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Where to place caches in the Internet?

• A distributed application that has to dynamically place caches. 
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Where to place caches in the Internet?

• A distributed application that has to dynamically place caches.

• Where should data be cached?
– On all/one servers...?
– On servers with plenty of storage...?

– On servers in proximity to clients..?
– ...

Caching at a host incurs costs

(storage, traffic, maintenance, ..)

Clients want to access data 

from close-by hosts

Classic trade-off captured by facility location problems
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Facility Location Problems

• Given:
– Set of clients C (cities, demands,...) 

– Set of facilities F (servers,..)

• Connect every client to an open facility
• Opening a facility i∈F incurs opening costs fi
• Connecting client j∈C to an open facility i incurs connection costs cij

Open a subset of the facilities ....

... and connect all clients to an open facility....

... such that the sum of opening and 
connection costs is minimized!

C

F

cij

fi
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Facility Location Problems

• This is the basic non-metric, uncapacitated facility location
• Important in many applications:

– Best geographic location for warehouses, industrial facilities
– Caching in distributed systems

– Energy-efficient clustering in wireless networks
– ...

• Different applications lead to many important variants
– Connection costs cij form metric
– Capacitated facilities
– Fault-tolerant facility location (clients must connect to several facilities)

– Hierarchical facility location (facilities connect to higher level facilities)
– etc...

Inherently

distributed!
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Previous work on Facility Location

• Facility Location well studied in (centralized) approximation theory!
• Non-metric case:

– Greedy Algorithm yields O(log n) approximation [Hochbaum, 82]

– Corresponding Ω(log n) lower bound follows from reduction to set cover 
[Lund, Yannakakis, 94] [Feige 98]

• Metric case: 
– Various algorithms with constant approximation ratio...
– ... based on primal-dual algorithms [Jain, Vazirani, 99]

– ... based on greedy-like strategies [Jain et al., 03],..

– ... based on randomized rounding [Shmoys, Tardos, Aardal, 97]

– ... based on local search [Korupolu, Plaxton, Rajaraman, SODA 98]

• These approximation algorithms are centralized! 

• How about distributed approximation?

Inherently

distributed!
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Distributed Approximation

• Many new results on distributed approximation in recent years            
[see survey by Elkin 2004]

• Hardness of approximation of distributed MST [Elkin, STOC 04]

• New upper bounds on MST [Elkin, SODA 04], [Lotker et al., SPAA 03]

• Hardness of approximation of distributed minimum vertex cover, 
maximum matching, minimum dominating set, ...                               
[Kuhn, Moscibroda, Wattenhofer, PODC 04]

• Efficient (local) algorithms for minimum dominating set         
[Jia, Rajaraman, Suel, PODC 01], [Kuhn, Wattenhofer, PODC 03]

• Approximation in restricted graphs (unit disk graph, graphs with 
bounded growth, etc...) and on problem variants [Grandoni et al..., PODC 05]

Distributed Approximation:

Nodes must come up with a good global solution!

Problems: Local knowledge, bounded messages,...

Distributed Facility
Location Approximation
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Outline

• Motivation of distributed facility location

• Related work and distributed approximation

• Model

• Algorithm & analysis

• Conclusions & Open Problems
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Model

• Complete bipartite graph G=(F ∪ C, E). 

• F denotes set of facilities, |F|=m

• C denotes set of clients, |C|=n

• For each i∈ F, opening cost fi ≥ 0

• For each i∈ F, j∈ C, connections cost cij ≥ 0

• We study the classic synchronous, bounded message size model:

We have k communication rounds. In each round, 

a client can send a message to each facility

a facility can send a message to each client.

Each message is bounded by O(log n) bits

C

F

cij

fi

Our algorithm:
Clients/Facilities send
equal message to all.

Fixed Time-
Complexity!
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Is it difficult after all…?

• Communication graph G is complete.

• Why not sending all information to a leader-node...

• ... who can then computes the solution locally?

Problem: Every client has m links to facilities with different cij!

But message size is bounded by O(log (n+m)) bits 

A client needs Ω(m) rounds to tell all its costs to a facility 

Communication
Bottleneck!
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• Why not distribute existing centralized algorithms...?

1) Simple greedy algorithm

Always open the facility with the best „cost-efficiency“

Problem: Facilities are picked one by one

2) Improved greedy algorithm

In parallel open many facilities with good „cost-efficiency“

Problem: A client may contribute to many of these facilities!

Is it difficult after all…?

Too slow...!

Bad Approximation...!
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Improved Greedy Approach…

• Assume all fi, cij are equal

• All facilities have same cost-efficiency

• Algorithm should open exactly one facility!

Example 1

Example 2

• ∀ j: cij is c‘ for one i‘, and ∞ for all other i

• Each facility has exactly one „close“ client

• All facilities have same cost-efficiency

• Algorithm must open all facilities in k rounds!

f ff

c c
c c cc

c cc cc
c

f ff

c‘ ∞ c‘ c‘ c‘c‘
c‘∞ ∞ ∞

∞
∞

Whether a facility should be opened depends on all cij

Communication bottleneck renders distinction difficult!
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Outline

• Motivation of distributed facility location

• Related work and distributed approximation

• Model

• Algorithm & analysis

• Conclusions & Open Problems
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Algorithm Overview

Input:
Bipartite Graph

Fractional
Facility Location Open Facilities

Phase B:
Distributed 
randomized
rounding

Phase A:
Distributed
approximation of
linear program

Connect Cities

Phase C:
Connect clients
to closest open 
facility.

0.2 0.60.8

0.2 0.4
0.4

0.20.8
0

In 2k+1 rounds In 2 rounds
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The linear program and ...

• Compute an approximate fractional solution in O(k) rounds

• yi denotes whether facility i is opened or not. 

• xij denotes whether client j is connected to facility i or not

• The following ILP captures the facility location problem: 

In the fractional first phase,
we relax this to xij, yi ≥ 0.

Every client must
be connected

A client must be 
connected to an 
open facility. 
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The linear program and its dual LP

• The dual linear program is given by:
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Algorithm and Analysis Overview

• The algorithm adopts a distributed primal-dual approach

• Facility i stores yi, and client j stores xij  for all i ∈ F

• Initially, all yi, xij, α j, and βij are 0. 

Primal solution (P) is infeasible

Dual solution (D) is feasible, but suboptimal

• In the algorithm, nodes gradually increase yi, xij, α j, βij,

such that always

... until (P) becomes feasible!

(D) may no longer be feasible!

By LP duality: If α/ρ1 and β/ρ2 is a feasible dual solution
The algorithm has approximation ratio ρ1.

How... ??
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The algorithm

for                       do

facilities i with good cost-efficiency increase yi

• Basic structure:

• A facility‘s cost efficiency:

:  Active clients are not yet
fractionally connected, i.e.  

• In iteration s, facility i has 

„good cost-efficiency“ if :

• ρ is a parameter that depends on

the cost values of the given instance. These facilities i
increase their yi

This does not increase primal feasibility!
What happens to the client‘s xij ?
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The algorithm

for                       do

if                            then

facility i increases yi by ∆i

„close“ clients j increase xij by ∆i

• Basic structure:

• A client j is tight to facility i if: „close“ clients

• Intuitively, a client j increases the xij to facilities i if

- j is close to i

- and i has a good cost-efficiency! Gradually, the solution
will become more and

more feasible!
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The algorithm

• Problem: a client may be tight to several facilities!

If a client increases xij to all facilities, solution deteriorates!

• Solution: a second loop is required!

Gradually reduce the number of facilities to which a client

can be tight!

• Each outer-loop iteration consists of         inner-loop iterations.

• Each inner-loop iteartion consists of    communication rounds

• Total running time is thus: 

Initialization
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Results

• In O(k) communication rounds, the algorithm computes an 

approximation to the fractional facility location problem.

• In 2 communication rounds, the fractional solution can be rounded 
to an integer facility location solution whose approximation ratio is

with high probability.

• The dependency on ρ can be avoided using a scaling technique 
[Bartal, Byers, Raz, FOCS 97]

For any k>0, the distributed algorithm achieves

an approximation ratio of 

in O(k) communication rounds.



Thomas Moscibroda, ETH Zurich @ PODC 2005 22

Conclusions / Open Problems

• Improve approximation ratio

• Lower bounds

• Better (centralized) approximations in metrics 
Distributed metric approximations?

• Many important variants remain unstudied      
Capacitated, Hierarchical, ...

• Practical considerations:                                  
joining & leaving nodes, adversial nodes

Numerous directions for future research...

Doubling metrics,
Euclidean metrics?
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