Hartmut Neven
About
Authored publications
Google publicationsWith the rapid developments in quantum hardware comes a push towards the first practical applications on these devices. While fully fault-tolerant quantum computers may still be years away, one may ask if there exist intermediate forms of error correction or mitigation that might enable practical applications before then. In this work, we consider the idea of post-processing error decoders...
View detailsJarrod Ryan McClean, Zhang Jiang, Nicholas Rubin, Ryan Babbush, Hartmut Neven
Nature Communications, vol. 11 (2020), pp. 636
Quantum algorithms offer a dramatic speedup for computational problems in machine learning, material science, and chemistry. However, any near-term realizations of these algorithms will need to be heavily optimized to fit within the finite resources offered by existing noisy quantum hardware. Here, taking advantage of the strong adjustable coupling of gmon qubits, we demonstrate a continuous...
View detailsBrooks Riley Foxen, Charles Neill, Andrew Dunsworth, Pedram Roushan, Ben Chiaro, Anthony Megrant, Julian Kelly, Jimmy Chen, Kevin Satzinger, Rami Barends, Frank Carlton Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph Bardin, Sergio Boixo, David A Buell, Brian Burkett, Yu Chen, Roberto Collins, Edward Farhi, Austin Fowler, Craig Michael Gidney, Marissa Giustina, Rob Graff, Matthew P Harrigan, Trent Huang, Sergei Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Paul Klimov, Alexander Korotkov, Fedor Kostritsa, Dave Landhuis, Erik Lucero, Jarrod McClean, Matthew McEwen, Xiao Mi, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Murphy Yuezhen Niu, Chris Quintana, Nicholas Rubin, Daniel Sank, Vadim Smelyanskiy, Amit Vainsencher, Ted White, Adam Zalcman, Jamie Yao, Hartmut Neven, John Martinis
arXiv:2001.08343 (2020)
As the search continues for useful applications of noisy intermediate scale quantum devices, variational simulations of fermionic systems remain one of the most promising directions. Here, we perform a series of quantum simulations of chemistry which involve twice the number of qubits and more than ten times the number of gates as the largest prior experiments. We model the binding energy of...
View detailsFrank Carlton Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph Bardin, Rami Barends, Sergio Boixo, Michael Blythe Broughton, Bob Benjamin Buckley, David A Buell, Brian Burkett, Nicholas Bushnell, Yu Chen, Jimmy Chen, Benjamin Chiaro, Roberto Collins, William Courtney, Sean Demura, Andrew Dunsworth, Edward Farhi, Austin Fowler, Brooks Riley Foxen, Craig Michael Gidney, Marissa Giustina, Rob Graff, Steve Habegger, Matthew P Harrigan, Alan Ho, Sabrina Hong, Trent Huang, William J. Huggins, Lev Ioffe, Sergei Isakov, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Seon Kim, Paul Klimov, Alexander Korotkov, Fedor Kostritsa, Dave Landhuis, Pavel Laptev, Mike Lindmark, Erik Lucero, Orion Martin, John Martinis, Jarrod Ryan McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Masoud Mohseni, Wojtek Mruczkiewicz, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Hartmut Neven, Murphy Yuezhen Niu, Thomas E O'Brien, Eric Ostby, Andre Gregory Petukhov, Harry Putterman, Chris Quintana, Pedram Roushan, Nicholas Rubin, Daniel Sank, Kevin Satzinger, Vadim Smelyanskiy, Doug Strain, Kevin Jeffery Sung, Marco Szalay, Tyler Y. Takeshita, Amit Vainsencher, Ted White, Nathan Wiebe, Jamie Yao, Ping Yeh, Adam Zalcman
arXiv:2004.04174 (2020)
We demonstrate the application of an intermediate scale superconducting qubit quantum processor to discrete optimization problems with the quantum approximate optimization algorithm (QAOA). We execute the QAOA across a variety of problem sizes and circuit depths for random instances of the Sherrington-Kirkpatrick model and 3-regular MaxCut, both high dimensional graph problems for which the...
View detailsFrank Carlton Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph Bardin, Rami Barends, Sergio Boixo, Michael Blythe Broughton, Bob Benjamin Buckley, David A Buell, Brian Burkett, Nicholas Bushnell, Jimmy Chen, Yu Chen, Ben Chiaro, Roberto Collins, William Courtney, Sean Demura, Andrew Dunsworth, Edward Farhi, Austin Fowler, Brooks Riley Foxen, Craig Michael Gidney, Marissa Giustina, Rob Graff, Steve Habegger, Sabrina Hong, Lev Ioffe, Sergei Isakov, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Seon Kim, Paul Klimov, Alexander Korotkov, Fedor Kostritsa, Dave Landhuis, Pavel Laptev, Martin Leib, Mike Lindmark, Erik Lucero, Orion Martin, John Martinis, Jarrod Ryan McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Masoud Mohseni, Wojtek Mruczkiewicz, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Florian Neukart, Hartmut Neven, Murphy Yuezhen Niu, Thomas E O'Brien, Bryan O'Gorman, A.G. Petukhov, Harry Putterman, Chris Quintana, Pedram Roushan, Nicholas Rubin, Daniel Sank, Kevin Satzinger, Andrea Skolik, Vadim Smelyanskiy, Doug Strain, Michael Streif, Kevin Jeffery Sung, Marco Szalay, Amit Vainsencher, Ted White, Jamie Yao, Adam Zalcman, Leo Zhou
arXiv:2004.04197 (2020)
Future quantum computing systems will require cryogenic integrated circuits to control and measure millions of qubits. In this paper, we report design and measurement of a prototype cryogenic CMOS integrated circuit that has been optimized for the control of transmon qubits. The circuit has been integrated into a quantum measurement setup and its performance has been validated through multiple...
View detailsJoseph Bardin, Evan Jeffrey, Erik Lucero, Trent Huang, Ofer Naaman, Rami Barends, Ted White, Marissa Giustina, Daniel Sank, Pedram Roushan, Kunal Arya, Ben Chiaro, Julian Kelly, Jimmy Chen, Brian Burkett, Yu Chen, Andrew Dunsworth, Austin Fowler, Brooks Foxen, Craig Michael Gidney, Rob Graff, Paul Klimov, Josh Mutus, Matthew McEwen, Anthony Megrant, Matthew Neeley, Charles Neill, Chris Quintana, Amit Vainsencher, Hartmut Neven, John Martinis
Proceedings of the 2019 International Solid State Circuits Conference, IEEE, pp. 456-458
Implementation of an error corrected quantum computer is believed to require a quantum processor with on the order of a million or more physical qubits and, in order to run such a processor, a quantum control system of similar scale will be required. Such a controller will need to be integrated within the cryogenic system and in close proximity with the quantum processor in order to make such a...
View detailsJoseph Bardin, Evan Jeffrey, Erik Lucero, Trent Huang, Sayan Das, Daniel Sank, Ofer Naaman, Anthony Megrant, Rami Barends, Ted White, Marissa Giustina, Kevin Satzinger, Kunal Arya, Pedram Roushan, Ben Chiaro, Julian Kelly, Zijun Chen, Brian Burkett, Yu Chen, Andrew Dunsworth, Austin Fowler, Brooks Foxen, Craig Michael Gidney, Rob Graff, Paul Klimov, Josh Mutus, Matthew McEwen, Matthew Neeley, Charles Neill, Chris Quintana, Amit Vainsencher, Hartmut Neven, John Martinis
IEEE Journal of Solid State Circuits, vol. 54(11) (2019), pp. 3043 - 3060
Recent work has deployed linear combinations of unitaries techniques to significantly reduce the cost of performing fault-tolerant quantum simulations of correlated electron models. Here, we show that one can sometimes improve over those results with optimized implementations of Trotter-Suzuki-based product formulas. We show that low-order Trotter methods perform surprisingly well when used...
View detailsIan Kivlichan, Craig Michael Gidney, Dominic Berry, Jarrod Ryan McClean, Wei Sun, Zhang Jiang, Nicholas Rubin, Austin Fowler, Alán Aspuru-Guzik, Hartmut Neven, Ryan Babbush
arXiv:1902.10673 (2019)
Quantum Neural Networks (QNNs) are a promising variational learning paradigm with applications to near-term quantum processors, however they still face some significant challenges. One such challenge is finding good parameter initialization heuristics that ensure rapid and consistent convergence to local minima of the parameterized quantum circuit landscape. In this work, we train classical...
View detailsGuillaume Verdon, Michael Broughton, Jarrod Ryan McClean, Kevin Jeffery Sung, Ryan Babbush, Zhang Jiang, Hartmut Neven, Masoud Mohseni
arXiv:1907.05415 (2019)
We present a quantum algorithm for simulating quantum chemistry with gate complexity Õ(η^{8/3}N^{1/3}),where η is the number of electrons and N is the number of plane wave orbitals. In comparison, the most efficient prior algorithms for simulating electronic structure using plane waves (which are at least as efficient as algorithms using any other basis) have complexity Õ(η^{2/3}N^{8/3}). We...
View detailsRyan Babbush, Dominic W. Berry, Jarrod Ryan McClean, Hartmut Neven
NPJ Quantum Information, vol. 5 (2019)
We show that one can quantum simulate the dynamics of a Sachdev-Ye-Kitaev model with $N$ Majorana modes for time $t$ to precision $\epsilon$ with gate complexity ${\cal O}(N^{7/2} t + N^{5/2} \log(1 / \epsilon) / \log\log(1/\epsilon))$. In addition to scaling sublinearly in the number of Hamiltonian terms, this gate complexity represents an exponential improvement in $1/\epsilon$ and large...
View detailsRyan Babbush, Dominic W. Berry, Hartmut Neven
Physical Review A Rapid Communication, vol. 99 (2019), 040301(R)
The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits to create...
View detailsFrank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando Brandao, David Buell, Brian Burkett, Yu Chen, Jimmy Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Michael Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew Harrigan, Michael Hartmann, Alan Ho, Markus Rudolf Hoffmann, Trent Huang, Travis Humble, Sergei Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, Dave Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod Ryan McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin Jeffery Sung, Matt Trevithick, Amit Vainsencher, Benjamin Villalonga, Ted White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, John Martinis
Nature, vol. 574 (2019), 505–510
Many experimental proposals for noisy intermediate scale quantum devices involve training a parameterized quantum circuit with a classical optimization loop. Such hybrid quantum-classical algorithms are popular for applications in quantum simulation, optimization, and machine learning. Due to its simplicity and hardware efficiency, random circuits are often proposed as initial guesses for...
View detailsJarrod McClean, Sergio Boixo, Vadim Smelyanskiy, Ryan Babbush, Hartmut Neven
Nature Communications, vol. 9 (2018), pp. 4812
A critical question for quantum computing in the near future is whether quantum devices without error correction can perform a well-defined computational task beyond the capabilities of supercomputers. Such a demonstration of what is referred to as quantum supremacy requires a reliable evaluation of the resources required to solve tasks with classical approaches. Here, we propose the task of...
View detailsSergio Boixo, Sergei Isakov, Vadim Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang, Michael J. Bremner, John Martinis, Hartmut Neven
Nature Physics, vol. 14 (2018), 595–600
We construct quantum circuits which exactly encode the spectra of correlated electron models up to errors from rotation synthesis. By invoking these circuits as oracles within the recently introduced "qubitization" framework, one can use quantum phase estimation to sample states in the Hamiltonian eigenbasis with optimal query complexity O(lambda / epsilon) where lambda is an absolute sum of...
View detailsRyan Babbush, Craig Michael Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Alexandru Paler, Austin Fowler, Hartmut Neven
Physical Review X, vol. 8 (2018), pp. 041015
Superconducting qubits are an attractive platform for quantum computing since they have demonstrated high-fidelity quantum gates and extensibility to modest system sizes. Nonetheless, an outstanding challenge is stabilizing their energy-relaxation times, which can fluctuate unpredictably in frequency and time. Here, we use qubits as spectral and temporal probes of individual two-level-system...
View detailsPaul Klimov, Julian Kelly, Jimmy Chen, Matthew Neeley, Anthony Megrant, Brian Burkett, Rami Barends, Kunal Arya, Ben Chiaro, Yu Chen, Andrew Dunsworth, Austin Fowler, Brooks Foxen, Craig Michael Gidney, Marissa Giustina, Rob Graff, Trent Huang, Evan Jeffrey, Erik Lucero, Josh Mutus, Ofer Naaman, Charles Neill, Chris Quintana, Pedram Roushan, Daniel Sank, Amit Vainsencher, Jim Wenner, Ted White, Sergio Boixo, Ryan Babbush, Vadim Smelyanskiy, Hartmut Neven, John Martinis
Physical Review Letters, vol. 121 (2018), pp. 090502
Quantum simulation of the electronic structure problem is one of the most researched applications of quantum computing. The majority of quantum algorithms for this problem encode the wavefunction using $N$ molecular orbitals, leading to Hamiltonians with ${\cal O}(N^4)$ second-quantized terms. To avoid this overhead, we introduce basis functions which diagonalize the periodized Coulomb...
View detailsRyan Babbush, Nathan Wiebe, Jarrod McClean, James McClain, Hartmut Neven, Garnet Chan
Physical Review X, vol. 8 (2018), pp. 011044
Locality-preserving fermion-to-qubit mappings are especially useful to simulating lattice fermion models (e.g., the Hubbard model) on a quantum computer. They avoid the overhead associated with non-local parity terms in mappings such as the Jordan-Wigner transformation. As a result, they often provide solutions with lower circuit depth and gate complexity. Interestingly, these locality-...
View detailsThe intriguing many-body phases of quantum matter arise from the interplay of particle interactions, spatial symmetries, and external fields. Generating these phases in an engineered system could provide deeper insight into their nature. Using superconducting qubits, we simultaneously realize synthetic magnetic fields and strong particle interactions, which are among the essential elements for...
View detailsPedram Roushan, Charles Neill, Anthony Megrant, Yu Chen, Ryan Babbush, Rami Barends, Brooks Campbell, Zijun Chen, Ben Chiaro, Andrew Dunsworth, Austin Fowler, Evan Jeffrey, Julian Kelly, Erik Lucero, Josh Mutus, Peter O'Malley, Matthew Neeley, Chris Quintana, Daniel Sank, Amit Vainsencher, Jim Wenner, Ted White, Eliot Kapit, Hartmut Neven, John Martinis
Nature Physics, vol. 13 (2017), pp. 146-151
Masoud Mohseni, Peter Read, Hartmut Neven and colleagues at Google's Quantum AI Laboratory set out investment opportunities on the road to the ultimate quantum machines.
View detailsMasoud Mohseni, Peter Read, Hartmut Neven, Sergio Boixo, Vasil Denchev, Ryan Babbush, Austin Fowler, Vadim Smelyanskiy, John Martinis
Nature, vol. 543 (2017), 171–174
By analyzing the dissipative dynamics of a tunable gap flux qubit, we extract both sides of its two-sided environmental flux noise spectral density over a range of frequencies around 2kT/h ≈ 1GHz, allowing for the observation of a classical-quantum crossover. Below the crossover point, the symmetric noise component follows a 1/f power law that matches the magnitude of the 1/f noise near 1 Hz....
View detailsChris Quintana, Yu Chen, Daniel Sank, Andre Petukhov, Ted White, Dvir Kafri, Ben Chiaro, Anthony Megrant, Rami Barends, Brooks Campbell, Zijun Chen, Andrew Dunsworth, Austin Fowler, Rob Graff, Evan Jeffrey, Julian Kelly, Erik Lucero, Josh Mutus, Matthew Neeley, Charles Neill, Peter O'Malley, Pedram Roushan, Alireza Shabani, Vadim Smelyanskiy, Amit Vainsencher, Jim Wenner, Hartmut Neven, John Martinis
Phys. Rev. Lett., vol. 118 (2017), pp. 057702
For a variety of superconducting qubits, tunable interactions are achieved through mutual inductive coupling to a coupler circuit containing a nonlinear Josephson element. In this paper, we derive the general interaction mediated by such a circuit under the Born-Oppenheimer approximation. This interaction naturally decomposes into a classical part, with origin in the classical circuit...
View detailsDvir Kafri, Chris Quintana, Yu Chen, Alireza Shabani, John Martinis, Hartmut Neven
Phys. Rev. A, vol. 95 (2017), pp. 052333
Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking....
View detailsSergio Boixo, Vadim N Smelyanskiy, Alireza Shabani, Sergei V Isakov, Mark Dykman, Vasil S Denchev, Mohammad H Amin, Anatoly Yu Smirnov, Masoud Mohseni, Hartmut Neven
Nature Communications, vol. 7 (2016)
A major challenge in quantum computing is to solve general problems with limited physical hardware. Here, we implement digitized adiabatic quantum computing, combining the generality of the adiabatic algorithm with the universality of the digital approach, using a superconducting circuit with nine qubits. We probe the adiabatic evolutions, and quantify the success of the algorithm for random...
View detailsRami Barends, Alireza Shabani, Lucas Lamata, Julian Kelly, Antonio Mezzacapo, Urtzi Las Heras, Ryan Babbush, Austin Fowler, Brooks Campbell, Yu Chen, Zijun Chen, Ben Chiaro, Andrew Dunsworth, Evan Jeffrey, Erik Lucero, Anthony Megrant, Josh Mutus, Matthew Neeley, Charles Neill, Peter O'Malley, Chris Quintana, Enrique Solano, Ted White, Jim Wenner, Amit Vainsencher, Daniel Sank, Pedram Roushan, Hartmut Neven, John Martinis
Nature, vol. 534 (2016), pp. 222-226
We report the first electronic structure calculation performed on a quantum computer without exponentially costly precompilation. We use a programmable array of superconducting qubits to compute the energy surface of molecular hydrogen using two distinct quantum algorithms. First, we experimentally execute the unitary coupled cluster method using the variational quantum eigensolver. Our...
View detailsPeter O'Malley, Ryan Babbush, Ian Kivlichan, Jonathan Romero, Jarrod McClean, Rami Barends, Julian Kelly, Pedram Roushan, Andrew Tranter, Nan Ding, Brooks Campbell, Yu Chen, Zijun Chen, Ben Chiaro, Andrew Dunsworth, Austin Fowler, Evan Jeffrey, Anthony Megrant, Josh Mutus, Charles Neil, Chris Quintana, Daniel Sank, Ted White, Jim Wenner, Amit Vainsencher, Peter Coveney, Peter Love, Hartmut Neven, Alán Aspuru-Guzik, John Martinis
Physical Review X, vol. 6 (2016), pp. 031007
The tunneling between the two ground states of an Ising ferromagnet is a typical example of many-body tunneling processes between two local minima, as they occur during quantum annealing. Performing quantum Monte Carlo (QMC) simulations we find that the QMC tunneling rate displays the same scaling with system size, as the rate of incoherent tunneling. The scaling in both cases is O(Δ2), where Δ...
View detailsSergei Isakov, Guglielmo Mazzola, Vadim Smelyanskiy, Zhang Jiang, Sergio Boixo, Hartmut Neven, Matthias Troyer
PRL (2016)
Quantum annealing (QA) has been proposed as a quantum enhanced optimization heuristic exploiting tunneling. Here, we demonstrate how finite-range tunneling can provide considerable computational advantage. For a crafted problem designed to have tall and narrow energy barriers separating local minima, the D-Wave 2X quantum annealer achieves significant runtime advantages relative to simulated...
View detailsVasil Denchev, Sergio Boixo, Sergei Isakov, Nan Ding, Ryan Babbush, Vadim Smelyanskiy, John Martinis, Hartmut Neven
Physical Review X, vol. 6 (2016), pp. 031015
Nan Ding, Jia Deng, Kevin Murphy, Hartmut Neven
International Conference on Computer Vision (2015)
Dynamics-based sampling methods, such as Hybrid Monte Carlo (HMC) and Langevin dynamics (LD), are commonly used to sample target distributions. Recently, such approaches have been combined with stochastic gradient techniques to increase sampling efficiency when dealing with large datasets. An outstanding problem with this approach is that the stochastic gradient introduces an unknown amount of...
View detailsNan Ding, Youhan Fang, Ryan Babbush, Changyou Chen, Robert Skeel, Hartmut Neven
Advances in Neural Information Processing Systems (2014), pp. 3203-3211
Quantum annealing is a heuristic quantum algorithm which exploits quantum resources to minimize an objective function embedded as the energy levels of a programmable physical system. To take advantage of a potential quantum advantage, one needs to be able to map the problem of interest to the native hardware with reasonably low overhead. Because experimental considerations constrain our...
View detailsRyan Babbush, Vasil Denchev, Nan Ding, Sergei Isakov, Hartmut Neven
arXiv:1406.4203 (2014)
. In this paper we study how to perform object classification in a principled way that exploits the rich structure of real world labels. We develop a new model that allows encoding of flexible relations between labels. We introduce Hierarchy and Exclusion (HEX) graphs, a new formalism that captures semantic relations between any two labels applied to the same object: mutual exclusion, overlap...
View detailsJia Deng, Nan Ding, Yangqing Jia, Andrea Frome, Kevin Murphy, Samy Bengio, Yuan Li, Hartmut Neven, Hartwig Adam
European Conference on Computer Vision (2014)
The last two years have witnessed the introduction and rapid expansion of products based upon large, systematically-gathered, street-level image collections, such as Google Street View, EveryScape, and Mapjack. In the process of gathering images of public spaces, these projects also capture license plates, faces, and other information considered sensitive from a privacy standpoint. In this...
View detailsAndrea Frome, German Cheung, Ahmad Abdulkader, Marco Zennaro, Bo Wu, Alessandro Bissacco, Hartwig Adam, Hartmut Neven, Luc Vincent
IEEE International Conference on Computer Vision (2009)
Yan-Tao Zheng, Ming Zhao, Yang Song, Hartwig Adam, Ulrich Buddemeier, Alessandro Bissacco, Fernando Brucher, Tat-Seng Chua, Hartmut Neven, Jay Yagnik
MM '09: Proceedings of the seventeen ACM international conference on Multimedia, ACM, New York, NY, USA (2009), pp. 961-962
Yantao Zheng, Ming Zhao, Yang Song, Hartwig Adam, Ulrich Buddemeier, Alessandro Bissacco, Fernando Brucher, Tat-Seng Chua, Hartmut Neven
International Conference on Computer Vision and Pattern Recognition (CVPR) (2009)
Learn more about how we do research
We maintain a portfolio of research projects, providing individuals and teams the freedom to emphasize specific types of work