimate by setting f̂ [m] = f̂ [m−1] + ν û[m], where 0 < ν ≤ 1 is a real-valued
step length factor.

5. Iterate Steps 3 and 4 until the stopping iteration mstop is reached (the choice of mstop is discussed
below).

From step 4 it is seen that an estimate of the true negative gradient of R is added to the current estimate
of f∗ in each iteration. Consequently, the component-wise boosting algorithm descends along the gradient
of the empirical risk R. The empirical risk R is thus minimized in a stage-wise fashion, and a structural
(regression) relationship between y and x is established. This strategy corresponds to replacing classical
Fisher scoring algorithms for maximum likelihood estimation of f∗ (McCullagh and Nelder 1989) by a gradient
descent algorithm in function space. As seen from steps 4(c) and 4(d), the algorithm additionally carries out

variable selection and model choice, as only one base-learner is selected for updating f̂ [m] in each iteration.
For example, if each base-learner corresponds to exactly one predictor variable (that is used as the input
variable of the respective base-learner), only one predictor variable is selected in each iteration (hence the
term “component-wise”). Note that the variable selection property of the above-described algorithm is not a
general feature of all boosting methods (where, in principle, any type of regression estimator could be used
to fit the negative gradient) but is caused by the specific definition of the base-learning mechanism in steps
2 and 4.

Due to the additive update, the final boosting estimate in iteration mstop can be interpreted as an additive
prediction function. It is easily seen that the structure of this function is equivalent to the structure of the
additive predictor of a GAM (see Hastie and Tibshirani 1990). This means that

f̂ = f̂1 + · · ·+ f̂P , (2)

where f̂1, . . . , f̂P correspond to the functions specified by the base-learners. Consequently, f̂1, . . . , f̂P depend
on the predictor variables that were used as input variables of the respective base-learners. Note that a
base-learner can be selected multiple times in the course of the boosting algorithm. In this case, its function
estimate f̂j , j ∈ 1, . . . , P , is the sum of the individual estimates ν · û[m−1] obtained in the iterations in which

the base-learner was selected. Note also that some of the f̂j , j = 1, . . . , P , might be equal to zero, as the
corresponding base-learners might not have been selected in step 4(c). This can then be considered as variable
selection or model choice (depending on the specification of the base-learners).

From step 4 of the component-wise gradient boosting algorithm it is clear that the specification of the
base-learners is crucial for interpreting the model fit. As a general rule, due to the additive update in step
4(d), the estimate of a function fj at iteration mstop has the same structure as the corresponding base-learner.
For example, fj is a linear function if the base-learner used to model fj in step 4(b) is a simple linear model
(see Bühlmann and Hothorn 2007, p. 484, also see Section 3 for details). Similarly, fj is a smooth function
of the jth covariate xj if the corresponding base-learner is smooth as well. Note that it is generally possible
to incorporate observation weights into component-wise gradient boosting. This is accomplished by using
weighted regression techniques for each of the base-learners in step 4.

A crucial issue is the choice of the stopping iteration mstop. Several authors have argued that boost-
ing algorithms should generally not be run until convergence. Otherwise, overfits resulting in a suboptimal
prediction accuracy would be likely to occur (see Bühlmann and Hothorn 2007). We therefore use a finite
stopping iteration for component-wise gradient boosting that optimizes the prediction accuracy (“early stop-
ping strategy”). As a consequence, the stopping iteration becomes a tuning parameter of the algorithm, and
cross-validation techniques or AIC-based techniques can be used to estimate the optimal mstop. In contrast

3

to the choice of the stopping iteration, the choice of the step length factor ν has been shown to be of minor
importance for the predictive performance of a boosting algorithm. The only requirement is that the value
of ν is small (e.g., ν = 0.1, see Schmid and Hothorn 2008b). Small values of ν are necessary to guarantee
that the algorithm does not overshoot the minimum of the empirical risk R.

A major consequence of early stopping is that boosting optimizes prediction accuracy by regularizing the
estimates of f∗ via shrinkage techniques. This is due to the fact that using a small step length ν ensures that
effect estimates increase“slowly”in the course of the boosting algorithm, and that the estimates stop increasing
as soon as the optimal stopping iteration mstop is reached. Stopping a component-wise gradient boosting
algorithm at the optimal iteration therefore implies that effect estimates are shrunken such that the predictive
power of the GAM is maximal. Shrinking estimates is a widely used strategy for building prognostic models:
Estimates tend to have a slightly increased bias but a decreased variance, thereby improving prediction
accuracy. In addition, shrinkage generally stabilizes effect estimates and avoids multicollinearity problems.
Despite the bias induced by shrinking effect estimates, however, the structure of function (2) ensures that
results are interpretable and that black-box estimates are avoided. The interpretation of boosting estimates
is essentially the same as those of classical maximum likelihood estimates.

3 The Package mboost

As pointed out above, the R add-on package mboost implements model-based boosting methods as introduced
above that result in interpretable models. This is in contrast to other boosting packages such as gbm
(Ridgeway 2010), which implements tree-based boosting methods that lead to black-box predictions. The
mboost package offers a modular nature that allows to specify a wide range of statistical models.

A generalized additive model is specified as the combination of a distributional assumption and a struc-
tural assumption. The distributional assumption specifies the conditional distribution of the outcome. The
structural assumption specifies the types of effects that are to be used in the model, i.e., it represents the
deterministic structure of the model. Usually, it specifies how the predictors are related to the conditional
mean of the outcome. To handle a broad class of models within one framework, mboost also allows to specify
effects for conditional quantiles, conditional expectiles or hazard rates. The distributional assumption, i.e.,
the loss function that we want to minimize, is specified as a family. The structural assumption is given as
a formula using base-learners.

The loss function, as specified by the family is independent of the estimation of the base-learners. As one
can see in the component-wise boosting algorithm, the loss function is only used to compute the negative
gradient in each boosting step. The predictors are then related to these values by penalized ordinary least
squares estimation, irrespective of the loss function. Hence, the user can freely combine structural and
distributional assumptions to tackle new estimation problems.

In Section 3.1 we will derive a special case of component-wise boosting to fit generalized linear models.
In Section 3.2 we introduce the methods to fit generalized additive models and give an introduction to the
available base-learners. How different loss functions can be specified is shown in Section 3.4.

3.1 Fitting Generalized Linear Models: glmboost

The function glmboost() provides an interface to fit (generalized) linear models. A (generalized) linear model
of the covariates x = (x1, . . . , xp)

> has the form

g(~µ) = β0 + β1x1 + . . .+ βpxp

with the (conditional) expectation of the response ~µ = E(y|~x), the link function g and parameters ~β. The
resulting models from glmboost() can be essentially interpreted the same way as models that are derived
from glm(). The only difference is that the boosted generalized linear model additionally performs variable
selection as described in Section 2 and the effects are shrunken toward zero if early stopping is applied. In
each boosting iteration, glmboost() fits simple linear models without intercept separately for each column
of the design matrix to the negative gradient vector. Only the best-fitting linear model (i.e., the best fitting
base-learner) is used in the update step. If factors are used in the model, this results in separate updates
for the effects of each factor level as these are (after dummy coding) represented by separate columns in
the design matrix. If one wants to treat factors or groups of variables as one base-learner with a common
update, one needs to use the gamboost() function with a bols() base-learner for each factor or group (see
Section 3.2, especially Table 2, for details).

The interface of glmboost() is in essence the same as for glm(). Before we show how one can use the
function to fit a linear model to predict the body fat content, we give a short overview on the function1:

1Note that here and in the following we sometimes restrict the focus to the most important or most interesting arguments of a

4

glmboost(formula, data = list(), weights = NULL,

center = TRUE, control = boost_control(), ...)

The model is specified using a formula as in glm() of the form response ~ predictor1 + predictor2

and the data set is provided as a data.frame via the data argument. Optionally, weights can be given
for weighted regression estimation. The argument center is specific for glmboost(). It controls whether
the data is internally centered. Centering is of great importance, as this allows much faster “convergence” of
the algorithm or even ensures that the algorithm converges in the direction of the true value at all. We will
discuss this in detail at the end of Section 3.1. The second boosting-specific argument, control, allows to
define the hyper-parameters of the boosting algorithm. This is done using the function boost_control().
For example one could specify:

R> boost_control(mstop = 200, ## initial number of boosting iterations. Default: 100

+ nu = 0.05, ## step length. Default: 0.1

+ trace = TRUE) ## print status information? Default: FALSE

Finally, the user can specify the distributional assumption via a family, which is “hidden” in the ‘...’
argument (see ?mboost_fit2 for details and further possible parameters). The default family is Gaussian().
Details on families are given in Section 3.4. Ways to specify new families are described in the Appendix.

Case Study: Prediction of Body Fat

The aim of this case study is to compute accurate predictions for the body fat of women based on available
anthropometric measurements. Observations of 71 German women are available with the data set bodyfat

(Garcia et al. 2005) included in mboost. We first load the package and the data set3.

R> library("mboost") ## load package

R> data("bodyfat", package = "TH.data") ## load data

The response variable is the body fat measured by DXA (DEXfat), which can be seen as the gold standard
to measure body fat. However, DXA measurements are too expensive and complicated for a broad use.
Anthropometric measurements as waist or hip circumferences are in comparison very easy to measure in a
standard screening. A prediction formula only based on these measures could therefore be a valuable alter-
native with high clinical relevance for daily usage. The available variables and anthropometric measurements
in the data set are presented in Table 1.

Table 1: Available variables in the bodyfat data, for details see Garcia et al. (2005).

Name Description

DEXfat body fat measured by DXA (response variable)
age age of the women in years
waistcirc waist circumference
hipcirc hip circumference
elbowbreadth breadth of the elbow
kneebreadth breadth of the knee
anthro3a sum of logarithm of three anthropometric measure-

ments
anthro3b sum of logarithm of three anthropometric measure-

ments
anthro3c sum of logarithm of three anthropometric measure-

ments
anthro4 sum of logarithm of four anthropometric measurements

In the original publication (Garcia et al. 2005), the presented prediction formula was based on a linear
model with backward-elimination for variable selection. The resulting final model utilized hip circumference
(hipcirc), knee breadth (kneebreadth) and a compound covariate (anthro3a), which is defined as the sum
of the logarithmic measurements of chin skinfold, triceps skinfold and subscapular skinfold:

function. Further arguments might exist. Thus, for a complete list of arguments and their description refer to the respective
manual.

2glmboost() merely handles the preprocessing of the data. The actual fitting takes place in a unified framework in the function
mboost_fit().

3The data set bodyfat has been moved to the package TH.data.

5

R> ## Reproduce formula of Garcia et al., 2005

R> lm1 <- lm(DEXfat ~ hipcirc + kneebreadth + anthro3a, data = bodyfat)

R> coef(lm1)

(Intercept) hipcirc kneebreadth anthro3a

-75.23478 0.51153 1.90199 8.90964

A very similar model can be easily fitted by boosting, applying glmboost() with default settings:

R> ## Estimate same model by glmboost

R> glm1 <- glmboost(DEXfat ~ hipcirc + kneebreadth + anthro3a, data = bodyfat)

R> coef(glm1, off2int=TRUE) ## off2int adds the offset to the intercept

(Intercept) hipcirc kneebreadth anthro3a

-75.20734 0.51149 1.90054 8.90713

Note that in this case we used the default settings in control and the default family Gaussian() leading to
boosting with the L2 loss.

We now want to consider all available variables as potential predictors. One way is to simply specify "."

on the right side of the formula:

R> glm2 <- glmboost(DEXfat ~ ., data = bodyfat)

As an alternative one can explicitly provide the whole formula by using the paste() function4. Therefore,
one could essentially call:

R> preds <- names(bodyfat[, names(bodyfat) != "DEXfat"]) ## names of predictors

R> fm <- as.formula(paste("DEXfat ~", paste(preds, collapse = "+"))) ## build formula

R> fm

DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth +

anthro3a + anthro3b + anthro3c + anthro4

and provide fm to the formula argument in glmboost(). Note that a solution using the paste() func-
tion is somewhat unavoidable when we intend to combine different base-learners for plenty of predictors in
gamboost().

Note that at this iteration (mstop is still 100 as it is the default value) anthro4 is not included in the
resulting model as the corresponding base-learner was never selected in the update step. The function
coef() by default only displays the selected variables but can be forced to show all effects by specifying
which = "":

R> coef(glm2, ## usually the argument ’which’ is used to specify single base-

+ which = "") ## learners via partial matching; With which = "" we select all.

(Intercept) age waistcirc hipcirc elbowbreadth kneebreadth

-98.816608 0.013602 0.189716 0.351626 -0.384140 1.736589

anthro3a anthro3b anthro3c anthro4

3.326860 3.656524 0.595363 0.000000

attr(,"offset")

[1] 30.783

A plot of the coefficient paths, similar to the ones commonly known from the LARS algorithm (Efron et al.
2004), can be easily produced by using plot() on the glmboost object (see Figure 1):

R> plot(glm2, off2int = TRUE) ## default plot, offset added to intercept

R> ## now change ylim to the range of the coefficients without intercept (zoom-in)

R> plot(glm2, ylim = range(coef(glm2, which = preds)))

4Another alternative is given by the matrix interface for glmboost() where one can directly use the design matrix as an
argument. For details see ?glmboost.

6

0 20 40 60 80 100

−
60

−
40

−
20

0
20

Number of boosting iterations

C
oe

ffi
ci

en
ts

(Intercept)

elbowbreadth
anthro3a

0 20 40 60 80 100

0
1

2
3

Number of boosting iterations

C
oe

ffi
ci

en
ts

elbowbreadth

age
waistcirc
hipcirc
anthro3c

kneebreadth

anthro3a

anthro3b

Figure 1: Coefficients paths for the body fat data: Here, the default plot on the left leads to hardly readable
variable names due to the inclusion of the intercept. For the plot on the right we therefore adjusted
the y-scale to avoid this problem.

Centering of Linear Base-learners Without Intercept

For linear base-learners that are specified without intercept,5 it is of great importance to center the covariates
before fitting the model. Without centering of the covariates, linear effects that result from base-learners
without intercept are forced through the origin (with no data lying there). Hence, the convergence will
be very slow or the algorithm will not converge to the “correct” solution even in very simple cases. As an
example, consider one normally distributed predictor x = (x1, . . . , xn)>, and a model

y = βx + ε,

with β = 1 and ε ∼ N (0, 0.32). Usually, a model without intercept could be fitted to estimate β. However, if
we apply boosting with the L2 loss the negative gradient in the first boosting step is, by default, the centered
response, i.e., u[1] = y − 1/n

∑n
i=1 yi. For other loss functions the negative gradient in the first boosting

iteration is not exactly the mean-centered response. Yet, the negative gradient in the first step is always
“centered” around zero. In this situation, the application of a base-learner without intercept (i.e., a simple
linear model without intercept) is not sufficient anymore to recover the effect β (see Figure 2(a)). The true
effect is completely missed. To solve this problem, it is sufficient to use a centered predictor x. Then, the
center of the data is shifted to the origin (see Figure 2(b)) and the model without intercept goes through the
origin as well.

Centering the predictors does not change the estimated effects of the predictors. Yet, the intercept needs
to be corrected as can be seen from the following example. Consider two predictors and estimate a model
with centered predictors, i.e,

ŷ = β̂0 + β̂1(x1 − x̄1) + β̂2(x2 − x̄2) ⇔

ŷ = (β̂0 − β̂1x̄1 − β̂2x̄2)︸ ︷︷ ︸
=β̂∗

0

+β̂1x1 + β̂2x2.

Hence, the intercept from a model without centering of the covariates equals β̂∗0 = β̂0−
∑
j β̂j x̄j , where β̂0 is

the intercept estimated from a model with centered predictors.

3.2 Fitting Generalized Additive Models: gamboost

Besides an interface to fit linear models, mboost offers a very flexible and powerful function to fit additive
models. An additive model of the covariates x = (x1, . . . , xp)

> has, in general, the form

g(~µ) = β0 + f1 + . . .+ fp

5If the fitting function glmboost() is used the base-learners never contain an intercept. Furthermore, linear base-learners
without intercept can be obtained by specifying a base-learner bols(x, intercept = FALSE) (see below).

7

0 2 4 6

−
2

−
1

0
1

2

x

ne
ga

tiv
e

gr
ad

ie
nt

 in
 s

te
p

m
 =

 1 origin

center of data

base−learner

(a) Without Centering

−4 −2 0 2

−
2

−
1

0
1

2

x (centered)

ne
ga

tiv
e

gr
ad

ie
nt

 in
 s

te
p

m
 =

 1

(b) With Centering

Figure 2: L2Boosting in the first boosting step, i.e., with centered response variable as outcome. A base-
learner without intercept misses the true effect completely if x is not centered (left) and is able to
capture the true structure if x is centered (right).

with the (conditional) expectation of the response ~µ = E(y|~x), the link function g and arbitrary functions
f1, . . . , fp of the covariates. These functions include simple, linear functions as well as smooth, non-linear
functions. The functions are specified by the base-learners that are introduced in the following paragraphs.

The function gamboost() can be used to fit linear models or (non-linear) additive models via component-
wise boosting. The user additionally needs to state which variable should enter the model in which fashion,
e.g. as a linear effect or as a smooth effect. In general, however, the interface of gamboost() is very similar
to glmboost().

gamboost(formula, data = list(), ...)

Again, the function requires a formula to specify the model. Furthermore, a data set needs to be specified as
for linear models. Additional arguments that are passed to mboost_fit()6 include weights, control and
family. These arguments can be used in the same way as described for glmboost() above.

3.2.1 Base-learners

The structural assumption of the model, i.e., the types of effects that are to be used, can be specified in terms
of base-learners. Each base-learner results in a related type of effect. An overview of available base-learners is
given in the following paragraphs. An example of how these base-learners can then be combined to formulate
the model is given afterwards.

The base-learners should be defined such that the degrees of freedom of the single base-learner are small
enough to prevent overshooting. Typically one uses, for example, 4 degrees of freedom (the default for many
base-learners) or less. Despite the small initial degrees of freedom, the final estimate that results from this
base-learner can adopt higher order degrees of freedom due to the iterative nature of the algorithm. If the
base-learner is chosen multiple times, it overall adapts to an appropriate degree of flexibility and smoothness.

All base-learners considered in this tutorial are simple penalized least squares models of the form

û = X(X>X + λK)−1X>u = Su,

where the hat-matrix is defined as S = X(X>X + λK)−1X>, with design matrix X, penalty parameter λ
and penalty matrix K. The design and penalty matrices depend on the type of base-learner. A penalty
parameter λ = 0 results in unpenalized estimation.

Linear and Categorical Effects

The bols() function7 allows the definition of (penalized) ordinary least squares base-learners. Examples
of base-learners of this type include (a) linear effects, (b) categorical effects, (c) linear effects for groups of

6gamboost() also calls mboost_fit() for the actual boosting algorithm.
7the name refers to ordinary least squares base-learner

8

variables x = (x1, x2, . . . , xp)
>, (d) ridge-penalized effects for (b) and (c), (e) varying coefficient terms (i.e.,

interactions). If a penalized base-learner is specified, a special penalty based on the differences of the effects
of adjacent categories is automatically used for ordinal variables (x <- as.ordered(x)) instead of the ridge
penalty (Hofner et al. 2011a). Figure 3 shows two effect estimates that result from bols() base-learners,
a simple linear effect and an effect estimate for a factor variable. The call to an ordinary penalized least
squares base-learner is as follows:

bols(..., by = NULL, intercept = TRUE, df = NULL, lambda = 0)

The variables that correspond to the base-learner are specified in the ‘...’ argument, separated by commas.
If multiple variables are specified, they are treated as one group. A linear model is fitted for all given variables
together and they are either all updated or not at all. An additional variable that defines varying coefficients
can optionally be given in the by argument. The logical variable intercept determines whether an intercept
is added to the design matrix (intercept = TRUE, the default). If intercept = FALSE, continuous covariates
should be (mean-) centered as discussed above. This must be done ‘by hand’ in advance of fitting the model.
The impact of the penalty in case of penalized OLS (ordinary least squares) base-learners can be determined
either via the degrees of freedom df or the penalty parameter lambda. If degrees of freedom are specified, the
penalty parameter lambda is computed from df8. Note that per default unpenalized linear models are used.
Two definitions of degrees of freedom are implemented in mboost: The first uses the trace of the hat-matrix
(trace(S)) as degrees of freedom, while the second definition uses trace(2S − S>S). The latter definition is
tailored to the comparison of models based on residual sums of squares and hence is better suitable in the
boosting context (see Hofner et al. 2011a, for details).

−2 −1 0 1 2 3 4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

x1

f(x
1)

●

●●
●

●●
●●●

●●
●●

●
●

●

●
●

●
●●●

●●●
●●●●

●
●

●●●●
●
●

●
●

●●●●
●●●●

●●●●
●●●●●●●●
●●●●●

●●●●
●●●

●●
●●●

●●●
●

●
●●

●
●●

●●
●●●

●
●●

●●

●

●

●

●

●

true effect
model

−
1

0
1

2
3

x2

f(x
2)

x2
(1)

x2
(2)

x2
(3)

x2
(4)

● ● ●

● ● ●

● ● ●

● ● ●●

true effect
model

Figure 3: Examples for linear and categorical effects estimated using bols(): Linear effect (left; f(x1) =

0.5x1) and categorical effect (right; f(x2) = 0x
(1)
2 − 1x

(2)
2 + 0.5x

(3)
2 + 3x

(4)
2). The effects can be

estimated with base-learners bols(x1) and bols(x2), where x1 is a continuous covariate and x2 is
a categorical covariate coded as factor in R.

Table 2 shows some calls to bols() and gives the resulting type of effect. To gain more information on a
specific base-learner it is possible to inspect the base-learners in mboost using the function extract() on
a base-learner or a boosting model. With the function one can extract, for example, the design matrices,
the penalty matrices and many more characteristics of the base-learners. To extract, for example, the design
matrix that results from a linear base-learner of a factor z, say z <- factor(1:3), we can use

R> extract(bols(z))

(Intercept) z2 z3

1 1 0 0

2 1 1 0

3 1 0 1

attr(,"assign")

8If df is specified in bols(), lambda is always ignored.

9

[1] 0 1 1

attr(,"contrasts")

attr(,"contrasts")$z

[1] "contr.treatment"

Thus, we see that base-learners of factors use treatment contrasts per default. For a detailed instruction on
how to use the function see the manual for extract() and especially the examples therein.

Table 2: Some examples of effects that result from bols()

Call Type of Effect

bols(x) linear effect: x>β with x> = (1, x)
bols(x, intercept = FALSE) linear effect without intercept: β · x
bols(z) OLS fit with factor z (i.e., linear effect after dummy

coding)
bols(z, df = 1) ridge-penalized OLS fit with one degree of freedom and

factor z; If z is an ordered factor a difference penalty
is used instead of the ridge penalty.

bols(x1, x2, x3) one base-learner for three variables (group-wise selec-
tion):
x>β with x> = (1, x1, x2, x3)

bols(x, by = z) interaction: x>β · z (with continuous variable z). If z
is a factor, a separate effect is estimated for each factor
level; Note that in this case, the main effect needs to
be specified additionally via bols(x).

Smooth Effects

The bbs() base-learner9 allows the definition of smooth effects (i.e., functions of the covariate that are
required to be sufficiently smooth, see Figure 4) based on B-splines (de Boor 1978) with difference penalty
(i.e., P-splines, cf. Eilers and Marx 1996). P-splines can be seen as a versatile modeling tool for smooth
effects. A wide class of effects can be specified using P-splines. Examples include (a) smooth effects, (b)
bivariate smooth effects (e.g., spatial effects), (c) varying coefficient terms, (d) cyclic effects (= periodic
effects) and many more. Two examples of smooth function estimates fitted using a bbs() base-learner are
given in Figure 4. The call to a P-spline base-learner is as follows:

bbs(..., by = NULL, knots = 20, boundary.knots = NULL,

degree = 3, differences = 2, df = 4, lambda = NULL,

center = FALSE, cyclic = FALSE)

As for all base-learners, the variables that correspond to the base-learner can be specified in the ‘...’
argument. Usually, only one variable is specified here for smooth effects, and at maximum two variables are
allowed for bbs(). Varying coefficient terms f(x) · z can be specified using bbs(x, by = z). In this case,
x is called the effect modifier of the effect of z. The knots argument can be used to specify the number of
equidistant knots, or the positions of the interior knots. In case of two variables, one can also use a named
list to specify the number or the position of the interior knots for each of the variables separately. For an
example of the usage of a named list see Section 3.2.2. The location of boundary knots (default: range of the
data) can be specified using boundary.knots. Usually, no user-input is required here. The only exception is
given for cyclic splines (see below). The degree of the B-spline bases (degree) and the order of the difference
penalty (differences; ∈ {0, 1, 2, 3}) can be used to specify further characteristics of the spline estimate. The
latter parameter specifies the type of boundary effect. For differences = 2, for example, deviations from
a linear function are penalized. In the case of first order differences, deviations from a constant are subject
to penalization. The smoothness of the base-learner can be specified using degrees of freedom (df) or the
smoothing parameter (lambda)10.

An issue in the context of P-splines is that one cannot make the degrees of freedom arbitrary small. A
polynomial of order differences - 1 always remains unpenalized (i.e., the so-called null space). As we
usually apply second order differences, a linear effect (with intercept) remains unpenalized and thus df ≥ 2

9the name refers to B-splines with penalty, hence the second b
10If lambda is specified in bbs(), df is always ignored.

10

−2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

x1

f 1
(x

1)

●
●●●

●●
●●●●●●●

●
●

●

●
●

●
●●●

●●
●

●●●
●
●
●

●●
●●
●

●

●

●

●
●●●
●●
●●
●
●●
●
●●●
●●
●●●
●●
●●
●
●

●●
●

●●
●

●●

●

●
●●
●●

●

●

●●
●

●●
●●●●●

●●●●●

●

●

●

●

●

true effect
model

−3 −2 −1 0 1 2 3

0
2

4
6

8

x2

f 2
(x

2)

●

●

●
●

●

●

●●●
●

●
●

●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●
●●●●●

●●●●
●●●●

●●
●●●●

●●●●
●

●

●●
●●
●●●●●

●●

●
●
●
●

●

●

●●

●

●

Figure 4: Examples for smooth effects estimated using bbs(x1) (left) and bbs(x2, knots = quantile(x2,

c(0.25, 0.5, 0.75)), df = 5) (right). Hence, the left P-spline uses the default values of 20
equidistant inner knots and 4 degrees of freedom, while the right P-spline estimate is derived with
3 inner knots placed at the quartiles and 5 degrees of freedom. True effects: f1(x1) = 3 · sin(x1)
(left) and f2(x2) = x22 (right).

for all smoothing parameters. A solution is given by a P-spline decomposition (see Kneib et al. 2009; Hofner
et al. 2011a). The smooth effect f(x) is decomposed in the unpenalized polynomial and a smooth deviation
from this polynomial. For differences of order 2 (= default), we thus get:

f(x) = β0 + β1x︸ ︷︷ ︸
unpenalized polynomial

+ fcentered(x)︸ ︷︷ ︸
smooth deviation

(3)

The unpenalized polynomial can then be specified using bols(x, intercept = FALSE) and the smooth
deviation is obtained by bbs(x, center = TRUE). Additionally, it is usually advised to specify an explicit
base-learner for the intercept (see Section 3.2.2).

A special P-spline base-learner is obtained if cyclic = TRUE. In this case, the fitted values are forced to
coincide at the boundary knots and the function estimate is smoothly joined (see Figure 5). This is especially
interesting for time-series or longitudinal data were smooth, periodic functions should be modeled. In this
case it is of great importance that the boundary knots are properly specified to match the points were the
function should be joined (due to subject matter knowledge).

An non-exhaustive overview of some usage scenarios for bbs() base-learners is given in Table 3.

Table 3: Some examples of effects that result from bbs()

Call Type of Effect

bbs(x, by = z) varying coefficient: f(x) · z = β(x)z (with con-
tinuous variable z). If z is a factor, a separate
smooth effect is estimated for each factor level;
Note that in this case, the main effect needs to
be specified additionally via bbs(x).

bbs(x, knots = 10) smooth effect with 10 inner knots
bbs(x, boundary.knots = c(0, 2 * pi),

cyclic = TRUE)

periodic function with period 2π

bbs(x, center = TRUE, df = 1) P-spline decomposition (center = TRUE), which
is needed to specify arbitrary small df for P-
splines

Smooth Surface Estimation

11

0 1 2 3 4 5 6 7

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

x

f(
x)

cyclic = FALSE

0 1 2 3 4 5 6 7

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

x

f(
x)

cyclic = TRUE

Figure 5: Example for cyclic splines. The unconstrained effect in the left figure is fitted using bbs(x, knots =

12), the cyclic effect in the right is estimated using bbs(x, cyclic = TRUE, knots = 12, bound-

ary.knots = c(0, 2*pi)). True effect: f(x) = sin(x).
.

An extension of P-splines to two dimensions is given by bivariate P-splines. They allow to fit spatial effects
and smooth interaction surfaces. An example of a two dimensional function estimate is given in Figure 6.
For further details on bivariate P-splines in the boosting context see Kneib et al. (2009). The effects can be
obtained from a call to

bspatial(..., df = 6)

To specify two dimensional smooth effects, the ‘...’ argument requires two variables, i.e., a call such as
bspatial(x, y). Note that bspatial() is just a wrapper to bbs() with redefined degrees of freedom11.
Thus, all arguments from bbs() exist and can be used for bspatial(). An example is given in Section 3.2.2.

x1

x 2

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

−0.4

−0.2

0.0

0.2

0.4

0.6

x1

−2

0

2

x2

−2

0

2

−0.5

0.0

0.5

Figure 6: Example for interaction surface fitted using bspatial(). Two displays of the same function estimate
are presented (levelplot: left; perspective plot: right). True function: f(x1, x2) = sin(x1) · sin(x2).

Random Effects

11Note that df = 4 was changed to df = 6 in mboost 2.1-0.

12

To specify random intercept or random slope terms in mboost, one can use a random effects base-learner.
Random effects are used to model subject specific effects (in contrast to the usual – fixed – effects which can
be seen as population specific effects). Usually, one is only interested in modeling the increased variability
but not in the effect estimate of a specific individual as this effect is not transferable. For a comprehensive
overview of random effects models we refer to Pinheiro and Bates (2000). Random effects are modeled as
ridge-penalized group-specific effects. One can show that these coincide with standard random effects. The
ridge penalty parameter is then simply the ratio of the error variance σ2 and the random effects variance
τ2. Hence, the penalty parameter is inversely linked to τ2 (and the degrees of freedom are directly linked
to τ2). As for all base-learners, we initially specify a small value for the degrees of freedom, i.e., we set a
small random effects variance (relative to the residual variance). By repeatedly selecting the base-learner, the
boosting algorithm can then adapt to the “true” random effects variance. For more details see Kneib et al.
(2009, Web Appendix). We can specify random effects base-learners with a call to

brandom(..., df = 4)

As brandom() is just a wrapper of bols() with redefined degrees of freedom, one can use all arguments
that are available for bols(). To specify a random intercept for a group variable, say id, we simply call
brandom(id) (and could additionally specify the initial error variance via df or lambda). To specify a random
slope for another variable, say time, within the groups of id, one can use brandom(id, by = time), i.e., the
first argument determines the grouping (as for the random intercept) and the by argument then determines
the variable for which the effect is allowed to vary between the groups. In the notation of nlme (Pinheiro
et al. 2012) and lme4 (Bates et al. 2011) the random intercept would be specified as (1 | id) and the
random slope would be specified as (time - 1 | id), i.e., a random slope without random intercept term.

Additional Base-learners in a Nutshell

Tree-based base-learner (per default stumps) can be included in the model using the btree() base-learner
(Hothorn et al. 2006, 2010). Note that this is the only base-learner which is not fitted using penalized
least squares. Radial basis functions (e.g., for spatial effects) can be specified using the base-learner brad().
Details on this base-learner are given in (Hofner 2011). Monotonic effects of continuous or ordered categorical
variables can be estimated using the bmono() base-learner which can also estimate convex or concave effects.
Details on monotonic effect estimation and examples of the estimation of boosting models with monotonic
effects are given in Hofner et al. (2011b) in the context of species distribution models. The base-learner
bmrf() implements Markov random fields, which can be used for the estimation of spatial effects of regions
(Sobotka and Kneib 2010; Mayr et al. 2012a). With the base-learner buser(), one can specify arbitrary base-
learners with quadratic penalty. This base-learner is dedicated to advanced users only. Additionally, special
concatenation operators for expert users exist in mboost that all combine two or more base-learners to a
single base-learner: %+% additively joins two or more arbitrary base-learners to be treated as one group, %X%
defines a tensor product of two base-learners and %O% implements the Kronecker product of two base-learners.
In all cases the degrees of freedom increase compared to the degrees of freedom of the single base-learners
(additively in the first, and multiplicatively in the second and third case). For more details on any of these
base-learners and for some usage examples see the manual.

3.2.2 Building a Model – or: How to Combine Different Base-learners

In general, the choice of effect for a given covariate has to be based on the subject matter knowledge of the
involved researchers. There is no general rule when to use a certain effect. In order to allow researchers to
make a decision on which effect to use we exemplified the different modeling types in graphical displays (see
Figures 3 to 6).

Once this decision is made, it is relatively easy to estimate the model using the described boosting method-
ology. Base-learners can be combined in a simple manner to form the desired model. They are combined
in the formula as a sum of base-learners to specify the desired model. We will show this using a simple toy
example:

R> m1 <- gamboost(y ~ bols(x1) + bbs(x2) + bspatial(s1, s2) + brandom(id),

+ data = example)

In this case, a linear effect for x1, a smooth (P-spline) effect for x2, a spatial effect for s1 and s2 are specified
together with a random intercept for id. This model could be further refined and expanded as shown in the
following example:

13

R> m2 <- gamboost(y ~ bols(int, intercept = FALSE) +

+ bols(x1, intercept = FALSE) +

+ bols(x2, intercept = FALSE) +

+ bbs(x2, center = TRUE, df = 1) +

+ bspatial(s1, s2, knots = list(s1 = 10, s2 = 20)) +

+ brandom(id) + brandom(id, by = x1),

+ data = example)

Now, with example$int = rep(1, length(y)), we specify a separate intercept in the model. In the first
formula (m1), the intercept was implicitly included in the base-learners. Now we allow the boosting algorithm
to explicitly choose and update solely the intercept. Note that therefore we need to remove the implicit
intercept from the base-learner for int (intercept = FALSE) as otherwise we would get a linear base-learner
with two intercepts which has no unique solution. We can now also remove the intercept from the base-
learner of x1. This leads to a base-learner of the form x1β1. For the smooth effect of x2 we now use the
decomposition (3). Hence, we specify the unpenalized part as a linear effect without intercept (the intercept is
already specified in the formula) and the smooth deviation from the linear effect (with one degree of freedom).
Now the boosting algorithm can choose how x2 should enter the model: (i) not at all, (ii) as a linear effect,
(iii) as a smooth effect centered around zero, or (iv) as the combination of the linear effect and the smooth
deviation. In the latter case we essentially get the same result as from bbs(x2). The spatial base-learner in
the second formula (m2) explicitly specifies the numbers of knots in the direction of s1 (10 inner knots) and s2

(20 inner knots). This is achieved by a named list where the names correspond to the names of the variables.
In total we get 10 · 20 = 200 inner knots. Usually, one specifies equal numbers of knots in both directions,
which requires no named lists. Instead one can simply specify, e.g., knots = 10, which results in 10 inner
knots per direction (i.e., 100 inner knots in total). Note that, as for the smooth, univariate base-learner of
x2 one could also specify a decomposition for the spatial base-learner:

bols(int, intercept = FALSE) +

bols(s1, intercept = FALSE) + bols(s2, intercept = FALSE) +

bols(s1, by = s2, intercept = FALSE) +

bspatial(s1, s2, center = TRUE, df = 1)

where bols(s1, by = s2, intercept = FALSE) specifies the interaction of s1 and s2 (without intercept).
Finally, we added a random slope for x1 (in the groups of id) to m2. Note that the groups are the argument
of the base-learner and the slope variable is specified via the by argument.

Case Study (ctd.): Prediction of Body Fat

Until now, we only included linear effects in the prediction formula for body fat of women. It might be of
interest to evaluate if there exists also a non-linear relationship between some of the predictors and the DXA
measurement of body fat. To investigate this issue, we fit a model with the same predictors as in Garcia et al.
(2005) but without assuming linearity of the effects. We apply gamboost() with the P-spline base-learner
bbs() to incorporate smooth effects.

R> ## now an additive model with the same variables as lm1

R> gam1 <- gamboost(DEXfat ~ bbs(hipcirc) + bbs(kneebreadth) + bbs(anthro3a),

+ data = bodyfat)

Using plot() on a gamboost object delivers automatically the partial effects of the different base-learners:

R> par(mfrow = c(1,3)) ## 3 plots in one device

R> plot(gam1) ## get the partial effects

From the resulting Figure 7, it seems as if in the center of the predictor-grid (where most of the observations
lie), the relationship between these three anthropometric measurements and the body fat is quite close to
a linear function. However, at least for hipcirc, it seems that there are indications of the existence of a
non-linear relationship for higher values of the predictor.

Alternatively, one could apply decomposition (3) for each of the 3 base-learners, as described in Sec-
tion 3.2.2, to distinguish between modeling alternatives. In this case, we would have a more rigorous treat-
ment of the decision between (purely) linear and non-linear effects if we stop the algorithm at an appropriate
iteration mstop.

14

●
●

●

●

●●●

●●●

●●
●
●●●

●
●
●●●

●●●
●●

●●
●
●●
●
●●
●

●●
●

●
●

●

●●●
●
●
●●●●●
●

●

●●

●

●●
●
●

●

●●●
●●●●● ● ●

90 100 110 120 130

−
10

−
5

0
5

hipcirc

f p
ar

tia
l

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●
●●●

●

●●●●

●
●●●

●●●
●●●

●
●●●●

●
●●●●●●

●●

●

●●

●

●

●

●

●

8 9 10 11

0
2

4
6

8

kneebreadth

f p
ar

tia
l

●●

●

●●
●

●
●

●●
●
●
●

●
●●
●●
●
●

●
●●
●●

●●
●

●●●
●●●

●●
●●●●

●●●
●
●●●●
●●●●●●

●

●●●●

●
●●

●●●
●
●
●

●
●

●

2.5 3.0 3.5 4.0 4.5

−
10

−
5

0
5

10

anthro3a

f p
ar

tia
l

Figure 7: Partial effects of three anthropometric measurements on the body fat of women.

3.3 Early Stopping to Prevent Overfitting

As already discussed in Section 2, the major tuning parameter of boosting is the number of iterationsmstop. To
prevent overfitting it is important that the optimal stopping iteration is carefully chosen. Various possibilities
to determine the stopping iteration exist. One can use information criteria such as AIC12 to find the optimal
model. However, this is usually not recommended as AIC-based stopping tends to overshoot the optimal mstop

dramatically (see Hastie 2007; Mayr et al. 2012b). Instead, it is advised to use cross-validated estimates of
the empirical risk to choose an appropriate number of boosting iterations. This approach aims at optimizing
the prognosis on new data. In mboost infrastructure exists to compute bootstrap estimates, k-fold cross-
validation estimates and sub-sampling estimates. The main function to determine the cross-validated risk
is

cvrisk(object, folds = cv(model.weights(object)),

papply = mclapply)

In the simplest case, the user only needs to specify the fitted boosting model as object. If one wants to
change the default cross-validation method (25-fold bootstrap) the user can specify a weight matrix that
determines the cross-validation samples via the folds argument. This can be done either by hand or using
the convenience function cv() (see below). Finally, the user can specify a function of the lapply “type” to
papply. Per default this is either mclapply for parallel computing if package multicore (Urbanek 2011) is
available, or the code is run sequentially using lapply. Alternatively, the user can apply other parallelization
methods such as clusterApplyLB (package snow Tierney et al. 2011) with some further effort for the setup
(see ?cvrisk).

The easiest way to set up a variety of weight matrices for cross-validation is the function

cv(weights, type = c("bootstrap", "kfold", "subsampling"),

B = ifelse(type == "kfold", 10, 25))

One simply specifies the weights of the originally fitted model (e.g. using the function model.weights()

on the model) and the type of cross-validation. This can be either "bootstrap" (default), "kfold" (k-fold
cross-validation) or "subsampling"13. The number of cross-validation replicates, per default, is chosen to be
10 for k-fold cross-validation and 25 otherwise. However, one can simply specify another number of replicates
using the argument B.

To extract the appropriate number of boosting iterations from an object returned by cvrisk() (or AIC())
one can use the extractor function mstop(). Once an appropriate number of iterations is found, we finally

12see ?AIC.boost for further details
13the percentage of observations to be included in the learning samples for subsampling can be specified using a further argument

in cv() called prob. Per default this is 0.5.

15

need to stop the model at this number of iterations. To increase or reduce the number of boosting steps for
the model mod, one can use the indexing / subsetting operator directly on the model:

mod[i]

where i is the number of boosting iterations. Attention, the subset operator differs in this context from the
standard R behavior as it directly changes the model mod. Hence, there is no need to save mod under a new
name. This helps to reduce the memory footprint. Be aware that even if you call something like

newmod <- mod[10]

you will change the boosting iteration of mod! Even more, if you now change mstop for newmod, the model mod
is also changed (and vice versa)! This said, the good news is that nothing gets lost. If we reduce the model
to a lower value of mstop, the additional boosting steps are kept internally in the model object. Consider as
an example the following scenario:

• We fit an initial model mod with mstop = 100.

• We call mod[10], which sets mstop = 10.

• We now increase mstop to 40 with a call to mod[40].

This now requires no re-computation of the model as internally everything was kept in storage. Again the
warning, if we now extract anything from the model, such as coef(mod), we get the characteristics of the
model with 40 iterations, i.e., here the coefficient estimates from the 40th boosting iteration.

Case Study (ctd.): Prediction of Body Fat

Until now, we used the default settings of boost_control() with mstop = 100 for all boosted models. Now
we want to optimize this tuning parameter with respect to predictive accuracy, in order get the best prediction
for body fat. Note that tuning mstop also leads to models including only the most informative predictors as
variable selection is carried out simultaneously. We therefore first fit a model with all available predictors
and then tune mstop by 25-fold bootstrapping. Using the baselearner argument in gamboost(), we specify
the default base-learner which is used for each variable in the formula for which no base-learner is explicitly
specified.

R> ## every predictor enters the model via a bbs() base-learner (i.e., as smooth effect)

R> gam2 <- gamboost(DEXfat ~ ., baselearner = "bbs", data = bodyfat,

+ control = boost_control(trace = TRUE))

[1] -- risk: 507.74

[41] -- risk: 429.71

[81]

Final risk: 407.86

R> set.seed(123) ## set seed to make results reproducible

R> cvm <- cvrisk(gam2) ## default method is 25-fold bootstrap cross-validation

R> ## if package ’multicore’ is not available this will trigger a warning

R> cvm

Cross-validated Squared Error (Regression)

gamboost(formula = DEXfat ~ ., data = bodyfat, baselearner = "bbs")

0 1 2 3 4 5 6 7 8 9

128.840 109.400 93.899 79.937 69.464 60.044 52.546 46.123 40.653 36.340

10 11 12 13 14 15 16 17 18 19

32.657 29.575 27.077 24.978 23.173 21.636 20.314 19.280 18.441 17.749

20 21 22 23 24 25 26 27 28 29

17.147 16.613 16.309 15.968 15.706 15.557 15.378 15.275 15.203 15.150

30 31 32 33 34 35 36 37 38 39

15.123 15.172 15.148 15.192 15.183 15.220 15.308 15.332 15.360 15.411

40 41 42 43 44 45 46 47 48 49

15.462 15.516 15.557 15.565 15.621 15.667 15.711 15.741 15.788 15.859

50 51 52 53 54 55 56 57 58 59

16

15.871 15.945 15.976 15.990 16.049 16.083 16.122 16.157 16.190 16.262

60 61 62 63 64 65 66 67 68 69

16.281 16.315 16.342 16.381 16.436 16.464 16.484 16.534 16.561 16.587

70 71 72 73 74 75 76 77 78 79

16.633 16.646 16.665 16.708 16.748 16.757 16.768 16.791 16.838 16.866

80 81 82 83 84 85 86 87 88 89

16.880 16.890 16.909 16.937 16.975 16.993 17.003 17.011 17.038 17.050

90 91 92 93 94 95 96 97 98 99

17.051 17.070 17.087 17.107 17.138 17.158 17.193 17.189 17.202 17.199

100

17.239

Optimal number of boosting iterations: 30

R> plot(cvm) ## get the paths

Number of boosting iterations

S
qu

ar
ed

 E
rr

or
 (

R
eg

re
ss

io
n)

1 8 16 25 34 43 52 61 70 79 88 97

0
50

10
0

15
0

Figure 8: Cross-validated predictive risk with 25-fold bootstrapping.

The plot displays the predictive risk on the 25 bootstrap samples for mstop = 1, ..., 100 (see Figure 8). The
optimal stopping iteration is the one minimizing the average risk over all 25 samples. We can extract this
iteration via

R> mstop(cvm) ## extract the optimal mstop

[1] 30

R> gam2[mstop(cvm)] ## set the model automatically to the optimal mstop

We have now reduced the model of the object gam2 to the one with only 30 boosting iterations, without further
assignment. However, as pointed out above, the other iterations are not lost. To check which variables are
now included in the additive predictor we again use the function coef():

R> names(coef(gam2)) ## displays the selected base-learners at iteration "mstop(cvm)"

[1] "bbs(waistcirc, df = dfbase)" "bbs(hipcirc, df = dfbase)"

[3] "bbs(kneebreadth, df = dfbase)" "bbs(anthro3a, df = dfbase)"

[5] "bbs(anthro3b, df = dfbase)" "bbs(anthro3c, df = dfbase)"

[7] "bbs(anthro4, df = dfbase)"

R> ## To see that nothing got lost we now increase mstop to 1000:

R> gam2[1000, return = FALSE] # return = FALSE just supresses "print(gam2)"

17

[101] -- risk: 374.18

[141] -- risk: 349.64

[181] -- risk: 330.8

[221] -- risk: 315.75

[261] -- risk: 303.2

[301] -- risk: 292.58

[341] -- risk: 283.33

[381] -- risk: 275.29

[421] -- risk: 268.14

[461] -- risk: 261.76

[501] -- risk: 256.05

[541] -- risk: 250.78

[581] -- risk: 245.99

[621] -- risk: 241.52

[661] -- risk: 237.4

[701] -- risk: 233.53

[741] -- risk: 229.92

[781] -- risk: 226.49

[821] -- risk: 223.29

[861] -- risk: 220.21

[901] -- risk: 217.24

[941] -- risk: 214.41

[981]

Final risk: 213.05

NULL

Although we earlier had reduced to iteration 30, the fitting algorithm started at iteration 101. The iterations
31–100 are not re-computed.

R> names(coef(gam2)) ## displays the selected base-learners, now at iteration 1000

[1] "bbs(age, df = dfbase)" "bbs(waistcirc, df = dfbase)"

[3] "bbs(hipcirc, df = dfbase)" "bbs(elbowbreadth, df = dfbase)"

[5] "bbs(kneebreadth, df = dfbase)" "bbs(anthro3a, df = dfbase)"

[7] "bbs(anthro3b, df = dfbase)" "bbs(anthro3c, df = dfbase)"

[9] "bbs(anthro4, df = dfbase)"

The stopping iteration mstop is the main tuning parameter for boosting and controls the complexity of
the model. Larger values for mstop lead to larger and more complex models, while for smaller values the
complexity of the model is generally reduced. In our example the final model at iteration 1000 includes all
available variables as predictors for body fat, while the model at the optimal iteration 30 included only seven
predictors. Optimizing the stopping iteration usually leads to selecting the most influential predictors.

3.4 Specifying the Fitting Problem: The family

The list of implemented families in mboost is diverse and wide-ranging. At the time of writing this paper,
the user has access to sixteen different families. An overview is given in Table 4. A family (most importantly)
implements the loss function ρ and the corresponding negative gradient. A careful specification of the loss
function leads to the estimation of any desired characteristic of the conditional distribution of the response.
This coupled with the large number of base learners guarantees a rich set of models that can be addressed by
boosting. We can specify the connection between the response and the covariates in a fairly modular nature
such as

ξ(y|x) = f̂1 + · · ·+ f̂P

having on the right hand side any desired combination of base learners. On the left hand side, ξ(.) de-
scribes some characteristic of the conditional distribution specified by the family argument. In the following
subsections we discuss major aspects related to the choice of the family.

3.4.1 Families for Continuous Response

Until now the focus was on the conditional mean of a continuous response which is the default setting: family
= Gaussian(). In this case, our assumption is that Y |x is normally distributed and the loss function is the

18

Table 4: An overview on the currently implemented families in mboost.

continuous response binary response count data ordered response censored data

Standard regression Gaussian

Median regression Laplace

Quantile regression QuantReg

Expectile regression ExprectReg

Robust regression Huber

Gamma regressiona GammaReg

Logistic regression Binomial

AdaBoost classification AdaExp

AUC regression AUC

Poisson regression Poisson

Negative binomial model NBinomial

Proportional odds model ProppOdds

Proportional hazards model CoxPH

Weibull AFTb model Weibull

Log-logistic AFTb model Loglog

Log-normal AFTb model Lognormal

a for non-negative continuous response
b accelerated failure time

negative Gaussian log-likelihood which is equivalent to the L2 loss

ρ(y, f) =
1

2
(y − f)2

(see Figure 9(a)). A plain Gaussian() call in the console returns its definition

R> Gaussian()

Squared Error (Regression)

Loss function: (y - f)^2

The corresponding negative gradient is simply (y − f) whose definition can be displayed on the screen via

R> slot(Gaussian(),"ngradient")

function (y, f, w = 1)

y - f

If we are interested in the median of the conditional distribution, the Laplace() family is the right choice. It
implements a distribution free, median regression approach especially useful for long-tailed error distributions.
In this case, we use the L1 loss defined as

ρ(y, f) = |y − f |

and shown in Figure 9(b). Note that the L1 loss is not differentiable at y = f and the value of the negative
gradient at such points is fixed at zero.

A compromise between the L1 and the L2 loss is the Huber loss function shown in Figure 10(a). It is
defined as

ρ(y, f ; δ) =

{
(y − f)2/2 if |y − f | ≤ δ,
δ(|y − f | − δ/2) if |y − f | > δ

where the parameter δ limits the outliers which are subject to absolute error loss. The Huber loss can be
seen as a robust alternative to the L2 loss. The user can either specify δ subjectively, e.g. Huber(d = 2),
or leave it adaptively chosen by the boosting algorithm (the default behaviour). An adaptive specification
of δ, proposed by Friedman (2001), means that each boosting step produces a new δ[m] matching the actual
median of the absolute values of the residuals, i.e.

δ[m] = median
(∣∣∣yi − f̂ [m−1](xi)∣∣∣, i = 1, . . . , n

)
.

19

−2 −1 0 1 2

0
1

2
3

4

y − f

ρ

(a) family = Gaussian()

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

y − f

ρ

(b) family = Laplace()

Figure 9: The loss function allows flexible specification of the link between the response and the covariates.
The figure on the left hand side illustrates the L2 loss (the default in mboost), the figure on the
right hand side shows the L1 loss function.

Another alternative for settings with continuous response is modeling conditional quantiles through quantile
regression (Koenker 2005) – implemented in mboost with the QuantReg() family (Fenske et al. 2011). The
main advantage of quantile regression is (beyond its robustness towards outliers) that it does not rely on
any distributional assumptions on the response or the error terms. The appropriate loss function here is
the check-function shown in Figure 10(b). For the special case of the 0.5 quantile both QuantReg(0.5) and
Laplace() will lead to median regression. A detailed description of the loss function of quantile regression
is given in the Appendix.

Case Study (ctd.): Prediction of Body Fat

We reproduce the model of the original publication (Garcia et al. 2005), but instead of modeling the mean
we focus on the median:

R> ## Same model as glm1 but now with QuantReg() family

R> glm3 <- glmboost(DEXfat ~ hipcirc + kneebreadth + anthro3a, data = bodyfat,

+ family = QuantReg(tau = 0.5), control = boost_control(mstop = 500))

R> coef(glm3, off2int = TRUE)

(Intercept) hipcirc kneebreadth anthro3a

-63.51643 0.53314 0.77000 7.83509

Comparing the results to those of model glm1 shows that hipcirc and anthro3a have almost the same
influence on the mean as on the median, yet, the magnitude of the effect of kneebreadth is considerably
smaller in glm3. One should note that mstop generally needs to be larger for quantile regression, as the single
updates are smaller than in the mean regression case. For a discussion see the Appendix.

3.4.2 Families for Binary Response

Analogously to Gaussian regression, the probability parameter of a binary response can be estimated by
minimizing the negative binomial log-likelihood

ρ(y, f) = −
[
y log

(
π(f)

)
+ (1− y) log

(
1− π(f)

)]
= log(1 + exp(−2 ỹf)) (4)

where ỹ = 2y − 1 and π(f) = P(Y = 1|x). For reasons of computational efficiency the binary response
y ∈ {0, 1} is converted into ỹ = 2y − 1 where ỹ ∈ {−1, 1}. In equation (4), ỹf are the so-called margin
values (depicted in Figure 11) which are, roughly speaking, the equivalent of the continuous residuals y − f
for the binomial case. This internal re-coding14 means that the negative binomial log-likelihood loss (family

14Note that in mboost the response must be specified as a binary factor.

20

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

y − f

ρ
δ

0.2
0.5
1
2
10

(a) family = Huber()

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

y − f

ρ

τ
0.5
0.6
0.7
0.8
0.9

(b) family = QuantReg()

Figure 10: The Huber loss function on the left hand side is useful when robustness is a concern. In mboost
it adaptively changes the limit for L1 penalization of outliers when d = NULL (the default). The
figure on right hand side illustrates several examples of the check function loss with different
quantiles (tau = 0.5 is the default).

−2 −1 0 1 2

0
2

4
6

y~f

ρ

loss

Binomial
AdaExp

Figure 11: The Binomial and the AdaExp families as functions of the marginal values ỹf . Since ỹ ∈ {−1, 1},
a positive product between ỹ and half the estimated log-odds ratio f means correct classification.

= Binomial()) and the exponential loss (family = AdaExp()) coincide in their population minimizer (see
Bühlmann and Hothorn 2007, Section 3).

Note that the transformation ỹ = 2y − 1 changes the interpretation of the effect estimates because now
we get the half of the log-odds ratio. One implication is that the coef() output is half the estimates that
result from glm(). This means that the user has to double the coefficients manually in order to get the final
standard estimates of a logistic regression model.

However, mboost automatically doubles the logits prior to the reverse probability transformation. This
means that calling predict(fit, newdata, type = "response") produces the final probability estima-
tions. In addition to the logit model, the user can also estimate probit models using family = Binomial(link

= "probit").
Alternatively one can also use the exponential loss function ρ(y, f) = exp(−ỹf) (family = AdaExp()).

This essentially leads to the famous AdaBoost algorithm by Freund and Schapire (1996). As can be seen in
Figure 11, this loss function is similar to Binomial().

3.4.3 Families for Count Data and Censored Response

In mboost, currently two families handle data with count response. The Poisson() family uses the neg-
ative Poisson log-likelihood with the natural link function log(µ) = η. Alternatively, the negative binomial
distribution can be used to model overdispersed data. The negative log-likelihood density of this distribu-

21

tion is implemented in NBinomial(nuirange = c(0, 100)) where the parameter nuirange (accounting for
overdispersion) is optimized additionally within each boosting iteration m. One simply minimizes the em-

pirical risk R over the overdispersion parameter given the current boosting estimate f̂ [m] after step 4 of the
component-wise gradient boosting algorithm. A thorough introduction and the detailed algorithm is given
by Schmid et al. (2010).

Survival models can also be considered in mboost: CoxPH(), Weibull(), Loglog() and Lognormal() all
implement families for censored data. CoxPH() implements the Cox proportional hazards model while the
other three families specify accelerated failure time (AFT) models (see Schmid and Hothorn 2008a, for further
details).

3.4.4 Further Families

Additionally to the families discussed above, mboost implements some further families: AUC() can be used
to optimize the area under the ROC curve, GammaReg() implements the negative Gamma log-likelihood
with logarithmic link function, ExpectReg() implements expectile regression (Sobotka and Kneib 2010) and
PropOdds() leads to proportional odds models for ordinal outcome variables (Schmid et al. 2011).

Despite the wide range of available families, users might wish to implement new loss functions. One only
needs a differentiable loss function and the corresponding negative gradient δρ(y, f) / δf , which both are
independent of the base-learners. Using the constructor function Family(), one can then easily define new
families and thus new estimation problems as we show in the Appendix.

4 Summary

The R package mboost offers an easy entry into the world of boosting. It implements a model-based boosting
approach that results in interpretable structured additive models of the same form most researchers will feel
familiar with. The interfaces of fitting functions are quite similar to standard implementations like lm() or
glm() and are hence relatively easy to use. However, the fitting algorithms of mboost additionally offer a
high flexibility when it comes to the effect type of potential predictors and the type of risk function to be
optimized. There exist a large number of pre-defined families for various risk functions as well as a large
number of pre-defined base-learners to specify various types of effects. As mboost has a modular nature,
both can be combined in any form as desired by the user: For many model classes, mboost therefore offers
much more modeling alternatives than the classical fitting algorithms. Additionally, the user can also easily
extend mboost by implementing new families or base-learners.

As seen in the case study, many functions for the manipulation and extraction of the results are available.
These allow the user to fit, tune and finally interpret the model. We note that the present tutorial has been
designed as an introduction to the basic functionalities of the mboost package, highlighting its usage from
a practical perspective. Readers who are interested in further illustrations, as well as in a more technical
description of the mboost package, are referred to the package manual and the vignettes that are found at
http://cran.r-project.org/package=mboost or in R via vignette(package = "mboost").

References

D. Bates, M. Maechler, and B. Bolker. lme4: Linear mixed-effects models using S4 classes, 2011. URL
http://CRAN.R-project.org/package=lme4. R package version 0.999375-42.

L. Breiman. Arcing classifiers (with discussion). The Annals of Statistics, 26:801–849, 1998.

L. Breiman. Prediction games and arcing algorithms. Neural Computation, 11:1493–1517, 1999.

L. Breiman. Random forests. Machine Learning, 45:5–32, 2001.

P. Bühlmann. Boosting for high-dimensional linear models. The Annals of Statistics, 34:559–583, 2006.

P. Bühlmann and T. Hothorn. Boosting algorithms: Regularization, prediction and model fitting (with
discussion). Statistical Science, 22:477–522, 2007.

P. Bühlmann and B. Yu. Boosting with the L2 loss: Regression and classification. Journal of the American
Statistical Association, 98:324–338, 2003.

C. de Boor. A Practical Guide to Splines. Springer, New York, 1978.

22

http://cran.r-project.org/package=mboost
http://CRAN.R-project.org/package=lme4

B. Efron, T. Hastie, L. Johnstone, and R. Tibshirani. Least angle regression. Annals of Statistics, 32:407–499,
2004.

P. H. C. Eilers and B. D. Marx. Flexible smoothing with B-splines and penalties (with discussion). Statistical
Science, 11:89–121, 1996.

J. Fan and J. Lv. A selective overview of variable selection in high dimensional feature space. Statistica
Sinica, 20:101–148, 2010.

N. Fenske, T. Kneib, and T. Hothorn. Identifying risk factors for severe childhood malnutrition by boosting
additive quantile regression. Journal of the American Statistical Association, 106:494–510, 2011.

Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In Proceedings of the Thirteenth
International Conference on Machine Learning Theory, pages 148–156, San Francisco, CA, 1996. San
Francisco: Morgan Kaufmann Publishers Inc.

J. H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29:
1189–1232, 2001.

J. H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting
(with discussion). The Annals of Statistics, 28:337–407, 2000.

A. L. Garcia, K. Wagner, T. Hothorn, C. Koebnick, H.-J. F. Zunft, and U. Tippo. Improved prediction of
body fat by measuring skinfold thickness, circumferences, and bone breadths. Obesity Research, 13(3):
626–634, 2005.

T. Hastie. Comment: Boosting algorithms: Regularization, prediction and model fitting. Statistical Science,
22:513–515, 2007.

T. Hastie and R. Tibshirani. Generalized Additive Models. Chapman & Hall, London, 1990.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference,
and Prediction. Springer, New York, 2 edition, 2009.

B. Hofner. Boosting in Structured Additive Models. PhD thesis, Department of Statistics, Ludwig-
Maximilians-Universität München, Munich, Germany, 2011.

B. Hofner, T. Hothorn, T. Kneib, and M. Schmid. A framework for unbiased model selection based on
boosting. Journal of Computational and Graphical Statistics, 20:956–971, 2011a.

B. Hofner, J. Müller, and T. Hothorn. Monotonicity-constrained species distribution models. Ecology, 92:
1895–1901, 2011b.

T. Hothorn, K. Hornik, and A. Zeileis. Unbiased recursive partitioning: A conditional inference framework.
Journal of Computational and Graphical Statistics, 15:651–674, 2006.

T. Hothorn, P. Bühlmann, T. Kneib, M. Schmid, and B. Hofner. Model-based boosting 2.0. Journal of
Machine Learning Research, 11:2109–2113, 2010.

T. Hothorn, P. Bühlmann, T. Kneib, M. Schmid, and B. Hofner. mboost: Model-Based Boosting, 2012. URL
http://CRAN.R-project.org/package=mboost. R package version 2.1-3.

T. Kneib, T. Hothorn, and G. Tutz. Variable selection and model choice in geoadditive regression models.
Biometrics, 65:626–634, 2009.

R. Koenker. Quantile Regression. Cambridge University Press, New York, 2005.

A. Mayr, N. Fenske, B. Hofner, T. Kneib, and M. Schmid. Generalized additive models for location, scale and
shape for high-dimensional data – a flexible approach based on boosting. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 61:403–427, 2012a.

A. Mayr, B. Hofner, and M. Schmid. The importance of knowing when to stop – a sequential stopping
rule for component-wise gradient boosting. Methods of Information in Medicine, 51:178–186, 2012b. doi:
10.3414/ME11-02-0030.

A. Mayr, T. Hothorn, and N. Fenske. Prediction intervals for future BMI values of individual children - a
non-parametric approach by quantile boosting. BMC Medical Research Methodology, 12(6):1–13, 2012c.

23

http://CRAN.R-project.org/package=mboost

P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman & Hall, London, 2 edition, 1989.

N. Meinshausen. Quantile regression forests. Journal Machine Learning Research, 7:983–999, 2006. ISSN
1533-7928.

J. Pinheiro and D. Bates. Mixed-Effects Models in S and S-PLUS. Springer-Verlag, New York, 2000.

J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, and R Development Core Team. nlme: Linear and Nonlinear
Mixed Effects Models, 2012. URL http://CRAN.R-project.org/package=nlme. R package version 3.1-103.

R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2012. URL http://www.R-project.org. ISBN 3-900051-07-0.

G. Ridgeway. gbm: Generalized Boosted Regression Models, 2010. URL http://CRAN.R-project.org/

package=gbm. R package version 1.6-3.1.

M. Schmid and T. Hothorn. Flexible boosting of accelerated failure time models. BMC Bioinformatics, 9:
269, 2008a.

M. Schmid and T. Hothorn. Boosting additive models using component-wise P-splines. Computational
Statistics & Data Analysis, 53:298–311, 2008b.

M. Schmid, S. Potapov, A. Pfahlberg, and T. Hothorn. Estimation and regularization techniques for regression
models with multidimensional prediction functions. Statistics and Computing, 20:139–150, 2010.

M. Schmid, T. Hothorn, K. O. Maloney, D. E. Weller, and S. Potapov. Geoadditive regression modeling of
stream biological condition. Environmental and Ecological Statistics, 18(4):709–733, 2011.

F. Sobotka and T. Kneib. Geoadditive expectile regression. Computational Statistics and Data Analysis, 56:
755–767, 2010. doi: 10.1016/j.csda.2010.11.015.

L. Tierney, A. J. Rossini, N. Li, and H. Sevcikova. snow: Simple Network of Workstations, 2011. URL
http://CRAN.R-project.org/package=snow. R package version 0.3-7.

S. Urbanek. multicore: Parallel processing of R code on machines with multiple cores or CPUs, 2011. URL
http://CRAN.R-project.org/package=multicore. R package version 0.1-7.

24

http://CRAN.R-project.org/package=nlme
http://www.R-project.org
http://CRAN.R-project.org/package=gbm
http://CRAN.R-project.org/package=gbm
http://CRAN.R-project.org/package=snow
http://CRAN.R-project.org/package=multicore

Appendix: Building Your Own Family

Via the constructor function Family(), in mboost there exists an easy way for the user to set up new
families. The main required arguments are the loss to be minimized and the negative gradient (ngradient)
of the loss. The risk is then commonly defined as the sum of the loss over all observations.

Family(ngradient, loss = NULL, risk = NULL, offset = function(y, w)

optimize(risk, interval = range(y), y = y, w = w)$minimum, ...)

We will demonstrate the usage of this function by (re-) implementing the family to fit quantile regres-
sion (the pre-defined family is QuantReg()). In contrast to standard regression analysis, quantile regression
(Koenker 2005) does not estimate the conditional expectation of the conditional distribution but the condi-
tional quantiles. Estimation is carried out by minimizing the check function ρτ (·):

ρτ (yi − fτi) =

{
(yi − fτi) · τ (yi − fτi) ≥ 0
(yi − fτi) · (τ − 1) (yi − fτi) < 0,

which is depicted in Figure 10(b). The loss for our new family is therefore given as:

R> loss = function(y, f) tau * (y - f) * ((y - f) >= 0) +

+ (tau - 1) * (y - f) * ((y - f) < 0)

The check-function is not differentiable at the point 0. However in practice, as the response is continuous,
we can ignore this by defining:

−∂ρτ (yi, fτi)

∂f
=

{
τ (yi − fτi) ≥ 0
τ − 1 (yi − fτi) < 0.

The negative gradient of our loss is therefore15:

R> ngradient = function(y, f, w = NULL) tau * ((y - f) >= 0) +

+ (tau- 1) * ((y - f) < 0)

Of further interest is also the starting value for the algorithm, which is specified via the offset argument.
For quantile regression it was demonstrated that the offset may be set to the median of the response (Fenske
et al. 2011). With this information, we can already specify our new family for quantile regression:

R> OurQuantReg <- function(tau = 0.5){ ## function to include dependency on tau

+ Family(## applying the Family function

+ loss = function(y, f) ## loss as above

+ tau * (y - f) * ((y - f) >= 0) +

+ (tau - 1) * (y - f) * ((y - f) < 0) ,

+ ngradient = function(y, f, w = NULL) ## ngradient as above

+ tau * ((y - f) >= 0) + (tau - 1) * ((y - f) < 0),

+ offset = function(y, w = NULL) ## median as offset

+ quantile(y, p = 0.5),

+ name = "Our new family for quantile regression")}

R> OurQuantReg()

Our new family for quantile regression

Loss function: tau * (y - f) * ((y - f) >= 0) + (tau - 1) * (y - f) * ((y -

f) < 0)

Case Study (ctd.): Prediction of Body Fat

To try our new family we go back to the case study regarding the prediction of body fat. First, we reproduce
the model for the median, computed with the pre-defined QuantReg() family (see Section 3.4.1), to show
that our new family delivers the same results:

15The unused weights argument w is required to exist by mboost when the function is (internally) called. It is hence ’specified’
as NULL.

25

R> ## Same model as glm3 but now with our new family

R> glm3b <- glmboost(DEXfat ~ hipcirc + kneebreadth + anthro3a, data = bodyfat,

+ family = OurQuantReg(tau = 0.5),

+ control = boost_control(mstop = 500))

R> identical(coef(glm3b), coef(glm3))

[1] TRUE

To get a better idea of the shape of the conditional distribution we model the median, and the 0.05 and
0.95 quantiles in a small, illustrative example containing only the predictor hipcirc:

R> glm4a <- glmboost(DEXfat ~ hipcirc, family = OurQuantReg(tau = 0.05), data = bodyfat,

+ control = boost_control(mstop = 2000))

R> glm4b <- glmboost(DEXfat ~ hipcirc, family = OurQuantReg(tau = 0.5), data = bodyfat,

+ control = boost_control(mstop = 2000))

R> glm4c <- glmboost(DEXfat ~ hipcirc, family = OurQuantReg(tau = 0.95), data = bodyfat,

+ control = boost_control(mstop = 2000))

Note that for different quantiles, fitting has to be carried out separately, as τ enters directly in the loss. It is
also important that fitting quantile regression generally requires higher stopping iterations than standard re-
gression with the L2 loss, as the negative gradients which are fitted to the base-learners are vectors containing
only small values, i.e., τ and 1− τ .

R> ord <- order(bodyfat$hipcirc) ## order the data to avoid problems when plotting

R> plot(bodyfat$hipcirc[ord], bodyfat$DEXfat[ord]) ## observed data

R> lines(bodyfat$hipcirc[ord], fitted(glm4a)[ord], lty = 2, lwd = 2) ## 0.05 quantile

R> lines(bodyfat$hipcirc[ord], fitted(glm4b)[ord], lty = 1, lwd = 2) ## median

R> lines(bodyfat$hipcirc[ord], fitted(glm4c)[ord], lty = 2, lwd = 2) ## 0.95 quantile

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

90 100 110 120 130

10
20

30
40

50
60

bodyfat$hipcirc[ord]

bo
dy

fa
t$

D
E

X
fa

t[o
rd

]

Figure 12: Resulting quantile regression lines, for the median (solid line) and the 0.95 and 0.05 quantiles
(upper and lower dashed lines).

The resulting plot (see Figure 12) shows how quantile regression can be used to get a better impression of the
whole conditional distribution function in a regression setting. In this case, the upper and lower quantiles are
not just parallel lines to the median regression line but adapt nicely to the slight heteroscedasticity found in
this data example: For smaller values of hipcirc the range between the quantiles is smaller than for higher
values. Note that the outer quantile-lines can be interpreted as prediction intervals for new observations
(Meinshausen 2006; Mayr et al. 2012c). For more on quantile regression in the context of boosting we refer
to Fenske et al. (2011).

26

	Introduction
	A Brief Theoretical Overview of Component-Wise Gradient Boosting
	The Package mboost
	Fitting Generalized Linear Models: glmboost
	Fitting Generalized Additive Models: gamboost
	Base-learners
	Building a Model – or: How to Combine Different Base-learners

	Early Stopping to Prevent Overfitting
	Specifying the Fitting Problem: The family
	Families for Continuous Response
	Families for Binary Response
	Families for Count Data and Censored Response
	Further Families

	Summary

