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Abstract: A major trend in biomedical engineering is the development of reliable, self-contained
point-of-care (POC) devices for diagnostics and in-field assays. The new generation of such platforms
increasingly addresses the clinical and environmental needs. Moreover, they are becoming more
and more integrated with everyday objects, such as smartphones, and their spread among unskilled
common people, has the power to improve the quality of life, both in the developed world and
in low-resource settings. The future success of these tools will depend on the integration of the
relevant key enabling technologies on an industrial scale (microfluidics with microelectronics, highly
sensitive detection methods and low-cost materials for easy-to-use tools). Here, recent advances and
perspectives will be reviewed across the large spectrum of their applications.
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1. Introduction

The appearance of lab-on-a-chip (LOC) technologies and the improvement of micro total analysis
systems (µTAS) have provided new tools for a broad range of applications, from health (diagnosis
and disease management) to monitoring of environmental threats, as well as detection of bio-warfare
agents, toxins and allergens in food and agriculture products. The interest in these platforms is
worldwide, as witnessed by the international funding for research and the strong academic and
industrial efforts to turn them into common use tools.

POC tests could in fact pave the way to personalized medicine in non-hospital settings, reduce the
costs of health management, and even make the remaining hospital activity more agile and safer—e.g.,
decreasing the number of samples in laboratories reduces the risks of mislabelling and mishandling,
and the consequent errors in results.

Today, unprecedented perspectives are opening up for the next generation of such devices.
Important societal challenges will be addressed, e.g., in human health and environment preservation,
through common-use tools for rapid and ultra-sensitive diagnostics and on-field testing assays
(aka in vitro diagnostics—IVD or rapid diagnostic test—RDT). However, this goal requires intensive
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development of the relevant key enabling technologies (KETs). Among them, according to
a classification, we should mention at least: advanced materials, nanotechnology, nano- and
microelectronics, photonics, biotechnology and advanced manufacturing. This is, of course, a
conventional division, as no KET can be treated as self-contained in an innovation strategy.

Personalized and preventive healthcare is the main target of the upcoming systems, which should
be able to detect or monitor several relevant parameters, from blood pressure to biomarkers, both in
clinical and domestic settings. Actually, this is the core idea of point-of-care (POC) diagnostics, whose
applications, developed during the last decades, can be coarsely classified as (1) “near-patient” testing,
for quick diagnosis and decision making or long run disease monitoring, and (2) on-field testing,
to prevent the spread of epidemics or to test the safety of water and food.

Desirable features of POC devices or on-field assay, according also to FDA definition of “simple
test” [1], include:

• Quick reliable response: A tests should last less than 1 h and the procedure should be as simple as
possible, with few steps, and in compliance with the basic rules of good laboratory practice.

• Accuracy: sensitivity/specificity and detection limits should meet the legal limits needed for the
specific application, improving or at least equaling the performances of traditional tests in order to
enable medical decisions without further expensive tests so reducing impact on the public health
costs. In this respect, nanotech-based approaches exploiting novel nanomaterials can provide
new amplification methods for signal transduction with significant improvement in sensitivity.
These include the use of metallic nanoparticles (NPs) or nanostructured metal layers for enhanced
SPR or SERS analysis or as electrocatalytic labels as well as the use of nanowires, nanotubes and
graphene [2,3].

• Ease of use: the test should be easily performed by unskilled people after minimal training,
and the results should be clear and easy to understand.

• Self-containment: users should only be required to collect and deliver samples into the device.
Reagent handling, analysis, data interpretation and storing of waste products should limit the
intervention of users and their exposure to biohazard as much as possible.

• Portability and robustness: the tests should be carried out in the field, if needed, implying that they
should be portable, resist the transport, and have a long shelf life. In the best cases, they should
not even require electricity to work, neither cold storage.

• Low-cost: the platforms should be affordable for public healthcare systems, as well as for users
and patients. The tests should be cheaper than standard, and should reduce the costs for the
patient—for example in low-resource settings, where even the cost of travelling to healthcare
structures could be discouraging.

• Multiplexing capacity: Multiplexed point-of-care testing (xPOCT), able to perform more than
one analysis simultaneously [4], could enable a full characterization of a biological sample and a
improvement in clinical diagnostics [5]—for example obtaining a complete molecular fingerprint
of a patient allowing precision medicine approaches [5,6].

The development of POC diagnostic platforms with such characteristics requires remarkable
efforts and a multidisciplinary approach across many technology areas. Below we will discuss some
specific applications, as examples of the potentiality of POCs. In particular, we will first review the
status of material research. Next, we will examine the most relevant innovative technologies aiming
in particular to improve portability and shelf life, and to turn laboratory prototypes into commercial
devices for on-field applications. Then, as a case study, we will present a test for drug sensitivity,
based on a quantitative real-time polymerase chain reaction (qPCR) POC by STMicroelectronics.
Finally, we will provide an insight into the global LOC market to understand the challenges that these
technologies have to face to become commercially available.
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2. POC Technologies in Low-Resource Settings and Developed World

In the developing world and low-resource settings, POC diagnostics could be invaluable for the
quick screening of infectious diseases, which nowadays kill millions of people every year. Malaria,
human immunodeficiency virus (HIV), tuberculosis and paediatric acute respiratory infections (ARIs)
cause 95% of deaths due to infectious diseases all over the world. The situation is particularly
dramatic in Africa, where access to medical care is not common and clinical treatments are often
“syndromic”, i.e., based on the prevalent disease in that area. Related therapy, be it useful or not,
often neglects the real disease [7]. Most hospitals are also overcrowded (only one or two doctors
every 100,000 people, and these mainly in urban areas) and instruments for infection control are
almost non-existent, since the contacts with infected persons are traced but not consistently isolated
for monitoring [8]. Moreover, reaching hospitals could be challenging and expensive for people living
far away. If RDTs could provide real time diagnosis, hospitals could discharge patients sooner, with an
appropriate prescription, avoiding a second visit, with significant improvement in disease management.
RDT devices for infectious diseases have been developed and marketed, but are still available for a
restricted number of people. As an example, recently, Pollock et al. developed a paper-based POC
fingerstick test for transaminase monitoring (particularly important in patients on therapy for HIV
and/or tuberculosis). The test can determine the AST and ALT levels semi-quantitatively in 15 min [9],
and the result is clearly identifiable to the naked eye as a change in colour (blue to pink for high
AST, a red stripe for high ALT). The recent and running outbreak of the Ebola virus disease in West
Africa, so large, severe and difficult to limit, is a dramatic consequence of the conditions of three
of the poorest countries in the world—Guinea, Liberia, and Sierra Leone. The already precarious
condition of these countries has worsened after years of conflicts. The civil war has left their national
health systems largely destroyed or severely impaired. The outbreak has progressively become an
international emergency and the scientific community worldwide is deployed to develop solutions
like vaccines [10] or tests from biological specimens [11,12] to limit the crisis. In this scenario, the use
of POC devices for mass screening of people would have considerably helped.

Another potential application of on-field assays is the detection of biological agents or toxic
compounds from environment, a particularly important challenge in those areas where food and
water are poorly controlled and checked. Once again, this could be the condition of many developing
countries, where the native population often faces gastrointestinal diseases [13,14] and military forces
working locally need to keep their personnel healthy and ready for operations. Multiparameter
tools capable of detecting bacteria, DNA and RNA viruses, protozoans, toxins [15] and biowarfare
agents [16] in food and water, would have a high impact on life-management.

Conversely, POC diagnostics is increasingly becoming of large-scale use in primary care settings
in the developed world. Although often still administered by medical professionals, POC tests may
be hopefully self-administered in some cases, making patients far more responsible for managing
their own conditions. Tests for pregnancy and control of blood glucose concentrations are already of
common use, but various emerging tools for more complex clinical or home management of diseases
are also gradually spreading. Home POC testing reduces the frequency of hospital examinations,
travel expenses, and loss of working time. Empowering individuals to test themselves can improve
their compliance (adherence to diagnosis and treatment regimens) improving the clinical outcome.
Portability/integration with “telemedicine” or “telehealth” ensures the medical supervision by giving
healthcare professionals partial control over patient self-testing and data management, overall resulting
in greater patient satisfaction. Recent studies published by Heneghan et al. report a 50% reduction
in thromboembolic events among patients who self-monitored their International Normalized Ratio
(INR, a prothrombin-related parameter useful in the management of heart diseases) using POC devices
and adjusted their warfarin doses (oral anticoagulation drug [17]) using a nomogram [17–19].

The vast problem of cardiovascular diseases (like heart attacks and stroke) involving around
18 million people annually worldwide (considering the early symptoms) [20], is driving the cardiology
diagnostic market. On-site POC tests for cardiac injury markers (myoglobin, creatinine kinase
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isoenzyme MB-CKMB) and cardiac troponins (cTnI and cTnT) facilitate effective screening, lower
hospitalization rates, and cost saving. It is worth noting that, although cTnI and cTnT are the
best validated, several other direct and indirect biomarkers such as myoglobin, ischemia-modified
albumin (IMA), glycogen phosphorylase isoenzyme BB, copeptin (C-terminal proAVP), fatty
acid-binding protein (FABP), B-type natriuretic peptide (BNP)—mostly measured as NT-proBNP—and
myeloperoxidase have been identified in acute myocardial infarction (AMI) patients, and could be the
targets of future RDTs.

Along with chronic diseases, the problem of cancer, whose global diagnostics market will
reach $168.6 billion by 2020 [21], is driving the development of innovative devices, focusing on
the detection of protein biomarkers such as the prostate specific antigen (PSA), platelet factor 4,
and carcinoembryonic antigen. Multiparameter, rapid diagnostic tools could be effective and save the
public and patient’s money with pathologies like prostate cancer, usually requiring several further
testing. One of the main problems with it PSA, for example, is in its low specificity, although its
detection in routine blood tests is the only parameter approved by FDA [22,23]. Thus, in case of altered
PSA levels, further tests such as digital rectal examination (DRE), trans-rectal ultrasonography (TRUS)
or biopsy are often recommended, which, however, are highly invasive and alter themselves the PSA,
modifying the integrity of the gland. Even worse, the combination of DRE and total PSA levels yields
unreliable results in two-thirds of all biopsied men [24]. A number of new candidate markers for
prostate cancer are under investigation. The combinations between some of them can favour easier and
more accurate diagnosis. In this perspective, a multiparameter easy-to-use tool [25] would be really
effective as a large-scale screening of people against prostate pathologies, avoiding uncomfortable and
expensive tests.

Another aspect to be considered in developed countries is the number of elderly people that is
rapidly growing. The recent advances in key enabling technologies, and in particular the emerging
sector of wearable devices, can provide new solutions going towards the perspective of assisted
living and smart aging, and the realization of an intelligent and personalized medicine through the
continuous monitoring and self-management of an individual’s state of health [26,27]. A number
of examples can be given concerning wearable or implantable devices, most of wearable devices
are based on sweat monitoring in order to control levels of glucose, electrolytes or other analytes
in perspiration [28,29], saliva [30], tears [31] and others body fluids, exploiting the advantages of
minimally invasive tools with smart materials and technologies.

3. POC Tools for Personalized Medicine

The strong interaction between biology/medicine and the digital technologies, with their ability
to generate and manage a large quantity of data, is driving the transformation of traditional medicine
into the so-called “proactive P4 medicine”. The acronym is for Predictive, Preventive, Personalized
and Participatory according to Hood and Friend [32,33] who firstly recognized P4 medicine as the next
big step towards improved wellness. Sub-targets of this great challenge are (i) to supply tools and
strategies to quantify wellness and easily distinguish disease from well-being in individuals; (ii) to
enable scientists to generate and analyse previously inconceivable large quantities of digital data;
and (iii) to practice medicine also in non-hospital environments.

Easier, more reliable disease quantification would improve the follow-up—which, in many cases,
cannot be precise enough over time—primarily because it would require unrealistic series of tests,
such as frequently repeated biopsies. On the other hand, personalization accounts for the genetic
uniqueness of human beings—differing by about six million nucleotides from one another—suggesting
that each person should be treated in a targeted way, rather than as basing on a statistical average.
In particular, proteins—which are the target for many drugs (protein kinases, cytokines, receptors,
or their substrates)—express differently in different patients going through equal diseases. One of the
main goals of personalized medicine is then to identify sets of disease-specific biomarkers and combine
them with a robust technology, to allow clinicians to screen patients in subgroups and prescribe the
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most suitable drug at the correct dose, with maximal effectiveness and minimal potential for adverse
effects [34].

Protein expression profile is just one piece of the large mosaic of the big data. Sources
include “omic” information coming from a large audience of suppliers: genomics, proteomics,
metabolomics, interactomics, cellomics, organomics, in vitro and in vivo imaging, and other high
throughput indicators. An interdisciplinary approach, with a strong contribution from microfluidics
and nanotechnology, would be the key point towards miniaturization, parallelization, automation,
and integration of complex procedures in a simplified tool.

One of the crucial points of integration is data management (storage, validation and modelling) in
order to convert the big quantity of information—the so called “data explosion”—into an exploitable
outcome [35]. To this aim, Schneider et al. recently published a work dealing with a promising
interactive assistance tool, called Drug Target Inspector (DTI), which may provide an overview of
the datasets coming from genomic, transcriptomic and proteomic information in a user-friendly
way. Deregulated pathways may be identified and selected according to their pharmacological
responsiveness, and through easy access to further relevant resources and database entries (NCBI gene,
GO, KEGG and STRING). By proposing possible treatment options via the detection of deregulated
drug targets, the system could play a key role in tumour diagnosis and assessment of progression
phases. DTI also maps the gene expression data onto the corresponding network nodes and enables
visual assessment of how the downstream molecules might be influenced, so depicting also the
potential effects of a drug administration. Moreover, it considers (epi)-genetic variations with a
crucial role in tumour initiation and progression. Somatic variant data can be uploaded and classified
according to their impact on the protein sequence (e.g., stop gained, missense, frame-shift). Thanks to
Ensembl’s Variant Effect Predictor (VeP) database, variations can be investigated using DTI integrated
genome browser. In this way, genes carrying mutations and genetic variations are identified, and can
be exploited as to their potentially major effect on the tumour sensitivity to certain drugs [36].

Once all the parameters relevant to a major disease are known, the disease itself can be stratified
into its major subtypes, to match each patient with the most effective drug for his/her disease subtype.
In addition, if one could know the genetic variants causing useless or dangerous drug metabolic
effects, and correct the problem with “re-engineered” therapies, new perspectives would open up.
One of the main application fields would be the management of cancer diseases. It is well known that
tumour tissues show large intra-tumour heterogeneity, changing in time and localization (varying from
primary carcinomas to associated metastatic sites), which may foster tumour evolution and adaptation,
and easily overcome therapeutic strategies [37]. In this respect, Liquid Biopsy (LB) (including
circulating tumour cells—CTCs—mentioned below, as well as circulating tumour DNA,—ctDNA—and
exosomes—EXOs) can provide information on tumour aggressiveness and improve the prognosis
prediction, to support clinical decisions and monitor anti-tumour treatment effects without the needing
of repeated biopsies. An obvious advantage is that LB just requires standard blood collection, which
is easily repeatable during the progression of the disease—a factor of paramount importance [38].
Many efforts have recently been focused on the implementation of new methods to isolate, detect,
quantify and analyse elements from LBs with lab on chip (LoC)-technology offering new possibilities
and important advantages [39].

For complete diagnosis and deeper understanding of a disease, several aspects require
investigation. Hence, different POC devices have to be developed or applied, to identify different
types of biomarkers ranging from proteins and nucleic acids to whole cells.

3.1. POC Tools for Cells Identification

Blood cell count is important in clinical diagnostics because alterations in their number can
discriminate healthy condition from pathological status. For this reason, several prototypes of
hematic analysers have been proposed in the last few years. There are also several commercial POC
devices for blood cell counting, such as HemoCue, that can count white cells inside a blood drop.
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The drop is inserted into the HemoCue microcuvette, containing dried reagents for cells lysis and
staining. Photometric analysis quantifies the blood cells within minutes with precision comparable
to bench-top instruments [40]. Other, more complex systems can distinguish white and red blood
cells, and even their subtypes. One of the most significant is Chempaq XBC [41], able to measure
the concentration of haemoglobin and count red and white cells classifying them as lymphocytes,
monocytes, and granulocytes. Each sample is analysed in a disposable device, and counting and size
measurement rely on impedance spectroscopy, while the measurement of haemoglobin is optical at
two wavelengths.

The POC approach is feasible in several other fields, for increasingly challenging diagnostic
tasks. One of the most promising areas is the detection of circulating tumour cells (CTCs), i.e., cells
shedding in blood from the primary cancer site in very low concentrations (around one CTC per
billion normal blood cells in advanced cancers) [37,42–45]. CTCs are useful biomarkers to deeply
understand the progression and genetics of the tumour [46]. The interest toward this topic and the
already mentioned LB [47,48] has increased remarkably during the last five years, as demonstrated by
the huge hike in number of academic publications combining biological investigation and technological
improvement. Many efforts aim to implement POC devices with features of accelerating analysis
times and lowering costs. One of the challenging targets for on-chip investigation of CTCs is the
enrichment of samples in CTC by separating and collecting them from other circulating cells, followed
by automatic characterization. Concerning CTCs, the main limiting factor is their small number in
patient blood and many efforts have focused on implementing new methods. We can distinguish two
broad categories of technologies:

• Biochemical methods. Usually CTCs are distinguished from haematological cells using antigens
expressed on epithelial cells only (e.g., EpCAM in the immunomagnetic Veridex CellSearch®

system for breast, colon, and prostate cancer). These methods are limited by CTC’s heterogeneity
and the lack of universally approved tumour markers for affinity capture. Moreover, they are
intrinsically biased by the positive selection induced by the capture system. There will be
some cells, such as those undergoing epithelial to mesenchymal transition (EMT) (the most
phenotypically aggressive), which will remain out of the analysis. In addition, the binding of
antibodies to CTCs surface could induce phenotypical alterations, resulting in a misleading
subsequent molecular studies.

• Physical methods are label-free and based on differences in physical properties such as size, shape,
plasticity and electrical polarizability. In this case, no specific surface biomarkers are needed with
a significant advantage. However, the physical properties of CTCs can overlap with those of
residential blood cells and accurate techniques for CTC isolation are required.

As example of biochemical methods, we report the strategy implemented by Kurkuri et al. to
improve capture efficiency of CTC based on a disposable microfluidic device realized by the plasma
functionalization of polydimethylsiloxane (PDMS) and its conjugation with the anti-epithelial-cell
adhesion-molecule (EpCAM) monoclonal antibody. The authors performed model studies on planar
surfaces demonstrating high-grade immunospecificity of cancer-cell capture using NCI H69 small-cell
lung cancer cells and SK-Br-3 breast cancer cells. Thanks to a fine tuning of the flow rate, they reached
overall capture efficiency of 80 to 90% in cell-spiking experiments in phosphate buffer saline [49]. CTCs
have also been separated from other blood cells in a tumour marker-independent manner.

Another interesting example of this biochemical approach is the Ephesia cell capture technology
developed by the Viovy group. They recently optimized a method for CTC capture and genetic analysis
exploiting magnetic particles functionalized with EpCAM antibodies. By applying a magnetic field in
the device, magnetic nanoparticles self-assemble in the microfluidic channel and form a regular array
of high aspect-ratio columns, able to capture cells of interest through antibody–antigen interactions.
Such device demonstrated a capture efficiency above 90% for concentrations as low as a few cells
per ml. After capture and visualization, bead–cell complexes were released and collected by switching
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off the magnetic field. Cells can be then lysed and analysed by real-time PCR or other molecular
investigations [50]. On the other hand, among physical approaches the size-based CTC isolation
methods take advantage of their dimensions: CTCs are bigger than normal blood cells. One of the
simplest methods is based on filtration that can be realized in microfluidic structures by realizing
pillars, microposts or micropores with different geometries. For example, samples enriched in CTC
clusters, which are prognostic of poor outcome in some kind of malignancies, have also been obtained
by Sarioglu et al. in 2015, through the fabrication of specialized traps able to capture even two-cell
clusters under low–shear stress conditions. The idea was to place triangular pillars throughout the
microfluidic channels. Two close pillars formed a narrowing channel, funnelling the cells into an
opening, where the edge of the third pillar was positioned to bifurcate the laminar flow. As blood
flowed, single blood and tumour cells diverted to one of the two streamlines at the bifurcation and
passed through a 12 µm × 100 µm aperture. In contrast, CTC clusters were stuck at the edge of the
bifurcating pillar. Using the so-called Cluster-Chip, authors identified CTC clusters in 30–40% of
patients with metastatic breast or prostate cancer or with melanoma [51].

An alternative tools was developed by Zhang and co-workers, and relies on a low-cost
microchannel embedded in a polymer film chip (polyvinyl chloride, PVC), fabricated through UV
laser writing and thermal lamination. The whole chip includes a spiral microchannel 500 µm wide and
120 mm long (Figure 1), allowing inertial cells isolation from spiked samples of human blood with
good efficiency. Such a technique is able to separate CTCs on the basis of their different size [52].

Microvortices are useful to isolate cells on the basis of their size through inertial methods. Such
devices consist of a series of expansion–contraction reservoirs within a microchannel in which the
shear gradient lift force generate microfluidic vortices that can trap cells over a critical size in the
center [53].

Both inertial microfluidics and filtration methods can be classified as passive methods since
they do not require any external force. Some other methods classified as active methods require an
actuation that can be electric [54] or acoustic [55,56] just to cite some examples. Dielectrophoresis
(DEP) is one of the most used and more consolidated technique: it is based on the application of a
non-uniform electric field. The DEP force depends on the size and dielectric properties of cells, so such
a technique can be used to separate CTCs taking advantage from their differences in size and dielectric
properties with respect to blood cells. One of the major troubles of DEP approach is due to bubbles
formation caused by the direct contact with electrical connections. To overcome this limitation Sano et
al. report an improved version of DEP devices by replacing metal electrodes with electrodes, isolated
from the fluid in the main channel by a thin membrane, providing the electric field gradients for cell
manipulation [57].

Once isolated, CTCs have to be characterized. The related POC devices should then be integrated
with molecular characterization tools, based on sensitive and low-cost methods [58]. A number of
portable devices have been developed exploiting various detection systems. The platform realized
by Mok and co-workers can easily test different types of proteomic biomarkers through simple
electronics—that is, it should easily become a portable handheld device. Genomic studies have
been performed on chip platforms as well, as described for example in the validation study recently
published by Gogoi et al., in which the “Celsee” system facilitates rapid capture of CTCs from blood
samples and characterizes them by immunohistochemistry, and DNA and mRNA fluorescence in-situ
hybridization (FISH) (Figure 2) [59]. Portable setups have also been developed for nuclear magnetic
resonance (NMR) characterization of isolated cells in on-field assays [60,61].

Besides cancer, other pathologies can benefit from personalized medicine and near-the-bed
diagnosis approaches. The same approaches described for circulating tumour cells can be applied
even for other type of cells such as circulating foetal cells or even for other analytes ranging from
microvesicles and exosome to proteins.

Another field of application of POC devices is microbiology. For instance, a recently developed
tool can detect three of the most common female genital tract pathogens directly from vaginal fluid.
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The platform is suitable for quick and low-cost screening of infections in the time of a gynaecological
examination. This way, patients can leave the doctor’s office with a targeted antibiotic prescription,
start the pharmacological treatment immediately, based on a real test and not only on symptoms,
and without recurring to costly and time-consuming traditional assays like culture medium tests [62].
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Microfluidic setup and scheme of the mechanism of CTCs capturing with inlet and outlet for pumping
blood samples and reagents through the device (B). Modified with permission from [59].

3.2. POC Tools for Protein Analysis

Proteins represent one of the major class of molecules used as biomarkers in POC assays.
Compared to nucleic acid detection, which requires multiple steps of sample preparation such
as cell lysis, nucleic acid purification, and DNA amplification, protein detection is relatively
simpler, faster, and cheaper, thanks to analytical methods based for example on lateral flow or
(immuno)chromatography. Most of the innumerable POC tests for diagnostics and self-testing are
actually based on these two methods. Their low cost and quick response (around 15–20 min) make them
the most widespread systems in both low-resource and non-laboratory environments. In addition, they
are suitable for self-diagnosis and disease management. In lateral flow assays (LFAs), the separation of
analytes flowing across a porous medium occurs thanks to specific interaction between antigen and
antibody, enzyme and substrate, or receptor and ligand (Figure 3) [63].
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Figure 3. Scheme of a lateral flow test across with (A) standard and (B) competitive immunoassay.
In the standard assay, when the sample is added the liquid start flowing to the conjugate pad where the
analytes, if present on the sample, can bind to the label particles. The conjugate can flow by capillarity
forces across the detection pad where they are captured only if the conjugate has the analytes attached.
Instead, in competitive model the analyte and the label particles compete for being captured on the
detection pad obtaining a response inversely proportional to the concentration of analytes. Reproduced
with permission from ref. [63].

Usually the strip contains different areas, functionalized with various types of molecules,
that specifically interact with the sample, producing colored or luminescent responses [64].
To increase sensitivity, the signal is often enhanced thanks to the use of nanoparticles (such as
of gold [65], magnetite [66], silver [67]) conjugated with secondary antibodies, in sandwich-type
immunoreactions yielding a colour signal. This is the case with the work of Xu and collaborators,
who lowered the detection limit of simple gold nanoparticles-based assays by 50 times, using a
gold-nanoparticle-decorated silica nanorod (GNPSiNR) label. GNPs on a single SiNR provided a
purple color darker than the pure GNP solution (Figure 4) [68].

Besides diagnostic tools based on dipstick assay and lateral (or capillary) flow, others based
on paper are often employed. Crucial aspects to be considered to optimize their operation are the
surface characteristics, capillarity, porosity, and thickness of the paper. Paper, indeed, can be obtained
from many raw sources such as wood (printing paper), cotton (filter and chromatography papers),
jute, flax (linen), hemp, bamboo, and many others [69], with considerably different optical properties,
porosity and surface chemistry. The latter two, in particular, critically affect the wetting properties
and the behaviour of fluids on/in the device—and so, they may influence the overall performance.
One of the most challenging goals is to obtain 2D or 3D microfluidic circuits and analytical setups
directly on the “foil”, to allow transport fluids both horizontally and vertically, if required by the
application. To obtain microchannels and define structures in paper, various approaches, including
cutting, photolithography, plotting, inkjet etching, plasma etching, and wax printing have been
proposed. Wax printing, for example, is rapid, inexpensive, and can selectively form water-repellent
zones on filter paper thanks to its inertness to chemical reagents [70]. Rivas et al. recently improved
the sensitivity of gold nanoparticle-based lateral flow assays for antibody detection, optimizing wax
barriers (pillars) deposited onto the nitrocellulose membrane. Wax pillars created hydrophobic regions
also in nitrocellulose membranes, with relatively fast flow. The controlled delays of the flowing
fluid increased the binding time of the immunocomplex-detection antibody pair and generated
a pseudoturbulence in the pillar zone, which would enhance the efficiency of the biorecognition
event [71].
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Figure 4. Lateral-flow strip biosensor described by Xu et al. (A) scheme of the device, (B) position of
immobilized reagent on the strip and (C) measurement principle of the lateral-flow strip biosensor
based on gold-nanoparticle-decorated silica nanorod (GNPSiNR) label in the presence and absence of
rabbit IgG. Modified with permission from [68].

The lateral flow immunoassays (LFA) are widespread systems because of their low cost and quick
response (around 15–20 min) but they often suffer from low sensitivity and lack of quantification.
To address this issue LFA can be used in association with innovative reader systems that can improve
LFA diagnostic performance in terms of sensitivity and contrast.

One possible solution, already on the market, is provided by QUIDEL that develops fluorescent
detectors for LFAs strip. Such a system, called Sofia, is a small benchtop analyser based on an
ultraviolet LED energy source for fluorescence detection: the optical sensor can collect hundreds of
data points by scanning a LFA strip and automatically give an objective results [72]. Similar set-up
have been commercialized even from other companies such as Qiagen who provides a reader system,
called ESE-Quant Lateral Flow Reader for fluorescent and colorimetric detection of LFA strips [73].

Recently Wang et al. proposed a new method: their approach called thermal contrast amplification
(TCA) is based on the laser excitation of gold nanoparticles. TCA reader is able to improve sensitivity
(8-fold enhanced) and enable quantification in LFAs [74].

As alternative to the LFA other optical tools have been developed: for example, an improved
colorimetric approach on paper substrate has been proposed by Russell and De la Rica, based on
localized surface plasmon resonance (LSPR) of gold nanoparticles (Figure 5). The authors demonstrated
that patterns printed on paper can transduce LSPR variations caused by the aggregation of gold
nanoparticles. The detector in this case was simply a smartphone camera and the proposed sensing
strategy is based on triggering the aggregation of gold nanoparticles in presence of neutravidin.
A competitive immunoassay has been applied to the detection of C-reactive protein. A common toner
printer is enough to fabricate the transducers, while an augmented reality app for pattern recognition,
running on a smartphone, can serve as the readout. Suspensions of gold nanoparticles blocks pattern
recognition, while aggregations of nanoparticles do not, so generating a signal. This easy to use and
cheap platform can be ideal to develop mobile POC biosensors for diagnostics [75].
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Figure 5. Schematic representation of the paper-based device developed by Russell and de la Rica.
Modified from [75]. (A) A pattern is printed on filter paper; the presence of non-aggregated gold
nanoparticles in suspension block pattern recognition the app, and no signal is generated; while
aggregated nanoparticles do not impede pattern recognition (B) the methods is based the competitive
immunoassay on magnetic beads that can cause the aggregation of gold nanoparticles. Modified with
permission from [75].

Paper-based devices usually take advantage of optical and colourimetric transduction methods.
However, if on-paper microfluidics is available, other tools for analyte detection can be integrated.
The device developed by Li et al. is based on amperometric transduction to detect PSA with a linear
range of 0.005–100 ng/mL, and a limit of 0.0012 ng/mL. It uses glucose oxidase (GOx) as the enzyme
label, tetramethylbenzidine (TMB) as the redox terminator, and glucose as the enzyme substrate.
The authors grew a AuNPs layer on the surface of cellulose fibres, in a screen-printed paper working
electrode (PWE). Subsequently, MnO2 nanowires were successfully electrodeposited on Au-PWE
to form a 3D network with large surface area. Finally, the sample tab was folded down below the
auxiliary pad, to keep the two parts of the device in contact, and then clamped to the electrochemical
workstation (Figure 6) [76].

An alternative and valuable tool for point-of-care diagnostics can be LOC devices integrating
electrochemical impedance spectroscopy (EIS)-based sensors. They respond to the need of fast response
and low cost analysis, a major aim in clinical and proteomic tests. In this scenario, biorecognition
events, as for example between antigens and antibodies (but can be even applied to complementary
DNA strands), can be easily detected by EIS measurements, since the interaction of immobilized
capture probes with analytes/targets molecules results again in a change in capacitance and interfacial
electron transfer resistance. In particular, EIS biochips have been largely tested for the direct analysis
of serum and biological fluids, being versatile and suitable for different functionalization protocols
and demonstrating minimal interference from unspecific adsorption of biological components [77].
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Figure 6. Schematic representation of the 3D origami device and assay procedure. Wax pattern
of paper sheet (sheet-A) and (A) Single 3D origami device without the screen-printed electrodes.
(B,C) Then electrodes were screen-printed on sheet-A and cut into individual 3D origami device.
(D) After modification, the device was used to detect PSA exploiting an enzymatic reaction (E).
Reproduced with permission from [76].

For example, the group of Maruccio and co-workers demonstrated application for on-chip
diagnostics of prostate cancer, a disease largely diffused in the western male population and whose
diagnosis is uncertain (if PSA serum concentration falls into the range of the so-called grey area) until a
biopsy of prostate tissue is performed. The optimized platform allows a contemporary detection
of free and total PSA thanks to the different functionalization and calibration of two chambers
of the device, without recurring to expensive label-based standard techniques and providing an
easily-processable electronic signal suitable for automated assays [25]. The same technology has
been applied to the on-chip detection of other biomarkers for the diagnosis of pancreatic ductal
adenocarcinoma, or allergens in food [78,79], as well as for on chip studies of cells’ behaviour [80–82].

3.3. POC Tools for Nucleic Acids Detection

Current methods for nucleic acid detection require expensive benchmark instrumentations and
reagents, trained personnel and a long time, due to the multiple steps required (cell lysis, purification,
amplification and detection of amplicons). The integration of all these steps in a chip-sized device can
give new opportunities and overcome the current limitations.

Most of the techniques described for protein analysis have been applied even for nucleic
acids detection but to achieve a real POC application additional functions have to be implemented.
To this purpose, new devices for POC diagnostics should preferably perform not only detection
but also sample preparation and molecular amplification. In turn, polymerase chain reaction (PCR)
amplification, while seemingly simple, requires a refined technological approach, e.g., for precise
temperature control. Alternatively, isothermal amplification methods such as loop-mediated isothermal
amplification (LAMP), recombinase polymerase amplification (RPA) assays or helicase dependent
amplification (HAD) assays can be used.

Centrifuge-based lab-on-a-disk is a promising technology to achieve on-chip DNA extraction.
Several implementations have been proposed, achieving good spatial and temporal control over the
fluid movement. For example, Choi and coworkers implemented a real-time fluorescence nucleic
acid device for malaria detection, consisting in a compact analyser and a lab on a disk microfluidic
chip. Magnetic actuation drove the manipulation of the sample. The rotation of the disk aligned
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different regions of the chip with an outer small magnet. Reagents were preloaded and separated
by tooth-shaped passive valves. Each disk contained four parallel slots for simultaneous testing of
four samples within 50 min. Each unit performed DNA binding to magnetic beads, washing, elution,
LAMP reaction and fluorescent detection of amplicons [83].

An alternative approach has been described by Liu et al. who developed a novel lab-on-a-disk
platform adopting membrane-resistance (MembR) valves for automatic fluid control. The MembR
valves were realized using different polycarbonate membranes with superfine pore sizes, enabling
pre-storage and manipulation of reagents under five different rotational speeds. With the help of
MembR valves, all the steps from sample lysis, RNA extraction and purification, to amplification using
real-time reverse transcription loop-mediated isothermal amplification (RT-LAMP) and RNA detection
were integrated on the single device and applied to the detection of avian influenza viruses (HPAIVs).
The whole set-up, controlled by a laptop, included accurate temperature control and weighed just 4 kg,
in agreement with the requirements of a POC platform (Figure 7) [84].
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Paper-based methods, previously described for protein analysis, are attracting great interest for 
nucleic acid detection too. Several prototypes have been realized through the integration of many 
functions required for nucleic acids analysis: extraction, amplification, and readout. For example, Ye 
and co-workers developed a paper-based, low-cost method that does not require any additional 
equipment for the POC diagnosis of rotavirus A. The test includes nucleic acid extraction, and 
subsequent amplification of the target sequences, at the end of which the amplicons could be visible 
to the naked eye or quantified by the UV-Vis absorbance (Figure 8) [85]. 

Figure 7. (A) Photograph of the assembled disc. (B) Assembly of the disc consisting of a PET film cover,
a top patterned polymethyl methacrylate (PMMA) layer, a MembR valve layer, a bottom patterned
PMMA layer, and two double-side adhesive layers. (C) Design of the diagnostic platform including six
reservoirs with different solutions, a fibre-packed channel, an aliquoting structure, and six chambers
for RNA extraction and RT-LAMP reaction; six different MembR valves, four transfer chambers and
waste chambers. Reproduced with permission from [84].

Paper-based methods, previously described for protein analysis, are attracting great interest
for nucleic acid detection too. Several prototypes have been realized through the integration
of many functions required for nucleic acids analysis: extraction, amplification, and readout.
For example, Ye and co-workers developed a paper-based, low-cost method that does not require any
additional equipment for the POC diagnosis of rotavirus A. The test includes nucleic acid extraction,
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and subsequent amplification of the target sequences, at the end of which the amplicons could be
visible to the naked eye or quantified by the UV-Vis absorbance (Figure 8) [85].Sensors 2018, 18, x FOR PEER REVIEW  14 of 33 
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isothermal amplification. The nucleic acid captured on the glass fibre of the paper was directly used 
as the template for the high-efficiency LAMP reaction, and the results were visible by the naked eye 
on the basis of color (rose red positive for or brown for negative) (B) Modified with permission from [84]. 

Among nucleic acids, miRNAs are of particular interest because of their key role in the 
development of several diseases like cancer [86]. Moreover, they are strictly related with patient-
specific drug-resistance [87]. For these reasons, they have been carefully investigated, and are being 
increasingly considered as specific biomarkers with diagnostic, prognostic and theranostic potential. 
Potrich and co-workers recently reported the development of an innovative PDMS-based device able 
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functionalization of the polymer. The system implemented an original type of solid-state purification 
and adsorption of circulating miRNAs. The immobilized nucleic acids were then directly available 
for further reverse transcription into cDNA, through an on-chip system, without requiring 
detachment from the surface. The obtained cDNA was then analyzed via reverse transcription real-
time quantitative PCR (RT-qPCR) to measure the expression rate of a specific miRNA in the 
extracellular medium [88]. 

Several other attempts have been made to integrate sensitive detection methods for miRNA 
quantification. A POC sensing platform for miRNA detection should enable label-free quantification 
with good sensitivity, real-time response, and high throughput. In this regard, Localized Surface 
Plasmon Resonance (LSPR) biosensors have attracted large interest, since they can be integrated into 

Figure 8. Schematic view of the paper based colourimetric assay proposed by Ye and co-workers: the
lysed sample was added to the paper and washed with buffer, while nucleic acid are captured by
the paper the contaminant of the lysed sample were eluted with washing buffer by capillary forces
(A). Second, the sample adding area of the paper was cut and put in a micro-well for subsequent
isothermal amplification. The nucleic acid captured on the glass fibre of the paper was directly used as
the template for the high-efficiency LAMP reaction, and the results were visible by the naked eye on
the basis of color (rose red positive for or brown for negative) (B) Modified with permission from [84].

Among nucleic acids, miRNAs are of particular interest because of their key role in the
development of several diseases like cancer [86]. Moreover, they are strictly related with patient-specific
drug-resistance [87]. For these reasons, they have been carefully investigated, and are being increasingly
considered as specific biomarkers with diagnostic, prognostic and theranostic potential. Potrich and
co-workers recently reported the development of an innovative PDMS-based device able to selectively
extract and adsorb extracellular miRNAs from cell supernatants, thanks to a specific functionalization
of the polymer. The system implemented an original type of solid-state purification and adsorption of
circulating miRNAs. The immobilized nucleic acids were then directly available for further reverse
transcription into cDNA, through an on-chip system, without requiring detachment from the surface.
The obtained cDNA was then analyzed via reverse transcription real-time quantitative PCR (RT-qPCR)
to measure the expression rate of a specific miRNA in the extracellular medium [88].

Several other attempts have been made to integrate sensitive detection methods for miRNA
quantification. A POC sensing platform for miRNA detection should enable label-free quantification
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with good sensitivity, real-time response, and high throughput. In this regard, Localized Surface
Plasmon Resonance (LSPR) biosensors have attracted large interest, since they can be integrated
into Lab-on-a-Chip platforms without the need for complex and sophisticated optical set-ups, unlike
other sensitive optical techniques. For example, Na and co-workers proposed a sensitive LSPR-based
miRNA sensing system based on flexible plasmonic nanostructures, fabricated by nanoimprinting,
enabling single-base mismatch discrimination and attomole detection of miRNAs on real samples.
They used a hairpin probe based on a locked nucleic acid (LNA). After hybridization with the specific
miRNA, a second probe labelled with an enzyme induced signal amplification, forming a precipitate
on the surface transducer through the enzyme reaction (Figure 9). Such a sensing platform may
have important applications in POC diagnostics for detecting nucleic acids without the need for gene
amplification [89].
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Figure 9. Schematic representation of a LSPR sensing platform based on flexible, transparent
three-dimensional (3D) plasmonic nanostructure for the detection of miRNAs. A LNA hairpin probe
is immobilized on the plasmonic structure (A). The hybridization with the specific miRNA cause
the opening of the hairpin (B) and the subsequent binding of a second labelled probe for signal
amplification (C). The presence of the specific miRNA can be detected by a shift of plasmonic peak (D).
Reproduced with permission from [89].

Technologies for real-time quantitative PCR (qPCR) are reaching the market as POC tools
for nucleic acids investigation, overcoming the needs of complex and expensive benchmark
instrumentations. Two significant examples are the GeneXpert® by Cepheid (already on the market)
and the Q3 by STMicroelectronics (in industrialization phase) which are, to our knowledge, the two
smallest instruments of their kind, while performances comparable with bigger instruments.

The GeneXpert® by Cepheid (Figure 10) is probably the best-known and most mature POC qPCR
system [90]. The GeneXpert I model in particular—that is, the single module instrument—is around
10 × 30 × 30 cm in size, and weighs around 8 kg. The reactions take place on a disposable cartridge,
including a sample preparation system, so that the instrument manages an entire sample-to-answer
flow, for the supported assays [91,92]. DNA is extracted by sonication-based cell lysis, then purified
and mixed with the appropriate lyophilized qPCR reagents, to be eventually analyzed by qPCR.
Each disposable cartridge contains one reaction chamber. Fluorescence detection relies on 6-channel
optics. Multiple models are available with 1, 2, 4, 16, 48 or 80-module configurations for increased
sample throughput.
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Figure 10. The Cepheid GeneXpert portable platform for qPCR. (A) The GeneXpert I model, including
a single module able to run one cartridge at a time. (B) Exploded view of the disposable GeneXpert
cartridge. The upper, bigger part includes the processing chambers where sample preparation occurs.
Behind them (on the right in the picture) is the reaction tube where qPCR takes place. Below the
processing chambers is the valve body, which drives all the fluidics. Figure modified from [93].

On the other hand, the Q3 [94,95] is 14 × 7 × 8.5 cm in size and weighs just 300 g (Figure 11).
The disposable cartridge is based on a silicon die—produced with established microelectronics
technologies—and also hosts a printed heater + sensor pair, for precise temperature control. Each
cartridge contains six reaction chambers, so that multiple tests can be run in parallel, possibly including,
among others, replicate reactions, positive and negative controls, or even standard samples for
on-board absolute quantification. Fluorescence detection relies on 4-channel optics. Q3 does not
include any sample preparation system: the sample must be prepared outside and pipetted into the
wells. However, it is general purpose and open, meaning that new assays can be built quite easily.
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4. Innovative Sensing Elements for POC Applications

One of the biggest challenges of POC devices research and development is elongating the shelf
life of tools containing biological probes as recognition elements. Apart from the obvious commercial
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advantage of a delayed expiring date (or the elimination of refrigerated transport and storage),
innovation in the shelf life would make these technologies available in parts of the world where
conditions (warm weather, war settings, extremely poor areas and so on) are problematic for standard
clinical tests and POC diagnostics.

4.1. Molecularly Imprinted Polymers

One of the strategies towards non-perishable detection elements is the development of structures
mimicking natural sensing elements but more resistant in order to eliminate the problems of
refrigerated storage and transport. This is the case of Molecularly Imprinted Polymers (MIPs), which are
cheap, being based on low-cost materials, and particularly versatile. Their biological applications range
from sample purification [96] and compounds microextraction [97], to highly selective recognition of
low-weight molecules [98,99]. Moreover, their binding sites can be regenerated, so enabling multiple
reuse. Molecular imprinting implies the polymerization of precursors in presence of a template
molecule, which is subsequently removed. Molecular cavities then form inside the synthetic polymer
matrix, that are structurally and functionally complementary to the preselected template molecule
or ion [100], featuring highly selective rebinding [101]. Furthermore, MIPs show remarkable stability
under storage in dry state at room temperature, with a shelf life of several years without loss of
recognition capability [102]. The integration of MIPs into biosensing platforms could follow various
pathways, thanks to the possibility to mold polymers in the shape of nanoparticles [103], bulk [104]
or thin layers over the electrodes or beads’ surface [105,106]. The use of MIP-modified sensors
is recently spreading in the field of POC devices thanks to the easy control of film thickness and
good reproducibility.

Recently, some sensors for cardiovascular diseases were developed based on MIPs: Moreira et al.
in 2014 realized a low-cost disposable for rapid detection of myoglobin (Myo), a protein biomarker
for Acute Coronary Syndrome. A screen printed electrode was modified with a MIP grafted on
a graphite support incorporating a matrix composed of polyvinylchloride and o-nitrophenyloctyl
ether as the plasticizer, followed by radical polymerization of 4-styrenesulfonic acid, 2-aminoethyl
methacrylate hydrochloride, and ethylene glycol dimethacrylate with Myo as template molecule [107].
Also, cardiac troponin T (TnT) was detected with a high sensitive method based on electrosynthesis
of poly(o-phenylenediamine) (PPD) film on gold electrodes by cyclic voltammetry. The rebinding
capacity of the sensor was verified by cyclic voltammetry and impedance spectroscopy, for analysis of
blood serum samples, amounting to a low-cost and useful tool for the quick diagnosis of myocardial
infarction at the point of care [108].

MIP-based sensors were also developed for sepsis markers, with the ambitious goal of on-field
diagnosis in low-resource settings, where sepsis is still one of the major causes of morbidity and
mortality in neonates—causing 3.1 million newborn deaths each year [109]. The primary causes of
sepsis include Group B Streptococcus (GBS) and Escherichia coli as the leading pathogens, accounting
for over 60% of cases of early-onset sepsis [110]. Standard culture techniques can’t provide quick
diagnosis, and even a few hour delay in antibiotic treatments may condemn to death sick patients.
A number of strategies may be taken into consideration to develop new, rapid diagnosis tools.
Buchegger et al., implemented a thermo-nanoimprinted biomimetic probe for immunosensing of
LPS (lipopolysaccharide) and LTA (lipoteichoic acid), which are surface markers of Gram-negative and
Gram-positive bacteria involved in the triggering of the inflammatory events during sepsis outbreak.
To develop their assay, the authors pressed a LPS/LTA stamp onto a thermoplastic polymer thin film
(Epon 1002F) with characteristics of high biocompatibility, derived from a liquid epoxy and bisphenol
A. The MIP precursor solution was then transferred from the nanostructured PDMS stamp to the
substrate via microtransfer molding. After photopolymerization, the stamp was removed leaving
MIPs with specific target recognition. To investigate the ability of the imprinted polymer in rebinding
the template molecules, the authors fabricated a quartz crystal microbalance (QCM) imprinted sorbent
assays. Compared to the reference signal, the LPS-imprinted sites exhibited 13 times enhanced signals,
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while the LTA-imprinted sites resulted in a 3-fold signal enhancement, showing excellent rebinding
capabilities of the thermo-nanoimprinted biomimetic probes [111]. A similar polymer nanoimprinting
technique was used to modify the surface of an SPR substrate, for sensitive detection of Procalcitonin
(PCT), another marker for sepsis. PCT molecules were firstly immobilized onto a glass support
and kept in contact with a solution of 2-hydroxyethyl methacrylate (HEMA) and ethylene glycol
dimethacrylate (EGDMA) deposited on a SPR substrate. Then, polymerization was performed and,
after the removal of the PCT molecules from the polymer, specific molecular recognition sites were
obtained, allowing a limit of detection (LOD) of 9.9 ng/mL from simulated blood plasma [112].

To further lower the costs and ease the handling and portability of MIP devices, Ge et al.
recently developed a high selective “lab-on-a-paper” tool named MIP-based electro-analytical origami
device (µMEOD) entirely realized on an A4 paper sheet. In the developed device, microfluidics
connections were obtained by wax printing, and a carbon working electrode was screen printed on
one of the folding parts. Gold nanoparticles were grown on the surface of the working electrode
and MIPs for the chiral form of D-glutamic acid were grafted on the surface of particles for the
detection of 0.2 nM of the neurotransmitter [113]. The growth of MIPs on the surface of nanoparticles
has been exploited in various applications for the detection of low-molecular weight molecules.
Magnetic [114] and silica-based [115] nanoparticles or quantum dots [116], covered with a MIP layer,
have been used to improve the binding sites and the sensitivity of MIP-based assays. One of the
most recent systems was implemented by Liu and co-workers, who made a coating of polydopamine
on the surface of microbeads incorporating encoded multicolour quantum dots, thus implementing
a multichannel detection method for the molecular recognition based on the absorbance spectra of
encoded particles [116].

Another smart system suitable for high selective tests and miniaturization of components
combines the MIP improvement in selectivity with the high-sensitivity of devices based on surface
acoustic waves (SAWs). Basing on the analysis of acoustic waves at the surface of piezoelectric
substrates, SAW systems can operate in the frequency range of 100−500 MHz, providing about an order
of magnitude higher mass resolution than common QCM-based system, as the energy remains confined
to the crystal surface, just where biorecognition reactions take place. Moreover, SAW devices are fully
compatible with large-scale fabrication and multiplexing technologies and can allow implementing
label-free methods for biosensing in liquid [117] and vapour samples [118]. A SAW/MIP sensor was
recently developed by Maouche et al., who reached a LOD of 10 nM for Dopamine (DA) imprinted
on a polypyrrole film, prepared by chronoamperometry electro-polymerization [119]. The sensitive
detection of DA, a neuro-immunotransmitter in the central nervous systems of mammalians, is a
parameter to detect the loss of DA-producing neurons, related to neurodegenerative diseases such as
schizophrenia, Alzheimer and Parkinson’s diseases, or Tourette syndrome [120].

4.2. Lyophilized Reagents

Reagents such as antibodies for immunoassays or primer/probes and enzymes for nucleic
acid detection may be stored in lyophilized (dried) form, to remain stable for a long shelf life
without refrigeration, if controlled packaging preserves them from humidity. Based on this concept,
POC tests were recently developed for the isothermal amplification and detection of Ebola virus
based on freeze-dried reagents [121], as well as kits including beads made of lyophilized reaction
components [122] for a rapid RT-PCR assay targeting the H1N1 Influenza A virus, that has periodically
caused pandemics, due to frequent mutation of viral proteins [123]. Even if in the latter application
the premixture reagents were stored at 4 ◦C, the authors implemented an innovative ready-to-use
quantitative RT-PCR test, based on lyophilized beads including buffer salts, reverse transcriptase,
AmpliTaq hot-start DNA polymerase and the primer-probe set. Each lyophilized bead also contained
a passive reference dye for fluorescent signal normalization, and an internal control for PCR
inhibitors’monitoring. The test consisted of lyophilized reaction beads organized into a ready-to-use
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8-tube strip format. The beads could be completely dissolved in water within 5 s before use to detect
virus infection in nasopharyngeal samples [122].

An alternative to freeze-drying methods is gelification of reagents, which Sun and co-workers
optimized in a recent work [124]. All the necessary reagents were stabilized for long time storage
by addition of gelifying and stabilizing agents, and desiccated at room temperature. This process
minimizes liquid handling steps, allowing the reaction to start immediately upon rehydration with
sample solution containing a DNA template. In particular, for this POC assay, PCR-based detection of
the Campylobacter foodborne pathogen subspecies was optimized into the microfluidic circuits of a
disposable polymeric lab card. Their Lab-on-a-foil exhibited a half-life at room temperature of at least
3 months without any alteration of the enzyme activity and long-term stability.

An advancement in ready-to-use diagnostic tests for influenza A H3N2 was recently reported by
Stumpf and co-workers, who implemented a “sample-to-answer” lab-on-a-disk platform for completely
automated nucleic acid–based detection of respiratory pathogens (Figure 12). Its complex structure
comprised microfluidics built with various techniques and materials: PDMS, cyclo-olefin polymer,
Teflon associated with soft lithography, CO2 laser, ultra-precision micromilling machine. The circuit
could hold the sample and deliver it through a circuit activated by centrifugal forces, applied according
to a precise rotational protocol. Liquid buffers for nucleic acid extraction were pre-stored in miniature
stick-packs, suitable for long-term storage. The stick-pack also contained frangible seals, which were
opened during centrifugation by the liquid pressure reached at very well defined spinning frequency,
and thanks to the presence of centrifuge-pneumatic valves. Among prestored reagents, authors
included also air dried specific primers, fluorescent and magnetic conjugate probes, and lyophilized
RT-qPCR mastermix. Employing two different release frequencies they achieved the on-demand
stick-packaged liquid discharge of highly wetting extraction buffers, and the subsequent release of lysis
and binding buffer. A strict running protocol was then applied to a prototype Lab-on-a-Disk player,
able to finely tune the rotational speed and the applied magnetic field, so that reverse transcription
and qPCR with real-time fluorescent readout were performed achieving a LOD down to 75 plaque
forming units (pfu) per ml in a time for sample-to-answer of less than 3.5 h. The hardware setup was a
2 kg portable, laptop controlled, POC device [125].
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Figure 12. ab-on-a-disk platform for the automatic sequence of reactions for RT-qPCR with complete
reagent prestorage. Photograph (left) and a CAD drawing (right) of the Lab-on- a-disk with the
inlet chamber (a) stick-packs for reagents pre-storage (c) connected to the Teflon coated nucleic acid
extraction structure (d–g) consisting of the lysis and binding chamber (d) wherein the magnetic beads
are prestored, the washing chamber 1 (e) and 2 (f) and the eluation chamber (g). The microfluidic
channels and pneumatic chambers in the area of (h) allow fluids handling to the aliquoting chambers
(i) and to the reaction chambers (j) where primers, fluorescence probes and RT-PCR lyophilisates are
prestored. Chamber (b) can be used. for loading a liquid RT-PCR mastermix instead of lyophilisates.
reproduced with permission from [124].
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4.3. Hydrogels

Hydrogels are another class of smart materials appealing for POC applications and suitable
for integration in biodevices. Those employed for biological applications are usually made up of
biocompatible polymers (e.g., acrylamide, acrylic acid, and its salts) and characterized by the capability
of swelling and collapsing. Thanks to their molecular composition, rich in hydrophilic chains, once
swollen, they can hold large amounts of water in their three-dimensional networks. Collapsing is
induced upon a physical (light, temperature, magnetic field) or chemical (pH, ionic strength, solvents)
stimulus [126] and causes the release of the same water. Thermoresponsive hydrogels are particularly
suitable for POC tests to be used in warm countries, as the temperature of the transition state (LCST)
can be easily tuned to higher values if needed. Changing the side chains, in fact, modifies the solubility
of the polymer, resulting in a lower or upper critical solution temperature. For temperatures below
the LCST, the hydrogel lingers in a swollen state, with a large amount of liquid incorporated into the
polymer network. If the temperature increases above the LCST, the hydrogel collapses and the liquid
is released.

Various chemical components, including many biomolecules, can be stored and released from
thermoresponsive hydrogels [127]. Niedl and Beta recently combined paper-based microfluidic
device with hydrogels to carry out complex fluidic protocols. The hydrogel was a thermoresponsive
poly(N-isopropylacrylamide) (NIPAM) containing an 85% aqueous solution in the swollen state.
Complete collapsing of the hydrogel was obtained within a narrow temperature window between 28
and 34 ◦C. Chemicals and enzymes were stored in dry conditions in the paper substrate, and dissolved
upon liquid release from one of the hydrogel reservoirs. Depending on a different ratio between
monomers, the hydrogel dissolution ratio could be tuned. Combining this feature with temperature
modulation, the authors were able to deliver liquids with different flow speeds and thus dissolve the
dried reagents, controlling the residence time of solutions in different parts of the device to optimize the
reaction conditions [128]. Based on a similar principle, an aptamer-cross-linked hydrogel was used as
a target responsive flow regulator in a paper-based device in the work of Wei et al. [129]. The aptamer
was the cross-linker for the polymerization of a smart, target-responsive hydrogel, in which target
binding could mediate gel−sol phase switching, suitable for portable and simultaneous detection
of multiple targets, even in complex biological samples. If no target was present in the sample,
the hydrogel would fill up the channel, stopping the flow and preventing the coloured spot produced
by food dyes to appear. Conversely, when present, the target/aptamer recognition prevented the
hydrogel formation, blocking the flowing of the indicator towards the observation spot.

In a recent publication, the advantages of molecularly imprinted polymers and stimuli-responsive
hydrogel features have been combined into a fluorescent molecular gate, sensitive, water compatible
and highly selective, capable of sensing the α-fetoprotein (AFP) at trace level. The stimuli-responsive
fluorescent polymer matrix was synthesized by mixing glutamic acid derivative (with pH-responsive
behaviour), a thermoresponsive monomer i.e., N-isopropylacrylamide (NIPAm) and a vinyl silane
modified carbon dot, to enhance the luminescence of the imprinted polymer matrix. The fluorescence,
in turn, was enhanced upon binding with template molecule (AFP). The fluorescence response was
linear vs. increasing concentrations of AFP in the 3.96–80.0 ng/mL range, with a LOD of 0.42 ng/mL.
The method was then faster, more sensitive and easier than the corresponding ELISA. The template
binding to the MIP-cavities occurred if at least one among the temperature and pH were in the
prescribed range [130].

5. Smartphone-Based Platforms

To improve the portability of smart detection systems for POC analysis, one of the most
explored strategies is their integration with smartphones, which are almost ubiquitous in developed
countries but can represent easily accessible interface even in developing countries [131]. The result is
immediate feedback, allowing the patient to self-diagnose, enhancing the speed of life-saving tests,
and supporting quick decision-making. Moreover, the dedicated apps for smartphone and tablets will
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increasingly contribute to science as “big data” sources, very useful to elaborate predictive models and
decision algorithms.

One of the recent examples of phone-based biosensing technologies is the work of Giavazzi and
collaborators, in which the authors implemented a simple accessory turning a smartphone into a
biosensor for label-free quantification of multiple markers (fractions of nM of blood markers for HIV
and Hepatitis B in serum) within a few minutes and without requiring trained personnel. Sensing
relied on a Reflective Phantom Interface, based on the measurement of the light intensity reflected
by the surface of an amorphous fluoropolymer substrate. The latter featured a refractive index very
close to that of the aqueous sample solution, and hosted various antibodies immobilized within spots.
The light source was the phone flash LED, coupled with a tilted glass window for alignment with
the sensor camera and directed to the bio-recognition surface. A diaphragm selected the portion of
light illuminating the sensing surface of a perfluorinated prism, in contact with the sample solution
in the measuring cuvette. The light reflected by the sensing surface passed through a polarizer and
a converging lens, up to the phone camera hole, where one or more converging lenses were present,
forming the image on the sensor. The CMOS sensor collected the reflected light through a mirror.
The plastic cradle hosting the accessory sensor was made of three parts of black polyoxymethylene,
holding the smartphone, measuring cuvette, magnetic stirrer and optical components. The system
included also the phone’s autofocus device, which, after the cuvette was filled with aqueous solution,
imaged the spotted sensing surface of the prism, then displayed on the screen (Figure 13) [132].

Another work based on the exploitation of phone components has been published by Liu et al.,
who demonstrated a portable fibre-optic surface plasmon resonance (SPR) biosensor employing surface
electromagnetic evanescent waves at the metal dielectric interface. In this case, the smartphone SPR
system employed a narrow-band filter placed between the flash of the cell phone and the lead-in fibers,
providing nearly monochromatic incident light. Light interacted with the SPR-sensing region and was
collected by the camera of the cell phone. Variation in the intensity of the light passing through the
sensing elements was related to binding processes on the SPR sensor, quantifying IgGs at nanomolar
concentrations [133].

The parallel advances in sensors and microfluidics together with the increased capabilities
of the smartphone and the great efforts to integrate these technologies open new opportunities
and applications for POC device. An interesting example is in the field of fertility investigation.
For example, Kanakasabapathy et al. reported an automated smartphone-based platform for
point-of-care male infertility screening to quantify sperm concentration and motility in semen
specimens. The authors describe the integration of microfluidics, optical sensors, electronics,
smartphone capabilities, allowing male fertility assessments in both developed and developing
countries [134].

Recently, electrochemical sensors were integrated into a smartphone to detect molecules of clinical
interest. In particular, a POC platform for the on-site detection of a protein from Plasmodium falciparum
(the parasite causing malaria in humans) was reported including a microfluidic and electrical circuit
interfaced with the phone through a USB host shield, and a printed circuit board to integrate the
components for electrical communication and power distribution. The detection system employed
a layer of antibodies against PfHRP2 parasite protein from human serum samples and required a
tethramethylbenzidine (TMB)-labelled antibody, to exploit the peroxidase enzymatic product [135].
More recently, bovine serum albumin (BSA) was detected on the surface of printed electrodes through a
smartphone-controlled electrochemical impedance spectroscopic analyzer. An Arduino board was the
controller unit of the detector (receiving control commands from the smartphone through serial ports
connected with the Bluetooth module). The smartphone in this case was used as a platform to deliver
control commands, receive data signals, and display results of the electrochemical measurements
in form of Nyquist plot. Finally, an Android app provided the interactive interface to the user
(Figure 14) [136].
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Figure 14. Smartphone-controlled electrochemical biosensor system realized by Zhang et al. The system
includes electrodes (conventional large electrode, printed carbon electrodes, and interdigital gold
electrodes) (A), a hand-held detector (B) and a smartphone controlling electrochemical measurements
and feeding back signals (C) integrated in a circuit (D) by communicating with an impedance shield
included in the hand-held detector through an Arduino board (E). Modified with permission from [136].
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6. From Chip in a Lab to Lab-on-a-Chip—A Case Study

As an example, we report on the Q3 LOC device for qPCR, developed by STMicroelectronics, and
its application to patients affected by Acute Coronary Syndrome (ACS) according to a protocol
developed in cooperation with some Italian institutions—among them: Parma Hospital, Milan
Niguarda Ca’ Granda Hospital, and Nuoro San Francesco Hospital; and the Universities of Milan
and Parma.

ACS is a condition of impaired blood flow through the coronaries. The onset includes different
signs and symptoms, and is often associated to myocardial infarction. Standard treatment for ACS
patients includes antiplatelet therapy, associating aspirin to inhibitors of the ADP P2Y12 platelet
receptors. Of the three inhibitors currently available—prasugrel, ticagrelor, and clopidogrel—the latter
is the most diffused since, compared to the others, is cheaper and causes less bleeding. Its efficacy
is however notoriously dependent on the patient’s individual response, in turn related to genetic
variations of the CYP2C19 cytochrome P450 enzyme. In particular, in this highly polymorphic gene,
*2 allele is the most frequent and causes of loss of function, with 15% frequency in Caucasians and
Africans, and 29–35% frequency in Asians. In fact, while the so called “non-carrier” subjects of *2 allele
are extensive clopidogrel metabolizers, those carrying one or two copies are intermediate and poor
metabolizers, respectively. Conversely, carriers of the *17 allele are ultra-rapid metabolizers. Variations
in the genes regulating clopidogrel absorption, such as ABCB1, may also influence the response
to clopidogrel and consequent clinical outcomes. The bioavailability of clopidogrel is significantly
reduced in carriers of the ABCB1 3435 polymorphism, and homozygous patients are those exhibiting
greater risk of adverse cardiovascular outcomes during treatment with clopidogrel [137].

These evidences led the US Food and Drug Administration to revise the clopidogrel instructions in
2010, mentioning the possibility of using the alternative treatments. On the other hand, although there
is no consensus on the topic, some experts in the medical community support patient genetic testing
for clopidogrel response, in order to provide different, more expensive therapies to poor metabolizers
only [138].

Here we show an application of the Q3 portable instrument (14 × 7 × 8.5 cm, weighing 300 g),
developed by STMicroelectronics—and already described in a previous section—to genotyping patients
for clopidogrel response.

In a first phase, genomic DNA was extracted from 200 µL of peripheral blood from 160 ACS
patients, and in 20 of them also from saliva. The Maxwell® 16 platform (Promega Corporation,
Madison, WI, USA) was used for both types of DNA extraction. qPCR analysis was then run on
Q3, to detect the possible presence of three single nucleotide polymorphisms (SNPs): CYP2C19*2,
CYP2C19*17 and ABCB1 3435. In parallel, all samples were also analyzed for the same three SNPs on
an ABI PRISM 7900HT qPCR instrument (Thermo Fisher Scientific, Waltham, MA, USA), used as a gold
standard benchmark. In addition, Sanger sequencing (on the ABI 3100 XI platform by Thermo Fisher
Scientific) was applied randomly to 33 samples, to check the affordability of qPCR allele identification.
The results from Q3 and the reference systems were 100% coincident, that is, the Q3 clinical specificity
and sensitivity were 100% [94], enabling further studies.

In a second phase, a prospective, randomized, multicenter study was started. Patients were
randomly assigned to either the pharmacogenomic group, or the standard care group. As to the former,
peripheral blood samples from 448 ACS patients were collected and genomic DNA was extracted as
said above. Then, qPCR analysis was run on Q3 platform only.

The study showed that a personalized approach to ACS with antiplatelet therapy selection,
combining genetic information to standard clinical information, may improve clinical outcomes [139].

Q3 qPCR was always run in a 5 µL reaction volume, comprising 3 µL of reaction mixture and
2 µL of patient’s extracted genomic DNA. In turn, the reaction mixture contained 2.62 µL of TaqMan®

Fast Universal PCR Master Mix (Thermo Fisher Scientific) and 0.38 µL of TaqMan® Drug Metabolism
Genotyping Assay (a blend of two primers and two hydrolysis probes, FAM™– and VIC™–labelled,
specific to one of the three SNPs to be detected; Thermo Fisher Scientific). The Q3 amplification
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protocol included an initial hold at 95 ◦C for 40 s, followed by 40 cycles at 95 ◦C for 3 s and 63 ◦C
for 25 s.

Some significant Q3 results are reported in Figure 15. A Q3 analysis just requires a small quantity
of patient’s DNA loaded by standard pipettes into the cartridge wells, since the qPCR reagents
are pre-loaded into Q3 cartridges. The software developed for this application has all the reaction
parameters embedded, and gives a clear diagnostic interpretation of raw qPCR results—namely
which ADP P2Y12 inhibitor to administer. The overall analysis time (around 70 min, more or less
equally divided between DNA extraction and Q3 qPCR) makes this technique suitable for real-time
medical decision—also considering that, to be effective, the antiplatelet therapy should start within
few hours from the early symptoms. In a near future, the DNA extraction phase could be in turn
automated—and preferably integrated with Q3—into a sample-to-answer portable platform. All these
features, along with the compactness and lightness of the system, could enable to run a test hopefully
inside any emergency room, or even on board an ambulance, without the need of involving the
hospital’s analysis laboratory.
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7. Market Challenges

LOC systems have just begun to make their way in medicine, where they will likely achieve a
prominent role in the next decades. The potential applications are so variegated that their full impact
may not be easily appreciated at this point.

One of the crucial segments is molecular diagnostics, targeting one organism’s genome or
proteome. When the target is in the patient’s genome—or proteome—molecular diagnostics opens the
way to a personalized approach to medicine. An example has been presented in the previous section.
PCR is nowadays the most widely used technology in molecular diagnostics, but other techniques are
also emerging, like DNA sequencing, which represents one of the fastest growing application segments.
According to some predictive studies, the molecular diagnostics market is projected to reach USD
11.54 billion by 2023, from USD 7.10 billion in 2017, at a stunning Compound Annual Growth Rate
(CAGR) of 8.4% from 2017 to 2023 [140]. Other market analysts predict an even higher CAGR over
the 2018–2024 period, reaching 12.1% [141]. This value is, presumably destined to grow even more
strongly in the years to come, in an unpredictable and easy to underestimate fashion. As a matter of fact,
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the value of molecular tests depends on how much we know about the genome and proteome, and the
clinical significance of particular targets for various pathologies—above all cancer, but also infectious
diseases—or as to drug sensitivity, like for clopidogrel. The restless research on these topics will point
out many other significant targets, and the specific tests that will be developed, will run on molecular
diagnostics LOC platforms. The advantages of having them readily available in emergency rooms,
medical offices, or even at pharmacies are evident: low-cost tests based on disposable and customized
cartridges can be run when and where needed, without involving the centralized laboratories that
nowadays perform molecular diagnostic tests—with a consequent decrease of all costs (including
those for heavy benchtop instruments and specialized personnel required).

Besides the constant increase of scientific knowledge, the introduction of technological
advancements in LOCs in terms of accuracy, portability and cost effectiveness is also expected to serve
this market as a high impact driver.

Despite its huge importance, the field of molecular diagnostics does not gather all possibilities
of LOC devices. Also more common types of medical analysis—such as standard blood tests—could
be automatically performed even out of specialized environments, with remarkable advantages for
patients in terms of comfort (small blood samples), lower cost and higher speed. Moreover, they could
be either generic or targeted at a particular subset of values—e.g., blood elements count—for specific
conditions requiring frequent monitoring of specific parameters. In the latter case, even home analysis
could be conceivable, such as glucose monitoring that diabetic patients have to periodically perform
and which, in this respect, are among the forerunners of home LOC devices.

In order to reach such capillary spreading, two technological steps are needed. First,
more on-chip testing techniques must be developed and validated. The task is far from trivial,
since a number of analyses can be performed on biological samples (not necessarily blood)
involving variegated—mechanical/chemical/thermal—manipulation procedures, as well as different—
optical/electrical—read-out techniques. Thus, while many molecular diagnostic techniques—
including qPCR—use the same thermal control processes and fluorescence measurements to implement
a huge variety of tests differing from each other only in the biochemical part, many other types of
test will require ad hoc development of the instrument hardware—and the corresponding LOC in
turn—although some building blocks may be recurrent.

On the other hand, in many cases, like qPCR, an initial sample preparation step is needed. Thus,
all molecular diagnostic LOCs should be integrated with sample preparation subsystems capable of
extracting DNA/RNA from the raw specimen through cell lysis, and separating it from waste—as
already happens on some of the systems described above. This would allow an unskilled user—such as
a patient with no specific knowledge—to manage the entire “sample-to-answer” flow. If these features
still lack, laboratory equipment is needed in orderd to extract DNA/RNA with standard reagents and
instrumentation and pipetting samples into the chip wells. These aspects still limit the use of most
LOC devices to somehow specialized environments. The same considerations are valid for many other
analysis techniques to be integrated on chip; and the number of combination of techniques for sample
preparation with those for analysis pave the way to a plethora of possible applications.

Compliance to regulatory processes may also be a challenge in the massive diffusion of LOC
devices, due to the ambiguities in the approval procedures for in vitro diagnostics that induce
uncertainties and confusion among manufacturers. The same matter applies even more to LOCs, since
new technologies may be typically more difficult to be certified.

Figure 16 is a graphical summary of the described perspective. The future trajectory of the red dot
(LOC devices) is driven upwards (large diffusion) by a number of perspective high-impact applications
(green arrows) but marked by intermediate milestones to be achieved, among wich some are more
general, others are application-specific.

Overall, it is expected that a steep rise will take place, according to the perspective by which the
global LOC market accounted for USD 4.23 billion in 2016 and is expected to reach USD 7.95 billion
by 2022, growing at a CAGR of 11.0% meanwhile [142]. And besides these predictions, the diffusion
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of LOCs will deeply impact the relation between medicine and patients, considering that a large
number of tests would be run on small, portable platforms, yielding fast results and requiring minimal
quantities of biological sample, so being less invasive for the patient and, possibly, allowing the
patients themselves to run their own analysis at home, with obvious advantages for their comfort and
a reduced logistic load on hospitals.
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techniques have been developed and the regulatory aspects are better managed (hopefully thanks to
simplification), the diffusion will rapidly grow, pervading non-hospital up to household environments,
driven by important applications. In turn, specific applications will require further scientific and/or
technological development, in fields where the research is very active.

8. Conclusions

In the last years, the number of POC tests is impressively increased. Most of them are based
on well-established technologies such as lateral flow strips but additional advances are required in
order to improve analytical performances. We expect that such improvements will continue to achieve
some important issues: in particular the main desiderata for POC devices are: (1) the capability of
handling small volumes of fluid; (2) milli- down to femtomolar detection sensitivity; (3) use of multiple
marker panels where required; (4) low-cost and long-lasting materials, especially as disposable parts;
(5) ease of use and self-containment; (6) robustness; (7) accuracy; and (8) connection through common
interfaces like smartphones or personal computers. The examples in this survey witness the great and
variegated effort to fulfil these needs. Examples of technologies that look promising for the future
include smart contact lens sensors, able to real-time monitor the physiological parameters from tear
fluid for non-invasive diagnostics [143] or tattoo-based sensors that can provide versatile tools for
diagnostic purposes or body stimulation and open other interesting perspectives for POC diagnostics.
Such advances can strongly affect healthy ageing and assistive technology even if there are some
critical aspects that have to be overcome [144]. In conclusion, a lot of work has been done but several
efforts are still necessary, but at this rate, all the indications suggest that the “lab-on-a-chip revolution”
will take place within the next two decades, while pervasive improvements molecular diagnostics
could even come within the next ten years.
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