
Systems | Fueling future disruptions

Research
Faculty Summit 2018



Wolong: A Back-end 
Optimizer for Deep 
Learning Computation 
Jilong Xue
Researcher, Microsoft Research Asia



System Challenge in Deep Learning

• Innovations are emerging very fast in deep learning area
• New DNN models and workload patterns

• RNN, CNN, GAN, reinforcement learning, graph neural network, etc.
• Diverse and emerging hardware accelerators, 

• GPU, FPGA, ASICs, edge devices, NV-Link, RDMA, etc.

• Compiler stack is key to bridge framework and hardware
• Combine information of computation graph and hardware
• Optimize for both local execution and distributed scalability 
• Critical for both training and inference
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Wolong: Optimizer Stack for Deep Learning

• System innovation to bridge application and hardware
• General computation graph optimization
• Software and hardware co-design
• Just-in-time compiler

• Transparent optimization
• Communication efficiency
• Accelerator execution efficiency 
• Memory efficiency

Intermediate Representation 
(graph of operators)

Global Optimizer:
• Optimize distributed training over RDMA
• Graph analyzer/ RDMA memcpy library

Local Optimizer:
• Optimize execution with JIT compiler
• Operator batching/ kernel fusion
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Global Optimizer 
Fast Distributed Deep Learning Computation over RDMA



Distributed Dataflow Graph Execution

• Deep learning computation is modeled as dataflow graph
• Achieve parallel manner through graph partitioning

• Model parallelism vs. data parallelism 
• Tensor transmission across server becomes bottlenecks
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General Message Passing Library (e.g., RPC)

• Unavoidable memory copy overhead in RPC
• Generally designed for dynamic data structure
• Lacks knowledge of actual data placement and size
• Extra memory copy from data serialization

• Software/hardware co-design to completely 
remove memory copy overhead 
• Leverage runtime application information
• RDMA network
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Combine Dataflow Graph Computation with RDMA

• Tensor abstraction in deep learning computation
• Consists of a plain byte array with sufficiently large size (tens of KB to MB)
• Do NOT require variant data serialization/deserialization
• Do NOT require extra batching since access pattern is already sequential

• RDMA enables to manage local and distributed memory in a unified view
• One-side RDMA R/W : efficient memory copy between host memory 
• GPU-Direct RDMA : efficient memory copy between host and device memory

• Global graph optimizer for distributed computation
• Has the entire view and control of memory placement among devices and servers
• Capable of making globally optimized strategy for tensor data placement in runtime



Optimized Communication Mechanism

• Transfer statically placed tensor through one-side RDMA write
• Phase I: graph analyzing
• Phase II: graph execution

RDMA-based zero-copy communication
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Global Optimizer: Performance Evaluation

• Improve training throughput, convergence speed and scalability
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More details in our paper: RPC Considered Harmful: Fast Distributed Deep Learning on RDMA
* Experiments are conducted on 8 servers 8 Nvidia GTX 1080 GPUs;  The translation model uses WTM’15 datasets; 
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Local Optimizer 
Kernel Fusion for Deep Learning on GPU



Motivation

• Deep learning frameworks model computation as graph of primitive operators
• Expressivity to represent arbitrary neural network structure
• Flexibility to run on multi-device and multi-server through graph partitioning

• Significant framework overhead to schedule thousands of operators
• Kernel-launch overhead
• Cross operator communication overhead
• Too fine-grained to leverage vendor’s library

• Example: 80-step LSTM model
• Contains 1686 operators in TensorFlow
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DL Frameworks vs. Vendor Provided Library

• Deep learning frameworks
• E.g., TensorFlow, PyTorch, CNTK
• Embrace flexibility and expressivity
• Performance inefficiency

Flexibility

Efficiency

• Hardware specific library
• E.g., cuDNN, cuBlas, MKL
• Designed for extreme efficiency
• Impossible to handle customized or 

new network structure 

• DL framework + Compiler
• Generate library-like code in runtime
• Win both of the worlds



Wolong Compiler Design

• Computation graph level optimization
• Graph rewriting based on computational equivalence 
• Common subexpression elimination, constant folding etc.
• Operator batching: automatically batch same type operators 

to better leverage  batch efficiency 

• Target and application specific runtime compilation
• Static shape and type inference
• Static memory planning
• Aggressive kernel fusion

Computational Graph (IR)
x
w b

* + y

Execution runtime
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Target specific JIT compiler



Wolong Compiler Execution Workflow

MatMul

MatMul

Input graph

Code generation

Operator batching
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Graph Level Optimization: Operator Batching

• Automatically conduct GEMM fusion and static memory placement optimization
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JIT Compilation: Kernel Fusion

• Leverage aggressive kernel fusion to completely remove scheduling overhead
• Element-wise (i.e., point-wise) operators

• No cross-element dependency between operators
• Better leverage cache, register locality
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__global__ 
void kernel_0(float *x1, float *x2, float *h) 
{
int idx = blockIdx.x * blockDim.x + 

threadIdx.x;
if (idx < 1024) {
float temp0 = x1[idx] + x2[idx];
float temp1 = sigmoidf(temp0);
h[idx] = temp1;

}
}



JIT Compilation: Kernel Fusion

• Fuse arbitrary (non element-wise) operators in to single kernel
• Operator data dependency may introduce cross threads data dependency in kernel
• Need global synchronization to guarantee correctness
• Cross operator communication uses device memory

• E.g., fuse two matrix multiplications: Z = 𝐴𝐴 × 𝐵𝐵 × 𝐶𝐶

MM
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void kernel_0(float *A, float *B, float *C, float *Z) {
if (idx < 1024) {
buffer[idx] = MatMul_f(A, B);
Global_Sync();
Z[idx] = MatMul_f(buffer, C);
h[idx] = temp1;

}
}



Graph Computation in DL Frameworks

• Operators (kernels) are scheduled (launched) one by one
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Arbitrary Kernel Fusion Is Limited by GPU Architechture

• Hard to conduct global synchronization across all threads

Fused as single kernel
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Our Solution: Persistent Threads and Virtual Blocks

• Assign virtual block task to persistent threads 

Fused as single kernel
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Kernel Packing

• Explore graph level parallelism in static code generation
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Code Generation

C[idx] = temp2;
}

}

if (idx < 1024) {
float temp2 = reluf(temp1);

for (int tix = bx; tix < ey; tix += offx) {
for (int tiy = by; tiy < ey; tiy += offy) {

MatMul(buffer0, B, buffer1, 1024, 1024, 128);
}

}

if (idx < 1024) {
float temp0 = sigmoidf(A[idx]);
buffer0[idx] = temp0;

}
GlobalSync();

A B

𝜎𝜎

Relu

MatMul

C

//kernel code generated by Wolong compiler
__global__ 
void kernel_0(float *A, float *B, float *C) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;

//device function for sigmoid operator
__device__ float sigmoidf(float in) {

return 1.f / (1.f + expf(-in));
}

Operator device functions

…

//device function for relu operator
__device__ float reluf(float in) {

return fmaxf(0.f, in);
}

//device function for MatMul operator
__device__ float MatMul(float *a, float *b, 
float *c, int m, int n, int k) {
if (thread_ix < m && thread_iy < k) {

float temp = 0.f;
for (int i = 0; i < n; ++i) {

temp += a[tix*n+i] * b[k*i+tiy];
}
c[k * tix + tiy] = temp;

}
}

Operator kernels: device functionsCode Generator

MatMul, Add, Mul, Sub, Div, Relu, Sigmoid, Tanh, Split, Max, Min, 
Convolution, etc.



Performance of End-to-end Kernel Fusion

• RNN inference benchmark (LSTM-128uints-80steps)

• Experiments are conducted on Nvidia GTX 1080 Ti GPUs
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Conclusion

• A compiler infrastructure is critical for both cloud and edge AI
• Optimize for fast distributed training in cloud
• Optimize for efficient inference on accelerator devices

• System innovations to bridge applications and diverse hardware
• Common intermediate representation (IR)
• Co-design software and hardware for extreme efficiency

• Wolong prototype has demonstrated the initial improvements
• Up to 8x speedup on training workloads
• Up to 10x speedup on inference benchmark
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Distributed Graph Optimizer of Wolong

• Transfer dynamically allocated tensor through RDMA write/read
• Phase I: graph analyzing
• Phase II: graph execution Supports GPUDirect RDMA as well
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