
Collaborative Acceleration for Mixed Reality
Kiron Lebeck

University of Washington
∗

kklebeck@cs.washington.edu

Eduardo Cuervo

Microsoft Research

cuervo@microsoft.com

Matthai Philipose

Microsoft Research

matthaip@microsoft.com

ABSTRACT
A new generation of augmented reality (AR) devices, such as

the Microsoft HoloLens, promises a user experience known

as mixed reality (MR) that is more seamless, immersive, and

intelligent than earlier AR technologies. However, this new

experience comes with high computational costs, including

exceptionally low latency and high quality requirements.

While this cost could be offset in part through offloading,

we also observe an increasing availability of on-device, task-

specific accelerators. In this paper, we propose collaborative
acceleration, a collaborative technique that utilizes the unique
hardware accelerated capabilities of an MR device, in con-

junction with an edge node, to partition an application’s

core workflow according to the specific strengths of each

device. To better understand the workloads of next gener-

ation MR applications, we implement a concrete MR app

on the HoloLens: an assistive tool to visually aid users in

manipulating physical objects. Through our prototype, we

find that offloading a subset of the app’s workload to an edge

while also leveraging the strengths of the HoloLens delivers

accurate enough results at a low latency. Our work provides

an early glimpse into the system design challenges of MR,

potentially the first “killer application” of edge offloading.

1 INTRODUCTION
A new generation of augmented reality (AR) devices, such

as the Microsoft HoloLens [11], MagicLeap [10], and Meta2,

promises a user experience known asmixed reality (MR) that

is more seamless, immersive, and intelligent than that pro-

vided by earlier AR technologies such as the Google Glass.

Where past AR experiences overlaid text or 2D annotations

over a small portion of the user’s field of view, MR provides

overlays with the illusion of physical presence by generat-

ing a semantic understanding (e.g., the identities of objects

and people) and detailed 3D geometric maps of the user’s

environment, along with finely rendered graphics anchored

within this 3D environment. These immersive capabilities

enable new applications [1] such as home planning, pain and

phobia treatment, and 3D task-assistance, or assistive tools
to visually guide users through the manipulation of physical

objects. However, these advancements come at high compu-

tational cost: the “maps, meshes and models” that comprise

this workload are computationally expensive. In this paper,

*This work was conducted while the first author was an intern at Microsoft.

we seek to better understand the workload and hardware

ecosystem surrounding MR technologies, and to cast some

early light on their implications for MR systems design.

In order to better understand the workload, we implement

a concrete application
1
, a 3D task-assistance app to assist

users with cleaning rooms, on the HoloLens. We identify

five tasks as fundamental to such applications: specify the

target configuration of a room, detect the objects in this space

and estimate their 3D positions, recognize their orientations,

track these objects as they move, and render overlays to

indicate how these objects should be manipulated.

Architecturally, we believe the HoloLens is representative

of MR devices that will be available in coming years. In par-

ticular, the battery constraints introduced by mobility mean

that on-board computation will include a mix of custom

acceleration and low-power processing. For example, the

HoloLens provides hardware acceleration for estimating the

geometry of the space surrounding it, along with a modest in-

tegrated GPU for rendering. Further, recent announcements

indicate that the device will soon see an accelerator for Deep

Neural Networks added to it, as for instance, in the Apple

iPhone X. Finally, the device provides fast network connec-

tivity that allows it to take advantage of resources in the

cloud or nearby “edge” [18] devices, nodes with substantial

amounts of computing resources placed in close proximity

to mobile devices to augment their abilities.

Offloading to the cloud and edge has been a recurring

theme in recent years when seeking to balance mobile con-

straints with application needs [2, 5, 8]. MR apps motivate

yet another revisiting of this tradeoff for two reasons. First,

they have exceptionally low latency and high quality require-

ments, rendering the latency to the cloud prohibitive (around

74ms [9]) and potentially straining both the latency limits of

off-boarding even to nearby edge nodes, as well as the com-

putational limits of on-board execution. Second, on-device

task-specific accelerators have the potential to dramatically

increase local computational capabilities, allowing the device

to collaboratively share execution duties with the edge [4]

rather than merely playing the role of “offload shaping" [6, 7].

Accelerators also raise the possibility that offloading to the

edge may not be needed at all in the future.

Nevertheless, we posit that the edge still has a strong, al-

beit altered role in the future of mixed reality. Although we

1
A video of our prototype can be found at https://youtu.be/bWTNzg6y5hY



believe that on-device localization and mapping will be fea-

sible going forward, both AI workloads (e.g., executing Deep

Neural Networks) and high quality graphics will benefit from

edge assistance. In particular, even if certain AI primitives

(e.g., hand pose estimation or object detection) run on board,

each application could have its own custom AI requirements

that may not all be accommodated locally. Similarly, although

high fidelity graphics from a sufficiently powerful on-board

GPU would allow edge-free operation, truly immersive or

seamless graphics will likely require edge-class capabilities

in the foreseeable future.

In this paper, we propose collaborative acceleration, a tech-

nique that utilizes the unique custom hardware accelerated

capabilities of a mixed reality device in collaboration with

an edge device to partition an application’s core workflow

according to the specific strengths of each device. Through

a prototype application on the HoloLens, we identify five

key primitives for collaborative acceleration that leverage

the strengths of the HoloLens’s on-device capabilities. Our

work provides an early glimpse into system design for mixed

reality. Although the MR setting requires renegotiating the

systems contract between device and edge significantly, the

tangible benefits from edge acceleration may also make it

the first “killer application” of edge offloading.

2 BACKGROUND
Webeginwith important background context on theHoloLens

and the increasing prevalence of hardware accelerators be-

fore diving into the details of collaborative acceleration.

2.1 HoloLens
The HoloLens is an untethered head-mounted display that

presents visual overlays on see-through LCOS waveguide

displays. The device can track its pose within the user’s

environment, without external hardware, using computer

vision algorithms, four grayscale cameras, and an inertial

measurement unit (IMU). It also employs a depth sensor to

perform spatial mapping, or the creation of a 3D mesh repre-

senting the user’s surroundings, and it provides developers

with access to a general purpose 2.4 megapixel RGB camera

and a four-microphone array. The headset features an Intel

Cherry Trail CPU/GPU SoC [19], 8 MB of RAM, and a custom

accelerator chip that we discuss further below.

2.2 Hardware Accelerators
Devices like the HoloLens must execute computationally

intensive tasks while remaining lightweight, responsive, and

power efficient. This tension has driven the development of

custom hardware accelerators; for example, the HoloLens in-

cludes a set of 28 custom 24nm Tensilica DSP cores, called the

Holographic Processing Unit (HPU) [19]. The HPU speeds up

operations such as low-latency rendering and spatial map-

ping [12], and future versions will also accelerate neural

networks [13]. Other organizations have begun employing

hardware accelerators for MR as well. For example, Apple’s

iPhoneX includes a neural network accelerator they call the

Neural Engine, and Google’s Tango phone platform runs

atop devices with Qualcomm-built hardware support for 3D

depth perception, analogous to HoloLens spatial mapping.

While the latency requirements for traditional phone-based

MR may not be as strict as they are on head-mounted dis-

plays, phones can be easily used as MR headsets by employ-

ing adapters like mergecube. Other major players such as

Huawei [15] and Intel (Movidius) also have neural network

hardware accelerators of their own, suggesting an industry-

wide trend towards hardware support for MR.

3 DESIGN AND IMPLEMENTATION
We next explore the potential benefit of applying collab-

orative acceleration to MR applications, beginning with a

motivating scenario to guide our inquiry.

Motivating Scenario: 3D Task Assistance. To more con-

cretely explore the potential role of collaborative acceleration

in MR, we focus on the domain of 3D task assistance, activi-
ties in which the user may benefit from precise visual guides

to help them complete a task (e.g., assembling furniture or

cooking). Specifically, we focus on meticulous room cleaning,

commonly performed in hotels or cruise ships. Looking to

deliver the best experiences to their guests, interior design-

ers carefully plan the layout and placement of items within

guests’ rooms. Before new guests arrive, cleaning staff must

ensure that the rooms are appropriately configured accord-

ing to the designer’s specifications; for example, by wiping,

moping, or dusting surfaces, or by correctly positioning items

of interest in specific locations. An AR cleaning assistance

app could help cleaning staff complete these objectives by

providing helpful visual cues. In our model, a room designer

specifies a correct room configuration with visual markers

a priori, demarcating surfaces that should be cleaned and

target locations for individual items to be placed. The ap-

plication then retrieves this configuration for cleaning staff,

providing visual guidelines to identify out-of-place objects

and their target locations, as well as uncleaned surfaces.

Prototype Overview. Our prototype, shown in Figure 1,

addresses the object placement portion of the room clean-

ing scenario described above. The app consists of a designer
mode and a cleaner mode. In designer mode, the user speci-

fies target locations for objects of interest with a 3D cursor

and voice commands. First, the user focuses their gaze and

says ‘target’ followed by the name of an object (e.g., ‘target

mouse’), creating a blue-tinted overlay of the object at the

2



Figure 1: Our prototype. The user is moving a mouse to the
right towards a target.

cursor’s location. The user repeats this procedure for every

desired object. In cleaner mode, the app displays red-tinted

overlays on top of the relevant real-world objects, in addi-

tion to the blue target overlays. As the user moves a physical

object, the corresponding red overlay follows it. Once the

object reaches its correct target location, the blue overlay

disappears and the red overlay turns green.

Through our prototype development, we identify 5 opera-

tions critical to the core workflow, and that we believe gen-

eralize more broadly to 3D task assistance problems. While

we have only implemented 3 so far, we find that all 5 benefit

from collaborative acceleration by taking advantage of the

HoloLens’s specialized hardware, as we describe below.

3.1 Define Target Locations
To support designer mode as described above, the application

must be able to place targets within the user’s 3D environ-

ment in response to user requests.We first observe the follow-

ing: target placement is a latency-tolerant operation. Thus,

when the user executes a voice command (e.g., “target scis-

sors"), the application can offload the audio to more powerful

cloud or edge servers to perform speech recognition
2
. Once

the command is processed and returned to the HoloLens,

the next challenge is determining where to apply the result

of the operation, i.e., where to place the target. Fortunately,

the HoloLens comes equipped with hardware support for

efficiently generating a 3D geometric understanding of the

user’s environment, referred to as spatial mapping [12]. We

determine the position of the user’s gaze by tracing a ray

orthogonal to the device’s camera perspective, taking the

first 3D point of intersection between that ray and the spatial

map and placing the target overlay at this location.

3.2 Obtain 3D Positions of Objects
Once targets have been placed, the application must deter-

mine the positions of relevant real-world objects in 3D space.

In our case, this includes the objects that the designer would

2
In the next version of HoloLens, the HPU will support on-device accelera-

tion of speech recognition.

like placed in specific locations. This operation can be divided

into three sub-operations: (1) detecting and determining the

2D positions of all objects currently in the user’s view, (2)

obtaining a 3D position for each object, and (3) compensating

for motion of the headset since the detection operation was

performed. We implement (1) and (2).

1. 2D Object Detection. To identify the objects in the user’s
view, we obtain video frames using the HoloLens camera

capture API and send them over Wi-Fi to our edge node to

be processed. Our edge node uses YOLO [14]
3
, a state-of-the-

art object detection framework, to process each frame and

return information about detected objects to the HoloLens,

including 2D bounding boxes for each object.

2. 2D-to-3D Position Mapping. We again leverage the

HoloLens’s spatial mapping capabilities, this time to deter-

mine the depth of detected objects, using a heuristic similar

to our target placement method. We trace a ray orthogonal

to the device’s camera emanating from the 2D location of the

detected object within the device’s camera feed and take the

intersection of this ray with the spatial map as our object’s

3D position. Due to noisy results from YOLO, we take a slid-

ing window of detection events across consecutive frames,

determining that an object is present only when a sufficient

proportion of the past N frames contain detections that map

to a cluster of nearby 3D positions. As we show in Section 4,

spatial map-based depth estimation is highly accurate.

3.3 Track Objects in Motion
Once an object is detected, it must be tracked to allow the app

to update any assistive overlays. The position of an object

relative to the user can change as a result of two actions: (1)

movement of the user, or (2) movement of the object itself.

User Movement. To account for user movement, we utilize

the sophisticated inside-out tracking [17] capabilities of the

HoloLens using a technique we call object pinning. Once an
overlay is placed, the HoloLens can compensate for user

motion to render it such that it appears stationary, as though

it is “pinned" to a real-world location. By performing this

computation locally, the app can update overlays smoothly

with low latency and reduce the server’s load by avoiding

the need for continuous object detection.

Object Movement. For our room cleaning scenario, we

make a simplifying assumption that objects may only be

repositioned by the user. Thus, we use the following pro-

cedure to update overlays in response to object movement:

when the user’s hand is detected near an object with an

overlay atop it, the overlay becomes “unpinned", updating

3
Specifically, we modify the Darknet implementation of YOLO

(https://pjreddie.com/darknet/yolo/)

3



its position in real time as the user moves the corresponding

physical object. When the user’s hand moves away from the

object, the overlay is pinned once more.

Our current prototype continuously streams video to the

edge to perform both hand and other object detection. How-

ever, there is again an opportunity to again partition work be-

tween the HoloLens and the edge. For example, the HoloLens

could employ a lightweight DNN to perform hand detection

locally, to reduce communication overhead to the edge when

all objects are in a pinned state. Furthermore, YOLO does

not leverage the temporal locality of video streams, treating

each individual frame independently. Thus, once an object of

interest has been detected, the HoloLens could leverage its

video encoder accelerator to extract motion information as

part of the video encoding process, tracking objects locally at

low cost and reducing the frequency and number of objects

that need to be detected by the edge.

3.4 Determine the Orientation of Objects
In addition to an object’s 3D position, it is often also nec-

essary to know it’s 3D orientation. For example, in our sce-

nario, the direction that a piece of furniture (e.g., a sofa) is

facing matters. The same principle applies to other domains,

such as wood working or maintenance, in which instructions

and overlays heavily depend on the orientation of physical

objects. In increasing order of computational requirements

(and precision of pose estimation), the options include two-

dimensional matching by comparing to a set of template

images of the object, using classifiers such as neural net-

works on RGB (and optionally depth) data to directly regress

the pose of the object, and finally using a fine-grained 3D

matching technique such as Iterated Closest Point (ICP) for

fine adjustments [20]. While template matching can easily be

done on (vector accelerated) device CPUs for coarse results,

pose regression and ICP are best done off board.

3.5 Render High-Quality Overlays
The final step of any MR app is presenting overlays that

blend with a view of the physical world to provide assistance

or entertainment. In our case, rendering a realistic represen-

tation of target objects increases immersion and improves

the user experience. HoloLens already supports 3D experi-

ences at 60 FPS, but due to the fundamental volume, thermal,

and power gaps between desktop and mobile GPU compo-

nents, an edge node will be able to deliver richer and more

life-like graphics than the mobile device for the foreseeable

future. Offload rendering has been extensively studied in

recent years [3, 4, 8, 16], and we envision collaborative ac-

celeration taking advantage of existing techniques to deliver

high-quality visuals for critical objects, while performing

local rendering on minor or background objects.

4 PRELIMINARY EVALUATION
We next present a preliminary evaluation of collaborative

acceleration applied to our MR app through a series of mi-

crobenchmarks on the HoloLens, modeled after the primitive

operations described above. Specifically, we ask:

(1) Is HoloLens spatial mapping accurate enough for esti-

mating the depth of objects?

(2) How expensive is performing object detection on a

device like HoloLens vs. on an edge node?

(3) How effective is our pinning technique at reducing the

latency of rendering updates when the user moves?

4.1 Methodology
Weused a HoloLens runningWindowsHolographic 10 as our

main client to explore questions (1) and (3). However, to our

knowledge, there are no readily available DNN-based object

detection implementations compatible with the HoloLens.

Thus, to simulate the HoloLens’s computational capabilities

when profiling object detection (question (2)), we used an

Intel Compute Stick 1st generation STCK1A32WFC powered

by an Intel Cherry Trail Atom (similar to the CPU powering

the HoloLens), with 2GB of RAM and running Ubuntu Linux

16.04. For our edge node, we used a HP Z420 workstation

with 16GB of RAMand aNvidia GTX 980Ti GPU also running

Ubuntu Linux 16.04. The edge node uses Linux Network

Emulation (netem) to insert queuing delays and control the

RTT between the HoloLens and the edge node.

4.2 Depth Estimation Accuracy
Our first and second primitives (defining target locations

and obtaining the 3D positions of detected objects) each

require a depth reading to identify some position in 3D space.

Fortunately, we observe that the spatial map generated by

the HoloLens’s HPU and depth sensor provides applications

with an efficient mechanism for querying the geometry of the

user’s environment and estimating depth. However, if these

depth estimates are not accurate enough, the application’s

overlays may be misplaced, leading to a poor user experience.

We profiled the accuracy of these depth estimates as fol-

lows. Using our room cleaning app in designer mode (Sec-

tion 3), one researcher wearing a HoloLens stood in front

of a table, looking down at it directly from above. They

then defined the target locations of different objects (mouse,

keyboard, and scissors), creating a hologram of each object

at the points where their gaze intersected the spatial map.

Since the HoloLens was oriented to face directly down, our

depth estimation calculated the vertical distance between the

HoloLens and the table. In this case, a perfect estimate would

place the holograms exactly above the table. We physically

marked the boundaries of the holograms on the table while

still looking from above. We then oriented the HoloLens

4



parallel to the surface of the table and, using the marked

boundaries to position a ruler, we measured the distance be-

tween the hologram boundaries and the table. We repeated

the experiment 10 times for each object.

Our results (Figure 2a) show that the estimation error

was consistently under 1 cm—accurate enough for overlay

placement in our room cleaning application and similar apps

where sub-centimeter guidance is not required. Applications

where such precision is necessary (e.g. carpentry or surgery)

can either use refined versions of our pinning algorithm (e.g.

tracing multiple rays) or offload the estimation of the objects

requiring additional precision to the edge.

4.3 The Cost of Object Detection
We argue that real-time object detection is too computation-

ally expensive to be handled by a mobile device like the

HoloLens. To verify this claim, we modeled the time it would

take for the HoloLens to run the YOLO object detection

framework on each frame of a video stream by using an Intel

Compute Stick, power by a CPU similar to the one contained

in the HoloLens. We focus on the HoloLens’s CPU rather

than its GPU under the assumption that the GPU is already

devoted to the critical task of delivering a consistent stream

of 3D overlays at 60 fps. We compared the performance of the

Compute Stick to the performance of our Nvidia GPU-based

edge node (Figure 2b). We used two different neural network

model configurations for YOLO—YOLO and TinyYOLO, the

latter being a more lightweight version for weaker devices,

and we measured the performance on individual images as

well as on a continuous video stream. Both the images and

the video stream were recorded directly from the HoloLens

using a native resolution (896x504) while looking at a table

with the objects used in our app (mice, scissors, keyboards).

We can easily observe that the performance of object detec-

tion using the Compute Stick is insufficient, taking several

seconds per frame on TinyYOLO and almost a minute on full

YOLO. We can also observe that the performance of YOLO

on the edge node is several orders of magnitude faster, and

indeed fast enough to deliver smooth animation updates

(> 15 fps). While we would prefer detection rates of 30 fps

or higher, more powerful GPUs or fine tuned DNN models

would make this possible.

4.4 Pinning Effectiveness
Rather than continuously re-detecting an already-detected

object as the user moves, pinning allows the HoloLens to

internally track the user’s movement, and thus to track the

object’s position relative to the user and display an accu-

rate overlay with little delay. To understand the nature of

this latency reduction, we generated a modified version of

our room cleaning app with pinning disabled (no-pinning)

for comparison against our original version (pinning). For
each configuration, we measured the delay from the time

a real-world object comes into the HoloLens’s field of view

to the time that an overlay is presented for that object. To

perform these measurements, we used an iPhone 8 camera

set to slow motion at 240 fps, with the camera lens placed

directly behind the HoloLens’s right eye lens, allowing it to

capture both the overlays and the real world
4
. We present our

results in Figure 2c, which shows that when using pinning,

the HoloLens is capable of displaying overlays as fast as its

display permits (240 fps divided among the 4 color channels

that conform the image), resulting in a constant 4ms for all of

our measurements. The overlay latency of no-pinning, how-

ever, varied greatly depending on both the network latency

and the number of frames that YOLO had to process before

passing our confidence threshold (Section 3). While this is

in part an implementation artifact, it is evident that for any

offloaded non-pinning implementation there will always be

additional latency on top of the display refresh rate caused

by network latency and object detection.

5 DISCUSSION AND FUTUREWORK
With an eye towards future hardware-acceleratedMR ecosys-

tems, we identify challenges opportunities for future work.

5.1 Device Heterogeneity and Accelerators
AR devices are diverse, with each presenting its own bal-

ance of cost, power consumption, and on-board capabili-

ties. This diversity is often reflected in a heterogeneous set

of CPUs, GPUs, and specialized accelerators. Furthermore,

as devices evolve, we expect to see an increasing variety

of accelerator-enabled operations. This trend raises the fol-

lowing questions: (1) How should collaborative acceleration

adapt to heterogenous devices, and (2) once more and more

operations become fully accelerated, what role will collabo-

rative acceleration have? In the future, we plan to address

both of these questions— the first, through an abstraction

of the device’s capabilities, along with application latency

and accuracy requirements, that would allow a collabora-

tive acceleration offload engine to determine which tasks

or sub-tasks can be accelerated. With regards to the second

question, we plan to build on top of our application to better

understand the kinds of application-specific AI or rendering

requirements that may not be fully implemented in hardware

due to their less general applicability, and to characterize the

opportunities they present to be collaboratively accelerated.

4
We opted for this setup because the HoloLens does not allow recording

the mixed reality feed (containing video of the physical world and any

holograms present) while the RGB camera is being simultaneously used by

an application (in our case, to stream to the edge for processing).

5



0	

2	

4	

6	

8	

10	

Mouse	 Scissors	Keyboard	 Overall	

Ac
cu
ra
cy
	(m

m
)	

Depth	EsBmaBon	Accuracy	

(a) Depth Estimation Accuracy

1

10

100

1000

10000

100000

Full
Single

Full
Video

Tiny
Single

Tiny
Video

D
et

ec
tio

n 
La

te
nc

y
(m

s l
og

10
 sc

al
e)

Object Detection Latency 

GTX Atom

(b) YOLO Object Detection Latency

0	

500	

1000	

1500	

2000	

Pin	 0ms	 10ms	 20ms	 75ms	

O
ve
rla

y	
De

la
y	
(m

s)
	

Overlay	Update	Delay	

(c) Pinning Effectiveness

Figure 2: The results of our performance evaluation.

5.2 Variable Load and Availability
We have assumed implicitly that an application has the en-

tire device and edge to itself. In practice, however, multiple

applications will run in each location. Further, due to con-

tention and environmental factors, the network between

device and edge may vary in availability. Two fundamental

questions therefore present themselves. First, how can the

system help assure a graceful degradation in user experience

as resources become scarce? For instance, although this is in

the end an application-level concern, mechanisms for priori-

tization, feedback and conditional execution of components

could lessen the load on the application developer. Second,

what abstractions can the system provide to ensure that

accelerators and other resources are used optimally across

applications? Efficiently virtualizing accelerators such as

GPUs across applications is poorly understood.

6 CONCLUSION
In this paper, we present collaborative acceleration, a tech-

nique that utilizes the unique hardware accelerated capabili-

ties ofMR devices in conjunctionwith the raw computational

power of edge nodes. Through our prototype implementa-

tion of a 3D-task assistance app, we built three collabora-

tively accelerated techniques and proposed another two. We

showed that for our evaluated primitives, it is possible to

deliver sufficient accuracy with much lower latency than

full offload or local execution. In future work, we intend to

understand the power and performance characteristics of

our primitives, especially in light of hardware acceleration

trends and multi-application workloads.

REFERENCES
[1] Cuervo, E. Beyond reality: Head-mounted displays for mobile systems

researchers. GetMobile: Mobile Comp. and Comm. 21, 2 (Aug. 2017).
[2] Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu,

S., Chandra, R., and Bahl, P. Maui: Making smartphones last longer

with code offload. In MobiSys 2010 (2010).

[3] Cuervo, E., and Chu, D. Poster: Mobile virtual reality for head-

mounted displays with interactive streaming video and likelihood-

based foveation. In Proceedings of MobiSys 2016 (2016), pp. 130–130.
[4] Cuervo, E., Wolman, A., Cox, L. P., Lebeck, K., Razeen, A., Saroiu,

S., and Musuvathi, M. Kahawai: High-quality mobile gaming using

gpu offload. In MobiSys (May 2015).

[5] Gordon, M. S., Jamshidi, D. A., Mahlke, S., Mao, Z. M., and Chen, X.

Comet: Code offload by migrating execution transparently. In OSDI’12
(Berkeley, CA, USA, 2012), USENIX Association.

[6] Ha, K., Chen, Z., Hu, W., Richter, W., Pillai, P., and Satya-

narayanan, M. Towards wearable cognitive assistance. In MobiSys
’14 (New York, NY, USA, 2014), ACM.

[7] Hu, W., Amos, B., Chen, Z., Ha, K., Richter, W., Pillai, P., Gilbert,

B., Harkes, J., and Satyanarayanan, M. The case for offload shaping.

In Proceedings of the 16th International Workshop on Mobile Computing
Systems and Applications (New York, NY, USA, 2015), HotMobile ’15.

[8] Lee, K., Chu, D., Cuervo, E., Kopf, J., Degtyarev, Y., Grizan, S.,

Wolman, A., and Flinn, J. Outatime: Using speculation to enable

low-latency continuous interaction for cloud gaming. In MobiSys’15.
[9] Li, A., Yang, X., Kandula, S., and Zhang, M. Cloudcmp: comparing

public cloud providers. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement (2010), ACM, pp. 1–14.

[10] MagicLeap. Magic leap. https://www.magicleap.com/, 2017.

[11] Microsoft. Microsoft hololens. https://www.microsoft.com/

microsoft-hololens/en-us, Apr. 2016.

[12] Microsoft. Spatial mapping. https://developer.microsoft.com/en-us/

windows/mixed-reality/spatial_mapping, 2017.

[13] MSR-blog. Second version of hololens hpu will incorporate ai copro-

cessor for implementing dnns.

[14] Redmon, J., and Farhadi, A. Yolo9000: Better, faster, stronger. arXiv
preprint arXiv:1612.08242 (2016).

[15] Reichert, C. Huawei unveils kirin 970 chipset with ai. http://www.

zdnet.com/article/huawei-unveils-kirin-970-chipset-with-ai/, 2017.

[16] Reinert, B., Kopf, J., Ritschel, T., Cuervo, E., Chu, D., and Seidel, H.-

P. Proxy-guided image-based rendering for mobile devices. Computer
Graphics Forum 35, 7 (2016), 353–362.

[17] RoadToVR. Microsoft hololens inside out tracking is game changing

for ar and vr.

[18] Satyanarayanan, M. The emergence of edge computing. Computer
50, 1 (2017), 30–39.

[19] Williams, C. Microsoft hololens secret sauce: A 28nm customized

24-core dsp engine built by tsmc. http://www.theregister.co.uk/2016/

08/22/microsoft_hololens_hpu/, Oct. 2017.

[20] Wong, J. M., et al. Segicp: Integrated deep semantic segmentation

and pose estimation. CoRR (2017).

6

https://www.magicleap.com/
https://www.microsoft.com/microsoft-hololens/en-us
https://www.microsoft.com/microsoft-hololens/en-us
https://developer.microsoft.com/en-us/windows/mixed-reality/spatial_mapping
https://developer.microsoft.com/en-us/windows/mixed-reality/spatial_mapping
http://www.zdnet.com/article/huawei-unveils-kirin-970-chipset-with-ai/
http://www.zdnet.com/article/huawei-unveils-kirin-970-chipset-with-ai/
http://www.theregister.co.uk/2016/08/22/microsoft_hololens_hpu/
http://www.theregister.co.uk/2016/08/22/microsoft_hololens_hpu/

	Abstract
	1 Introduction
	2 Background
	2.1 HoloLens
	2.2 Hardware Accelerators

	3 Design and Implementation
	3.1 Define Target Locations
	3.2 Obtain 3D Positions of Objects
	3.3 Track Objects in Motion
	3.4 Determine the Orientation of Objects
	3.5 Render High-Quality Overlays

	4 Preliminary Evaluation
	4.1 Methodology
	4.2 Depth Estimation Accuracy
	4.3 The Cost of Object Detection
	4.4 Pinning Effectiveness

	5 Discussion and Future Work
	5.1 Device Heterogeneity and Accelerators
	5.2 Variable Load and Availability

	6 Conclusion
	References

