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ABSTRACT: Basic geodetic theory is applied to determine the geodetic azimuth 
and geodetic altitude required to point dish antennas to geostationary communi- 
cation satellites. The mathematical treatment presented here takes into consider- 
ation the ellipticity of the earth. This generalization contrasts with standard formulas 
published in technical books in satellite communication engineering where a spher- 
ical approximation is implemented. Comparisons between the spherical and more 
rigorous ellipsoidal methods are discussed. Although the differences between the 
two approaches are not significant, they should be taken into consideration when 
very precise pointing to geostationary communication satellites or other space ob- 
jects is dictated. The suggested method is simple to understand and straightforward 
to implement, and due to its advantages should replace any spherical alternative 
currently in use. 

INTRODUCTION 

A practical and very common problem is the terrestr ial  pointing of earth-  
based parabolic antennas to satellites (e.g. ,  geosta t ionary communicat ion 
satellites) and extragalactic radio sources [e.g.,  very long baseline interfer-  
ometry (VLBI)] .  Grea t e r  aiming accuracy is required for the exact pointing 
of optical instruments to stars or, using n a r r o w - b e a m - l a s e r  ranging devices, 
pointing them to re t roref lectors  in orbit ing space platforms. In all these 
cases the presumption is made  that the ear th-based tracking instruments 
have an altazimuth mounting.  Therefore ,  the pr imary object ive is to de- 
termine the spat ia l-object  azimuth and al t i tude (for definitions see e.g. ,  
Mueller 1969, p. 33) at some instant t. These two parameters  are the so- 
called look angles in the terminology popular ized by scientists and engineers 
specializing in the electr ical /electronic field. 

A ple thora  of recently published textbooks addressed 1o students of elec- 
tronic engineering [e.g., Agraval (1986); Ha  (1986); Pratt and Bostian (1986); 
Pattan (1993)] treat  this subject  along the same premises using a spherical  
approximation that assumes familiari ty with spherical  t r igonometry.  A more  
rigorous and comprehensive approach is introduced here based on elemen-  
tary concepts of ell ipsoidal geodesy and straightforward definitions of co- 
ordinate systems. No solution of spherical triangles is required in this lat ter  
implementation.  The choice advocated  in the present  paper  originates con- 
ceptually from classical equat ions in three-dimensional  geodesy where the 
terrestrial target has been substi tuted by an artificial geostat ionary satelli te.  

Before the advent of digital satelli te communicat ions ,  most terrestr ial  
communication links were established via ground-based communication lines. 
Beginning with the launch of the first commercial  satelli te,  Ear ly  Bird,  global  
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communication technology has changed at an unanticipated pace. All in- 
ternational, and almost all domestic long-distance television-program dis- 
tribution is now established through spatial satellite connections. An  in- 
creasing amount of international telephone traffic as well as all types of 
domestic data and voice communications are now transmitted through sat- 
ellites instead of the standard optical-fiber links or line-of-sight microwave 
terrestrial networks. 

To communicate with a satellite, ground-based reflector (dish) antennas 
are used. Reflector parabolic antennas can focus the transmitted power 
from/to a narrow region of the sky. This allows for establishment of com- 
munication links over long distances, minimizing transmitted electromag- 
netic power requirements. However,  because the signal is concentrated in 
a narrow region of the sky, the antenna must be precisely pointed at the 
emitting/receiving source. The problems in pointing an antenna can range 
from simple to complex, depending on the motion of the satellite in its orbit. 

Most communication satellites use circular geostationary orbits. In this 
particular situation, the satellite remains above a fixed location on the earth's 
equator at a constant geocentric distance. This greatly facilitates pointing 
at the satellite from a ground-based antenna when the satellite is above the 
observer horizon. Aside from data transfer to/from satellites, dish antennas 
are typically used in radio astronomy for studying extraterrestrial radio 
sources. The problem of pointing toward a celestial object, as opposed to 
a geostationary communication satellite, is complicated by the earth's ro- 
tation. The apparent position of the object on the celestial sphere constantly 
changes with time and, among others, effects of precession, nutation, and 
polar motion must be taken into consideration. This case is beyond the 
scope of the present work and is not discussed. 

Similarly, the conversion from geodetic azimuth and vertical angle to 
"true" astronomic azimuth and altitude is left outside this presentation 
because of the difficulties associated with accurately knowing the compo- 
nents of the deflection of the vertical at the point where the antenna or 
tracking instrument is located. 

SPHERICAL APPROXIMATION 

The place on the earth's surface where the dish antenna is located is 
denoted by P' (see Fig. 1). Assume that its position has spherical coordinates 
(X, 4;)  wl~ere X always denotes longitude, measured positive east, and + '  
indicates spherical (geocentric) latitude. Assume furthermore that the sub- 
satellite point E- - in te rsec t ion  with the earth's surface of the geocentric 
radius vector to the satellite S - - i s  on the equator at a longitude ks. The 
angle -/between the radius vectors of points P'  and E can be obtained using 
the right spherical triangle P ' Q E  depicted in Fig. 1. Applying Napier 's rules 
it follows that 

cos ~ = cos + '  cos(Xs - X) (t) 
The distances OP '  and OS, respectively R and r, are related with the angle 
~/by the equation (see Fig. t) 

d = r[1 + ( R / r )  2 - 2 ( R / r ) c o s  ~l] ~2 (2) 

where d - topocentric distance from the antenna to the satellite, or alter- 
natively, the range of object from observer; r is used to denote the geocentric 
distance from the earth's center to the spacecraft, which for an ideal geo- 
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FIG. 1. Look Angles Calculation Assuming Spherical Earth 

stationary satellite is constant, r = 42,200 km; and R = a "mean value" 
for the radius of the earth; the radius of a sphere that has the same volume 
as the earth ellipsoid; hence, R = 6,371 km (Moritz 1992). 

Using the law of sines it can be written 

r/sin z '  = d/sin ~r (3) 

from where the spherical (geocentric) zenith distance z '  of satellite S at 
antenna location P'  can be solved for 

z' = s i n - ' [ ( r / d ) s i n  ~1 (4) 

From this, the altitude v' follows immediately: Because the term altitude 
specifically refers to the local astronomic horizon, a more appropriate word 
would be spherical vertical angle; thus, if v' = 90 ~ - z ' ,  then 

v '  = c o s -  ' [ ( r / d ) s i n  ~/] (5) 

From Fig. 1 it is clear that the azimuth c,' of the satellite is a function of 
the angle f3. In this particular situation, as can be seen in the Fig. 1, eL' = 
1 8 0  ~ _ 13. 

The angle 13 is computed using Napier 's rules as 

13 = cos - l (co t  "y tan + ' )  (6) 

Consequently, once the vertex angle 13 at P'  is known, the value of the 
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azimuth is easily determined using one of the four possible scenarios shown 
in Fig. 2. 

RIGOROUS ELLIPSOIDAL APPROACH 

To improve the accuracy of the calculation of the look angles, the spherical 
approximation of the earth is replaced by an oblate ellipsoid of revolution. 
This approach eliminates errors introduced by spherical geometry and, con- 
sequently, discrepancies due to differences in definition between geocentric 
and geodetic parameters (i.e., zenith distances and latitudes). Fig. 3 illus- 
trates the advantage of using an ellipsoidal model of the earth. The value 
of the geodetic zenith distance z (referred to the normal to the ellipsoid) is 
more accurate than z'  because the location of the observer at point P is 
closer to its true location on the earth surface by the mere fact that the 
earth more accurately resembles a flattened ellipsoid than a sphere. In the 

~,= f ='= 180 o - #  ='= 180 o + #  ~'=360 o - #  

]~c~ 
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FIG. 2. Azimuth Calculation as Function of Subsatellite Point Location with Re- 
spect to Earth Station 

FIGURE NOT TO SCALE 

(Geodetic Zenith) 

, , /  / of e l l ipso id  at 
I ~ P  oint P. 

/ /  ~ Reference 
/ El l ipsoid 

211 ,= a " ' "_ ,~  r D 

~ Geodetic Latitude of P .~ 
' -  Geocentric Latitude of P ~ = ~' 

z = Zenith distance measured using e l l ips ioda l  earth. 
z '= Zenith distance measured using spherical earth. 

FIG. 3. Sphericaland Geodetic Zenith Distances 

118 



11, 

~'S 

"" / ." 
R3(~, +~ ' /2)  

FIG. 4. 

0 

z R 1 (~ /2  _~ 

L X,A, o P(k j l ,h )  

7 ~ 

Y 

;k _- Geodetic Longitude 
= Geodetic Latitude 

h = Geodetic Height 

Transformation From Local Terrestrial (x, y, z) to Local Geodetic (e, n, u) 

figure, we are assuming that, as usual, the geodetic latitude +, where the 
antenna is located, is known a priori. Note that if this value is interpreted 
as spherical latitude, an error in the value of the zenith distance is intro- 
duced. 

The ellipsoid of revolution adopted in this investigation is the GRS 80 
ellipsoid (Mortiz 1992). The two geometric parameters of interest are its 
size, defined by the semimajor axis, a = 6,378,137 m, and its shape, specified 
by the flattening f or, equivalently, its inverse, f -1  = 298.257222101. 

Therefore, it is critical, for sake of rigor, that all pertinent calculations 
be made with respect to the local geodetic coordinate system (e, n, u) at P 
(see Fig. 4). There are several possible selections of coordinate axes (e.g., 
left-handed, as opposed to right-handed, the one preferred here) for such 
a local frame [e.g., Rapp (1979); Leick (1990); Burkholder (1993)]. The 
definitions and nomenclature in the present study follow closely those in 
Soler and Hothem (1988, 1989). 

The geodetic azimuth a and "geodetic altitude" v (i.e., geodetic vertical 
angle) of the satellite can be computed using 

tan c~ = e/n (7) 
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tan v = u/(e 2 + n2) 1/2 (8) 

This implies that the components  of the topocentric range PS to the satellite 
in the (e, n, u) local geodetic coordinate system are required. These can be 
calculated by transforming the components  along the (x, y, z) f rame at P, 
into the (e, n, u) system. The (x, y, z) f rame is parallel to the geocentric 
conventional terrestrial reference frame (x, y, z). This t ransformation is 
performed applying the rotation matrix [R] defined as [e.g., Soler (1976)] 

[R] = Rl(1/2~v - dO)R3(k + 1/2~) 

- s i n  k cos k 0 ] 
[R] = - s i n  dO c o s k  - s i n  dO s i n k  cos dO / 

cos dO cos k cos dO sin h sin dO J 

and the matrix equation 

= [R] 

(9a) 

(9b) 

(lO) 

It follows immediately that the coordinates of satellite S along the (x, y, z) 
local coordinate system are 

= Ys - Ye (11) 
Z S Zp 

The rectangular coordinates x, y, z of satellite S and antenna location P c a n  
be readily computed from their known curvilinear geodetic coordinates using 
well-known expressions 

(i} ) = ~ ( N  + h)cos * sin X (12) 
I .[N(1 - e 2) + h]sin + 

where N (see Figs. 3 and 4) is the principal radius of curvature in the prime 
vertical, N = a/W with W = (1 - e 2 sin2+)m; and the square of the ellipsoid 
eccentricity is given in closed form by e 2 = 2f - f2. 

The derivation advanced herein is general and applies to any type of 
earth-orbiting artificial satellite. The position of the satellite in rectangular 
coordinates (x, y, z)s may be directly available from its ephemeris  given at 
constant time intervals, or, alternatively, they can be computed from the 
satellite's six orbital Keplerian elements using standard procedures [e.g., 
Leick (1990)]. It should be realized that getting these quantities in real t ime 
is a problem in itself and generally one would rely on predicted values. 

The curvilinear geodetic coordinates for the antenna location were im- 
plicitly given above as (X, dO, h) where h is the ellipsoidal (geodetic) height 
of the point. If necessary, this paramete r  can be approximated by h -~ Ng 
+ H, where Ng is the undulation of the geoid or geoid height, and H is the 
orthometric height, also loosely referred to as elevation or mean sea-level 
height. H can be accurately determined through geodetic leveling or ap- 
proximately interpolated from topographic maps. The value of Ng requires 
access to modern computer  software that is able to numerically model  the 
geoid and estimate geoid heights. In the conterminous United States, N~ is 
approximately bounded by the values - 3 5  m < Ng < - 7  m. 
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In the special case of an ideal geostat ionary communicat ion satellite S 
moving in a circular orbit of a period T of a sidereal day and coplanar with 
the earth's equator  (es = 0; i~ = 0~ T --- 24h), its position in a curvilinear 
coordinates is simplified accordingly: qb~ = 0 ~ and hs is known, hs = r - 
a (see Fig. 3). Thus,  in essence, the only needed variable is k~, defining the 
location of the satellite on the equatorial  plane. 

Fig. 5 presents a self-explanatory step-by-step block diagram to implement  
the theory just described. Notice that as an added advantage of this ap- 
proach, the final value of the azimuth is determined through the inverse of 
a tangent tr igonometric function that has a fraction as an argument.  Con- 
sequently, by using standard subroutines that are readily available in the 
libraries of most compilers (e.g., D A T A N 2 ) ,  the exact quadrant  where the 

PROGRAM INPUTS 

TRANSFORMATION 
CURVILINEAR TO CARTESIAN 

SATELLITE COMPONENTS 
ON LOCAL (x. It, z) 

Antenna latitude 
Antenna longitude k 
Antenna ellipsoidal height h 
Subsatellite point longitude ks 

xp = (N+h)  cosX cos~b 
yp = (N + h) sink cos~b 
zp = [N(1-e2)+h] sin~b 
X S = r COSk S 

Ys = r sinks 
ZS ~ 0 

SATELLITE COMPONENTS 1 
ON LOCAL (e, n, u) 

GEODETIC AZIMUTH 
GEODETIC VERTICAL ANGLE 

{'} {-} 
= Y s  - YP 

Z s Zp 

U 

FIG. 5. 
Earth 

Antenna look angles: 
PROGRAM OUTPUTS Geodetic azimuth 

Geodetic vertical angle 

Calculation of Look Angles to Geostationary Satellites Using Ellipsoidal 
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angle is located can be found without having to turn to sequential  checks 
of the type depicted in Fig. 2. This algorithm should be helpful to any reader 
interested in applying the technique. A PC DOS compatible MS F O R T R A N  
program is available from the writers on request. Simple computer programs 
such as this one makes obsolete the nomograms that are frequently repro- 
duced in satelli te-communication textbooks to visually interpolate azimuth 
and vertical angles. 

COMPARISON OF RESULTS 

To quantify the differences between the spherical and ellipsoidal methods, 
a set of numerical examples was analyzed. Instead of using a single location 
on the earth's surface, the distinctive symmetry of the problem was exploited 
to produce a tabulation from which any case could be interpreted. The 
reader is well aware that, presently, many geostationary satellites around 
the equator are active. For example, communication satellites visible at 
Washington, D.C.,  that broadcast popular  TV channels include, among 
others, F2 (SATCOM 2R; ks = -72~  G5 ( G A L A X I  5; X~ = -125~  F3 
(SATCOM C3; ks = -131~ and F1 (SATCOM C1; ks = -157~ 

Initially, Table 1 was compiled. It shows the differences between the 

TABLE 1. Calculated Pointing Angles in Degrees to Geostationary Satellite 
(Cbs = 0 ~ for Different Earth-Station Latitudes under Condition k = ks 

Pointing Angles Pointing Angles Difference 
Assuming Spherical Assuming Ellipsoidal (Ellipsoidal-Spherical 

EaCh-station EaCh EaCh Method) 
latitude Azimuth Ve~ical angle Azimuth: Vedical angle Azimuth VeNcal angle 

(1) (2) (3) (4) (5) (6) (7) 

0 180 90.0000 180 90.0000 0 0 
5 180 84.1139 180 84.1185 0 0.0046 

10 180 78.2386 180 78.2475 0 0.0089 
15 180 72,3843 180 72.3972 0 0.0129 
20 180 66.5612 180 66.5775 0 0.0163 
25 180 60.7782 180 60.7972 0 0.0190 
30 180 55.0434 180 55.0645 0 0.0211 
35 180 49.3641 180 49.3864 0 0.0223 
40 180 43.7459 180 43.7688 0 0.0229 
42.98 180 40.4285 180 40.4515 0 0.0230 
45 180 38.1935 180 38.2164 0 0.0229 
50 I80 32,7105 180 32.7329 0 0.0224 
55 180 27,2990 180 27.3207 0 0.0217 
60 180 21.9605 180 21,9811 0 0.0206 
65 180 i6.6951 180 16.7147 0 0.0196 
70 180 11.5023 180 11.5210 0 0.0187 
75 180 6.3810 180 6.3989 0 0.0179 
80 180 1.3291 180 1.3467 0 0.0176 
81.326 180 0 180 0.0174 0 0.0174 
81.344 - -  180 0 - -  
85 . . . .  
90 . . . . . . .  

Note: A missing value indicates that satellite is below the observer's horizon. 
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spherical and ellipsoidal options assuming antennas located on the reference 
meridian (X = 0 ~ but at different positive geodetic latitudes separated by 
increments of 5 ~ Notice that in this table a single geostationary satellite 
located at Xs = 0~ is postulated. 

The first important conclusion is that for observers above latitude 81~ 
all true geostationary satellites are always below the local horizon, and thus 
not visible. Hence, - 81~ < + < 81~ determines the approximate range 
of latitude that an earth station must have in order to successfully com- 
municate with a satellite parked in geostationary orbit. These latitude limits 
should not be taken literally, because small vertical angles (e.g., <10 ~ are 
more sensitive to receiver noise due to atmospheric refraction, earth's ther- 
mal emission, line-of-sight obstructions, signal reflections with the ground 
or nearby structures, and other factors, sometimes making ground-satellite 
communications difficult or impractical, 

To further visualize the tabulated values, Fig. 6 shows the error introduced 
in the vertical angle when the ellipsoidal approach is replaced by a spherical 
approximation. The maximum difference never reaches more than 0~ 
= 1'.5. Although this quantity may be considered insignificant, it should 
be stressed that a directional error of this magnitude at the antenna location 
translates into a position error of approximately 2.6 km at satellite height. 
Consequently; whereas this may not affect communication using wide-beam 
dish antennas, it should not be neglected in situations with highly directive 
gain antennas or when accurate directional pointing (e.g., by laser) is at- 
tempted. 

The peculiar shape of the curve in Fig. 6 is a consequence of the geometric 
properties implicit in the definitions of spherical and geodetic (ellipsoidal) 
zenith distances. The maximum difference between the spherical and ellip- 
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FIG. 6. Difference in Degrees in Calculated Elevation Pointing Angles versus 
Latitude of Observer (Ellipsoidal Method - Spherical Method) 
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soidal approx imat ions  is 0~ r eached  at s ta t ions wi th  la t i tude  +_42~ 
and then decreases  to a va lue  of  0~ w h e n  the  satel l i te  is on the  local  
hor izon plane  at s ta t ions with la t i tude  +_ 81~ A t  h igher  (posi t ive)  and 
lower (negat ive)  la t i tudes,  geos ta t iona ry  satel l i tes  have  nega t ive  ver t ica l  
angles and are  n e v e r  above  the  hor izon .  

The  results in Tab l e  1 do not  change  w h e n  the  an t enna  is loca ted  in the  
southern  hemisphere ,  excep t  that  the  az imuth  to the  satel l i te  is 0 ~ ins tead 
of 180 ~ . This  is i m m e d i a t e l y  exp la ined  by s imple  g e o m e t r i c  a rguments .  Fur-  
ther,  the t abu la ted  d i f ferences  and the  same  w h e n  long i tudes  for bo th  the  
ear th-s ta t ion locat ion a re  the  subsatel l i te  po in t  have  ident ical  values ,  o r  in 
other  words, when the meridians  of  the satelli te and the antenna  coincide. 

A more  compl ica ted  s i tuat ion arises w h e n  an tenna  and satel l i te  a re  not  
on the same mer id ian .  Obvious ly ,  in this genera l  case,  no t  only  the  e leva t ion  
angles but  also the  az imuth  angles  resul t ing f r o m  applying the spher ical  o r  
eilipsoidal me thods  disagree .  

Tab le  2 and Fig. 7 s u m m a r i z e  the  results assuming a s ta t ion loca ted  at h 
= 0 ~ qb = 45 ~ Not i ce  that  whi le  the  largest  d i f fe rence  in e l eva t ion  always 
occurs when  the  satel l i te  is on  the  mer id i an  of  the  an tenna ,  the  d i f fe rence  
in azimuth increases  with ,the va lue  of  h~ - h, unti l  it r eaches  a maxi-  
m u m / m i n i m u m  of  _+ 0~ be fo re  the  satel l i te  d i sappears  f rom v iew w h e n  
its longi tude  is - 7 7 ~  < hs < 77~ This  can be  gene ra l i zed  for  any o the r  
location.  F o r  example ,  at Wash ing ton ,  D . C .  (k = - 7 7 ~  + = 38~ 
only geos ta t ionary  satel l i tes  wi th  theore t i ca l  l imits - 1 5 4 ~  < )ts < 0~ 
are visible. 

Fig. 7 shows an in te res t ing  charac ter i s t ic  of  the  p lo t t ed  d i f ferences :  the  
magni tude  of  the  e r r o r - - i n  abso lu te  s e n s e - - i n t r o d u c e d  in az imuth  and 
vert ical  angle are  inverse ly  re la ted .  Tha t  is, a m a x i m u m  e r ro r  in az imuth  

TABLE 2. Calculated Pointing Angles in Degrees with Geostationary Satellite 
(~s = 0 ~ at Different Longitudes (Earth Station Assumed at X = 0 ~ ~ = 45 ~ 

Subsatellite- 
point longitude 

(1) 

0 
10 
20 
30 
40 
50 
60 
70 
75 
77.6865 
77.6914 

- 1 0  
-20 
-30 
-40 
-50 
-60 
-70 
-75 
-77.6865 
-77.6914 

Pointing Angles Assuming 
Spherical Earth 

Azimuth Vertical angle 
(2) (3) 

180.0000 38.1935 
165.9981 37.2411 
152.7637 34.5024 
140.7685 30.2785 
130.1207 24.9386 
120.6821 18.8282 
112.2077 12.2299 
104.4328 5.3605 

[100.7286 1.8768 
98.7743 0.0000 

194.0019 37.2411 
207.2363 34.5024 
219.2315 30.2785 

1229.8792 24.9386 
!239.3179 18.8282 
247,7923 12.2299 
255.5672 5.3605 
259.2714 1.8768 
261.2257 0.0000 

Note: A missing value indicates that 

Pointing Angles Assuming 
Ellipsoidal Earth 

Azimuth 
(4) 

180.0000 
165.9883 
152.7459 
140.7453 
130.0943 
120.6540i 
112.1789 
104.4038 
100.6996 
98.7453 
98.7418, 

194.0117i 
207.2541 
219.2547 
229.9057 
239.3460 
247.8211 
255.5962 
259.3004 
261.2547 
261.2582 

satellite is below the 

Vertical angle 
(5) 

38.2164 
37.2629 
34.5215 
30.2941 
24,9504 
18.8367 
12.2358 
5.3646 
1.8804 
0.0034 
0.0000 

37.2629 
34.5215 
30.2941 
24.9504 
18.8367 
12.2358 
5.3646 
1.8804 
0.0034 
0.0000 

observer's horizon. 

Difference (Ellipsoidal- 
Spherical Method) 

Azimuth Vertical angle 
(6) (7) 

0 0.0229 
-0.0098 0.0218 
-0.0178 0.0191 
-0.0232 0.0156 
-0.0264 0.0118 
-0.0281 0.0085 

0.0288 0.0059 
-0.0290 0,0041 
- 0.0290 0.0036 
- 0.0290 0.0034 

0.0098 0.0218 
0.0178 0.0191 
0.0232 0.0156 
0.0265 0.0118 
0.0281 0,0085 
0.0288 0.0059 
0.0290 0.0041 
0.0290 0.0036 
0.0290 0.0034 
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corresponds to a minimum error in vertical angle and vice versa. More 
significant yet is the behavior shown by the curve representing the total or 
combined error. Note that when both errors  in azimuth and vertical angle 
are taken into consideration, the total error never goes below 0~ Thus, 
whatever the location of the antenna and satellite, the magnitude of the 
total error always has a value between 0~ and 0~ As explained before, 
this difference between the spherical and ellipsoidal methods may not be 
negligible when pointing with narrow field-of-view instruments is attempted. 
For example, laser ranging systems to satellites require a very stringent 
pointing accuracy of _+ 1" or 0~ (Seeber 1993). 

CONCLUSIONS 

This investigation introduces a rigorous ellipsoidal alternative to deter- 
mine look angles (geodetic azimuth and vertical angle) for pointing dish 
antennas to true geostationary satellites. The treatment is general and can 
be extrapolated to satellites moving in arbitrary orbits. The theory presented 
serves two objectives. First, it avoids reliance on spherical trigonometry, 
depending exclusively on basic geodetic concepts and conventional coor- 
dinate systems. Second, and most important, it assumes the earth to be an 
ellipsoid of revolution; thus, it is more factual than methodologies currently 
proposed in textbooks on satellite communications. 

Results from spherical and ellipsoidal techniques are not drastically dif- 
ferent. Nevertheless, the detected pointing discrepancies may become sig- 
nificant with very high gain antennas and even more crucial when electro- 
optical devices such as lasers are used. In conclusion, the writers regard this 
formulation beneficial to experts in the field of satellite communications 
who are not familiar with the mathematical framework of modern geodesy. 
There is no logical justification to pursue a spherical approximation in the 
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future; the theoretical language advanced here is more coherent and pro- 
vides a direct rigorous solution to the problem of look angles. 
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A P P E N D I X  II. N O T A T I O N  

The following symbols are used in this paper: 

e, n, u) 

H 

h 
N 

/) 

7~) ~ 

(x, y, z) 

(x, y,  z) 

= local (right-handed) geodetic coordinate system at any point 
0 ~, +, h): e-axis points to (geodetic) east; n to (geodetic) 
north; and u to (geodetic) zenith; 

= orthometric height (popularly known as mean sea-level height 
or elevation); 

= geodetic height (i.e., ellipsoidal height); 
= principal radius of  curvature in prime vertical plane; 
= undulation (i.e., geoid height); 
= geodetic vertical angle (sometimes referred as elevation or 

altitude); 
= spherical vertical angle; 
= conventional terrestrial reference frame (CTRF), Earth's fixed 

geocentric coordinate system: z points toward the conven- 
tional terrestrial pole (CTP); x passes through point of zero 
longitude as defined by the International Earth Rotation 
Service ( IERS);  y forms right-handed coordinate system with 
x and z; 

= local (terrestrial) frame. Origin is at point of observation and 
x, y, and z axes are, respectively, parallel to x, y, and z axes; 
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Z 

Z t z 

13/. 

OL t 

(x, , ,  h) = 
(k, ~b', R) = 

(x, ,  ,~,  h.J = 

geodetic zenith distance; 
spherical zenith distance; 
geodetic azimuth; 
spherical azimuth; 
curvilinear geodetic coordinates of station at point P; 
curvilinear spherical coordinates of station at point P'; and 
curvilinear geodetic coordinates of satellite S. 
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