How to Calculate Force of Impact

••• kadmy/iStock/GettyImages

During an impact, the energy of a moving object is converted into work, and force plays an important role. To create an equation for the force of any impact, you can set the equations for energy and work equal to each other and solve for force. From there, calculating the force of an impact is relatively easy.

TL;DR (Too Long; Didn't Read)

To calculate the force of impact, divide kinetic energy by distance. F = (0.5 * m * v^2) ÷ d

Impact and Energy

Energy is defined as the ability to do work. During an impact, an object's energy is converted into work. The energy of a moving object is called kinetic energy, and is equal to one half of the object's mass times the square of its velocity: KE = 0.5 × m × v^2. When thinking about the impact force of a falling object, you can calculate the energy of the object at its point of impact if you know the height from which it was dropped. This type of energy is known as gravitational potential energy and it is equal to the object's mass multiplied by the height from which it was dropped and the acceleration due to gravity: PE = m × g × h.

Impact and Work

Work occurs when a force is applied to move an object a certain distance. Therefore, work is equal to force multiplied by distance: W = F × d. Because force is a component of work and an impact is the conversion of energy into work, you can use the equations for energy and work to solve for the force of an impact. The distance traveled when the work is accomplished by an impact is called the stop distance. It is the distance traveled by the moving object after the impact has occurred.

Video of the Day

Impact From a Falling Object

Suppose you want to know the impact force of a rock with a mass of one kilogram that falls from a height of two meters and embeds itself two centimeters deep inside of a plastic toy. The first step is to set the equations for gravitational potential energy and work equal to each other and solve for force. W = PE is F × d = m × g × h, so F = (m × g × h) ÷ d. The second and final step is to plug the values from the problem into the equation for force. Remember to use meters, not centimeters, for all distances. The stop distance of two centimeters must be expressed as two hundredths of a meter. Also, the acceleration due to gravity on Earth is always 9.8 meters per second per second. The force of impact from the rock will be: (1 kg × 9.8 m/s^2 × 2 m) ÷ 0.02 m = 980 Newtons.

Impact From a Horizontally Moving Object

Now suppose you want to know the impact force of a 2,200-kilogram car traveling at 20 meters per second that crashes into a wall during a safety test. The stop distance in this example is the crumple zone of the car, or the distance by which the car shortens on impact. Suppose the car is squished enough to be three quarters of a meter shorter than it was before the impact. Again, the first step is to set the equations for energy -- this time kinetic energy -- and work equal to each other and solve for force. W = KE is F × d = 0.5 × m × v^2, so F = (0.5 × m × v^2) ÷ d. The final step is to plug the values from the problem into the equation for force: (0.5 × 2,200 kilograms × (20 meters/second)^2) ÷ 0.75 meters = 586,667 Newtons.

References

About the Author

Timothy Banas has a master's degree in biophysics and was a high school science teacher in Chicago for seven years. He has since been working as a trading systems analyst, standardized test item developer, and freelance writer. As a freelancer, he has written articles on everything from personal finances to computer technology.

Cite this Article
Did you find this page helpful?
👍
👎
From the WebPowered by

How to Calculate the Force of a Falling Object

••• PavelRodimov/iStock/GettyImages

Calculating the force in a wide range of situations is crucial to physics. Most of the time, Newton’s second law (F = ma) is all you need, but this basic approach isn’t always the most direct way to tackle every problem. When you’re calculating force for a falling object, there are a few extra factors to consider, including how high the object is falling from and how quickly it comes to a stop. In practice, the simplest method for determining the falling object force is to use the conservation of energy as your starting point.

Background: The Conservation of Energy

The conservation of energy is a fundamental concept in physics. Energy isn’t created or destroyed, just transformed from one form into another. When you use the energy from your body (and ultimately the food you’ve eaten) to pick up a ball from the ground, you’re transferring that energy into gravitational potential energy; when you release it, that same energy becomes kinetic (moving) energy. When the ball strikes the ground, the energy is released as sound, and some may also cause the ball to bounce back up. This concept is crucial when you need to calculate falling object energy and force.

The Energy at the Impact Point

The conservation of energy makes it easy to work out how much kinetic energy an object has just before the point of impact. The energy has all come from the gravitational potential it has before falling, so the formula for gravitational potential energy gives you all the information you need. It is:

E = mgh

In the equation, m is the mass of the object, E is the energy, g is the acceleration due to gravity constant (9.81 m s2 or 9.81 meters per second squared), and h is the height the object falls from. You can work this out easily for any object that falls as long as you know how big it is and how high it falls from.

The Work-Energy Principle

The work-energy principle is the last piece of the puzzle when you’re working out the falling object force. This principle states that:

Average impact force × Distance traveled = Change in kinetic energy

This problem needs the average impact force, so rearranging the equation gives:

Average impact force = Change in kinetic energy ÷ Distance traveled

The distance traveled is the only remaining piece of information, and this is simply how far the object travels before coming to a stop. If it penetrates into the ground, the average impact force is smaller. Sometimes this is called the “deformation slow down distance,” and you can use this when the object deforms and comes to a stop, even if it doesn’t penetrate into the ground.

Calling the distance traveled after impact d, and noting that the change in kinetic energy is the same as the gravitational potential energy, the complete formula can be expressed as:

Average impact force = mgh ÷ d

Completing the Calculation

The hardest part to work out when you calculate falling object forces is the distance traveled. You can estimate this to come up with an answer, but there are some situations where you can put together a firmer figure. If the object deforms when it makes impact – a piece of fruit that smashes as it hits the ground, for example – the length of the portion of the object that deforms can be used as distance.

A falling car is another example because the front crumples from the impact. Assuming that it crumples in 50 centimeters, which is 0.5 meters, the mass of the car is 2,000 kg, and it is dropped from a height of 10 meters, the following example shows how to complete the calculation. Remembering that the average impact force = mgh ÷ d, you put the example figures in place:

Average impact force = (2000 kg × 9.81 m s2 × 10 m) ÷ 0.5 m = 392,400 N = 392.4 kN

Where N is the symbol for a Newtons (the unit of force) and kN means kilo-Newtons or thousands of Newtons.

Tips

References

About the Author

Lee Johnson is a freelance writer and science enthusiast, with a passion for distilling complex concepts into simple, digestible language. He's written about science for several websites including eHow UK and WiseGeek, mainly covering physics and astronomy. He was also a science blogger for Elements Behavioral Health's blog network for five years. He studied physics at the Open University and graduated in 2018.