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Practice Problem Set 6

1. A parallel-plate capacitor has square plates 7.5 cm on a side, separated by 0.29 mm. The capacitor
is charged to 12 V, then disconnected from the charging power supply.

(a) Calculate the capacitance of this capacitor.

(b) What is the total charge on each plate? What is the charge density on the plates?

(c) What is the electric field between the plates?

(d) A dielectric is an insulating material that modifies the external electric field in which it is
placed. Suppose a sheet of glass is placed between the parallel-plate capacitor. Calculate
the capacitance and total charge on each plate as you did above, this time including the glass
sheet. Do the values increase or decrease? Now repeat these calculations for polyethylene
and quartz. Which dielectric gives the greatest capacitance? Why might using a dielectric
in a capacitor be useful in practice? (Hint: See Table 23.1)

Solution:

(a) The capacitance for a parallel-plate capacitor is given by Eq. (23.2):

C =
ε0A

d
, (1)

where A is plate area and d is separation between the plates. For a square plate of side length
`, the area is A = `2. Plugging in the numbers, the capacitance is,

C =
ε0`

2

d

=
(8.85× 10−12 F m−1)(0.075 m)2

2.9× 10−4 m

= 1.7× 10−10 F

(2)

(b) From the definition of capacitance, Eq. (23.1), the total charge on each plate is,

Q = CV

=
ε0`

2V

d

=
(8.85× 10−12 F m−1)(0.075 m)2(12 V)

2.9× 10−4 m

= 2.1× 10−9 C

(3)

The charge density is the charge on the plate divided by the plate’s area:

σ =
Q

A

=
CV

`2

=
ε0V

d

=
(8.85× 10−12 F m−1)(12 V)

2.9× 10−4 m

= 3.7× 10−7 C m−2

(4)
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(c) The electric field between two oppositely charged plates is,

E =
σ

ε0

=
V

d

=
12 V

2.9× 10−4 m

= 4.1× 104 V m−1

(5)

(d) The dielectric constant for glass from Table 23.1 is κ = 5.6. The capacitance and total charge
with the dielectric are simply the capacitance and total charge without the dielectric (which we’ll
denote as C0 and Q0, respectively) multiplied by the dielectric constant:

C = κC0

= 5.6(1.7× 10−10 F)

= 9.5× 10−10 F

(6)

and,

Q = κQ0

= 5.6(2.1× 10−9 C)

= 1.2× 10−8 C

(7)

Both the capacitance and total charge on each plate increase when the glass plate is added.

Polyethylene: κ = 2.3. The capacitance and total charge are,

C = 2.3(1.7× 10−10 F) = 3.9× 10−10 F (8)

and,
Q = 2.3(2.1× 10−9 C) = 4.8× 10−9 C (9)

Quartz : κ = 3.8. The capacitance and total charge are,

C = 3.8(1.7× 10−10 F) = 6.5× 10−10 F (10)

and,
Q = 3.8(2.1× 10−9 C) = 8.0× 10−9 C (11)

The dielectric which gives the greatest capacitance is the one with the greatest dielectric constant,
which in this case is glass.

The two main advantages of using a dielectric in a capacitor are (1) it helps prevent the conducting
plates from coming into direct electrical contact and (2) a high capacitance allows a greater stored
charge for a given voltage.

Notice that adding a dielectric is equivalent to replacing the permittivity of free space, ε0, by a
new parameter, simply called the permittivity, ε:

ε = κε0. (12)
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2. A spherical conductor of radius R carries a total charge Q.

(a) Determine the energy density, uE , at each point over all space as a function of the distance
r from the sphere’s centre. Plot uE as a function of r.

(b) Use this energy density to compute the system’s total energy, U , by integrating over all
space.

Solution:

(a) Recall that the electric field for a conducting sphere of radius R with charge Q is,

E =
Q

4πε0r2
, r ≥ R. (13)

Inside the conducting sphere (r < R), the field is zero. We want to find the energy density, which
is the amount of energy in an electric field per unit volume. We can calculate the energy density
due to this charged sphere using Eq. (23.7):

uE =
1

2
ε0E

2

=
1

2
ε0

(
Q

4πε0r2

)2

=
Q2

32π2ε0r4

(14)

outside the sphere (r ≥ R). Because the electric field is zero inside the sphere, the energy density
is also zero in this region. The energy density is plotted in Fig. 1.

R
r

uE

Figure 1: Plot of energy density as a function of r.

(b) The total energy in the electric field is the integral of the energy density we found above over
all space:

U =

∫
volume

uE dV, (15)

where dV is the volume element of a thin spherical shell of thickness dr. This volume is equal to
the product of the thickness dr and the surface area of the shell, 4πr2. So, dV = 4πr2dr. The
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system’s total energy is then,

U =

∫
volume

Q2

32π2ε0r4
dV

=
Q2

32π2ε0

∫ ∞
R

4πr2

r4
dr

=
Q2

8πε0

∫ ∞
R

dr

r2

= − Q2

8πε0

1

r

∣∣∣∣∞
R

=
Q2

8πε0R

(16)

Notice that we integrated over r from R to ∞. We could have instead integrated from 0 to ∞,
but since the energy density for 0 < r < R is zero, it does not contribute to the total energy.

3. Consider a parallel-plate capacitor where the separation between the plates can be varied. The
maximum capacitance it can withstand is 120 pF. You charge the capacitor to a potential
difference of 50 mV at maximum capacitance and then isolate it. With the capacitor still isolated,
what plate separation is required so that it now has a potential difference of 30 V? The plate
area is 3.1 cm2.

Solution:

Since the capacitor is kept in isolation, the charge on the plates stays the same after the plate
separation is changed. From the definition of capacitance, the charge on each plate is Q = CV ,
so the capacitance required to have a potential difference of 30 V can be found by equating the
initial and final charge:

Qi = Qf

CiVi = CfVf

Cf =
CiVf
Vi

(17)

Using the now familiar equation for the capacitance of a parallel-plate capacitor, the plate sep-
aration df is,

df =
ε0A

Cf

= ε0A
Vi
CiVf

= (8.85× 10−12 F m−1)(3.1× 10−4 m2)
30 V

(1.2× 10−10 F)(0.05 V)

= 0.013 72 m
.
= 1.4 cm

(18)
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