PS Vita™ Open SDK Specification
Version 1.21

Yifan Lu
October 19, 2016

Revision History

Revision Date

1.0 23/05/2015
1.1 22/06/2016
1.2 25/09/2016
1.21 19/10/2016

Author(s)

Yifan Lu
Yifan Lu

Yifan Lu

Yifan Lu

Description

Initial version

Fixed some typos and swapped the defination of
“module” and “library”

Revised NID JSON database format to match
current implementations. Added information on
new import structure. Added information on
shared libraries. Added specification for export-
ing libraries.

Added a table limitations for ELF values. Mod-
ified algorithm for NID generation.

Contents

1 Introduction

1.1
1.2
1.3

Goals
Legal
Overview

2 SCE ELF Format

2.1
2.2

2.3

24

ELF Header
ELF Sections
2.2.1 SCE Relocations
2.2.2 Relocation Operations
SCE Dynamic Section
2.3.1 NIDs
2.3.2 Module Information
2.3.3 Module Exports
2.3.4 Module Imports
2.3.5 New Import Format
2.3.6 Diagram
ELF Segments

2.4.1 Module Information

3 Open SDK Format
3.1 JSON NID Database . . .
3.2 Header Files
3.3 Library Files.
3.4 Export Configuration Files
4 Toolchain
4.1 vita-libs-gen
4.2 vita-elf-create
4.3 vita-elf-export

Location

HEEH

20
20

22

1 Introduction

The documents outlines the requirements and implementation advice for an open source
software development library and toolchain for creating object code for the PS Vita™ device.

1.1 Goals

The main goal for this project is to create an ecosystem of amateur produced software and
games (homebrew) on the PS Vita™ device for non-commercial purposes. The inspiration
for this document comes from observed failures of open toolchains on other gaming plat-
forms. The goal is to define precisely the requirements and implementation of an open
source toolchain and SDK for the PS Vita™. Collaboration from the community is expected
and desired in the creation of this ecosystem. Comments and suggestions for this document
should be sent directly to the author.

1.2 Legal

PS Vita™ is a trademark of Sony Computer Entertainment America LLC. This document is
written independently of and is not approved by SCEA. Please don’t sue us.

1.3 Overview

The PS Vita™ carries an ARM Cortex A9 MPCore as the main CPU processor in a custom
SoC. The processor implements the ARMv7-R architecture (with full Thumb2 support).
Additionally, it supports the MPE, NEONv1, and VFPv3 extensions.

The software infrastructure is handed by a proprietary operating system; the details of
which is outside the scope of this document. What this document will define is the executable
format, which is an extension of the ELF version 1 standards. Thorough knowledge of the
ELF specifications[l] is assumed and the SCE extensions will be described in detail. The
simplified specifications[2] and ARM extensions to ELF[3] will be referenced throughout this
document.

The first part of this document will describe the format of SCE ELF executables including
details on SCE extension segment and sections. The second part will detail a proposed SDK
format for writing the include files and symbol-NID mapping database. The third part will
specify a tool which can convert a standard Linux EABI ELF into a SCE ELF.

2 SCE ELF Format

2.1 ELF Header

The header is a standard ARM ELF[3] header. For the e_type field, there are some additional
options.

Name Value Meaning
ET_SCE_EXEC 0xFEOO SCE Executable file
ET_SCE_RELEXEC O0xFEO4 SCE Relocatable file
ET_SCE_STUBLIB OxFEOC SCE SDK Stubs
ET_SCE_DYNAMIC 0xFE18 Unused

ET_SCE_PSPRELEXEC | OxFFAO | Unused (PSP ELF only)
ET_SCE_PPURELEXEC | 0xFFA4 | Unused (SPU ELF only)
ET_SCE_UNK OxFFAS Unknown

Figure 1: SCE specific ELF type values

The difference between executable files and relocatable files is that executables have a
set base address. Relocatable ELFs were used before FW 2.50 only for PRX, however in
the latest versions, any application with ASLR support is relocatable. The open toolchain is
required to support ET_SCE_RELEXEC. All others are optional. The PS Vita system imposes
some limits on the ELF files.

Field Limit

e_phnum | At most 5 for ET_SCE_EXEC and 8 for ET_SCE_RELEXEC
e_phnum At most 3 PT_LOAD segments

e_phnum At most 3 SCE_RELOC segments

Figure 2: ELF limits

There are three filename extensions for SELFs. self is usually used for application
executables and likely stands for “secure ELF” or “Sony ELF”. suprx are userland dynamic
libraries and is similar to how so libraries work on Linux. skprx are kernel modules and is
similar to how ko libraries work on Linux. Even though the extensions are different, all these
file types use the same SCE ELF format. There is no difference between an ET_SCE_RELEXEC
application and a suprx except that suprx usually exports additional libraries for linking.
That means, in theory, a single SCE ELF can act as both an application and a userland
library. The only difference between suprx and skprx is that skprx is meant to run in kernel
and can use ARM system instructions. A skprx can also export libraries to userland in the

form of syscalls (more information [below)).

2.2 ELF Sections
SCE ELF's define additional section types for the sh_type field.

Name Value Meaning
SHT _SCE_RELA 0x60000000 SCE Relocations
SHT_SCENID 0x61000001 | Unused (PSP ELF only)

SHT_SCE_PSPRELA | 0x700000A0 | Unused (PSP ELF only)
SHT_SCE_ARMRELA | 0x700000A4 | Unused (SPU ELF only)

Figure 3: SCE specific ELF section types

The toolchain is required to support SHT_SCE_RELA, which is how relocations are imple-
mented in SCE ELFs. The details are described in the following subsection.

2.2.1 SCE Relocations

SCE ELFs use a different relocation format from standard ELFs. The relocation entries
are in two different format, either an 8 byte “short” entry or a 12 byte “long” entry. You
are allowed to mix and match “short” and “long” entries, but that is not recommended for
alignment reasons. The entire relocation segment is just a packed array of these entries.

In the short entry, the offset is stored partially in the first word and partially in the second
word. It also has a 12-bit addend. In the long entry, there is support for two relocations

on the same data. The open toolchain does not have to implement this. Long entries have
32-bit addends.

e r format determines the entry format. Currently two are supported: 0x0 is “long
entry” and 0x1 is “short entry”. In previous versions of this document, this field was
called r_short.

e r symseg is the index of the program segment containing the data to point to. Previous
versions of this documented noted that if this value is 0xF, then 0x0 is used as the
base address. This is no longer true in recent system versions.

e r_code is the relocation code defined in ARM ELF[3]

e r datseg is the index of the program segment containing the pointer that is to be
relocated.

e r offset is the offset into the segment indexed by r_datseg. This is the pointer to
relocate.

e r_addend is the offset into the segment indexed by r_symseg. This is what is written
to the relocated pointer.

// assuming LSB of bitfield 1is
union {
Elf32_Word r_format : 4;
struct {
Elf32_Word
Elf32 Word

listed first

r_format 4; // 0x1
r_symseg : 4;

Elf32_Word
Elf32_Word
Elf32_Word
Elf32_Word

r_code : 8;
r_datseg

r_offset_lo
r_offset_hi

12;
20;

Elf32_Word r_addend

} r_short_entry;

struct {
E1f32_Word
E1f32_Word
Elf32_Word
Elf32 Word
Elf32 _Word
Elf32_Word
E1f32_Word
Elf32_Word

} r_long_entry;

} SCE_Rel;

12;

r_format : 4; // 0z0
r_.symseg : 4;

r_code : 8;

r_datseg : 4;

r_code2 : 8;

r_dist2 : 4;
r_addend;

r_offset ;

Figure 4: SCE relocation entry

2.2.2 Relocation Operations

Only the following ARM relocation types are supported on the PS Vita™:

The toolchain is required to only output relocations of these types. Refer to that ARM
ELF[3] manual for information on how the value is formed. The definitions of the variables
for relocation is as follows.

Segment start = Base address of segment indexed at r_datseg

Symbol start = Base address of segment indexed at r_symseg

P = segment start + r_offset

S = symbol start

A = r_addend

2.3 SCE Dynamic Section

ELF Dynamic sections are not used (a change from PSP). Instead all dynamic linking infor-
mation is stored as part of the export and import sections, which are SHT_PROGBITS sections.

Code | Name Operation

0 R_ARM_NONE

2 R_ARM_ABS32 S+ A

3 R_ARM_REL32 S+A—-P
10 R_ARM_THM_CALL S+A—-P
28 R_ARM_CALL S+A—-P
29 R_ARM_JUMP24 S+A—-P

38 R_ARM_TARGET1 (same as R_.ARM_ABS32) | S+ A
40 R_ARM_V4BX (same as R_ARM_NONE)
41 R_ARM_TARGET2 (same as R_.ARM_REL32) | S+ A — P

42 R_ARM_PREL31 S+A—-P
43 R_ARM_MOVW_ABS_NC S+ A
44 R_ARM_MOVT_ABS S+ A
47 R_ARM_THM_MOVW_ABS_NC S+ A
48 R_ARM_THM_MOVT_ABS S+ A

Figure 5: SCE specific ELF section types

2.3.1 NIDs

Instead of using symbols, SCE ELF linking depends on NIDs. These are just 32-bit integers
created from hashing the symbol name. The formula for generating them does not matter as
long as they match up. For our purposes, we will make sure our open SDK recognizes NIDs
for imported functions and when NIDs are created, they can be done so in an implementation
defined way.

2.3.2 Module Information

The first SCE specific section .sceModuleInfo.rodata is located in the same program seg-
ment as .text. It contains metadata on the moduld!]

Some fields here are optional and can be set to zero. The other fields determine how this
module is loaded and linked. All offset fields are formatted as follows: top 2 bits is an index
to the segment to start at and bottom 30 bits is an offset from the segment. Currently, the
segment start index must match the segment that the module information structure is in.

e version: Set to 0x0101
e name: Name of the module

e type: 0x0 for executable, 0x6 for PRX

I Previous versions of this document swapped the usage of the term “library” and “module”. This change
is to be more consistent with Sony’s usage of the term.

struct {
ul6_t
ul6_t
char
u8_t
void
ud2_t
u3d2_t
ud2_t
ud2_t
u3d2_t

attributes;
version ;
name [27];
type;
xgp_value;
export_top;
export_end;
import_top;
import_end ;
module_nid;

u3d2_t field_38;
u3d2_t field_3C;
u3d2_t field_40 ;
u32_t module_start ;
u3d2_t module_stop ;
u32_t exidx_top;
u32_t exidx_end ;
u32_t extab_top;
u32_t extab_end ;

} sce_module_info;

e export_top:
e export_end:
e import_top:
e import_end:

e module_nid:

Figure 6: SCE module information

Offset to start of [export tabld
Offset to end of [export table]

Offset to start of fmport table
Offset to start of fmport table]

NID of this module. Can be a random unique integer. This can freely

change with version increments. It is not used for imports.

e module_start: Offset to function to run when module is started. Set to 0 to disable.

e module_stop: Offset to function to run when module is exiting. Set to 0 to disable.

e exidx_top: Offset to start of ARM EXIDX (optional)

e exidx_end: Offset to end of ARM EXIDX (optional)

e extab_top: Offset to start of ARM EXTAB (optional)

e extab end: Offset to end of ARM EXTAB (optional)

2.3.3 Module Exports

Each module can export one or more libraries. To get the start of the export table, we add
export_top to the base of the segment address. To iterate through the export tables, we
read the size field of each entry and increment by the size until we reach export_end.

struct {
ul6_t size;
ul6_t version ;
ul6_t flags;
ul6_t num_syms_funcs;
ul6_t num-_syms._vars;

ul6_t unk_1;
u3d2_t unk_2;
u3d2_t library _nid ;

char xlibrary_name ;
u32_t xnid_table;
void xxentry_table;

} sce_library _exports;

Figure 7: SCE library export

e size: Set to 0x20. There are other sized export tables that follow different formats.
We will not support them for now.

e version: Set to Ox1 for a normal export or 0x0 for the jmain module export|

e flags: An OR mask of valid

e num syms_funcs: Number of function exports.

e num syms_vars: Number of variable exports. Must be zero for kernel library export to
user.

e library nid: NID of this library. Can be a random unique integer that is consistent.
Importers will use this NID so it should only change when library changes are not
backwards compatible.

e library name: Pointer to name of this exported library. For reference only and is not
used in linking.

e nid table: Pointer to an array of 32-bit NIDs to export.

e entry_table: Pointer to an array of data pointers corresponding to each exported NID
(of the same index).

10

Flag Mask Description

Importable 0x1 Should be set unless it is the |main exportl
User Importable | 0x4000 | In kernel modules only. Allow syscall imports.
Main Export 0x8000 | Set for |main export|.

Unknown 0x10000

Figure 8: Export flags

Note that since pointers are used, the .sceLib.ent section containing the export tables
can be relocated. The data pointed to (name string, NID array, and data array) are usually
stored in a section .sceExport.rodata. The order in the arrays (NID and data) is: function
exports followed by data exports followed by the unknown exports (the open toolchain should
define no such entries). The .sceExport.rodata section can also be relocated.

For all executables, a library with NID 0x00000000 and attributes 0x8000 exports the
module _start and module_stop functions along with a pointer to the module information
structure as a function export. The NIDs for these exports are as follows:

Name Type NID

module_stop | Function | 0x79F8E492
module_exit | Function | 0x913482A9
module_start | Function | 0x935CD196
module_info | Variable | 0x6C2224BA

Figure 9: Required module export

2.3.4 Module Imports

Each module also has a list of imported libraries. The format of the import table is very
similar to the format of the export table.

e size: Set to 0x34. There are other sized import tables that follow different formats.
We will not support them for now.

e version: Set to Oxl1.

e flags: Set to 0xO.

e num syms_funcs: Number of function imports.
e num syms_vars: Number of variable imports.

e library nid: NID of library to import. This is used to find what module to import
from and is the same NID as the 1ibrary nid of the library from the exporting module.

11

struct {

ul6_t size;

ul6_t version ;

ul6_t flags;

ul6_t num_syms_funcs;
ul6_t num_syms_vars ;
ul6_t num_syms_unk ;
u3d2_t reservedl ;

uld2_t library_nid ;

char xlibrary_name ;
u32_t reserved?2 ;

u32_t xfunc_nid_table;
void xxfunc_entry_table;
u32_t xvar_nid_table;
void xxvar_entry_table;
u32_t xunk_nid_table;
void xxunk_entry_table;

} sce_module_imports;

Figure 10: SCE module import

e library name: Pointer to name of the imported library. For reference only and is not
used for linking.

e func_nid_table: Pointer to an array of function NIDs to import.
e func_entry_table: Pointer to an array of stub functions to fill.
e var nid table: Pointer to an array of variable NIDs to import.

e var_entry_table: Pointer to an array of data pointers to write to.

The import tables are stored in the same way as export tables in a section .sceLib.stubs
which can be relocated. The data pointed to are usually found in .sceImport.rodata. The
function NIDs to import (for all imported libraries) is usually stored in section .sceFNID.rodata
and the corresponding stub functions are in .sceFStub.rodata. The stub functions are
found in .text and can be any function that is 12 bytes long (however, functions are usually
aligned to 16 bytes, which is fine too). Upon dynamic linking, the stub function is either
replaced with a jump to the user library or a syscall to an imported kernel module. The
suggested stub function is:

Imported variable NIDs can be stored in section .sceVNID.rodata and the data table in
.sceVNID.rodata.

12

mvn r0, #0x0
bx Ir
mov r0, r0

Figure 11: Stub function code

2.3.5 New Import Format

Newer firmware versions have modules with import tables of size 0x24 bytes instead of
the usual 0x34 byte structure defined above. The only difference is that some fields are
dropped. For reference, the new structure is defined below. However, support for it is
optional. Software can differentiate the two versions by looking at the size field. All import
entries must be the same size!

struct {
ul6_t size;
ul6_t version ;
ul6_t flags;
ul6_t num _syms_funcs;
u32_t reservedl ;
u3d2_t library_nid ;
char xlibrary_name ;
u32_t xfunc_nid_table;
void xxfunc_entry_table;

u32_t unkl ;
u3d2_t unk?;
} sce_module_imports_new;

Figure 12: New SCE module import

13

2.3.6 Diagram

.sceLib.ent

sce_module_exports array

After .text
<«—32bits 5 - mwmodule_name
/\/ _ version | attr
/\1/ libl vsc| sc)
SceModule - size
attributes size o= rt.r
modname R nid table -q----- *___nidi_ /
I3 I nid2 ! "
S SRR c
9 nid3 2
po— EXPORTs [8
export_end :’:’ entrytable =
b5 vnid1
= vnid2
: IMPORTSs -
import_top lib2 _@for_nidl
import_end - | | | @for_nid2 Ml e
e T xx 1 o = = = = = = = oy
@for_nid3 1> addiu $sp,$sp,-8 :
/\/ [sw $s0, 0($sp) :
/\/ - | sw $ra, 4($sp) ||
7 | SceLibraryStubTaple @for_vnid. | jal foo :
libname @for_vnid2 : i $20, 5 :
vers | attr i :
|
stubtable1 4 len|vsc| sc [ir $ra !
nidtable ____::___t ________ "|_nid1 | addiu $sp, $sp, 8 :
stubtable : nid2 e
vstubtable E nid3
1
g
tubtable2 o
s 4
< 2 /\/
I
1 e.g. 0x08834D00
- -----4JR $ra /SYSCALI
\ NOP e.g. 0x08834D08
JR $ra /SYSCALI
NOP

sce_module_imports array

Figure 13: Visual representation of all the parts in the SCE sections. Credits to Anissian
and xerpi.

14

2.4 ELF Segments

SCE ELF's define additional program segment types for the p_type field.

Name Value Meaning
PT_SCE_RELA 0x60000000 SCE Relocations
PT_SCE_COMMENT | Ox6FFFFFOO Unused
PT_SCE_VERSION | Ox6FFFFFO1 Unused
PT_SCE_UNK 0x70000001 Unknown
PT_SCE_PSPRELA | 0x700000A0 | Unused (PSP ELF only)
PT_SCE_PPURELA | 0x700000A4 | Unused (SPU ELF only)

Figure 14: SCE specific ELF program segment types

The toolchain is only required to support PT_SCE_RELA. This program segment is essen-

tially just a composition of all SHT_SCE RELA sections.

2.4.1 Module Information Location

For ET_SCE_EXEC executables, the imodule information|is stored in the first segment (where
the code is loaded). The location of the sce_module_info structure is at p_paddr offset from
the start of the ELF file. Once the ELF is loaded into memory, the location is segment base

address + p_paddr - p_offset.

For ET_SCE_RELEXEC executables, the segment containing sce module_info is indexed by
the upper two bits of e_entry of the ELF header. The structure is stored at the base of the

segment plus the offset defined by the bottom 30 bits of e_entry.

15

3 Open SDK Format

We will first specify a format for defining a database of to symbol name mappings
in JSON. The motivation behind this is that most ELF tools deal with Linux APIs and
symbols. We should not have to write our own linker but instead have a tool that converts a
linked executable to the SCE ELF format. This database will be built by reverse engineers
who will extract NIDs and figure out how the APIs work.

3.1 JSON NID Database

Let’s start with a motivating example for what a typical API export would look like.

{

"SceLibKernel": {
"nid": 1237592384,
"modules": {
"SceLibKernel": {
"nid": 3404311782,
"kernel": false,
"functions": {
"sceKernelPuts": 37661282,
"sceKernelGetThreadId": 263811833,
"sceloDevctl": 78843058,

.

"variables": {
"SceKernelStackGuard": 1146666227,

}

s

"SceLibGcc": {
"nid": 1450899878,

"kernel": false,
"functions": {
"variables": {

}

16

"SceloFilemgr": {
"nid": 1042566167,
"modules": {

We start out with an array of module definitions. Each module has an associated module
NID (value from module nid field of sce module_info structure) and an array of library
exports. This NID can change across firmware versions, but should be consistent in our
database. This is because the Vita does not use this NID but we will use it in linking.
We can assign the module NID to be any valid and unique value that is consistent across
database updates. Each library has an library NID (value from library nid field of each
export table). If the library can only be accessed in kernel (no syscalls are exported), then
“kernel” is set to true, otherwise if the library is in userspace or has syscall exports, it is set
to false. Each library has an array of functions and an array of variables which maps the
symbol name to an NID.

3.2 Header Files

The header files written should be commented with Doxygen syntax. API documentation
will be generated by Doxygen.

3.3 Library Files

Library stub files for static linking will be generated by the tool which uses the
JSON API database to create temporary libraries to statically link to.

3.4 Export Configuration Files

For those who wish to build dynamically linkable modules (.suprx or .skprx), a YAML
based configuration file is specified for setting up exports. Just like above, we begin with a
motivating example.

MyPlugin:
attributes: 0x1000 # optional: default to 0x1000
version: # optional

major: 1 # default to 1
minor: 5 # default to O

nid: Oxeeeeeeece # optional: can set nid manually

main: # optional
start: module_start # default to ""

17

B =S

default to ""
default to ""

stop: module_stop
exit: module_exit
modules:
MyPluginForUser:
kernel: false # optional: default is false
functions:
- myPlgFuncl
- myPlgFunc2
- myPlgFunc3
variables: # only supported in user type
- someVarl
- someVar2
MyPluginForKernel:
kernel: true
functions:
- myPlgFuncl
- myPlgFunc3
- myPlgSecretFunc
MyPluginForDriver:
kernel: true
nid: Oxdeadbeef # optional: set nid manually
functions:
- myPlgSecretFunc
- myPlgDriverFunc

+*

The format matches how the JSON database for NID imports look (except in YAML
instead of JSON) with the exception that function and variable NIDs are unspecified. The
reason for using YAML instead of JSON is that YAML is easier to read and write (for
developers) while JSON is easier to parse (for linking). The dichotomy in formats also
helps prevents mistakes of using an import file (which has NIDs specified) instead of an
export file (which has NIDs unspecified). Library and module NIDs can optionally be set
to an user-specified value. If left unspecified, then it will be determined with the algorithm
below. Function and variable NIDs must be generated with the algorithm. Note that this
algorithm is not the same as SCE’s own algorithm, but the details should not matter for
interoperability.

The hash for module NID should be unique for a given module source and compiler
configuration. An example would be to hash the ELF file before converting it to a SCE
ELF. The hash for library name and function/variable name is variable length and does not
include the null terminator. The SHA256-32 algorithm takes the full 32 byte hash and only
returns the first four bytes as a little endian integer.

Since module NID is expected to be different in each version. However, other NIDs must
stay consistent regardless of version. Changing those NID will break compatibility with
anything that uses the module.

18

Type Algorithm

Module NID SHA256-32(unique data)

Library NID SHA256-32(export_info.library_name)
Main Export NID | See |2.3.3|

Other NID SHA256-32(name)

Figure 15: NID generation algorithm for Open SDK exports

The “kernel” field of a library export is used only for skprx. It is not permitted to set
“kernel” true for user modules. In a kernel module, setting “kernel” true will only allow the
library to be imported by another kernel module. Setting it to false (the default value) will
allow user modules to import it through a syscall.

The “main” field allows you to manually specify the symbol for each of the
fields. If “start” is blank, that means the ELF entry point will be used as the start. If stop
or exit are blank, then they will not be set in the resultant SCE ELF. To manually specify
the start, stop, or exit function, set the field to the ELF symbol name.

All export names for functions and variables refer to the input ELF symbols.

19

4 Toolchain

We will try to use as much of the existing publicly available and open source ARM cross-
compile build system as possible. We only need to build two tools: a library stubs generator
and a ELF to SCE ELF converter. That way, the build system is agnostic of compiler (GCC,
clang, etc) and host platform. The tools can also be integrated into a Makefile build process
by including vita-elf-create as the last step in producing a PS Vita™ executable. The only
requirement for these tools is that they work across Linux, OSX, and Windows.

4.1 vita-libs-gen

For each library as defined by the JSON NID database, we will generate a static object
archive with the name of the SCE library. For example, “SceLibKernel” was defined in our
JSON database so we produce “libSceLibKernel.a”.

The contents of each library is a collection of object files, one for each exporting library.
These object files are assembled from assembly code generated by this tool. For example, the
entry for “SceLibGece” will generate “SceliibGee.S” which gets assembled into “SceLibGee.o”.

The assembly code for each exported library contains an exported symbol for each ex-
ported function or variable. The functions/variables will be placed into a section defined as
.vitalink.fstubs (for functions) or .vitalink.vstubs (for variables) so the [vita-elf-create]
tool can find it. For each symbol that is exported, we store three integers: the module NID,
the library NID, and the function/variable NID in place of any actual code.

Below is an example of the assembly code generated for “SceLibKernel.S”

.arch armv7—a
@ export functions

.section .vitalink.fstubs,”ax” ,%progbits

.align 2
@ export sceKernelPuts

.global sceKernelPuts

.type sceKernelPuts, %function
sceKernelPuts:

.word 0x49C42940

.word OxCAE9ACEG6

.word 0x023EAA62

.align 4
@ export sceKernelGetThreadld

.global sceKernelGetThreadld

.type sceKernelGetThreadld, %function
sceKernelGetThreadld :

.word 0x49C42940

.word 0xCAE9ACEG6

.word 0xOFB972F9

20

.align 4
@ export sceloDevctl

.global sceloDevctl

.type sceloDevctl, %function
sceloDevctl:

.word 0x49C42940

.word 0xCAE9ACEG6

.word 0x04B30CB2

.align 4

@ ...

export all other functions

@ export wvartables
.section .vitalink.vstubs,”awx” %progbits
.align 2
@ export SceKernelStackGuard
.global SceKernelStackGuard
.type SceKernelStackGuard, %object
SceKernelStackGuard :
.word 0x49C42940
.word O0xCAE9ACEG6
.word 0x4458BCF3

.align 4
@ ... export all other wvartables
4.2 vita-elf-create

The purpose of this tool is to convert an executable ELF linked with the static libraries
generated by and produce a SCE ELF. An optional [YAML export]| configuration

can be passed in to specify export information.

1.

Read the .vitalink.fstubs and .vitalink.vstubs sections of the input ELF. Build
a list of imports from each library required.

Create the .sceModuleInfo.rodata section by generating a module info for the input
ELF.

. Create the export tables with the optional YAML configuration.

Create the import tables with the list from step 1 and the NID JSON database.

Convert all non-supported relocations to a supported type (optionally, if the linker was
patched to only produce supported relocation types, we can skip this)

Open a new ELF with type ET_SCE_EXEC or ET_SCE_RELEXEC for writing.

21

7. Build the output SCE ELF by copying over the first loadable program segment and
then writing all the module info, export, and import data to the end of the segment,
extending the size of the segment. Make sure the offsets and pointers in the SCE
sections are updated to match its new location.

8. Update p_paddr of the first segment to point to the module info (for ET_SCE_EXEC
types) or e_entry to point to the module info (for ET_SCE_RELEXEC types).

9. Write import stubs over the temporary entries in .vitalink.fstubs and .vitalink.vstubs.
10. Next copy over the other program segments (if needed).
11. Finally create a new program segment of type PT_SCE_RELA and create SCE relocation

entries based on the ELF relocation entries of the input ELF.

4.3 vita-elf-export

This tool, along with [vita-elf-create| allows the developer to create shared modules (suprx)
and kernel modules (skprx). Once the SCE ELF is created, it can be distributed along
with a JSON NID import database (generated by this tool), stubs, and user defined header
files. This tool converts the YAML export configuration into a JSON import database. It’s
main task is creating the NIDs through the[defined algorithm|and then generating the JSON
database.

The full flow for creating a user or kernel module is as follows

1. Build the module with along with the export YAML configuration.

2. Build the JSON NID import database with [vita-elf-export| on the same YAML config-
uration.

3. Build the stubs with on the JSON import database generated from step
2.

4. Package the user created header files along with the results of step 1, 2, and 3 for
distribution.

To use a user shared module in another application of module
1. Compile the code and link with the provided stubs.

2. Create the application with and the additional JSON NID database.

3. Distribute the application along with the shared module if needed.

22

References

[1] Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification Ver-
sion 1.2 https://refspecs.linuxbase.org/elf/elf.pdf

2] Ezecutable and Linkable Format (ELF) http://flint.cs.yale.edu/cs422/doc/ELF_
Format.pdf

3] ARM IHI 0044E: ELF for the ARM Architecture http://infocenter.arm.com/help/
topic/com.arm.doc.ihi0044e/IHI0044E_aaelf.pdf

23

https://refspecs.linuxbase.org/elf/elf.pdf
http://flint.cs.yale.edu/cs422/doc/ELF_Format.pdf
http://flint.cs.yale.edu/cs422/doc/ELF_Format.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044e/IHI0044E_aaelf.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044e/IHI0044E_aaelf.pdf

	Introduction
	Goals
	Legal
	Overview

	SCE ELF Format
	ELF Header
	ELF Sections
	SCE Relocations
	Relocation Operations

	SCE Dynamic Section
	NIDs
	Module Information
	Module Exports
	Module Imports
	New Import Format
	Diagram

	ELF Segments
	Module Information Location

	Open SDK Format
	JSON NID Database
	Header Files
	Library Files
	Export Configuration Files

	Toolchain
	vita-libs-gen
	vita-elf-create
	vita-elf-export

