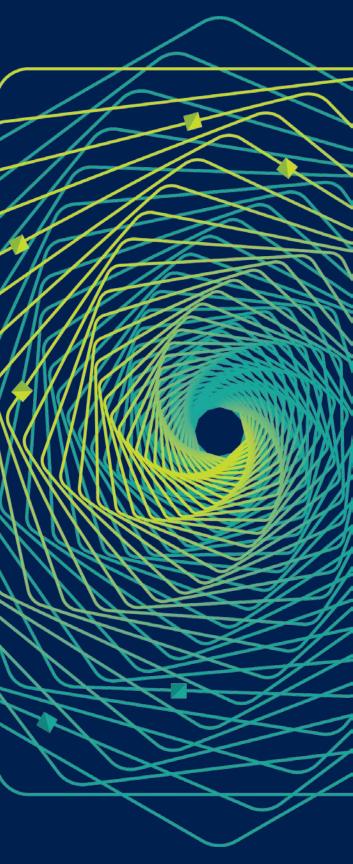
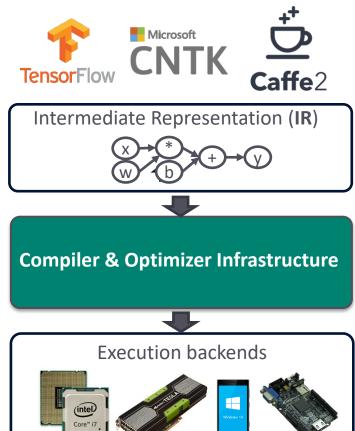


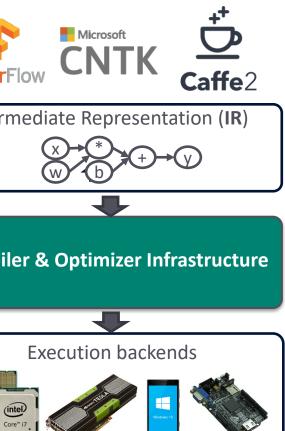
Wolong: A Back-end Optimizer for Deep Learning Computation Jilong Xue Researcher, Microsoft Research Asia

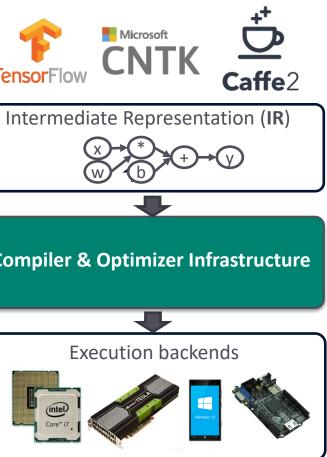


System Challenge in Deep Learning

- Innovations are emerging very fast in deep learning area
 - New DNN models and workload patterns
 - RNN, CNN, GAN, reinforcement learning, graph neural network, etc.
 - Diverse and emerging hardware accelerators,
 - GPU, FPGA, ASICs, edge devices, NV-Link, RDMA, etc.
- Compiler stack is key to bridge framework and hardware
 - Combine information of computation graph and hardware
 - Optimize for both local execution and distributed scalability
 - Critical for both training and inference



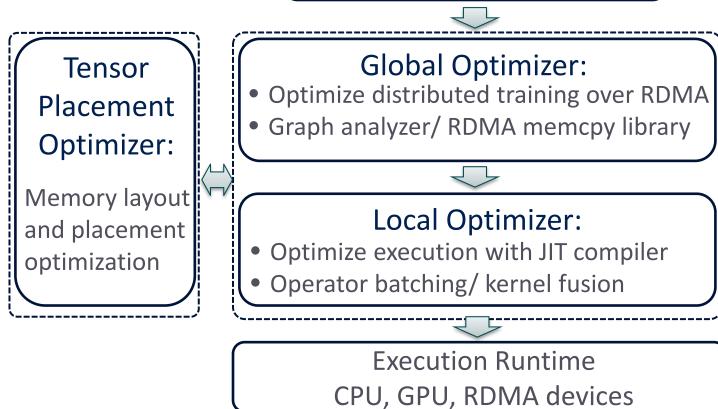






Wolong: Optimizer Stack for Deep Learning

- System innovation to bridge application and hardware
 - General computation graph optimization
 - Software and hardware co-design
 - Just-in-time compiler
- Transparent optimization
 - Communication efficiency
 - Accelerator execution efficiency
 - Memory efficiency



Research Faculty Summit 2018 Systems | Fueling future disruptions

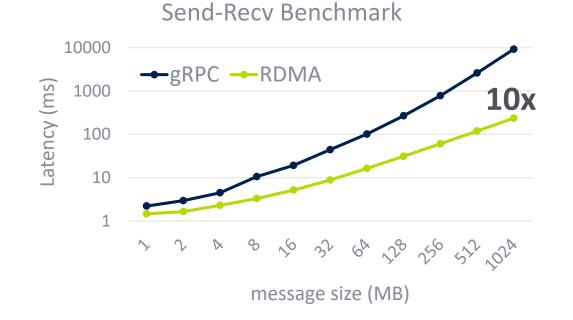
Intermediate Representation (graph of operators)

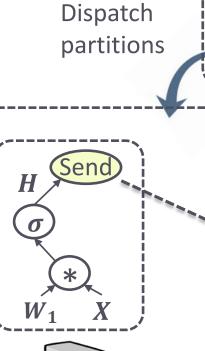


Global Optimizer Fast Distributed Deep Learning Computation over RDMA

Distributed Dataflow Graph Execution

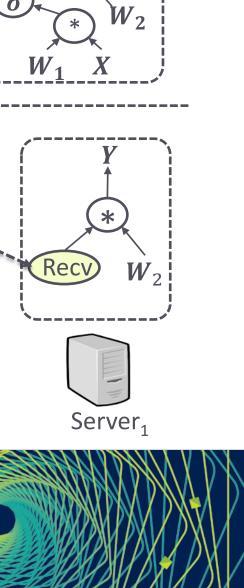
- Deep learning computation is modeled as dataflow graph
 - Achieve parallel manner through graph partitioning
 - Model parallelism vs. data parallelism
 - Tensor transmission across server becomes bottlenecks





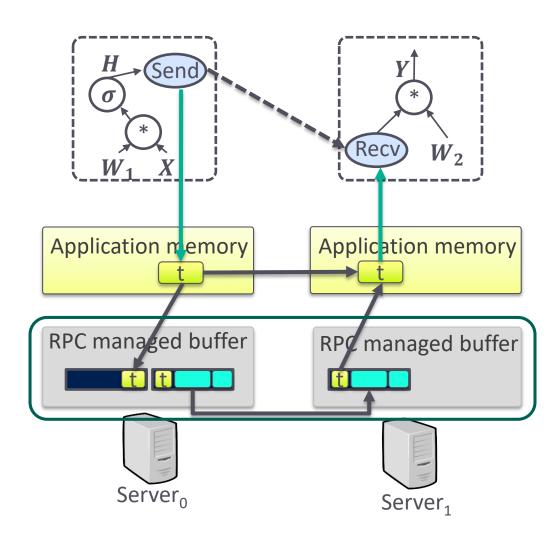
Partition

graph



General Message Passing Library (e.g., RPC)

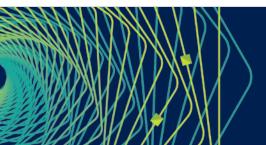
- Unavoidable memory copy overhead in RPC
 - Generally designed for dynamic data structure
 - Lacks knowledge of actual data placement and size
 - Extra memory copy from data serialization
- Software/hardware co-design to completely remove memory copy overhead
 - Leverage runtime application information
 - RDMA network





Combine Dataflow Graph Computation with RDMA

- Tensor abstraction in deep learning computation
 - Consists of a plain byte array with sufficiently large size (tens of KB to MB)
 - Do NOT require variant data serialization/deserialization
 - Do NOT require extra batching since access pattern is already sequential ${}^{\bullet}$
- RDMA enables to manage local and distributed memory in a unified view
 - One-side RDMA R/W : efficient memory copy between host memory
 - GPU-Direct RDMA : efficient memory copy between host and device memory \bullet
- Global graph optimizer for distributed computation \bullet
 - Has the entire view and control of memory placement among devices and servers
 - Capable of making globally optimized strategy for tensor data placement in runtime



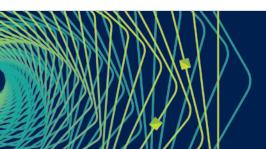
Optimized Communication Mechanism

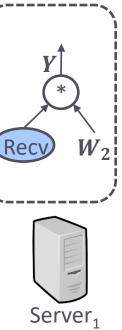
- Transfer statically placed tensor through one-side RDMA write
 - Phase I: graph analyzing

• Phase II: graph execution

RDMA-based zero-copy communication

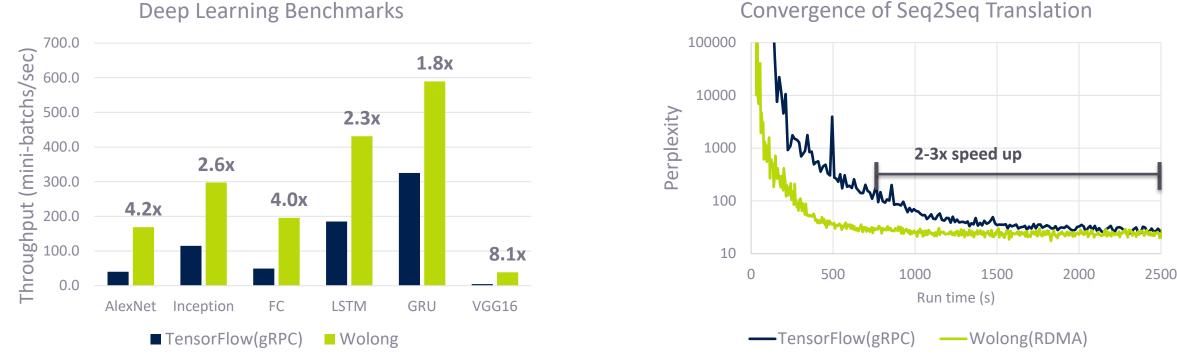
 $W_{1} X = \frac{V_{2} V_{1} V_{1} V_{2}}{V_{1} V_{2} V_{$





Global Optimizer: Performance Evaluation

Improve training throughput, convergence speed and scalability



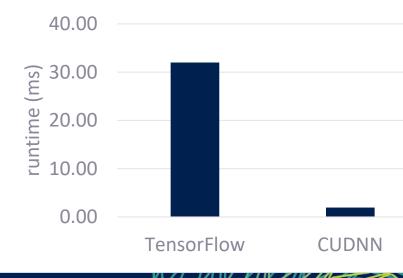
More details in our paper: RPC Considered Harmful: Fast Distributed Deep Learning on RDMA

* Experiments are conducted on 8 servers 8 Nvidia GTX 1080 GPUs; The translation model uses WTM'15 datasets;

Local Optimizer Kernel Fusion for Deep Learning on GPU

Motivation

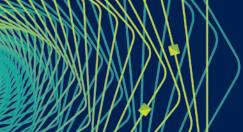
- Deep learning frameworks model computation as graph of primitive **operators**
 - **Expressivity** to represent arbitrary neural network structure
 - **Flexibility** to run on multi-device and multi-server through graph partitioning
- Significant framework overhead to schedule thousands of operators
 - Kernel-launch overhead
 - Cross operator communication overhead
 - Too fine-grained to leverage vendor's library
- Example: 80-step LSTM model
 - Contains 1686 operators in TensorFlow



Research Faculty Summit 2018 Systems | Fueling future disruptions

LSTM 512x512 (80steps)

FuseKernel



DL Frameworks vs. Vendor Provided Library

Deep learning frameworks

- E.g., TensorFlow, PyTorch, CNTK
- Embrace flexibility and expressivity
- Performance inefficiency

• **DL framework + Compiler**

- Generate library-like code in runtime
- Win both of the worlds

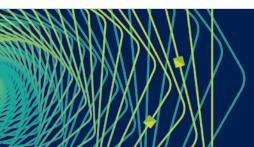
• Hardware specific library

- E.g., cuDNN, cuBlas, MKL
- Designed for extreme efficiency
- Impossible to handle customized or new network structure

Research Faculty Summit 2018 Systems | Fueling future disruptions

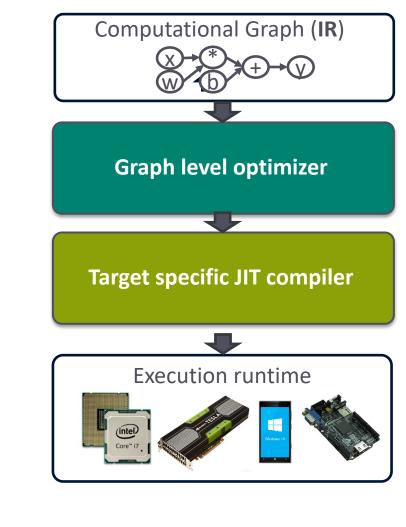
ncy ized or

Efficiency

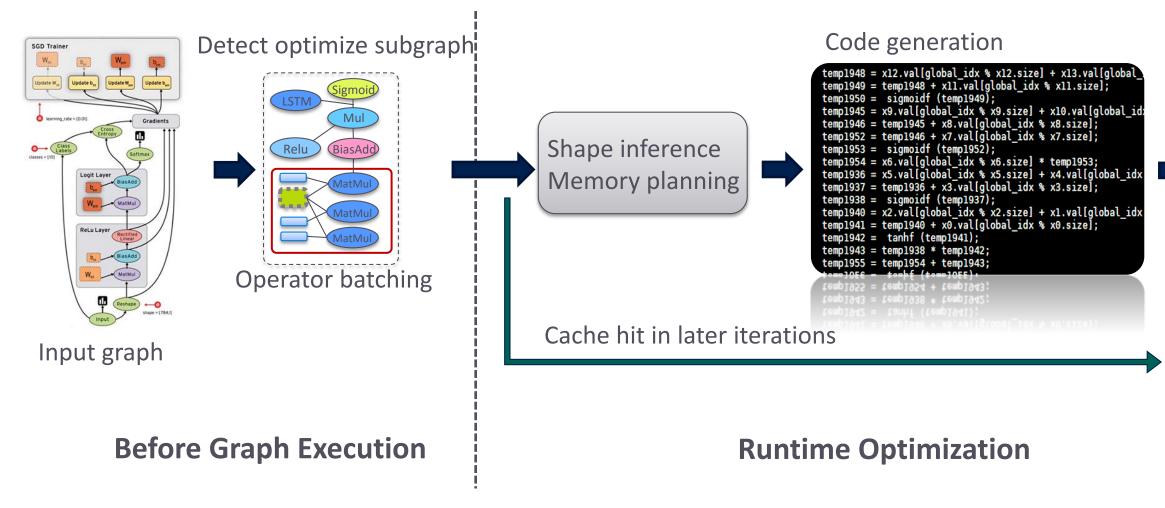


Wolong Compiler Design

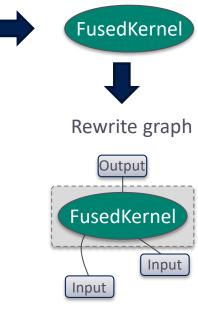
- Computation graph level optimization
 - Graph rewriting based on computational equivalence
 - Common subexpression elimination, constant folding etc.
 - **Operator batching**: automatically batch same type operators to better leverage batch efficiency
- Target and application specific runtime compilation
 - Static shape and type inference
 - Static memory planning
 - Aggressive kernel fusion



Wolong Compiler Execution Workflow

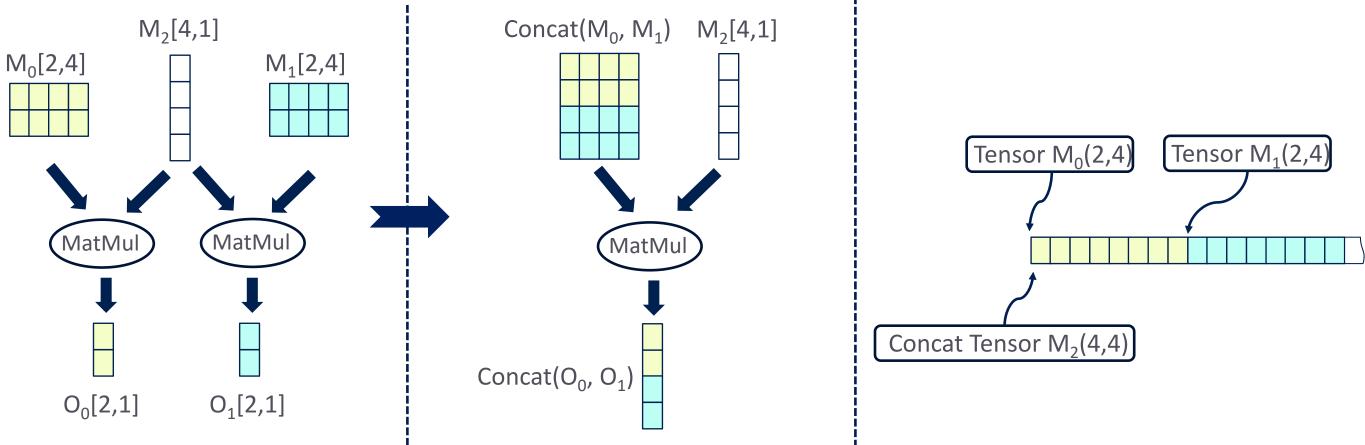


JIT compile



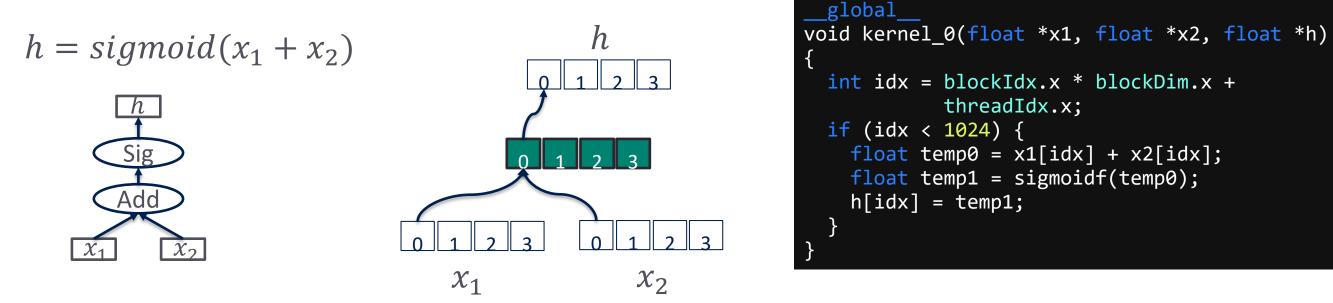
Graph Level Optimization: Operator Batching

• Automatically conduct GEMM fusion and static memory placement optimization



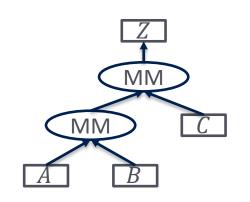
JIT Compilation: Kernel Fusion

- Leverage aggressive kernel fusion to completely remove scheduling overhead
- Element-wise (i.e., point-wise) operators
 - No cross-element dependency between operators
 - Better leverage cache, register locality



JIT Compilation: Kernel Fusion

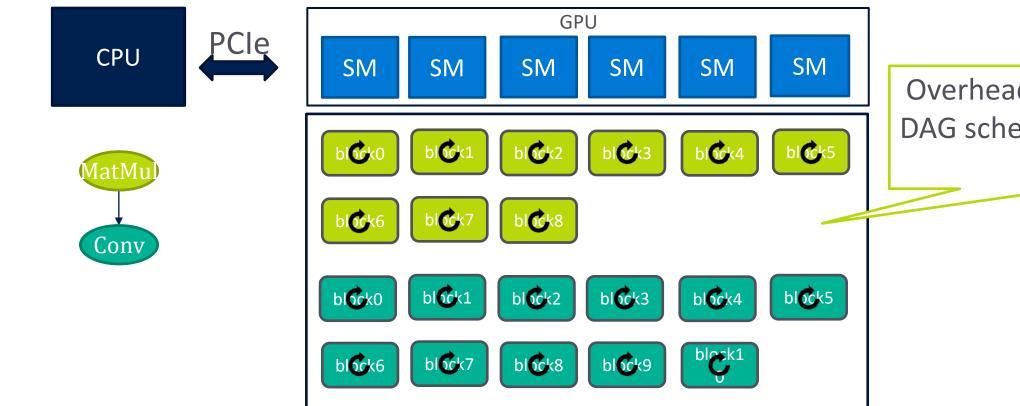
- Fuse arbitrary (non element-wise) operators in to single kernel
 - Operator data dependency may introduce cross threads data dependency in kernel
 - Need global synchronization to guarantee correctness
 - Cross operator communication uses device memory
- E.g., fuse two matrix multiplications: $Z = A \times B \times C$



void kernel 0(float *A, float *B, float *C, float *Z) { if (idx < 1024) buffer[idx] = MatMul f(A, B); Global Sync(); Z[idx] = MatMul f(buffer, C); h[idx] = temp1;

Graph Computation in DL Frameworks

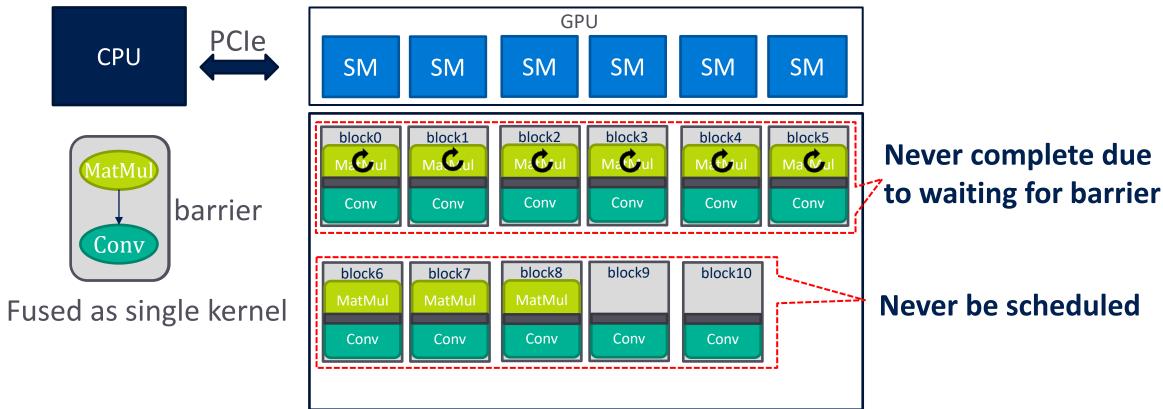
• Operators (kernels) are scheduled (launched) one by one

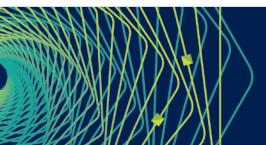


Overhead of kernel launching, DAG scheduling, memory copy, etc.

Arbitrary Kernel Fusion Is Limited by GPU Architechture

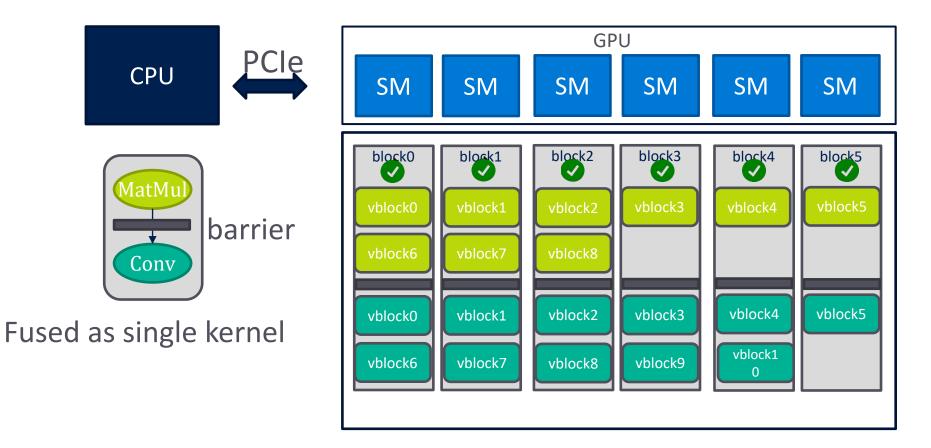
• Hard to conduct global synchronization across all threads





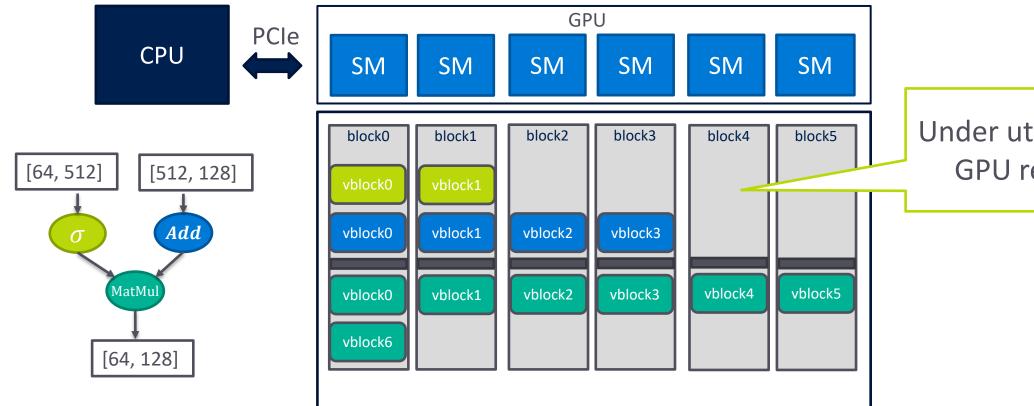
Our Solution: Persistent Threads and Virtual Blocks

• Assign virtual block task to persistent threads



Kernel Packing

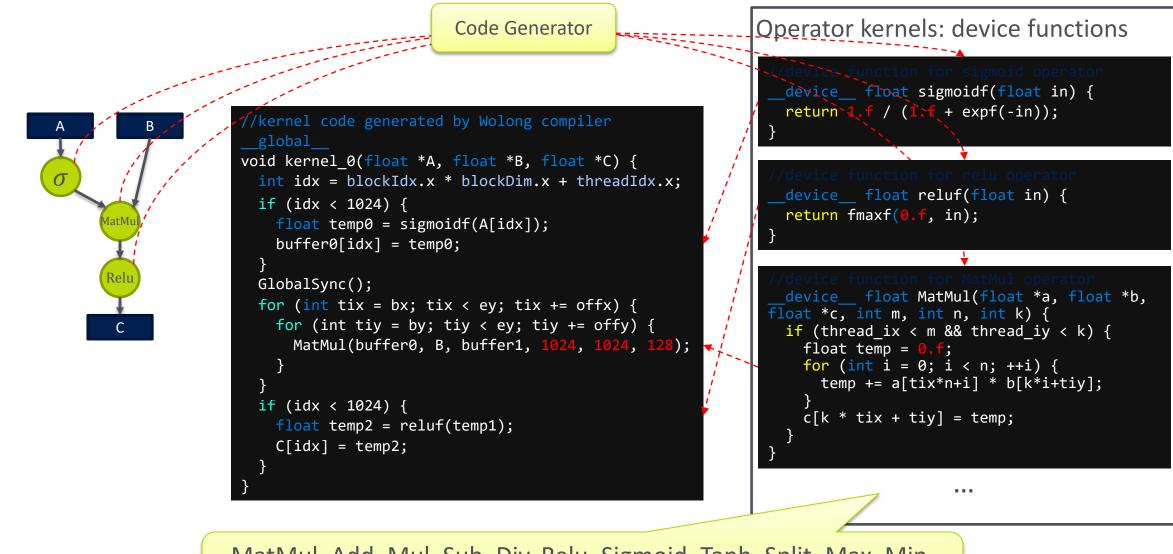
• Explore graph level parallelism in static code generation



Research Faculty Summit 2018 Systems | Fueling future disruptions

Under utilization of GPU resource

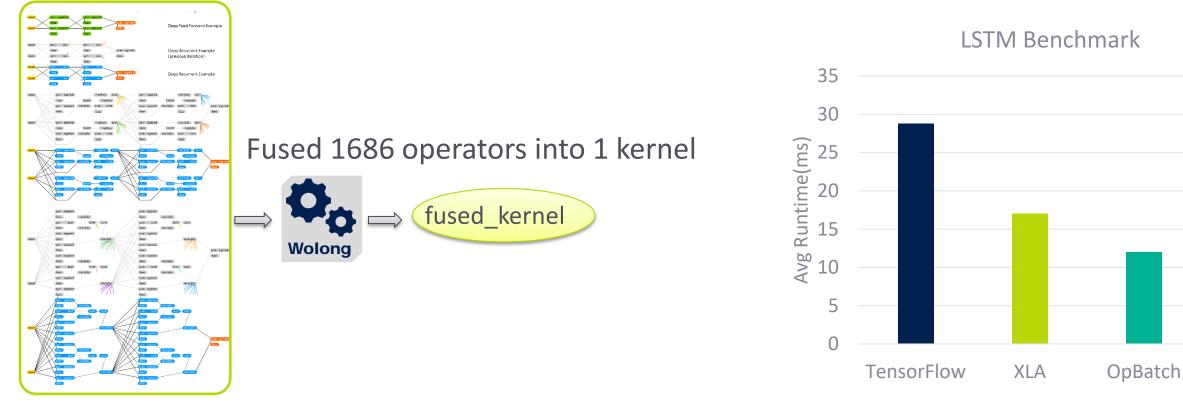
Code Generation



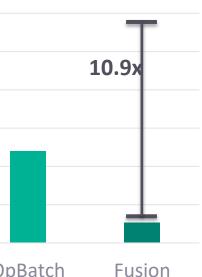
MatMul, Add, Mul, Sub, Div, Relu, Sigmoid, Tanh, Split, Max, Min, Convolution, etc.

Performance of End-to-end Kernel Fusion

RNN inference benchmark (LSTM-128uints-80steps)



Experiments are conducted on Nvidia GTX 1080 Ti GPUs

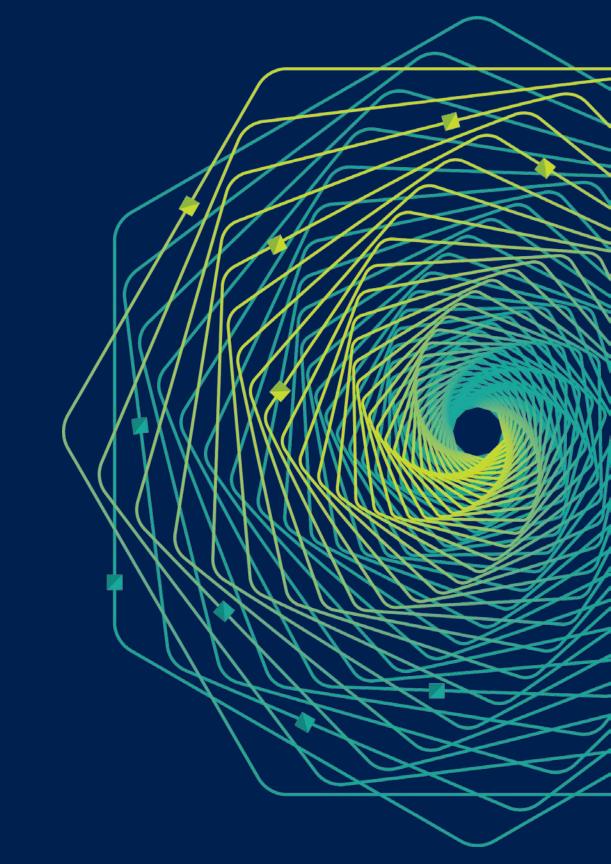


Conclusion

- A compiler infrastructure is critical for both cloud and edge AI
 - Optimize for fast distributed training in cloud
 - Optimize for efficient inference on accelerator devices
- System innovations to bridge applications and diverse hardware
 - Common intermediate representation (IR)
 - Co-design software and hardware for extreme efficiency
- Wolong prototype has demonstrated the initial improvements
 - Up to 8x speedup on training workloads
 - Up to 10x speedup on inference benchmark

Thank You!

Systems | Fueling future disruptions



Distributed Graph Optimizer of Wolong

- Transfer dynamically allocated tensor through RDMA write/read
 - Phase I: graph analyzing
- Supports GPUDirect RDMA as well
- Phase II: graph execution

