Math 124C

Midterm 1

Your Name	Your Signature					
Student ID #	_					
		Rowan		Isa	saac	
	Section (Tues.)	11:30	1:00	11:30	1:00	
	(circle one)	CA	CB	CC	CD	

- Turn off all cell phones, pagers, radios, mp3 players, and other similar devices.
- This exam is closed book. You may use one $8.5'' \times 11''$ sheet of handwritten notes (both sides OK). Do not share notes. No photocopied materials are allowed.
- You can use only a Texas Instruments TI-30X IIS calculator.
- In order to receive credit, you must **show all of your work**. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Place a box around your answer to each question.
- If you need more room, use the backs of the pages and indicate that you have done so.
- Raise your hand if you have a question.
- This exam has 4 pages, plus this cover sheet. Please make sure that your exam is complete.

Question	Points	Score
1	12	
2	7	
3	7	
4	8	
5	8	
6	8	
Total	50	

- 1. Determine if the following limits exist. If they exist, compute them. Justify your answers.
 - (a) (4 points) $\lim_{x \to 2} \frac{x^2 4}{2x^2 3x 2}$

(b) (4 points)
$$\lim_{t \to 0} \left(\frac{5}{3t^2 + 5t} - \frac{1}{t} \right)$$

(c) (4 points)
$$\lim_{x \to 2} \frac{\sqrt{3x-2}}{2x^2 - 7x + 6}$$

2. (7 points) Use the limit definition of the derivative on this problem. Find the slope of the tangent line to the curve $y = \sqrt{5x+1}$ at the point (3,4).

3. (7 points) Calculate the equation of the tangent line to $f(t) = 7t^2 \cdot \sin(t)$ at $t = \pi$.

4. (8 points) Let *c* be a constant. Define F(x) by the piecewise formula

$$F(x) = \begin{cases} cx^2 - 3x & \text{if } x \le -1; \\ cx + 11 & \text{if } x > -1. \end{cases}$$

Find a value of *c* that makes *F* continuous on $(-\infty,\infty)$. Justify your answer. (Your justification should involve limits).

5. (8 points) Find **two** different points on the curve $y = x^3$ at which the tangent line passes through the point (-2,0).

6. (8 points) Find the equations of **all** tangent lines to the curve $y = \frac{5x-4}{2x-3}$ that are parallel to the line 7x + 9y = 2.