Math 202 Fall 2013 Jerry Kazdan

ODE: Existence and Uniqueness of a Solution

The Fundamental Theorem of Calculus tells us how to solve the ordinary differential equa-
tion (ODE)
du
pri
Just integrate both sides:

f(t) with initial condition u(0) = a.

u(t):a+/0 f(s)ds.

It is not obvious how to solve

du(t
ibi(t ) = f(z,u(t)) with initial condition u(0) = «

because the unknown, u(t), is on both sides of the equation. In many particular cases, by
using special devices one can find formulas for the solutions — but it is far from obvious
that a solution exists or is unique. In fact, there are simple examples showing that unless
one is careful, a solution may not exist, and even if one exists, it may not be unique. Just
because one may want something to happen doesn’t mean that this will happen. It is easy
to have presumptions that turn out to be not quite true.

The results that we present are classical. They will use most of the ideas we have covered

this semester.

We investigate one illuminating case and will prove the existence and uniqueness of a solu-
tion of the system of inhomogeneous linear equation

U (t o S o
di(f) =A@)U(t) + F(t) with U(0) =a. (1)
u (1)
Here we seek a vector U(t) = : given the input n x n matrix A(t) = (a4(1)),
un(t))
fi(t)
and a vector F(t) = : . The elements of A(t) and F(t) are assumed to depend
fu(t))

continuously on ¢ for [t| < b. Also a € R"™ is the initial condition.

Although we will not pursue it, there is fairly straightforward extension of the method we
use to the more general nonlinear case

— =F(t,U(t) with U(0)=a.

The ideas are already captured in our special case of equation (1).



Example Here we have a system of two equations

() = —ua(t)

u(t) = un(t)

with initial conditions u;(0) = 1 and uz(0) = 0. The (unique) solution of this happens to
be u(t) = cost, ua(t) = sint, but the point of these notes is to consider equations where
there may not be simple formulas for the solution.

The primary reason we are presenting the more general matrix case n > 1 is apply to the
standard second order scalar initial value problem

y'() + @)y () +q(®)y(t) = f(t) with y(0)=a and y'(0) =0, (2)

where p(t), q(t), and f(t) are continuous real-valued functions.
To reduce the problem (2) to problem (1), let u; =y and ug = y'. then

/
Yy =u2
"_

—pug — qui + f

()= (0 ) ()= (0) o (20)-C) @

This exactly has the form of the system (1). If we can solve the system (3), then wu;(t)is
the solution of equation (2)

uy
uh =

that is,

Example Before plunging ahead to prove that equation (1) has exactly one solution, we
present the idea with the simple example

u=u with u(0) =1 (4)

whose solution we already know is u(t) = e'. The first step is to integrate both sides of

equation (4) to obtain the equivalent problem of finding a function u(t) that satisfies

u(t) =1 —I—/O u(s) ds. (5)

We will solve this by successive approximations. Let the initial approximation be wug(t) =
u(0) = 1 and define the subsequent approximations by the rule

t
uk+1(t):1—|—/ ug(s) ds, k=0,1,2,.... (6)
0



Then .
ui(t) :1+/ lds =1+t
0

t
ua(t) =1+/(1+s)ds:1+t+§t2
0

t
us(t) =1+/(1+3+§32)ds:1+t+%t2+31!t3
0

up(t) =1+t + 1%+ 4+ LtF

We clearly recognize the Taylor series for e! emerging. This gives us hope that our successive
approximation approach to equation (6) is a plausible technique.

With this as motivation we integrate equation (1) and obtain

— —

O(t) =+ /0 (AT (s) + F(s)] ds (7)

We immediately observe that if a continuous function U(t) satisfies this, then by the Fun-
damental Theorem of Calculus applied to the left side, this U (t) is differentiable and is a
solution of our equation (1). Therefore we need only find a continuous U(t) that satisfies
equation (7).

As in our example we use successive approximations. To make the issues clearer, I will give
the proof twice. First for the special case n =1

u'(t) = a(t)u(t) + f(t) with u(0) = « (8)

so there are no vectors or matrices. In this particularly special case there happens to be an
explicit formula for the solution — but we won’t use it since it will not help for the general
matrix case. We are assuming that a(t) and f(¢) are continuous on the interval [0,b].
Consequently, they are bounded there and we use the uniform norm

lall == sup [a(@)|,  [If] = sup |[F(2)], (9)

te(0,b] te(0,b]

Just as with equation (1) we integrate (8) to find

u(t) = o+ [ la(e)uls) + £(s)as. (10)

As we observed after equation (7), if we have a continuous function u(t) that satisfies this,
then by the Fundamental Theorem of Calculus the u(t) on the left side is differentiable and
is the desired solution of equation (8).



For our initial approximation let wo(¢) = 0 (this particular choice is not very important)
and recursively define

ups1(t) = a+ /0 [a(s)uk(s) + f(s)]ds, k=0,1,.... (11)

We will show that the wj converge uniformly to the desired solution of equation (10).
While the optimal version is to do this on the whole interval [0, ], it is simpler (and, in
many ways more illuminating) to work assuming ¢ is in the smaller interval [0, 3], where
B < min(b, 1/]|a||). Note that since uy(t) is continuous in the interval [0, (], so is ugy1(t).
The uniform norms [ju||, we use for the u; will now be as in equation, except on this smaller
interval [0, f]. Subtracting we obtain

o (8) — () = /O a(3)[un(s) — up1(s)) ds

(12)
<llall[lur = ue-1[l8 < cllur — ur—1l,
where ¢ := [|a]|# < 1. Because the right side is independent of ¢, the sequence of successive
approximations is contracting
[urr1 — urll < cflux — up—1]]. (13)
Using this inequality repeatedly we deduce that
lursr — urll < ellug — upa || < -+ < Fllug —uoll. (14)

Since 0 < ¢ < 1, the series Z *|lur — ug|| converges. Thus by the Weierstrass M-test the

series Y |ug41(t) —ug(t)| of continuous functions converges absolutely and uniformly in the
interval [0, 5] to some continuous function. But

N
D luea(8) = un(8)] =fun1(8) = un (8)] + fun (8) = uy—1(8)] + -+ [ur () — uo(t)]
k=0

=un+1(t) — uo(t) = un+1(t)

Consequently the sequence of continuous functions uy (t) converges uniformly in the interval
[0, 8] to some continuous function u(t). We use this to let & — oo in equation (11) and
find that u(t) is the desired solution of equation (10). In this last step we used the uniform
convergence to interchange limit and integral in equation (11).

This completes the existence proof for the special case of equation (8).

We now repeat the proof for the general system equation (7), using, where needed, stan-
dard facts about vectors and matrices from the Appendix at the end of these notes. It is
remarkable that the only changes needed are changes in notation.



Just as in equation (11) we let Up(t) = 0 and recursively define
- t
Uk+1(t) :d’—i—/ [A(S)Uk(s)—i—F(s) ds, kE=0,1,....
0

Given the continuous Uy(t) this defines the next approximation, Uy,1(t). We will show
that the Uy converge uniformly to the desired solution of equation (7) in the smaller interval
[0, 8], where 3 = min(b, 1/]|A]|. Now

t
O ()~ Ou(t) = [ A(s) [Os) = Tias)] ds
0
To estimate the right hand side we use the inequalities (22) and (21) from the Appendix

e (t) — Tul0)] <) Al /0 [Gu(s) — Ui ()] s

<|| ATy = U118 = c|Ux = Ug |

; (15)

where ¢ = [|A[|# < 1.

The remainder of the proof goes exactly as in the previous special case and proves the
existence of a solution to equation (7) and hence our differential equation (1).

Uniqueness There are several ways to prove the uniqueness of the solution of the initial
value problem (1). None of them are difficult. We work in the interval [0, 5] defined above.
Say U(t) and V(t) are both solutions. Let W(t) := U(t) — V(t). Then W = AW with
W (0) = 0. We want to show that W (t) = 0.

Just as in equation (7)

W(t) = /0 " A () d.
Thus, similar to the computation in (15)
WOl < AIIWIE = cllW].
Because the right-hand side is independent of ¢ € [0. 3],
W < e[ W]l.
Because 0 < ¢ < 1, this implies that |W|| =0, Thus U(t) = V(¢) for t € [0.4].

REMARK: There is a useful conceptual way to think of the proof. If v(¢) is a continuous
function, define the map 7" : C([0, b) — C([0, b]) by the rule

TW)(t) =+ /0 (a(s)u(s) + f(s)] ds. (16)



Then equation (10) says the the solution we are seeking satisfies u = T'(u). In other words
u is a fized point of the map T'. The solution to many questions can be usefully attacked
by viewing them as seeking a fixed point of some map.

For this particular map, 7', it is illuminating to note that for any continuous functions w
and V on the interval [0, f]

so that
T(u)(t) = T() ()| < |all[lu—v|B.

Because the right side in independent of ¢ and ||a||3 = ¢ < 1, we conclude that
1T (w) = T ()| < ellu = vl

Because ¢ < 1 we see that T' contracts distance between function. In this situation, T is
called a contraction mapping. These arise frequently.

Appendix on Norms of Vectors and Matrices

This is a review of a few items concerning vectors and matrices. Let @ := (u1,ug,...,up)
and U := (v1,...,v,) be points (vectors) in R™. Their inner product (also called their dot
product is defined as

(u, ¥) = (U, V) = ugvy + ugve + - - - + Upvy.

In particular, the Euclidean length

This gives the useful formula

For vectors in the plane, R?, the inner product is interpreted geometrically as
(@, ) = |ul|v| cos b,
where 6 is the angle between @ and ¥. Since |cosf| < 1, this implies the Cauchy inequality
(@, 7)| < |al|d]. (18)

The following is a direct analytic proof the Cauchy inequality in R"™ without geometric
considerations — which gave us valuable insight. We begin by noting that using the inner
product, from equation (17) for any real number ¢

0 < |@ —to)]> = |a|* - 2t(a, ¥) + t*|7]2. (19)



Pick t to that the right side is as small as possible (so take the derivative with respect to
t). We find ¢t = (i, ¥)/|5]?. Substituting this in inequality (19) gives Cauchy’s inequality
(18).

Next we investigate a standard system of linear equations A# = ¢ where A = (a;;) is an

n X n matrix:
ajlul + ajpuz + - - + apy =01

ag1u1 + agug + -+ - + agpUy =V2

Ap1Ul + Ap2U2 + - - + Gpply =Un

Then ) ) ) )
AT =[5 =0} + o

:(allul +-+ alnun)2 +--+ (anlul +--+ annun)z-
Applying the Cauchy inequality to each of the terms on the last line above we find that

n

n
|Ad)? < (Z a§j> [@® + -+ (Z a,%]) ||
j=1

j=1
n
(X i
ij=1
=|AP|al?
where we defined |A|? = doije1 a?j (this definition of |A| is often called the Frobenius norm
of A). Thus
|Ad| < [Alld]. (20)
If the elements of matrix A = a;;(t) and the vector @ = (vi(t),...,vn(t)) are continuous

functions of ¢ for ¢ in some interval J C R, we measure the size of A and « over the whole
interval J as follows:

[All; :=sup[A(t)]  and |[|u]l; := sup|a(t)].
teJ teJ

The inequality (20) thus implies

[Adll; < [|Allsllll. (21)

There is one more fact we will need about integrating a continuous vector-valued function
¥(t) on an interval [a, b]. It is the inequality

/a ’ (s) ds

b
< / 5(s)] ds (22)

7



To prove this, note that we define the integral of a vector-valued function #(t) = (ui(t), ..., un(t))
as integrating each component separately. Using this and the Cauchy inequality, we find
that for any constant vector V,

v, /:U(S)MS = /ab<‘7, i(s)) ds < !VI/ab!U(S)!dS-

In particular, if we let let V be the constant vector V = ff ¥(s) ds, then

—

b b
VI =(V, V>=<V,/ a(s)>dsg|x7\/ 13(s)] ds.

After canceling |V| from both sides this is exactly the desired inequality (22).



