
Midterm prep CSC 369: Tutorial Exercise 6

CDF ID: Name:

CDF ID: Name:

CDF ID: Name:

Question 1: (Note, this question was probably a little too hard for a midterm.)

Using locks and condition variables I attempted to implement the following function:
do_exchange(void *arg), which allows pairs of threads to exchange values. After two
processes have called do_exchange, they swap the values of the arguments. The function
should continue to operate correctly with successive pairs of callers. The following code is my
attempt at implementing the this function. Assume that the lock and condition variable are
initialized correctly before do_exchange is called.
struct lock *entry;
struct cv *got_first;

/* first and second hold the
values to exchange */

int first = -1;
int second = -1;
int got_one = 0;

void *do_exchange(void *arg){
 int value = *(int *)arg;
 lock_acquire(entry);

 if(!got_one) {

 got_one = 1;
 first = value;
 cv_wait(got_first, &entry);
 *(int *)arg = second;

 } else {
 got_one = 0;
 second = value;
 cv_signal(got_first)
 *(int *)arg = first;
 }

 lock_release(entry);
 fprintf(stderr,"%d -> %d\n",

value, *(int *)arg);

 return NULL;

If I set up a program that creates 6 threads
that all call exchange, then I
expect the following output:

1 -> 0
0 -> 1
3 -> 2
2 -> 3
5 -> 4
4 -> 5

but I get

1 -> 0
3 -> 2
0 -> 3
2 -> 3
5 -> 4
4 -> 5

Midterm prep

a) Explain carefully why this happens. (This
is really an exercise in tracing multi-
threaded code.)

b) Does this behaviour follow either Hoare or
Mesa semantics? Explain your answer.

c) Describe in English how you could modify
the code to fix the problem. Assume that the
behaviour of the locks and condition
variables is the same as shown in the output
of the above program.

CSC 369: Tutorial Exercise 6

Midterm prep

2. Scheduling
a) The Round Robin scheduling algorithm
does not give preference to processes with
higher priority. Propose and describe two
different schemes to extend Round Robin
scheduling to handle priorities.

b) The Multi-Level Feedback Queue
scheduling algorithm allows processes to
move between queues. Give two criteria by
which a process might move to a higher
priority queue. (Saying that we assign it
higher priority will not receive marks.)

c) Give one criteria by which a process would
move to a lower priority queue.

d) Describe two factors would you use to
determine the length of a quantum for a
Round Robin type scheduling algorithm.

CSC 369: Tutorial Exercise 6

Midterm prep

3. Processes and files

Consider the following two programs.
Assume that they run to completion correctly.
Recall that the read(int fd, char
*buf, int num) system call reads num
bytes from the open file referred to by fd.

/* Program A*/
int main() {
 char buf[100]; int n;

 if(fork()) {
 int fd = open("text.txt",
O_RDONLY);
 n = read(fd, buf, 2);
 buf[2] = '\0';
 fprintf(stderr, "Parent %s",
buf);
 close(fd);
 } else {
 int fd = open("text.txt",
O_RDONLY);
 buf[2] = '\0';
 n = read(fd, buf, 2);
 fprintf(stderr, "Child %s",
buf);
 close(fd);
 }
 return(0);
}

/* Program B*/
int main() {
 char buf[100]; int n;
 int fd = open("text.txt",
O_RDONLY);

 if(fork()) {
 n = read(fd, buf, 2);
 buf[2] = '\0';
 fprintf(stderr, "Parent %s",
buf);
 close(fd);
 } else {
 buf[2] = '\0';
 n = read(fd, buf, 2);
 fprintf(stderr, "Child %s",
buf);
 close(fd);
 }

 return(0);
}

The file text.txt contains
a
b
c

a) What is the output of program A? (There
may be more than one correct answer.)

b) What is the output of program B? (There
may be more than one correct answer.)

c) Explain how the kernel data structures
must be set up to support this
behaviour.

4. List four different types of operations
that might cause a running process
to block.

CSC 369: Tutorial Exercise 6

