
Grounding Interactive Machine Learning Tool Design in
How Non-Experts Actually Build Models

Qian Yang1 Jina Suh2 Nan-Chen Chen3 Gonzalo Ramos 2

Human-Computer Interaction Institute, Carnegie Mellon University 1

Microsoft Research 2

Human-Centered Design & Engineering, University of Washington 3

yangqian@cmu.edu jinsuh@xbox.com nanchen@uw.edu goramos@microsoft.com

ABSTRACT
Machine learning (ML) promises data-driven insights and
solutions for people from all walks of life, but the skill of
crafting these solutions is possessed by only a few. Emerging
research addresses this issue by creating ML tools that are
easy and accessible to people who are not formally trained in
ML (“non-experts”). This work investigated how non-experts
build ML solutions for themselves in real life. Our interviews
and surveys revealed unique potentials of non-expert ML,
as well several pitfalls that non-experts are susceptible to.
For example, many perceived percentage accuracy as a sole
measure of performance, thus problematic models proceeded
to deployment. These observations suggested that, while
challenging, making ML easy and robust should both be
important goals of designing novice-facing ML tools. To
advance on this insight, we discuss design implications and
created a sensitizing concept to demonstrate how designers
might guide non-experts to easily build robust solutions.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
Interactive Machine Learning; End-user Machine Learning;
Machine Teaching; Empirical Study; User-Centered Design;
Sensitizing Concept.

INTRODUCTION
Machine learning (ML) promises data-driven insights and
solutions for a wide variety of domains and people from all
walks of life, but crafting these solutions generally requires
knowledge that is possessed by only a few. Emergent ML
and HCI research aims to make solutions easy to build and
accessible, enabling more people to build ML solutions for
their respective domains of interest [21, 24].
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DIS ’18, June 9–13, 2018, , Hong Kong

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5198-0/18/06. . . $15.00

DOI: https://doi.org/10.1145/3196709.3196729

Making ML accessible to people beyond formally trained
data scientists is a reality that some researchers are focused
on achieving. Technical ML community has worked to
improve amateurs’ efficiency and reliability in labeling, aiding
feature engineering and error-proving, for instance [17]. HCI
researchers have created interactive machine learning (iML)
tools for developers and end users [9, 16, 29, 7]. Many in the
industry even promote the idea of “ML for everyone”, creating
tools that amateurs could walk up and use [3, 14, 26, 27].

Given the potential benefits and rapid growth in the work
that makes ML accessible, it seems that understanding how
amateurs build ML solutions for themselves should be a part of
iML research and tool design. Interestingly, such investigation
is rare. Extensive prior work instead focused on lab studies,
where crowd workers accomplish pre-identified ML tasks
following preset procedures (i.e. [5, 6, 17]). Some HCI
researchers noted a lack of user understanding in the design of
these systems and called for “power to the people" in ML [1,
12, 20].

To bridge the gap between accessible iML technology and its
intended users, we conducted an empirical study. We focused
on those whom we call “non-experts” – people who are not
formally trained in ML, and are actively building ML solutions
to serve their needs in the real world (e.g., a corporate recruiter
who built a job candidate profile classifier to aid his decision;
or a hobbyist developer who built a signal classifier for her
context-aware mobile app). We wanted to understand how they
built ML solutions in real-life contexts, including their goals,
their approaches to ML and the challenges they encountered.
We wanted to identify opportunities where accessible ML tools
might help.

We interviewed 24 non-experts who were building ML models
and the ML consultants some of them hired to help. We
surveyed another 98 non-experts to collect more diverse ML
experiences. The study revealed that non-experts are more
satisfied and trusting toward the learning results than their
professional counterparts. However, they were also susceptible
to several technical pitfalls. For example, they tend to perceive
percentage accuracy as a sole measure of model performance,
thus problematic or even invalid models sometimes proceeded
to deployment.

https://doi.org/10.1145/3196709.3196729

These observations helped us shift the focus away from
thinking of non-expert ML as being simply a problem of
facilitating the needs of data scientists, or one of reducing
tool complexities. While challenging, making the process of
building ML models easy, flexible, and robust should be an
important goal of designing accessible ML tools. But how?
The design seems inevitably need to trade off achieving one
goal against interfering with another. [20]. To help both
ourselves and fellow designers address this challenge, we
designed a new interaction flow for accessible iML tools,
namely Test-Driven Machine Teaching, exemplifying one
possible solution. It functions as a sensitizing concept
[31], informing and inspiring HCI researchers of the rich
opportunities in this open design space. We discuss its design
implications and other open research questions the empirical
findings inspire.

This work makes three contributions. 1) Our empirical study
provides a rare description of how non-experts actually build
ML solutions in the real world. 2) This work provides
an alternative perspective to the common assumption that
novice-facing tools are GUI tools that reduce or hide ML
complexities. An ML tool might better support non-experts
if it considered their unique mental model of ML and guided
them to build more robust models. 3) Our sensitizing concept
exemplifies one possibility in this new design space, offering
a starting place for future design innovation.

RELATED WORK

Understanding People in Interactive Machine Learning
In HCI and ML literature, people who build ML models fall
into three categories: experts, intermediate users of ML [16],
and amateurs. This work focuses on the latter two populations;
together we refer to them as “non-experts”.

Interestingly, it remains unclear how much ML knowledge
qualifies one as an “intermediate user", and what level of
ML knowledge stratifies across intermediate and expert users.
Researchers defined intermediate users as those “who have
some experience with ML, but without a deep knowledge
the experts have” [7, 16]. Without a clear-cut definition,
some researchers identified intermediate users based on the
tools they use: Those who use graphical user interface (GUI)
tools or libraries like Weka are intermediate users; Those who
implement their own algorithms are experts [16].

Little to no research has investigated how intermediate users
work with ML empirically. A related strand of work has looked
at how software engineers build applications that use ML [12,
20]. HCI researchers have also shared their own experiences
[9, 10, 29]. Together they revealed many challenges of
applying ML in software applications. For example, they had
difficulties in understanding the limits of what can be learned;
in exploring different formulations of an ML problem, and in
evaluating model performance in the context of its application.

Extensive research has investigated ML amateurs–those
who interact with ML systems but have no knowledge of
ML, such as some domain experts and end users. They
typically are engaged in ML when automatic ML approaches
fail or deliver unsatisfactory results [1]. Through various

crowd-sourcing systems, amateurs help label data, repair
data flaws, reason about data, test and troubleshoot learning
algorithms. Research has created many techniques that
improve crowd workers’ efficiency and reliability in these
distinct steps of ML pipelines [5, 6, 8, 18, 25, 28].

HCI researchers pointed out that some design of these systems
failed to account for users; that the role of amateurs in
ML should not be finite state machines that repeatably tell
algorithms what is right versus wrong [1]. They called for
increasing collaborations across the fields of HCI and ML,
and for bringing “Power to The People in iML” [1, 20]. They
found that integrating user understanding into crowd-sourced
ML systems can improve both crowd-workers’ experience and
efficiency [1, 25].

While making important contributions, these crowd-sourced
systems remain focused on predefined ML problems and
pipelines. We are not aware of studies that investigated how
amateurs build learning algorithms in real-world contexts.

Designing Accessible iML Tools
By accessible iML tools, we refer to tools that enable
non-experts to build ML models. Interestingly, most academic
iML systems do not specify the amount of ML knowledge
required for proper use, making it practically impossible to
differentiate accessible ML tools from expert-facing ones. Few
other tools, such as Gestalt [19], supported the integration
of ML and larger software development workflows. While
making ML more accessible, these tools assumed sufficient
ML knowledge among their users, therefore fall out of the
purview of this work.

When designing explicitly for non-experts, researchers
removed complex steps and interactions in the ML process.
These tools uniformly adopted GUI designs, eliminating the
need for users to write code (i.e. [7, 9, 16]). In addition, some
tools became focused on particular application domains and
limited the types of input a user can provide [7, 21]. Users
have little or no recourse if their problem does not conform to
the assumptions made by the tool. Researchers concluded this
design choice as the trade-off between generalizability and
accessibility. To make accessible ML tools, designers had to
sacrifice flexibility for ease of use [20].

There is a noticeable lack of connection between these designs
and the work that investigated non-experts. Accessible
iML tools in HCI research rarely came out of an elaborate
understanding of their users, or the challenges they face in
real-world situations. Commercial iML tools that promote the
idea of ML for everyone did not document how their design
choices support their diverse users [11, 14]. Bridging these two
threads of research, this work brings a user-centered lens to
the currently technology-driven iML tool design and research.

EMPIRICAL STUDY DESIGN
We aimed to investigate how non-experts actually build ML
models for their own purposes in real-world contexts. We
aimed to identify opportunities where accessible ML tools
might help. Towards these goals, we chose to conduct a
qualitative study consisting of interviews and an open-question

Non-Experts Supporting Experts*

Profession Example ML Problem count count

Professional Software Engineer Bug report classifier 4 2
Project Manager User feedback classifier 2 2

Manager HR Policy Q&A bot 2 1
Business Analytics Predictive machine maintenance 1 2

Artist Emotion classifier for wearables 1
Botanist Predictive plant nutrient management 1 1

Academic Researcher Sensor signal classifier 1
Clinical Researcher Prognostic classifier 1

Mechanical Engineer Insurance risk estimate 1 1

Table 1. Interview study participants. We focused on non-experts, those who are not formally trained in ML, and are actively teaching learners to solve
particular problems. [*] We also interviewed the ML consultants whom the non-experts hired to help.

survey. We chose interviews because we wanted to capture
in rich detail the thought processes of the non-experts when
building ML models. We used an online survey because we
wanted to collect more narratives of such processes from a
broader population.

Participants
Previous research offered us no clear division between experts
and non-experts. In this study, we chose to use their
educational degree as approximation. We had two criteria
when screening non-expert participants: 1) Participants do
not have a degree in ML, statistics, mathematics or artificial
intelligence; 2) Participants are pro-actively building one or
more ML models for his/her own purposes. Our interviews
and survey were then devised to probe participants’ specific
knowledge and skillset, including subject domain knowledge,
statistics and ML knowledge, programming skills, etc.

Field Interviews
We conducted semi-structured interviews with users of four
consumer-facing ML services. The four services are an
iML tool for building ML and deep learning applications,
a consulting service for ML analytics, a consulting service for
data-driven business decision making, and a chat-bot-building
framework. We recruited an initial set of participants through
our professional networks in these ML teams, and later
expanded via snowball sampling.

We interviewed 14 non-expert users of these services. We
asked participants to walk us through in detail the problems
had and how they solved or failed to solve the problems with
ML. Several participants also offered to share with us their data
schema, iML tool workbench status, documents, or notes. All
interviews were audio-recorded and transcribed for analysis.
Table 1 provides a summary of the participants’ profession
and the type of projects they described in our study.

During these interviews, we found that some of the
non-experts hired ML consultants to help. In order to
better understand where and how they sought help, we also

interviewed 10 of these consultants. We were also invited to
observe two of the clients’ meetings with their ML consultants
for ongoing projects. The consultants are professional data
scientists trained in ML, mathematics or statistics. In the data
analysis and the rest of the paper, we strictly differentiate the
narratives of non-experts and ML consultants.

Online Survey
We then sought to collect more diverse ML experiences
through an online survey. The survey centered on one open
question: “Describe in detail a recent project where you built
or attempted to build an ML model”. Follow-up questions
inquired about this model’s inputs and outputs, data, tool use,
code functionality (if applicable), participants’ expectations,
frustrations and results. We publicized links to the survey
on two Reddit boards for ML hobbyists. We also promoted
it via ML-related mailing lists of a large-scale technology
company and of two universities. We collected 98 valid survey
responses from self-identified non-experts.

We analyzed both survey responses and interview
transcriptions using affinity diagrams [2] and sequence-flow
models. We created multiple affinity diagrams based on ML
workflow, the expertise participants have, the problems they
encountered, the application domains, etc. We discussed
patterns in non-expert ML as they emerged.

EMPIRICAL FINDINGS
We organized our empirical findings around four themes:
non-experts’ motivations to build ML models, their overall
experience, their knowledge of ML and their blind spots.

Motivation Toward Machine Learning
A majority of non-experts began to experiment with ML
because they had a dataset at hand, rather than a clear ML
goal in mind. ML consultants shared that a vast majority of
their clients come with available data, and may “want ML but
do not yet know exactly what for” (P9,10,23).

Many non-experts built ML models solely for gaining data
insights (Figure 1b). A model’s accuracy or related metrics

Figure 1. (a) A consolidated ML process and the four fields of expertise involved; (b) non-experts’ varied goals. Their goals anchored the fractions of
an ML pipeline they need to implement, and frequently veered them away from some of the thorny challenges of ML.

was not their focus. Rather, they value the byproducts of
the ML model: the choices of features that generated the
best-performing model. For example, a mortgage website
manager (P9) applied ML to the web log data, in searching
for insights on why the users drop their mortgage applications
halfway.

Tell me what I don’t know about the data. (P24)

The fun part was seeing what a most predicted phrase
would be. (Survey respondent #37, building a chatbot)

Others who build models for intelligent applications evaluated
ML success as a matter of improvement; their goal was to
build a good enough model that improves the current manual
or heuristic-based solution. Very few of them had a predefined
learning problem in mind that must be modeled as accurately
as possible.

P4 (artist who creates wearable robots): it doesn’t need
to be a perfect algorithm for that (my art) to work. It’s
nice if it is. The algorithm is not the important part of
that, it was the demonstration of the wearable and my
ideas.

Machine learning is just a chainsaw in a workshop. I’d
love to work in a workshop that has a chainsaw, but I
don’t necessarily need it. (P2, developer, building a smart
sensor for his home):

Experience of Machine Learning
Non-experts in our study were able to build models that they
perceive as satisfactory. They first formulated a task for the
ML system to perform based on the data they have. When
the available data is insufficient for the problem, they adjusted
their expectations and designed a new model to build. As
such, non-experts did not need to acquire additional data or
labels. Other participants who did not have a ready dataset
at hand took a similar approach. They started with a vaguely
defined problem space and searched for publicly available
ML tutorials or scripts that solve comparable problems. The
search results provided non-experts with possible ML problem
formulations and solutions. They then implement the fledgling
problem-solution and iterate, until they arrived on a matching
problem-solution pair.

I don’t understand the frustrations yet. (#28)
This is my fist project with ML, due to its success I’m
planning to create my next project in one month. (#50)

Non-experts implemented learning models by showing desired
outputs and inputs. They understood an ML algorithm as an
input-output (I/O) mapping mechanism; a mechanism in which
data inputs go in, and the prediction and a performance score
come out. They tweaked the algorithms that their tools offered
until the accuracy was good enough; otherwise, they adjusted
their ML goal and iterated on this experimental process.

I need to be see what the model looks like so I can be sure
of what I’m building, and can modify and adjust details.
(Survey respondent #93)

In our interviews, all non-experts expressed no doubt on
validity of the models they built, regardless of their level of ML
experience or the interpretability of the model. They trusted
their ML results more than their consultant collaborators.

Non-experts’ level of trust, in the ML consultants’ opinion,
depends on the extent to which they are engaged in the building
process. In order to gain their clients’ trust on their ML
model, ML consultants frequently reported data insights to
the clients, presented the models built in every debugging
iteration, and kept the algorithms explainable even at the cost
of model performance. This interactivity in this process made
the non-experts trust the result models.

Knowledge of Machine Learning and Tool Use
How did non-experts build satisfying and trustworthy models
by merely mapping in/outputs? To take a closer look, we
created a sequence-flow map, detailing the knowledge and
skills that our participants utilized at different stages of the
process. This surfaced four fields of expertise instrumental
for the success of ML: problem understanding, subject matter
expertise, engineering expertise and ML expertise (Figure 1a).
Drawing on them, we note non-experts’ skillset and discuss
the challenges they knowingly or unknowingly experienced.

Problem Understanding and Subject Matter Expertise
Problem understanding is the in-depth knowledge about what
predictions could be valuable to a real-world situation, and
how the prediction would be used in that context. All

of the non-experts in our study have profound problem
understandings as they built models for their work or hobbies.

Subject matter expertise includes the abilities to explain jargon
and nominate possible feature interrelations, and a detailed
understanding of how the data is collected in the field and
its potential flaws. Most of the non-experts in our study are
subject matter experts too. Even when collaborating with
ML consultants, they played leading roles in interpreting
data, guarding against insensible data maneuvers, suggesting
important features to include, and directing how to visualize
and use ML outputs.

Engineering Expertise
Engineering expertise includes the skills to write code, and
the knowledge of software engineering best practices.

Non-experts did not perceive programming as a challenge.
Formally trained software engineers make up a majority of the
non-expert participants. Only one of the 98 survey respondents
had no programming skills at all and s/he managed to build
the model using GUI tools (Excel and Weka). Others relied
on publicly available scripts and learning from online working
examples. They expressed frustration that they felt limited by
the possibilities these tools offer, but none cited inability to
write code as barrier to their ML success.

It is worth noting that, even among those who do have a degree
in computer science, many did not write code at all. More than
half of them wrote less than a hundred lines of code. When
building models for personal use or for hobby projects, they
only wrote code to prepossess data or craft features.

Machine Learning Expertise
Beyond the ability to build a working model, ML expertise
also includes a variety of aspects of practical data science
knowledge: 1) the statistical knowledge, such as processing
data based on descriptive statistics and interpreting algorithm
performances based on visualizations and performance
matrices; 2) topical knowledge such as “X model works well
with Y kind of data”; and finally, 3) procedural knowledge of
ML, such as how to assemble multiple components of an ML
solution via large masses of “glue codes".

Non-experts learned how to build an ML model by reading
the documentation of iML tools/APIs, at the time when they
started building a model. One ML consultant shared that,
across all her clients, “how well they build a model depends
on how much effort they put into reading documentations".

Interestingly, non-experts rarely read API documentation at all,
unless pushed by their consultants. Non-experts instead simply
relied on pivoting publicly-available working ML examples,
re-purposing these scripts toward their needs. The knowledge
and reasons underlying these working examples remained
unknown to the them.

The main challenge along the way was the problem
domain and the nature of the data were quite unique
– no publicly available analogous datasets or literature.
(Survey respondent #42)

Non-experts rarely attempted to introspect the internal
mechanism of learning algorithms. They did not attempt to use
data visualization or descriptive statistics to understand their
data or introspect their models. None of them has mentioned
any consideration about unintelligible features, unseen data or
model generalizability.

The characteristics of different learning algorithms were not
in non-experts’ sphere of knowledge either. Among the survey
respondents, nearly half non-experts have only explored one
algorithm throughout their ML processes; Another 10% of
the survey respondents either “tried all algorithms that I
could think of ” or “simply followed system recommendation”
when building models. ML consultants described this topical
knowledge as undocumented “or on the fringes of ML
textbooks”, and could only be acquired via years of ML
experience.

Non-experts did not mention the procedural knowledge of
ML either. Contrarily, ML consultants often preserved and
reused the structure of their previously built ML solutions,
and considered the pipeline design an important part of their
expertise. This difference led to their distinct preferences for
ML tools.

Preference for Machine Learning Tools
ML consultants uniformly and strongly preferred GUI-based,
drag-and-drop tools that allow them to reuse their ML
pipeline setup and application deployment codes, for example,
knowledge-flow tools and scripting tools that support movable
code sections. They thus could focus on implementing their
learning algorithms with minimal code changes in other parts
of the application.

In contrast, most non-experts expressed a strong preference
for iML tools that take the form of a code editor. Except
the one participant who does not program at all, non-experts
prefer text-editor tools so that they can more easily re-use
online scripts and ML solutions. Non-experts with formal
training in software engineering particularly preferred these
tools. Code-versioning and collaboration features of these
tools (i.e. Git integration) enabled them to easily integrate
various APIs, control versions, track bugs, and collaborate in
real-time. They described these features as essential parts of
their work. These observations are very different from the
assumptions in previous literature, that non-experts are those
who use GUI tools, while experts write customized code and
use “expert tools” [16].

Writing code is just so much faster, more efficient. [...]
After my consultant did all the exploratory work in [a
knowledge-flow GUI tool], I always re-wrote them all in
my [code] editor.

Pitfalls of Machine Learning
Many non-experts successfully built ML solutions; they
mapped algorithm in/outputs and groped their way towards
a better model performance. This was effective in many
modeling tasks, particularly the ones that do not require
statistical reasoning or model generalizability. For example,
P2 built an application that recognizes environmental noises
and alerts ongoing events at home (i.e., microwave finished

and made a “ding” noise). He recorded microphone stream
data, labeled segments of the stream with event names, and
trained the model. The model functioned well only at his
home, and this was good enough to be useful for him.

In other application domains, however, non-experts’ I/O
mapping approach seeded frustrations and performance
problems. With little to no understanding of a learning
algorithm’s internal mechanism, non-experts were more often
baffled when model performance stalls, and more often
abandoned their tasks.

Designing an Achievable Learning Task
A vast majority of non-experts are unaware of the complexities
in translating a problematic real-world situation into a feasible
ML problem (namely, “problem design”). Often, they directly
map the high-level goal they have in mind into the ML problem
they have to design: “When I put in X, the application should
return Y” (Figure 2). The data inputs in this scenario are the
training data, and the output is the labels.

This strategy for problem design did not pertain to a particular
learning algorithm’s capability or the available data, and thus
sometimes led to difficult or unrealistic learning goals. For
example, P6 (a botanist) planned to build a signal classifier
that detects plants’ health status. She presumed to collect
video streams of her plants as training data, and her strategy
was to “just collect the data that we (biologists) use now”.

In contrast, most of the ML consultants stated that formulating
the right ML problem to solve is the greatest challenge in
the whole process. They carried out “long and difficult
processes” to gradually identify and articulate a meaningful
and achievable goal.

They first exhausted simpler analytic methods: they ran
various analyses to gain insights into the data, and then arrived
on “a decision point whether to proceed to ML”. If they
decided to proceed, they then extensively investigated what
real-world problems were worth solving and solvable by ML.
When building a user-feedback classifier, for example, one ML
consultant interviewed multiple levels of enterprise leadership
to understand how the ML result would be used, how long
it would stay active and the benefit it could generate. She
factored these observations into the design and the evaluation
criteria of her model.

Finally, ML consultants put explicit efforts in weighing “how
deep the learner can and should go” (P5). In the previous
analytic stage, they have accumulated some understandings
of the data; at this stage they more carefully investigated data

Figure 2. Non-experts’ and their consultants’ (experts) approaches to
formulating an ML problem.

distribution and the extent of missing values. In dealing
with familiar problems, consultants applied tried-and-true
measures to quickly estimate the feasibility of their learning
goal. For example, “if a human cannot tell apart the intention
of this sentence (class value), you have set the classes too
fine-grained” (P12). In dealing with more complex ML
systems, participants also weighed the resources required
before they start to build a model:

If I can predict 20% of these failures, that can save you
how much. Is that gonna be worth our time and effort? If
I can only predict 10%, is that enough to prove to you that
you can invest a little bit more so that we can improve?
(P24, building predictive maintenance solution)

I estimated the amount of labeled sample data that we will
need to accurately predict [topics]. There is a formula to
calculate that [labeled data needed]. (P16, building text
topic classifier)

In sharp contrast to non-experts’ approach, ML consultants
factored in all of the above considerations–the real-world
situation, available data, resources and intended investments,
and the capability of ML techniques–in their problem design.
Their investigative processes took up to two months.

Debugging Strategically
Debugging refers to the iterative testing and revision of an
ML model toward a certain level of performance [17]. Most
non-experts’ only strategy to improve a model’s performance
is to “add more data”. Across all of the non-experts in our
interviews and survey, none has ever removed or simplified
any features while debugging. Very often non-experts ask
their consultants “The model is not doing well. Should I add
more instances or add more features?” As one ML consultant
concluded: “They just expect a white list of examples improves
model performance.”(P12)

Assuming adding more data directly improves performance,
non-experts started training a model with all data and features
available. When the performance stalled, they added more
training inputs or turned to more complex models. After they
exhausted both options, “the next step is experimenting (with)
deep learning” (P3,18).

Some non-experts turned to API documentation to seek
additional actions that they could take. However, many
struggled with understanding the abstract concepts in the
documents. One most-mentioned such concept is feature.
Non-experts conceptualized features as concrete entities, such
as columns of data in spreadsheet, or certain words and phrases
to match in a text. We observed that this method frequently
failed when the model involved composite or hierarchical
features, or features that are difficult to interpret.

Whoever started using [an iML tool] that doesn’t have
ML background doesn’t understand what a feature means,
[...] to grasp the idea behind features. (P12, ML
consultant)

Although unclear about what a feature exactly is, non-experts
examined the value of features by its impact on model
performance. If the performance gets better, they added more

Figure 3. Non-experts’ and their consultants’ (experts) approaches to
improve model performance.

features. Otherwise, they gave up on feature engineering
altogether.

Feature is magic. I don’t know what exactly is happening,
but I can feel its impact. (Survey response)

I wasted a week on it. It doesn’t change anything. Feature
is useless. (P26, software engineer)

Contrarily, ML consultants starting model building with a
“solid, basic model”. As they evaluated the model solution,
they weighed and decided whether to “fancy it up or to add
another component”. This incremental approach allowed
them to debug only one component of the model in every
iteration, “so when it breaks you know why”. The most
frequently mentioned debug “components” include: the choice
of learning algorithm and its parameters, the choices of
including a signal or not (“is this information a signal or
a noise?”), the representation of the signal (using what and
how many features?), and the design of a feature (Figure 3).

We used a very basic set of features there and there was
a question, do we continue to make a fancier and fancier
feature, or do we go after new signal. We weigh that
constantly: Am I getting the right signal or wrong signal
from the data source I have? If I am, should I add on
another one, or should I continue trying to extract signals
from the same set of information? (P17, ML consultant)

While debugging, ML consultants constantly judged whether
the power of a feature, signal or algorithm of certain
complexity “has saturated”, and took actions accordingly.
They made these judgments based on an understanding of the
affordances and limitations of the chosen algorithm, as well
as monitoring metrics regarding data distribution and model
performance. These knowledge and tools helped them probe
into the interplay between different components of the model
and improve its performance in a systematic manner.

Measuring and Interpreting Model Performance
Most non-experts consider their task completed once their
model reached a “good enough” percentage accuracy. They
expressed no concern over how well their solution generalizes
to new data. None mentioned any over-fitting issues: The need

of considering new, previously unseen data instances is not an
activity non-experts actively engage. Some shared that they
struggled with grasping unseen data in general, “the data that
don’t fit into my memory”.

Almost all non-experts viewed percentage accuracy as the only
measure of ML success. Our interviews captured a number of
cases where non-experts deployed their ML application once
the percentage accuracy “looked good”, unaware of the likely
problems and risks in their models such as bias and overfitting.

ML consultants, in contrast, expressed a constant alertness to
the possible breakdowns of their ML solutions. “Things can
go wrong with no obvious reasons in ML,” one ML consultant
said. With such a mindset, almost all ML consultants inserted
“checkpoints” and “gates” into their processes, and closely
monitored potential problems in the data or model. They
regularly briefed each step of their ML process to subject
matter experts or problem owners to assure their every step
was statistically and practically valid. After deployment, they
closely monitored incoming data and model performance for
weeks “just to see if it (the model) actually works”.

You shouldn’t proceed to train the model if the quality
of your data doesn’t meet certain requirement, say, the
percentage of missing data and so on. (ML consultant)

DESIGN IMPLICATIONS AND TRADE-OFFS
We have depicted how non-experts build ML models for
their respective purposes in real life. We intend to draw
implications from these observations to inform future iML
tool design and research. Yet we were alerted to the fact that
participants in our study used publicly available toolkits rather
than state-of-art iML systems in academic research. In this
light, we searched HCI, ICML and AAAI publications for
systems and techniques that intend to facilitate non-experts.
We reflected on whether and how these tools and techniques
could have improved non-expert ML. After much discussion,
we found three issues where prior research and the empirical
findings seem to be in conflict.

The first issue concerns non-experts’ role in building ML
models. Accessible iML tools to date are mostly intended
to increase performance of a given model. This somewhat
conflicts with the observation that non-experts proactively
build models for their own purposes. We found their overall
approach to be similar to that of a reflective practitioner [23].
They use their repertoire of ML knowledge to experiment with
ML solutions for solving issues of practice. They continually
assess the viability of the solution, and pivot when it seems to
fail.

The second issue regards non-experts’ knowledge of ML and
tool use. Previous HCI research identified those who use GUI
tools as non-experts [16]. Accessible ML tools also uniformly
took the form of GUIs. Our empirical study provided an
alternative perspective on these commonly held assumptions:
Many non-ML experts used scripting tools to more easily
make use of publicly available ML solutions. These solutions
embedded implicit knowledge that non-experts find valuable,
such as data pre-processing procedures and model evaluation
methods. GUI tools do not offer such embedded knowledge,

thus were unattractive to many non-ML experts, especially
to those who are proficient programmers. On reflection, we
should not equate users’ ML expertise with programming
skills. Instead, we need to more carefully examine their needs
in both ML and programming tasks respectively.

Lastly, ML tools should guide and safeguard users to build
robust models. Our study revealed several technical pitfalls
non-experts are susceptible to. This is a missing perspective
in prior research on accessible ML, which has instead
been focusing on making ML easily accessible to everyone.
Guided by this framing, accessible ML tools frequently
adopted simplified interfaces and functionality, hiding ML’s
complexities. The critical role of model quality control is left
to the users. Such tools are unlikely to prevent the technical
pitfalls of ML. When blindly used, they could even increase
the risk of misleading or erroneous results.

These observations helped us shift the focus away from
thinking of non-expert ML as being simply a problem of
facilitating the needs of data scientists, or one of reducing tool
complexities. While challenging, we need to make the process
of building ML models flexible, easy and robust. Taking a
lesson from the HCI work on end-user programming, we need
to make tools for non-experts based on how they react to ML
challenges, instead of by simplifying or appropriating expert
tools for them.

This new framing led us to look for ideas where non-experts
gained awareness of ML’s technical pitfalls, and for
opportunities to guide and safeguard non-experts to easily
build robust models. But how? The trade-off between
functional elasticity and ease of use poses a fundamental
challenge for designing general-purpose, accessible iML tools
[22]. To help both ourselves and fellow designers and
researchers, we created an iML tool design as a sensitizing
concept [31], demonstrating one possibility of creating
novice-friendly yet robust iML processes.

A SENSITIZING CONCEPT
In the second stage of our work, we set out to design a
sensitizing concept for accessible iML tools. We deliberately
broke the norm and chose to create a sensitizing concept
rather than elaborating on a set of discrete design implications.
This is because our goal is to inform the HCI community of
the ready opportunities in this research space, and to offer a
starting place for future innovation. We had three goals for
this design:

• Grounding its interaction design in non-experts’ intuitive
approach to ML;

• Scaffolding and safeguarding a robust model building
process;

• Supporting users of various needs and skillsets, both in
terms of ML knowledge and programming skills.

Toward these goals, we sketched various possible iML tool
forms and functions. We also synthesized technical advances
in HCI and ML research. We mapped them onto the workflow
and pitfalls our empirical study has revealed and discussed
how they might benefit non-experts. This process resulted in a
new design, namely “Test-Driven Machine Teaching”.

The Concept of Test-Driven Machine Teaching
Test-driven machine teaching is the interaction flow of an
iML tool. It takes inspirations from two technical concepts:
“Machine Teaching” [24] and “Test-Driven ML” [4].

With Machine Teaching, we refer to a human-centered
perspective to the process of ML [24]. While ML focuses
on improving the accuracy of “learners” (learning algorithms),
machine teaching focuses on improving the efficacy of
"teachers" –people who interact with data and “teach” how
algorithms should behave. We adapted this focus in the
design of our iML tool. Instead of aiming to better explain
algorithm behaviors to users, our design aims to help users
better express their expectations towards ML, and guide users
towards features and algorithms that match their expectations.

Test-Driven ML is the practice of defining test cases before
model building. Users first define examples of model inputs
and outputs as test cases, then build a simple model to get
one test to pass, and then improve the model until passing all
tests [4]. This approach has several benefits: 1) It documents
how the models are intended to work; 2) It reduces user errors;
3) It helps novices learn to start with simple solutions and
improve incrementally [15]. Given these potential benefits for
non-experts, we designed the iML tool to scaffold a test-driven
ML process.

Interaction Flow (Figure 4)
Before training learning models, the iML tool displays data
and requires users to elicit a set of observations as test cases.
Users curate a test set that encapsulates their ML goals and
priorities. This hand-picking process forces users to examine
their data, grounding their ML goals in concrete data instances.
It also facilitates those who “want ML but do not know what
exactly for” to crystallize their expectations.

Accordingly, the iML tool alerts users of the potential skews
and biases in their selections, guiding them to understand
their data more comprehensively and to curate a statistically
representative test set. For example, our empirical study
showed that non-experts tend to select a “white list" of test
cases (cases whose class values are uniformly positive). The
iML tool could remind the user to also provide negative
examples.

Next, the iML tool recommends features and learning
algorithms that are likely to work well with the characteristics
of the data, the prediction task, and user priorities captured
from the test set. It also alerts users of significant data quality
flaws. For small datasets, the iML tool may automatically
run multiple basic algorithms, and suggests a subset based
on standard performance measures such confusion matrix
and F score. We imagine ML best practices and existing
mixed-initiative ML techniques could be leveraged in support
of this (i.e. [6, 28, 32]).

After a model is built, the iML tool shows model predictions
on all test cases. In contrast to statistics and visualizations
whose interpretation requires additional know-how, these
hand-picked test cases provide concrete, direct probes into
the data and the model performance. They also represent the
subset of data instances that the user understands and cares

Figure 4. Test-driven machine teaching workflow. It uses user-selected test cases as the major interface between participants and learning algorithms.
Central to this design is the idea that novice-facing iML tools should not only make it easy to teach ML models, but also actively and intelligently
support robust teaching processes and activities.

about. We imagine users are more likely to engage with and
be able to understand algorithm behaviour through these test
cases. Central to this design is to prevent users from taking
percentage accuracy as the sole performance measure.

While communicating model behaviours, the iML tool
also suggests debugging strategies and actions for users to
take. One simple way to generate these suggestions is to
automatically run principal component analysis, informing
users of strongly relevant features. Previous research on
explanatory debugging, mixed-initiative ML and automatic
ML techniques can inform more sophisticated debugging
suggestions [6, 13, 17, 32].

This interaction flow can take various UI forms. Designers
may choose one or more interface manifestations of this
interaction flow, based on their intended users or typical ML
tasks.

Actualizing the Design Implications
Test-driven machine teaching (TDMT) functions as a
sensitizing concept for designing accessible ML tools. It
exemplifies one concrete solution for the design trade-offs
among functional flexibility, ease of use and robust ML results.
It embodies three implications for mediating these trade-offs
in the design of accessible ML tools.

1. Test cases as the interface between non-experts and learning
models: TDMT captures how users expect the algorithms
to behave via test cases, helping users better articulate these
expectations. Such articulation enables the iML tool to offer

personalized, in-situ safeguard mechanisms and guidance
in the modeling process.
This design is rooted in the observation that non-experts
understand model behaviour by mapping inputs and outputs.
Test cases as a form of model input-output pairs fit how
non-experts intuitively understand ML.
Moreover, the process of hand-picking test cases invites
users to carefully examine their data and their expectations
toward ML. The empirical study showed that non-expert
ML is highly experimental and exploratory. TDMT thus
guides users to examine their data and formulate ML goals
that should be part of the ML process. At a higher level,
accessible ML tools should support non-expert ML as a
co-evolution of problem and solution, rather than as a
gradual procession to an optimum in the loss function.

2. Scaffolding and safeguarding a robust ML process by
blending user and machine intelligence:
Clearly, there are opportunities in embedding data-driven
techniques in iML tool design to make non-expert ML
more robust. Research has produced many techniques
that improve amateurs’ ML reliability and efficiency [30,
6, 8]. Previous crowd-sourcing work [1, 20] as well
as our empirical study have offered observations of how
non-experts work with ML. IML tool design can be a perfect
fusion point of these parallel research efforts in making ML
accessible to non-experts.
TDMT offers one example of this. It leverages test cases to
capture user expectations toward ML. The iML tool thus can

deliver personalized, ad-hoc suggestions targeted to a user’s
goal and the dataset in-use. Future research is necessary
to evaluate this concept, and more importantly, to explore
solutions to bridge user and machine intelligence via the
design of iML tool.

3. Adaptive interfaces to support users with various needs and
background knowledge: Previous iML research claimed that
general-purpose ML tools require complex functionality and
interactions; thus they are difficult to design for non-experts
[22]. We see opportunities in adaptive user interfaces (UI)
and interactions to help with this challenge. As an example,
TDMT offers intelligently pliable functions, surfacing only
the data procedures and algorithm choices that are relevant
to the user task at the moment.
TDMT is also pliable for various UI forms. As the empirical
study showed, we cannot assume ML novices are those
who use GUI tools [16]. Designers should deliberately
choose one or more interface forms based on their target
audience’s tooling, mental model, data types and ML tasks
they are likely face. At a higher level, there needs be a
more reflective and principled discussion on the relationship
between ML tools for those who are not experts in ML and
tools for those who do not code.

DISCUSSION
ML promises powerful data-driven insights and solutions for
people from all walks of life. Emergent ML and HCI research
aim to make ML solutions easy to build and accessible to
non-experts. Adding to this growing body of research, this
work investigated how non-experts build ML solutions for
themselves. We further suggested that iML tools might play a
more vital role in making ML accessible if it helps non-experts
prevent technical pitfalls. We put forward a sensitizing concept
to exemplify one near-future solution in this new design space.
We encourage the HCI community to join us in evaluating
and evolving this design, and more importantly to innovate
on more creative forms of user-centered, accessible iML tool
designs. Here, we also want to more broadly reflect on our
work and the idea of ML for everyone.

Making Machine Learning Accessible
The idea of human-centered ML is not new to the research
that aims to make ML available to non-experts. Yet this field
has largely focused on technical advances. The major vehicle
that drives the work to understand end users is the need for
more efficient and reliable “human oracles” that compliment
automatic ML methods [1, 18, 24].

Through the empirical study and the sensitizing concept, we
hope to formulate some changes to the research on accessible
ML. We hope to start a discourse centered on how to help
people better build learning algorithms, rather than how
to enable the algorithms to learn better. We hope more
human-centered ML research not only focuses on non-experts’
affordability and objective efficiency, but is rooted in an
elaborate understanding of their goals, needs, and the contexts
in which they use ML.

An elaborate understanding of non-experts could not only
make ML more accessible, but inspire creation of new ML

applications. For example, our empirical findings suggested
that the interactive process of building ML models might have
lead to non-experts’ greater trust in the learning results. We
see critical value in evaluating this observation, as it could
potentially open up a new path to improving end-users’ trust
in ML.

Risks and Limits of Non-Expert Machine Learning
In parallel to the work that makes ML accessible, there should
be research to better understand the risks and limitations of
non-expert ML. This work has illuminated some signs of ML
misuse and its preliminary breakdown by type. Accessible
ML tools, if used blindly, could cause perplexities.

One straightforward solution is to embed additional corrective
measures in these tools, as we have shown via the sensitizing
concept. Future research could extend, evaluate and improve
these measures to safeguard the validity and quality of ML
models. Additionally, when creating an accessible ML
tool, we HCI researchers could more explicitly document
its intended users, intended ML tasks, as well as the situations
in which its use is not recommended.

As the industry is increasingly calling for “ML for everyone”,
HCI research could provide a reflective and principled
discussion on whether this vision is achievable or desirable.
Can we identify some general criteria such that, if satisfied,
we would agree this is an ML task no longer achievable
for a non-expert? Can we identify some basic principles
of designing novice-facing ML tools, to more easily and
objectively identify the level of ML knowledge needed for their
proper use? These are important issues for our community to
grapple with and debate moving forward.

Non-expert ML is an exciting area in both industry and HCI
research. Having a reflective discussion on the potentials,
risks, and limits of non-expert ML would be a vital next step
in our collective endeavor to make ML accessible in moving
forward. This work serves as one step into this direction.

REFERENCES
1. Saleema Amershi, Maya Cakmak, William Bradley Knox,

and Todd Kulesza. 2014. Power to the People: The Role
of Humans in Interactive Machine Learning. AI Magazine
35, 4 (2014), 105–120. DOI:
http://dx.doi.org/10.1609/aimag.v35i4.2513

2. Hugh Beyer and Karen Holtzblatt. 1999. Contextual
design. interactions 6, 1 (1999), 32–42.

3. Bonsai. 2017. BONSAI WHITEPAPER: A fundamentally
different approach for building intelligent industrial
systems. Technical Report. https://bons.ai/resources.

4. Justin Bozonier. 2015. Test-Driven Machine Learning.
Packt Publishing Ltd.

5. Joseph Chee Chang, Saleema Amershi, and Ece Kamar.
2017. Revolt: Collaborative Crowdsourcing for Labeling
Machine Learning Datasets. In Proceedings of the 2017
CHI Conference on Human Factors in Computing
Systems. ACM, 2334–2346.

http://dx.doi.org/10.1609/aimag.v35i4.2513
https://bons.ai/resources

6. Justin Cheng and Michael S. Bernstein. 2015. Flock:
Hybrid Crowd-Machine Learning Classifiers. In
Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing -
CSCW ’15. ACM Press, New York, New York, USA,
600–611. DOI:
http://dx.doi.org/10.1145/2675133.2675214

7. Jerry Alan Fails and Dan R Olsen Jr. 2003. Interactive
machine learning. In Proceedings of the 8th international
conference on Intelligent user interfaces. ACM, 39–45.

8. Matthias Feurer, Aaron Klein, Katharina Eggensperger,
Jost Springenberg, Manuel Blum, and Frank Hutter. 2015.
Efficient and robust automated machine learning. In
Advances in Neural Information Processing Systems.
2962–2970.

9. Rebecca Fiebrink, Perry R. Cook, and Dan Trueman.
2011. Human model evaluation in interactive supervised
learning. In Proceedings of the 2011 annual conference
on Human factors in computing systems - CHI ’11 (CHI

’11). ACM Press, New York, New York, USA, 147. DOI:
http://dx.doi.org/10.1145/1978942.1978965

10. Marco Gillies, Bongshin Lee, Nicolas D’Alessandro,
Joëlle Tilmanne, Todd Kulesza, Baptiste Caramiaux,
Rebecca Fiebrink, Atau Tanaka, Jérémie Garcia, Frédéric
Bevilacqua, Alexis Heloir, Fabrizio Nunnari, Wendy
Mackay, and Saleema Amershi. 2016. Human-Centred
Machine Learning. In Proceedings of the 2016 CHI
Conference Extended Abstracts on Human Factors in
Computing Systems - CHI EA ’16. ACM Press, New
York, New York, USA, 3558–3565. DOI:
http://dx.doi.org/10.1145/2851581.2856492

11. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H Witten. 2009.
The WEKA data mining software: an update. ACM
SIGKDD explorations newsletter 11, 1 (2009), 10–18.

12. David J Hand. 1998. Data mining: Statistics and more?
The American Statistician 52, 2 (1998), 112–118.

13. Andreas Holzinger, Markus Plass, Katharina Holzinger,
Gloria Cerasela Crişan, Camelia-M Pintea, and Vasile
Palade. 2016. Towards interactive Machine Learning
(iML): applying ant colony algorithms to solve the
traveling salesman problem with the human-in-the-loop
approach. In International Conference on Availability,
Reliability, and Security. Springer, 81–95.

14. IBM Watson Machine Learning: Machine Learning for
everyone 2016. (2016). http://datascience.ibm.com/blog/
machine-learning-for-everyone/

15. David Janzen and Hossein Saiedian. 2005. Test-driven
development concepts, taxonomy, and future direction.
Computer 38, 9 (2005), 43–50.

16. Seungjun Kim, Dan Tasse, Anind K Dey, S Kim, D Tasse,
and A K Dey. 2017. Making Machine-Learning
Applications for Time-Series Sensor Data Graphical and
Interactive. ACM Trans. Interact. Intell. Syst 7, 8 (2017).
DOI:http://dx.doi.org/10.1145/2983924

17. Todd Kulesza, Margaret Burnett, Weng-Keen Wong, and
Simone Stumpf. 2015. Principles of explanatory
debugging to personalize interactive machine learning. In
Proceedings of the 20th International Conference on
Intelligent User Interfaces. ACM, 126–137.

18. Besmira Nushi, Ece Kamar, Eric Horvitz, and Donald
Kossmann. 2017. On Human Intellect and Machine
Failures: Troubleshooting Integrative Machine Learning
Systems.. In AAAI. 1017–1025.

19. Kayur Patel, Naomi Bancroft, Steven M. Drucker, James
Fogarty, Andrew J. Ko, and James Landay. 2010. Gestalt:
Integrated Support for Implementation and Analysis in
Machine Learning. In Proceedings of the 23nd annual
ACM symposium on User interface software and
technology - UIST ’10. ACM Press, New York, New
York, USA, 37. DOI:
http://dx.doi.org/10.1145/1866029.1866038

20. Kayur Patel, James Fogarty, James A. Landay, and
Beverly Harrison. 2008. Examining difficulties software
developers encounter in the adoption of statistical
machine learning. In 23rd AAAI Conference on Artificial
Intelligence and the 20th Innovative Applications of
Artificial Intelligence Conference. Chicago, IL, United
States, 1563–1566.

21. Kayur Dushyant Patel. 2012. Lowering the Barrier to
Applying Machine Learning. Ph.D. Dissertation.
University of Washington.

22. Kayur Dushyant Patel. 2013. Lowering the Barrier to
Applying Machine Learning. Ph.D. Dissertation.

23. Donald A Schon. 1984. The reflective practitioner: How
professionals think in action. Vol. 5126. Basic books.

24. Patrice Simard, Saleema Amershi, Max Chickering,
Alicia Edelman Pelton, Soroush Ghorashi, Chris Meek,
Gonzalo Ramos, Jina Suh, Johan Verwey, Mo Wang, and
John Wernsing. 2017. Machine Teaching: A New
Paradigm for Building Machine Learning Systems.
Technical Report. Microsoft Research.
https://arxiv.org/pdf/1707.06742

25. Simone Stumpf, Vidya Rajaram, Lida Li, Weng Keen
Wong, Margaret Burnett, Thomas Dietterich, Erin
Sullivan, and Jonathan Herlocker. 2009. Interacting
meaningfully with machine learning systems: Three
experiments. International Journal of Human Computer
Studies 67, 8 (2009), 639–662. DOI:
http://dx.doi.org/10.1016/j.ijhcs.2009.03.004

26. TensorFlow: Smarter machine learning, for everyone
2016. (2016).
https://www.google.com/intl/en/about/main/tensorflow/.

27. Udemy Online Course: Applied machine learning for
Everyone 2017. (2017). https://www.udemy.com/
applied-machine-learning-for-everyone/.

28. Steven A Wolfman, Tessa Lau, Pedro Domingos, and
Daniel S Weld. 2001. Mixed initiative interfaces for
learning tasks: SMARTedit talks back. In Proceedings of

http://dx.doi.org/10.1145/2675133.2675214
http://dx.doi.org/10.1145/1978942.1978965
http://dx.doi.org/10.1145/2851581.2856492
http://datascience.ibm.com/blog/machine-learning-for-everyone/
http://datascience.ibm.com/blog/machine-learning-for-everyone/
http://dx.doi.org/10.1145/2983924
http://dx.doi.org/10.1145/1866029.1866038
https://arxiv.org/pdf/1707.06742
http://dx.doi.org/10.1016/j.ijhcs.2009.03.004
https://www.google.com/intl/en/about/main/tensorflow/
https://www.udemy.com/applied-machine-learning-for-everyone/
https://www.udemy.com/applied-machine-learning-for-everyone/

the 6th international conference on Intelligent user
interfaces. ACM, 167–174.

29. Qian Yang, John Zimmerman, Aaron Steinfeld, and
Anthony Tomasic. 2016. Planning Adaptive Mobile
Experiences When Wireframing. In Proceedings of the
2016 ACM Conference on Designing Interactive Systems -
DIS ’16. ACM Press, Brisbane, QLD, Australia, 565–576.
DOI:http://dx.doi.org/10.1145/2901790.2901858

30. Xiaojin Zhu. 2015. Machine Teaching: An Inverse
Problem to Machine Learning and an Approach Toward
Optimal Education. In Proceedings of the Twenty-Ninth

AAAI Conference on Artificial Intelligence (AAAI’15).
AAAI Press, 4083–4087.
http://dl.acm.org/citation.cfm?id=2888116.2888288

31. John Zimmerman, Erik Stolterman, and Jodi Forlizzi.
2010. An analysis and critique of Research through
Design: towards a formalization of a research approach.
In Proceedings of the 8th ACM Conference on Designing
Interactive Systems. ACM, 310–319.

32. Martin Zinkevich. 2017. Rules of Machine Learning:
Best Practices for ML Engineering. (2017).

http://dx.doi.org/10.1145/2901790.2901858
http://dl.acm.org/citation.cfm?id=2888116.2888288

	Introduction
	Related Work
	Understanding People in Interactive Machine Learning
	Designing Accessible iML Tools

	Empirical Study Design
	Participants
	Field Interviews
	Online Survey

	Empirical Findings
	Motivation Toward Machine Learning
	Experience of Machine Learning
	Knowledge of Machine Learning and Tool Use
	Problem Understanding and Subject Matter Expertise
	Engineering Expertise
	Machine Learning Expertise
	Preference for Machine Learning Tools

	Pitfalls of Machine Learning
	Designing an Achievable Learning Task
	Measuring and Interpreting Model Performance

	Design Implications and Trade-offs
	A Sensitizing Concept
	The Concept of Test-Driven Machine Teaching
	Interaction Flow (Figure 4)
	Actualizing the Design Implications

	Discussion
	Making Machine Learning Accessible
	Risks and Limits of Non-Expert Machine Learning

	References

