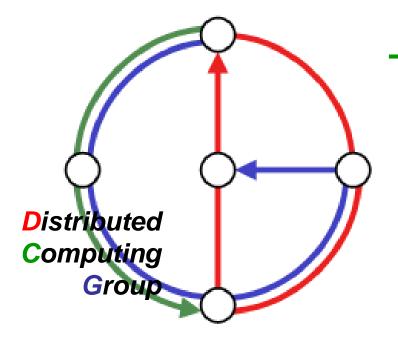
Facility Location: Distributed Approximation

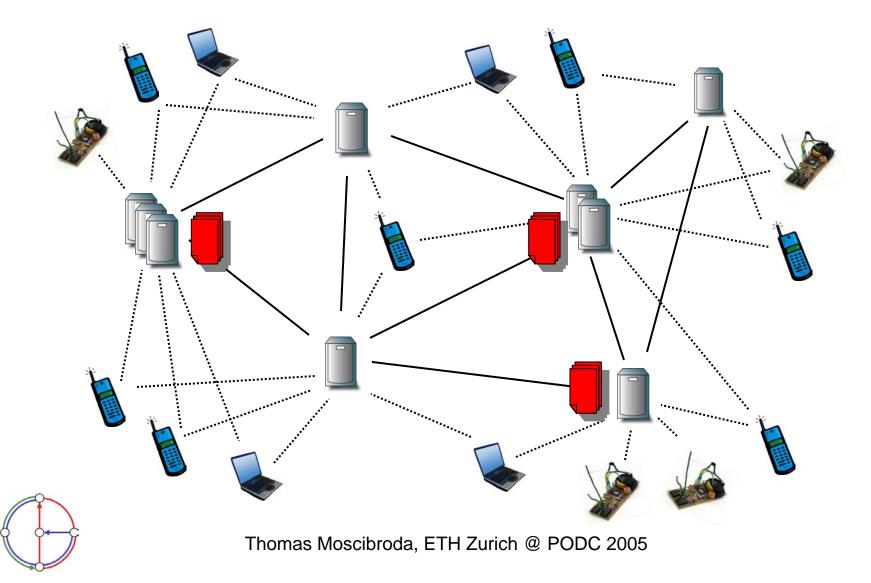


Thomas Moscibroda Roger Wattenhofer

PODC 2005

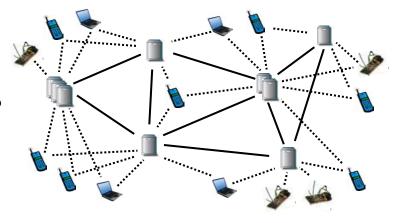
Where to place caches in the Internet?

• A distributed application that has to dynamically place caches.

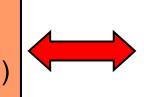


Where to place caches in the Internet?

- A distributed application that has to dynamically place caches.
- Where should data be cached?
 - On all/one servers...?
 - On servers with plenty of storage...?
 - On servers in proximity to clients..?



Caching at a host incurs costs (storage, traffic, maintenance, ..)



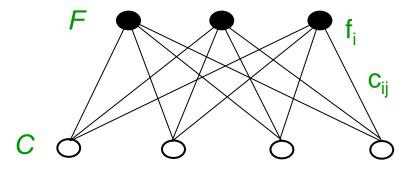
Clients want to access data from close-by hosts

Classic trade-off captured by facility location problems

Thomas Moscibroda, ETH Zurich @ PODC 2005

Facility Location Problems

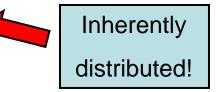
- Given:
 - Set of clients C (cities, demands,...)
 - Set of facilities F (servers,..)
- Connect every client to an open facility
- Opening a facility $i \in F$ incurs opening costs f_i
- Connecting client j∈C to an open facility i incurs connection costs c_{ii}



- \rightarrow Open a subset of the facilities
- \rightarrow ... and connect all clients to an open facility....
- → ... such that the sum of opening and connection costs is minimized!

Facility Location Problems

- This is the basic non-metric, uncapacitated facility location
- Important in many applications:
 - Best geographic location for warehouses, industrial facilities
 - Caching in distributed systems
 - Energy-efficient clustering in wireless networks
 - ...



- Different applications lead to many important variants
 - Connection costs c_{ii} form metric
 - Capacitated facilities
 - Fault-tolerant facility location (clients must connect to several facilities)
 - Hierarchical facility location (facilities connect to higher level facilities)
 - etc...

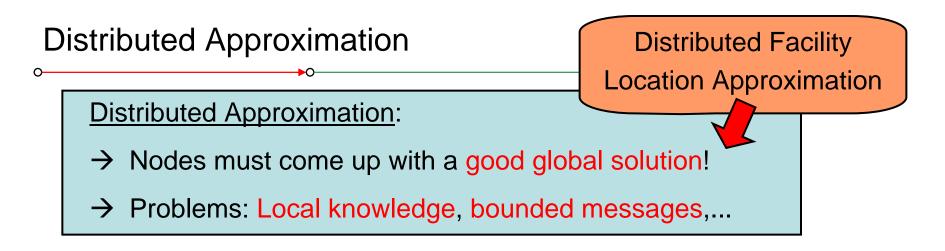
Previous work on Facility Location

- Facility Location well studied in (centralized) approximation theory!
- Non-metric case:
 - Greedy Algorithm yields O(log n) approximation [Hochbaum, 82]
 - Corresponding Ω(log n) lower bound follows from reduction to set cover [Lund, Yannakakis, 94] [Feige 98]
- Metric case:
 - Various algorithms with constant approximation ratio...
 - ... based on primal-dual algorithms [Jain, Vazirani, 99]
 - ... based on greedy-like strategies [Jain et al., 03],...
 - ... based on randomized rounding [Shmoys, Tardos, Aardal, 97]
 - ... based on local search [Korupolu, Plaxton, Rajaraman, SODA 98]

• How about distributed approximation?

Inherently

distributed!



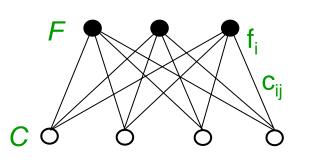
- Many new results on distributed approximation in recent years [see survey by Elkin 2004]
- Hardness of approximation of distributed MST [Elkin, STOC 04]
- New upper bounds on MST [Elkin, SODA 04], [Lotker et al., SPAA 03]
- Hardness of approximation of distributed minimum vertex cover, maximum matching, minimum dominating set, ... [Kuhn, Moscibroda, Wattenhofer, PODC 04]
- Efficient (local) algorithms for minimum dominating set [Jia, Rajaraman, Suel, PODC 01], [Kuhn, Wattenhofer, PODC 03]
- Approximation in restricted graphs (unit disk graph, graphs with bounded growth, etc...) and on problem variants [Grandoni et al..., PODC 05]

- Motivation of distributed facility location
- Related work and distributed approximation
- Model
- Algorithm & analysis
- Conclusions & Open Problems

►0

Model

- Complete bipartite graph $G=(F \cup C, E)$.
- F denotes set of facilities, |F|=m
- C denotes set of clients, |C|=n
- For each $i \in F$, opening cost $f_i \ge 0$
- For each $i \in F$, $j \in C$, connections cost $c_{ii} \ge 0$

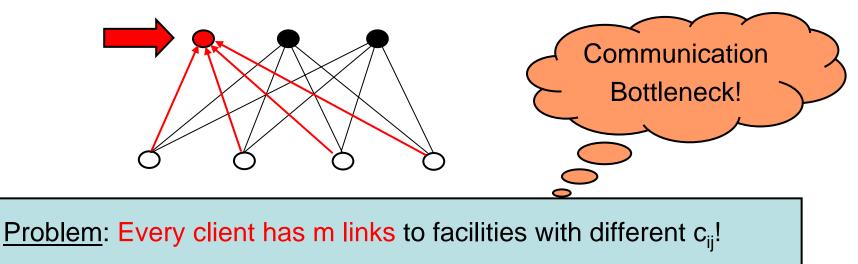


We study the classic synchronous, bounded message size model:

 →We have k communication rounds. In each round,
 → Fixed Time-Complexity!
 →a client can send a message to each facility
 →a facility can send a message to each client.
 →Each message is bounded by O(log n) bits

Is it difficult after all...?

- Communication graph G is complete.
- Why not sending all information to a leader-node...
- ... who can then computes the solution locally?



- \rightarrow But message size is bounded by O(log (n+m)) bits
- \rightarrow A client needs $\Omega(m)$ rounds to tell all its costs to a facility

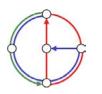
Is it difficult after all...?

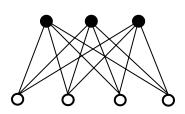
• Why not distribute existing centralized algorithms...?

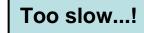
1) Simple greedy algorithm

- \rightarrow Always open the facility with the best "*cost-efficiency*"
- \rightarrow Problem: Facilities are picked one by one
- 2) Improved greedy algorithm
 - \rightarrow In parallel open many facilities with good "cost-efficiency"
 - \rightarrow Problem: A client may contribute to many of these facilities!

Bad Approximation...!







Improved Greedy Approach...

Example 1

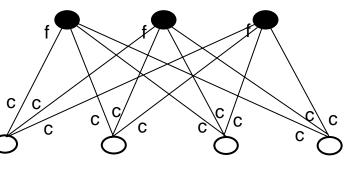
- Assume all f_i, c_{ii} are equal
- All facilities have same cost-efficiency
- Algorithm should open exactly one facility!

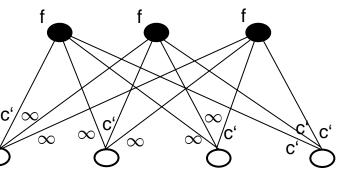
Example 2

- \forall j: c_{ii} is c' for one i', and ∞ for all other i
- Each facility has exactly one "close" client
- All facilities have same cost-efficiency
 - Algorithm must open all facilities in k rounds!

Whether a facility should be opened depends on all c_{ij}

Communication bottleneck renders distinction difficult!



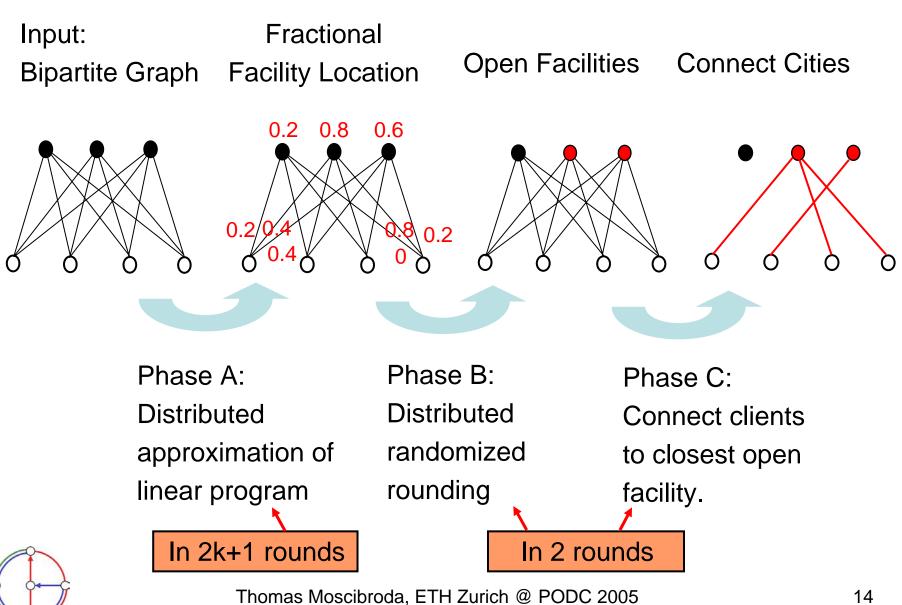


- Motivation of distributed facility location
- Related work and distributed approximation
- Model
- Algorithm & analysis

Conclusions & Open Problems

►0

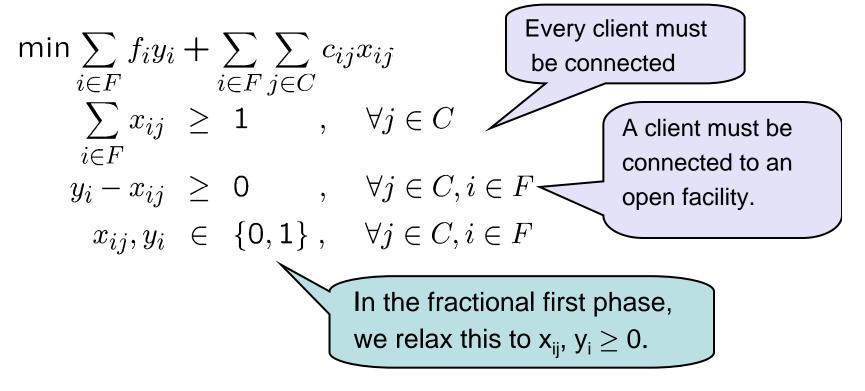
Algorithm Overview



>0

The linear program and ...

- Compute an approximate fractional solution in O(k) rounds
- y_i denotes whether facility i is opened or not.
- x_{ii} denotes whether client j is connected to facility i or not
- The following ILP captures the facility location problem:



The linear program and its dual LP

• The dual linear program is given by:

$$\begin{array}{lll} \max \sum_{j \in C} \alpha_j \\ \alpha_j - \beta_{ij} &\leq c_{ij} \\ \sum_{j \in C} \beta_{ij} &\leq f_i \\ \beta_{ij}, \alpha_j &\geq 0 \end{array}, \quad \forall j \in C, i \in F \end{array}$$

►O

0-

►0

Algorithm and Analysis Overview

- The algorithm adopts a distributed primal-dual approach
- Facility i stores y_i , and client j stores x_{ij} for all $i \in F$
- Initially, all y_i , x_{ij} , α_j , and β_{ij} are 0.

 \rightarrow Primal solution (P) is infeasible

 \rightarrow Dual solution (D) is feasible, but suboptimal

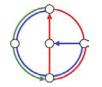
- In the algorithm, nodes gradually increase y_i , x_{ij} , α_i , β_{ij} ,
 - → such that always min $\sum_{i \in F} f_i x_i + \sum_{i \in F} \sum_{j \in C} c_{ij} x_{ij} \ge \max \sum_{j \in C} \alpha_j$ → ... until (P) becomes feasible!

(D) may no longer be feasible!

By LP duality: If α/ρ_1 and β/ρ_2 is a feasible dual solution \rightarrow The algorithm has approximation ratio ρ_1 .

17

How...??



The algorithm

• Basic structure: for $s = 1..\sqrt{k}$ do

facilities i with good cost-efficiency increase y_i

- A facility's cost efficiency: $c(i) = \min_{B \in 2^{\mathcal{A}}} \frac{f_i + \sum_{j \in B} c_{ij}}{|B|}$
- In iteration s, facility i has "good cost-efficiency" if : $c(i) \le \rho^{s/\sqrt{k}}$ A: Active clients are not yet fractionally connected, i.e. $\sum_{i \in E} x_{ij} < 1$
- ρ is a parameter that depends on the cost values of the given instance. These facilities i
- → This does not increase primal feasibility!
- \rightarrow What happens to the client's x_{ij} ?

increase their y_i

The algorithm

• Basic structure:

for $s = 1..\sqrt{k}$ do if $c(i) \le \rho^{s/\sqrt{k}}$ then facility i increases y_i by Δ_i "*close*" clients j increase x_{ij} by Δ_i

- A client j is *tight* to facility i if: $c_{ij} \leq \rho^{s/\sqrt{k}}$, close clients
- Intuitively, a client j increases the x_{ij} to facilities i if
 - j is close to i
 - and i has a good cost-efficiency!

Gradually, the solution will become more and more feasible!

The algorithm

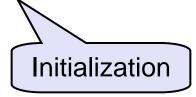
• Problem: a client may be tight to several facilities!

 \rightarrow If a client increases x_{ii} to all facilities, solution deteriorates!

• Solution: a second loop is required!

→ Gradually reduce the number of facilities to which a client can be tight!

- Each outer-loop iteration consists of \sqrt{k} inner-loop iterations.
- Each inner-loop iteartion consists of 2 communication rounds
- Total running time is thus: $O(1) + \sqrt{k} \cdot 2\sqrt{k} \in O(k)$



>0

• In O(k) communication rounds, the algorithm computes an $\lambda = \sqrt{k} (m\rho)^{1/\sqrt{k}}$

approximation to the fractional facility location problem.

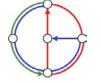
• In 2 communication rounds, the fractional solution can be rounded to an integer facility location solution whose approximation ratio is

$$\log(n+m)\cdot\lambda$$

with high probability.

 The dependency on ρ can be avoided using a scaling technique [Bartal, Byers, Raz, FOCS 97]

> For any k>0, the distributed algorithm achieves an approximation ratio of $\sqrt{k(mn)^{1/\sqrt{k}}\log(n+m)}$ in O(k) communication rounds.



►O

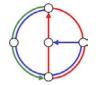
Conclusions / Open Problems

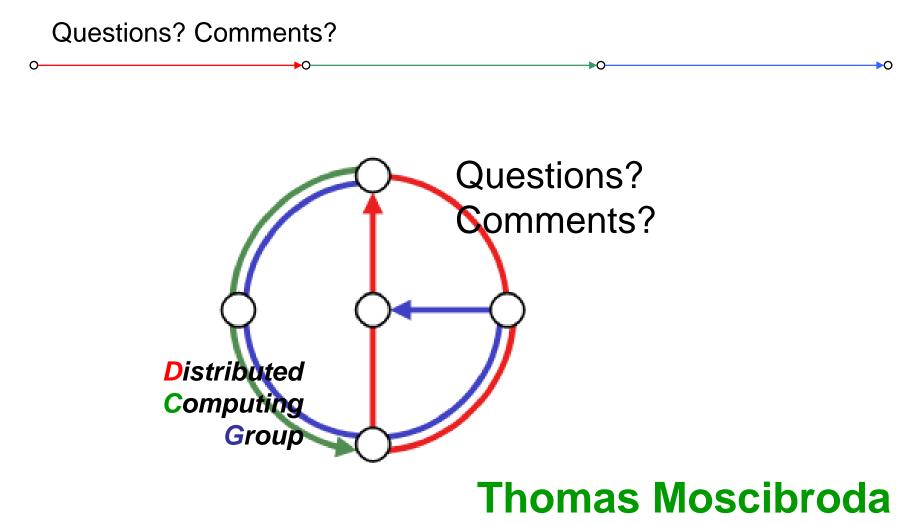
Numerous directions for future research...

- Improve approximation ratio
 - Lower bounds

Doubling metrics, Euclidean metrics?

- Better (centralized) approximations in metrics
 → Distributed metric approximations?
- Many important variants remain unstudied
 → Capacitated, Hierarchical, ...
- Practical considerations:
 → joining & leaving nodes, adversial nodes





Roger Wattenhofer

Thomas Moscibroda, ETH Zurich @ PODC 2005