
gameworks.nvidia.com
1

Stuttering in Game Graphics:
Detection and Solutions

Cem Cebenoyan
Director of Developer Technology, NVIDIA Corporation

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Stuttering – A Killer to Game Experience

• When people talk to you:
– “For every few seconds, the game hitches…”

– “The framerate is high, but it doesn’t feel smooth…”

– “The animation’s choppy…”

– “The response to input lags constantly…”

– ……

• You know it’s stuttering, but
– What’s going wrong?

– It breaks your game in many ways

– It’s hard to find root causes and eliminate

2

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

In this talk,

• We are covering:

– Top stuttering situations in graphics pipe

– Methods to identify the root causes

– Mitigation plans

• Not covering:

– Stutters raised by disk/network IO, sound,
and things other than graphics

3

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Agenda

• A quick glimpse into the top stuttering
causes

• Stutter diagnosis

• Causes & solutions

• Vsync, SLI & many other things

4

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

A Quick Glimpse into the

Top Stuttering Causes

5

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

The Many Faces of Stutter

• Framerate hitching
– Appearance: every so often, the framerate freezes

and resumes

– Possible causes: shader compilation, resource
updating and/or vidmem paging

• Micro-stuttering
– Appearance: the frames-per-second is high, but the

overall feeling is laggy

– Possible causes: highly uneven duration of each frame

• Timing discrepancy
– Appearance: framerate is fine, but animation and

simulation are choppy

– Possible causes: incorrectly measured time interval
and frame queuing

6

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Top 5 Stuttering Causes

1. Shader compilation
– The driver translates D3D assembly into machine-

level instructions, which will cause stalls

2. Video memory oversubscription
– Heavily host-video memory paging occurs when

running out of vidmem

3. Resource management
– Creating, destroying & updating resources may thrash

the performance

4. Queued frames
– Uneven workload between CPU & GPU requires

buffering, but which can also raise timing issues

5. Improper queries
– Event & occlusion queries may change the default

driver behavior, and sometimes block pipeline
7

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Stutter Diagnosing

8

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Identify Stuttering

• Identifying stuttering is hard
– It may only reproduce on some hardware under

certain conditions

– No convenient way to capture data for analysis

• Need to combine various tools and
experiments for analysis

• Before covering the details, a few things
to understand:
– CPU/GPU communication

– Windows Display Driver Model

9

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Preliminary: CPU/GPU Communication

• Each D3D device has a graphics context

– Maintaining a command queue

– The driver builds API calls into command buffers and
submits them to the command queue at a proper time

• Many applications share GPU resource

– Global graphics scheduler (in OS) picks packets from
many command queues into GPU hardware queue

– GPU processes packets in order and remove them after
finish

10

Graphics

Scheduler

command queue

command queue

command queue

OS Driver Driver

submit cmd buffer

submit cmd buffer

submit cmd buffer

submit to GPU

App 0

App 1

App 2

GPU hardware queue

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Preliminary: CPU/GPU Communication
(cont.)

• Command buffer flush
– Usually, driver begins submitting (flushing) after Present

– Sometimes flush happens at other places

• Frame latency
– With no queued frames, GPU works 1 frame behind CPU

– In practice, driver may queue up to 3 frames (4 frames
behind) before flush

11

GPU

CPU
N N+1 N+2 N+3

N-1 N N+1 N+2

Present Present Present Present

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Preliminary: WDDM

• Windows Display Driver Model
– Introduced since Vista

– Virtualized video memory, better fault-tolerance, OS
scheduled graphics task, …

• It’s two drivers
– UMD: user mode driver

Work with applications and D3D runtime
Build & submit command buffers

– KMD: kernel mode driver
Work in OS kernel mode
Manage hardware resources with OS

– OS operates command queues between UMD & KMD

12

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Tools for Stutter Diagnosing

• Fraps
– Framerate recording

– Quick stats

• Nsight
– Static & dynamic analysis

– GPU pipeline inspection

• GPUView
– In-depth analysis

13

NVIDIA
®

NsightTM

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Framerate Hitching Diagnosing

• Appearance
– Every so often, the framerate freezes and resumes

• Start from recording frametime
– Add profiling code to game engine, recording the

duration of each frame (present-to-present)

– Or, use Fraps’ frametimes function to benchmark

– The lagged frames can be easily spotted

• Check the lagged frames:
– Create new shaders (new material loaded?)

– First time using a large chunk of resource (texture,
render target, buffers, etc.)?

– Render thread blocked by resource updating?

– CPU or GPU has unusually large workload?

14

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Framerate Hitching Diagnosing (cont. 1)

• Nsight can help to check lagged frames
– Using “Trace Application” to record a period of game

– Shader compilation time shown on the timeline

– Filters allow to single out concerned frames and API
calls

 15

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Framerate Hitching Diagnosing (cont. 2)

• Experiment with the usual suspects
– Remove the shader being compiled if found in lagged

frames

– Remove the resources be referenced first time if
found in lagged frames

– Remove any Lock*, Map*, Update* functions if found
in lagged frames

• The result of the experiments can show
you the causes of stuttering
– Shader compilation, resource management, etc.

– We will discuss each cause in next section

16

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Framerate Hitching Diagnosing (cont. 3)

• GPUView is more advanced for inspection
– [PRO] abundant information: process command queues, GPU

hardware queue, content of each packet
Less intrusive when recording

– [Con] very challenging for new users
Huge data set

– Able to check entire system. For example: is my app’s
Present blocked by windows desktop?

17
Courtesy of

Matt Fisher

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Micro-stuttering Diagnosing

• Appearance
– The frames-per-second is high, but the overall feeling

is laggy

• The frametime is extremely uneven

18

0

10

20

30

40

50

60

70

80

90

100

25 35 45 55 65 75

Fr
am

e
 T

im
e

 (
s)

Time (s)

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Micro-stuttering Diagnosing (cont. 1)

• Some possible causes

– Uneven workload: AI, animation tasks not
done on CPU for every frame

– Game engine limits the number of buffered
frames, the driver not able to cover non-
uniform Present calls

– Large amount resource updating

– Video memory oversubscription, and
resources are being continuously paged

19

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Micro-stuttering Diagnosing (cont. 2)

• Use Nsight or GPUView to inspect

– Nsight: check GPU frames

– GPUView: check the GPU hardware queue

• Check the following facts
– Is CPU workload very uneven from frame to frame?

– Is the game engine use some methods to limit the
number of queued frames?

– Uneven CPU frames + no queued frames -> stutter

20

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Micro-stuttering Diagnosing (cont. 3)

• Detect possible CPU stalls during
resource updating
– Write profiling code to enclose each Lock*, Map* and

StretchRect calls. Sometimes CPU is stalled if the
required resource is in use by GPU

– Long CPU stall + queued frames -> stutter

• Estimate vidmem usage on fly
– Use WMI interface and game engine’s own memory

stats to estimate

– Heavy paging -> stutter

– But heavy paging only happens when resources
largely exceed physical VRAM

21

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Timing Discrepancy Diagnosing

• Appearance

– Framerate all good, but animation and
simulation are choppy

• Possible causes

– The game engine uses incorrect time interval
for scene updating (camera, animation,
simulation, etc.)

22

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Timing Discrepancy Diagnosing (cont.)

• Check the game engine’s timing system
– Is it measuring time interval using Present-to-Present

time?

– If so, use Nsight to inspect the timeline

– CPUs notion of elapsed time is vastly different from
GPUs actual elapsed time frame to frame ->
animation stutter

– In this case, CPU side Present-to-Present time is not
the real time interval!

23

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Causes & Solutions

24

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Scenarios

• Recall the top 5 causes:

1. Shader compilation

2. Video memory oversubscription

3. Resource management

4. Queued frames

5. Improper queries

25

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Shader Compilation Basics

• Why compile shaders at runtime?
– The driver needs to translate D3D assembly to

machine instructions

– Each GPU generation has drastically different
instruction set

• When and how it gets compiled?
– At the time Create***Shader invoked

– The driver generates machine instructions once and
saves them for later use.

– For a complex shader, the driver may generate less
optimized code first, and replace it with optimized
code later

26

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Shader Compilation Basics (cont.)

• How long does it take the driver to
compile?

– Depending on the shader complexity, tens of
milliseconds to thousands of milliseconds

• Is there a way to pre-compile shaders
and save them to disk?

– No.

• Is the compilation “once-for-all”?

– Not really. Some D3D9 state changes may
trigger a compiled shader to be recompiled

27

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

State Dependent Recompile

• D3D9 states are not well mapped to
GPU hardware states

– Many state changes can trigger shader
recompile

– Earlier GPU generations (D3D9 class GPUs
and older) have more such culprits

– Doesn’t apply to D3D10.x and D3D11.x

28

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

State Dependent Recompile (cont.)

• “Dangerous” states (in order of severity)
– Having shadow map bound/unbound

– Changing bound texture between FP, non-FP format

– Changing bound resource format from the compile time

– sRGB state for render target and texture

– Same pixel shader for different COLORWRITEENABLE settings

– Shader contains static branches (using boolean varable): each
static branch permutation require a compilation

(On D3D9 class GPUs and older)

– User clip plane

– Fixed function fog parameters

– MRT related states

29

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Shader Compilation: Mitigation

• Old methods are still good:
– At loading time, create all shaders that will be used in

the level

– Render everything in the scene with at least 1
primitive per mesh

– For dynamic streaming, render a hidden object that
contains mostly used materials at streaming time

• If you cannot do any of the above
– The driver is okay to compile shaders on fly,

just don’t use a shader immediately after its creation

– Be sure to give the driver 500ms ~ 1000ms to
compile the shader between Create***Shader and
Set***Shader

30

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Shader Compilation: Mitigation (cont.)

• For state dependent recompile:
– Group objects by dangerous states

– Avoid or reduce changing the states

– Ensure the shader is created and rendered with under
the states used most

• If using D3D11, async creates can help
– Do so consistently since using async creates will turn

off certain functionality in the driver. (i.e., don’t do it
once at startup and never again)

• Do not forget to use Nsight to verify the
mitigation of runtime shader compilation

 31

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Resource Management Basics

• Creating and destroying resources

– The memory is not always allocated at
creation time, but at the point the resource
being referenced first time – may raise a
stutter (for Vista and newer OSes)

– Creating large resources at runtime is a huge
cost

– The release call only drops the reference
counter by 1. The resource is destroyed
when its counter reaches 0

– Frequent creating/destroying resources will
result in vidmem fragmentation

• Whenever possible, reuse

32

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Resource Management Basics (cont. 1)

• CPU-GPU sync point

– A CPU-GPU sync point is caused when the
CPU needs the GPU to complete work before
an API call can return

– One bad sync point may halve your frame
rate

• Various sync points

– Immediate update of a buffer still in use by
GPU

– Read back the data in render target you just
rendered to

– Allocating a large resource after release a
large resource

33

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Resource Management Basics (cont. 2)

• Why are sync points so bad?

– Ideal frame time should be max(CPU time,
GPU time)

– CPU-GPU Sync point turns this into CPU Time
+ GPU Time.

– A long duration sync-point can introduce
stutter

34

Ideal

GPU

CPU

With Sync point

Presents Presents

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Resource Management Basics (cont. 3)

• Recall that GPU works 1~4 frames
behind CPU. A random sync point
occurring in a frame means:

– Flush the command buffer

– Wait for GPU up to 4 frames!

– Stutter occurs

• Locking resources in D3D9

– Locking any buffer with flags=0 guarantees
CPU-GPU Sync point if that buffer is still in
use.

35

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Resource Management: Mitigation

• General guidance 1

– Use DISCARD flag when locking/mapping
resources

(When using DISCARD flag, you may get a new buffer
instead the one you try to update. The new one will
replace the original one later. This avoids sync point,
but increases footprint.)

– Apply DYNAMIC usage for frequently updated
buffers and NOOVERWRITE flag during
updating

(The driver tends to place DYNAMIC resource in
system memory. But many vertex/index buffers and
small textures are fine to stay there.)

36

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Resource Management: Mitigation (cont. 1)

• General guidance 2

– Avoid creating/destroying resource at
runtime

– Try allocating buffers at startup and reusing
them at runtime

– Before reusing a resource, issue a query to
check if GPU has finished using it

37

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Resource Management: Mitigation (cont. 2)

• Carefully managing small buffers

– Animation, particle system, UI elements, etc.

– Game engine can manage a vidmem pool for
resource reusing & updating

• Self managed contention-free buffer

– Game engine allocates a buffer as a memory
pool. Treat it as a heap or circular buffer

– Keep 3 lists for: free spaces, allocated
spaces and spaces to be freed

– To free a space, put it into to-be-freed list
and issue a query to ensure GPU finished
using it, and then move it to free-space list

38

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Oversubscription: Mitigation

• If create / destroy is required at
runtime:
– Always destroy *then* create

– Even momentary oversubscription can cause memory
management problems

• Video memory allocation:
First come, first serve

39

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Oversubscription: Mitigation (cont. 1)

• Allocating resources in order of
importance:
1. Depth-stencil surface

2. Render target

3. Read-only random access resources:
frequently used textures

4. Read-only streams and less used resources:
Vertex buffer, index buffer, small textures

• At same importance, allocating
resources in order of size and format:
– Larger, higher AA and FP format resources first.

40

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Oversubscription: Mitigation (cont. 2)

• Oversubscription not always a problem
– As long as key resources that are frequently written to

fit into vidmem, reading from other resources in
hostmem should not noticeably slow performance,
and paging between vidmem and hostmem should be
minimal.

• GPUView is a great tool for tracking
paging

– Red block in GPU harware queue represents paging

41

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Queued Frames

• The necessity of frame queuing
– Why the driver always tries to buffer more frames?

– The more frames being queued, the less chance CPU
waiting on Present (less bubbles in timeline)

– Less bubbles in GPU timeline, too

– Driver can schedule command buffer flushing ahead
to cover uneven CPU frames

– In general, queuing -> better peformance

42

N N+1 N+2 N+3

N-1 N N+1 N+2

N N+1 N+2 N+3

N-2 N-1 N N+1

N+4

Not

Queued

Queued

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Dilemmas in Queued Frames

• Dilemma #1
– Limiting buffered frames to 1 can shorten input latency

– But it increases the chance of micro-stuttering, and idle
bubbles in GPU processing, meaning lower performance

• Dilemma #2
– Not limiting buffered frames can help smooth framerate

– But a bad sync point will hurt more than no buffering

• If you decide to limit it,
– Ensure your game engine distributes workload evenly

– Enhance resource management to minimize sync-stall
cost

43

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Queued Frames: Mitigation

• Experiment on queued frames

– Adjust the “maximum pre-rendered frames”
setting in NV control panel

– Is the stuttering getting better?

44

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Queued Frames: Mitigation (cont.)

• Methods to limit buffered frames

– Do not force it from NV control panel!
It affects the entire system and other games

– Use event query (see DXSDK document)
But it’s not the best way – CPU gets blocked

– Use API functions:
IDirect3DDevice9Ex::SetMaximumFrameLatency
IDXGIDevice1:: SetMaximumFrameLatency

45

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

• CPU frametime vs. GPU frametime

– The game engine invokes Present at t0, t1, t2, …

– The user sees the frames at T0, T1, T2, …

– ∆t0, ∆t1 cannot be used as elapsed time for updating
since they are not the same values as ∆T0, ∆T1

Timing Issues

46

N N+1 N+2 N+3

N-1 N N+1 N+2

Present Present Present Present

t0 t1 t2

∆t0 ∆t1

∆T0 ∆T1
T0 T1 T2

CPU frames

GPU frames

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Timing Issues (cont.)

• A couple of situations
– Using CPU frametime is fine if the frame is CPU bound

– CPU frametime has huge discrepancies from real frametime
if GPU workload is much higher

47

∆t0 ∆t1

N N+1 N+2 N+3

N-1 N N+1 N+2

∆T0 ∆T1

CPU frames

GPU frames

∆t0 ∆t1

N N+1 N+2 N+3

N-1 N N+1 N+2

∆T0 ∆T1

CPU frames

GPU frames

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Timing Issues: Mitigation

• Use GPU time stamps
– After Present call, issue a time stamp query to get the

time point GPU finish the present.

– But GPU works behind CPU. The query result returns a
few frames later and can only be used for estimation

– To get the result quicker, invoke GetData with a
FLUSH flag immediately after issuing, that hints the
driver to flush command buffer

• Frametime estimation
– Straightforward way: averaging frametimes in past

several frames

– More advanced way: comparing CPU frametimes to
GPU timestamps to see the frame is CPU bound or
GPU bound, and compute a weighted result

48

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Query Basics

• Asynchronized queries in D3D

– Async query introduced since D3D9 due to
GPU working behind CPU

– Spinning on retrieving query result can result
in pipeline bubble

while (S_FALSE == pQuery->GetData(…,
D3DGETDATA_FLUSH));

– This produces a CPU-GPU sync point and
may become the source of stuttering

49

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Event Queries

• Event queries can be used to eliminate
queued frames in driver

– It helps to reduce input latency, but…

– It also exposes unbalanced frame-to-frame
CPU workload -> micro-stuttering

– CPU has to wait on the query return, thus
the parallelism between CPU & GPU becomes
lower -> lower performance

– The driver is unable to perform certain
optimizations without knowledge of multiple
queued frames

50

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Occlusion Queries

• Occlusion queries tend to have high
latency

– The result may return after 1~3 frames

– Avoid spinning on GetData, which can cause
much worse stalls:

First, CPU waits for GPU on query results,
Then, GPU waits for CPU for submitting new frames
CPU-GPU almost work in serialized mode

This may cancel the benefit of using
occlusion query.

51

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Queries: Mitigation

• Be cautious when using queries

– Make sure your use of queries is optimal and
not introducing bubbles in the pipe

– Ideally, with optimized resource
management and high framerate, you should
not be limiting queued frames with event
query.

– Efficiently using occlusion query requires a
complicated non-block system (not covered
in this talk)

52

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Check Your Middleware

• Middleware is generally written in a
vacuum

– What works best in a small environment
might not scale well

• Especially check for CPU-GPU sync
points

53

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Vsync, SLI & Many Other Things

54

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Vsync

• Vsync is a source of micro-stuttering

– Framerate fluctuates between vsync points:
60fps, 30fps, 20fps, …

– Applications can implement customized
frame constraint system to avoid sudden
framerate change

• Latest NVIDIA control panel offers the
option of Adaptive Vsync

– When framerate drops below the vsync
point, vsync is disabled

55

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

SLI

• Micro-stuttering is much easier to trigger
in multi-GPU environment
– Two or more GPUs may present the rendering results

at uneven cadences

– Sync points raised by resource updating and query are
harder to cover

– Inter-GPU data transfer will place additional sync points

• The driver’s responsible for eliminating
stutters in SLI
– But the application needs to be well behaved

• In-depth SLI discussion is out of the scope of this talk.
Please contact us if you have more questions

56

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Other causes of stuttering

• Some less common causes of stuttering:

– GPU context switch
For applications using compute shader, CUDA or other
GPU computing tasks, the switching between graphics
and computing contexts may flush command buffers
at improper time

– Contention among multiple D3D devices
Games running with multiple windows and D3D
devices may suffer resource contention

– Driver running out of paged/non-paged pool
Under XP 32bit, the low availability of paged/non-
paged pool can be troublesome for games keeping
lots of resources in flight

– There’re more possible causes, but we can’t cover all
of them here.

57

https://developer.nvidia.com/gameworks

gameworks.nvidia.com

Thanks!

Q & A

58

https://developer.nvidia.com/gameworks

