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Bayesian Time-of-Flight for Realtime Shape,
Illumination and Albedo

Amit Adam, Christoph Dann, Omer Yair, Shai Mazor, Sebastian Nowozin

Abstract—We propose a computational model for shape, illumination and albedo inference in a pulsed time-of-flight (TOF) camera. In
contrast to TOF cameras based on phase modulation, our camera enables general exposure profiles. This results in added flexibility and
requires novel computational approaches. To address this challenge we propose a generative probabilistic model that accurately relates
latent imaging conditions to observed camera responses. While principled, realtime inference in the model turns out to be infeasible, and
we propose to employ efficient non-parametric regression trees to approximate the model outputs. As a result we are able to provide, for
each pixel, at video frame rate, estimates and uncertainty for depth, effective albedo, and ambient light intensity. These results we
present are state-of-the-art in depth imaging. The flexibility of our approach allows us to easily enrich our generative model. We
demonstrate this by extending the original single-path model to a two-path model, capable of describing some multipath effects. The new
model is seamlessly integrated in the system at no additional computational cost. Our work also addresses the important question of
optimal exposure design in pulsed TOF systems. Finally, for benchmark purposes and to obtain realistic empirical priors of multipath and
insights into this phenomena, we propose a physically accurate simulation of multipath phenomena.

Index Terms—Time-of-flight, Bayes, depth cameras, intrinsic images, multipath
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1 INTRODUCTION

The commercial success of depth cameras in recent years has
enabled numerous computer vision applications. Notable
applications are human pose estimation [1, 2], dense online
3D reconstruction of an environment [3], and other uses—an
overview is available in a recent special issue [4] and in the
review article [5].

Broadly speaking we may differentiate between depth
cameras based on triangulation and cameras which estimate
depth based on time of flight (TOF) [6, 7]. Furthermore,
while in the context of TOF the cameras often operate using
modulated illumination and sensing, and the computational
methods usually employ phase-space reasoning [7], in this
paper we take a different approach which we now describe.

Figure 1 describes the inputs and outputs of our system.
We start with n concurrently captured intensity images
obtained under active illumination of the scene. Each of the n
images is captured using a different exposure profile as will
be described in Section 2. Using these n observations at every
pixel, we infer the depth, reflectivity, and ambient lighting
conditions. We achieve this by using a generative proba-
bilistic model that relates the unknown imaging conditions—
shape, ambient illumination and albedo—to the per-pixel camera
observations. To perform inference we use either Bayesian
inference or maximum likelihood estimation.

However, achieving realtime video rate by direct applica-
tion of these inference methods is infeasible under practical
constraints on computation. Therefore we use an approach
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Fig. 1: System overview: the inputs are n pulsed TOF response images,
obtained concurrently using different exposure profiles. In realtime (30fps)
we separate depth, ambient illumination and effective albedo at every
pixel.

inspired by model compression [8] and approximate the
accurate but slow inference methods using regression trees,
a fast non-parametric regression method [9].

The regression approach has two advantages; first, it
allows to approximate inference in principled probabilis-
tic models under tight compute and memory constraints;
second, it decouples the model from the runtime imple-
mentation, allowing continuing improvements in the model
without requiring changes to the test-time implementation.

We demonstrate this important advantage in Section
5 where we extend our generative model to a richer
model which considers multipath effects. Our decoupling of
model+inference from runtime regression allows us seam-
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less switching between different generative models, at no
additional computational cost. To the best of our knowledge
no other depth cameras have used a statistical regression
approach for online depth inference.

No matter which model we use for inference, at times
there will be pixels that the model fails to explain. Common
reasons are mixed pixels (imaging a depth discontinuity),
sensor saturation, complex multipath, interference from
another active device, or extreme image noise. We propose
a robust fit-to-model score that can be used to detect and
invalidate affected pixels from further processing.

Having described inference and pixel invalidation, we
address an orthogonal but important question in pulsed TOF
systems: exposure profile design. We are flexible to choose
exposure profiles and we directly optimize the expected
accuracy of inferred depth using Bayesian decision theory.
This yields a challenging optimization problem and we
propose an approximate solution.

Finally, we introduce an accurate TOF simulation proce-
dure based on physically accurate light transport simulation.
We use this capability for both exposure design and for
synthetic but physically accurate benchmarking.

A video demonstration of the live system is available on
the authors’ homepages.

1.1 Related Work

Most commercially available time-of-flight cameras (as of
early 2015) work using modulated time of flight [10, 11],
also known as phase-based time-of-flight. They generate a
sinusoidal illumination signal and measure correlation of the
reflected signal with a sinusoidal-profiled exposure function
of the same frequency, delayed by a phase shift [12]. For a
fixed frequency and phase shift a recorded frame does not
contain sufficient information to reconstruct depth. Therefore,
modern systems typically record a sequence of frames at
multiple frequencies and multiple phase shifts and use the
combined set of frames to unambiguously infer depth using
so called phase unwrapping algorithms [7, 12].

In contrast, our camera uses pulsed TOF, also known as
gated TOF. This technology has differentiators in terms of
hardware-related aspects (size, power, resolution) which are
not relevant here, but let us highlight an important compu-
tational aspect of this camera: in contrast with the sine-like
exposure functions used in modulated TOF, we are allowed
to choose from a large space of possible exposure functions.
Hence more general inference methods are required.

Our work on optimizing the exposure profiles has not
been addressed in pulsed TOF systems, but for modulated
TOF prior work [13] has attempted to optimize the illumina-
tion profile to improve depth accuracy.

Shape, Illumination, and Reflectance. Recovering the
imaging conditions leading to a specific image—the inverse
problem of imaging, is a long standing goal of computer
vision. A recent modern treatment of this problem has been
given in [14, 15, 16, 17], with a comprehensive historical
review. Conceptually the approach in these works is similar
to ours: find the most likely shape, illumination and albedo to
give rise to the observed image. In contrast with these works,
we do the inference at the pixel level and not the image level,
being able to do so due to the unique imaging process we

employ. Additionally our regression approach allows this
inference to be done in realtime. Moreover, our shape output
actually gives the full posterior depth distribution. This
allows direct usage of our depth in incremental estimators or
integrators such as [3] that specifically take care to maintain
the state distribution at all times [18, 19].

In the context of illumination estimation, we remark that
there have been specific works on shadow removal [20, 21],
which is a nice byproduct of our approach (see Figure 1).

Multipath Interference. Multiple reflections (multipath)
commonly occur in real scenes [6]. There is now a solid body
of work on handling multipath in modulated TOF systems,
but to the best of our knowledge there is no published work
on handling multipath in pulsed TOF cameras.

We briefly discuss work that exists for modulated TOF
and relate it to our proposed solution. The work of [22, 23]
and [24] model the light reflections in the scene globally to
improve depth inference. To do this, they assume planar
Lambertian surfaces and iteratively minimize an energy
function. The methods work in important settings but the
expensive minimization procedure precludes a realtime
implementation. The work [25, 26, 27] assumes two-path
interference from close-to-specular surfaces. The resulting
methods are practical and efficient and our approach in
Section 5 makes similar model assumptions. However, we
work with different signals (pulsed TOF) and also provide a
probabilistic model with uncertainty estimates. The work [28]
generalizes the above two-path models to signals which
arise from either two-path specular or two-path Lambertian
reflectors; these signals are “compressible” and can hence be
described with few parameters; the resulting method can be
implemented in real time.

Transient imaging is a recent research discipline where
light is captured "in flight" (e.g. [29, 30, 31, 32]). Recent
work inspired by this discipline (i.e. [33]) uses modulated
TOF imaging with Fourier-based reconstruction of the time-
dependent light density. The work of [34, 35] reconstructs
the transient light density for each pixel from a large number
of modulated TOF images, each with a different modulation
frequency. While this line of work could inspire practical
multipath techniques and is computationally efficient, cur-
rently the large number of required frequencies (several
dozen) and the large acquisition time precludes realtime
applications in dynamic scenes. The recent Structured Light
Transport framework extends the performance envelope of
these approaches to include dynamic scenes ([36] and see
also [37]).

The robust invalidation of observations seems to have
not been considered before with the exception of [28] who
provide an adhoc method for invalidation. Because we use
a sound probabilistic model we can leverage and adapt
standard methods in Bayesian practice [38] for this purpose.

1.2 Contributions
To summarize and as an aide in following the paper, our
novel contributions are:

Principled Framework
– A probabilistic generative model for pulsed TOF

imaging;
– Principled inference of all latent imaging conditions,

given camera observations;
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– Accurate depth uncertainty estimates;
– Robust Bayesian per-pixel invalidation for outlier

observations;
Practicalities
– A novel use of regression to enable realtime inference

under tight compute and memory constraints;
– Complete decoupling of runtime mechanism from

model and inference;
Extensibility and Multipath
– A probabilistic model for depth inference in the pres-

ence of simple multi-path;
Results
– Experimental results showing robust video-rate infer-

ence of shape, illumination and reflectance, both indoors and
outdoors at direct sunlight;

Computational Photography and Tools
– Design of exposure profiles to directly optimize depth

accuracy under task-derived imaging conditions;
– A novel physically-based renderer for TOF simulation,

exposure design, and benchmarking.

2 MODELING THE IMAGING PROCESS

We start with our camera’s principle of operation, then
formulate a generative model relating the unknown imaging
conditions to the observable camera outputs. The imaging
model we use below is similar to the ones used in modulated
TOF (e.g [31, 32, 39]). Our derivation below is more explicit
and is presented for completeness.

Assume that a specific pixel images a point at a certain
distance L and denote by t the time it takes light to travel
twice this distance (t = 2L/c where c is the speed of
light). The reflected signal is integrated at the pixel using
an exposure determined by an exposure profile S(u). It is
helpful to imagine the camera has a mechanical shutter, and
the function S(u) denotes the amount of opening of the
shutter as a function of time. If P (u) is the emitted light
pulse, the reflected pulse arriving after time t is P (u − t).
The observed response due to the reflected light pulse is

Ractive =

∫
S(u) ρ P (u− t) d(t) du. (1)

Here ρ denotes the effective reflectivity1 of the imaged
point, and d(t) = 4

c2t2 denotes decay of the reflected pulse
due to (one way) distance. Therefore, the reflected pulse is
downscaled by a factor of ρ d(t). The quantity ρP (u− t)d(t)
is integrated with an exposure function S(·).

Let us now consider the effect of ambient illumination.
We denote by λ the ambient light level falling on the imaged
point. Then the reflected light level is ρλ, and we assume
that during the integration period, this level of ambient
light is constant. Therefore, the observed response due
to ambient light is Rambient =

∫
S(u) ρ λdu. The actual

observed response is the sum of the responses due to active
illumination and due to ambient light,

R =

∫
S(u) (ρ P (u− t) d(t) + ρ λ) du. (2)

1. We use both the terms albedo and reflectivity. The quantity ρ we use
in the model actually contains the effect of foreshortening and therefore
we refer to effective reflectivity/albedo.
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Fig. 2: A typical response curve. (a) The actual curve ~C(·). As distance
grows the response decays, as per equation (5). (b) Decay-compensated
response where we plot ~C(t)/d(t) = t2 ~C(t) for more details (from now
on we use decay-compensated curves for visualization).

Equation (2) specifies the relationship between the un-
known imaging conditions (t, ρ, λ) (depth, albedo, and
ambient light level), and the observation we obtain at the
pixel, when using the exposure profile S(·). We concurrently
use n different exposure profiles S1(·), S2(·), . . . , Sn(·), and
obtain n observations as

 R1

...
Rn

 = ρ


∫
S1(u)P (u− t)d(t) du

...∫
Sn(u)P (u− t)d(t) du

+ρλ


∫
S1(u) du

...∫
Sn(u) du


= ρ~C(t) + ρλ ~A. (3)

In short, we have the observed response vector

~R = ρ~C(t) + ρλ ~A. (4)

Here ~C(t) is the expected response from a point at distance
equivalent to time t, assuming unit reflectivity and no
ambient light. This response is scaled by the reflectivity ρ and
shifted in the ambient light direction ~A, the magnitude of
the shift being the product of albedo and ambient light level.
Equation (4) is the model describing our imaging process.

We remark that ~C(·) and ~A are determined by the
illumination and exposure signals and are estimated using a
simple camera calibration process which is outside the scope
of this paper.

The hardware system enabling concurrent capture of
n images under n different exposure profiles is based on
fast manipulation of the photosensor reset mechanism (the
substrate). It is fully described in [40] and [41, 42].

Figure 2 shows the curve ~C(·) as a function of depth t,
for a typical exposure profile design. The four colored curves
denote the specific response curves of four exposure profiles
S1(·), . . . , S4(·), namely

Ci(t) =

∫
Si(u) P (u− t) d(t) du. (5)

Looking at Figure 2, consider the response vector ~R we may
expect from depth t = 150cm. We see that the first (blue)
coordinate should be high, the second and fourth coordinates
should be approximately equal and the third coordinate (red)
should be the lowest. In contrast, at depth t = 190cm the first
and second entries of ~R should be approximately equal (blue
and green). Thus we see that by suitable design of the curve
~C(·), we may expect to be able to infer depth accurately
using the responses we observe.

Since the response we observe is scaled by the albedo ρ, it
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may be tempting to normalize the response vector. However,
as we discuss in the next section, the noise does depend on the
magnitude and therefore the unnormalized response contains
relevant information for depth inference and for predicting
depth uncertainty that would be lost upon normalization.

3 A PROBABILISTIC MODEL
We now rephrase (4) as a probabilistic model, relating the
imaging conditions (t, ρ, λ) to a distribution over responses
~R. Specifically we model ~R given t, ρ, λ as

~R ∼ Pr(~R | t, ρ, λ), (6)

where we assume that Pr(~R | t, ρ, λ) is a multivariate
Gaussian distribution with mean vector as in (4),

E[~R | t, ρ, λ] = ~µ(t, ρ, λ) = ρ ~C(t) + ρ λ ~A, (7)

and with a diagonal covariance matrix

Σ(~µ) =

 ηµ1 +K
. . .

ηµn +K

 . (8)

Here K is related to read noise—noise that is part of
the system even when no light is present. η is related to
unit conversion between photo-electrons and image gray
levels. This affine relationship between the magnitude of
the response and its variance is due to shot noise and is well
known [43, 44]. We validate this noise model experimentally
in the supplementaries.

The generative model (6) is the distribution of the
observed ~R at a pixel given the imaging conditions. We
would like to infer the imaging conditions depth t, reflectivity
ρ and ambient light level λ given the observation ~R. There are
three mainstream approaches for doing so, namely Bayesian
posterior inference, maximum likelihood estimation (MLE),
and maximum aposteriori (MAP) estimation.

3.1 Bayesian Inference
We assume certain priors on depth, reflectivity and ambient
light level, denoted by p(t), p(ρ), and p(λ). In addition we
assume independence between these factors. Let us focus
on inferring depth t, the most relevant unknown for depth
cameras. Bayes rule gives

Pr(t | ~R) ∝ Pr(~R | t) p(t)

= p(t)

∫∫
Pr(~R|t, ρ, λ) p(ρ) p(λ) dρdλ. (9)

Equation (9) gives the posterior distribution over the true
unknown depth. We get the posterior density up to a
normalization factor which may be extracted by integrating
over every possible t. The posterior density is the ideal
input to higher level applications which use probabilistic
models [18, 19]. For other applications, it may be sufficient to
summarize this posterior distribution by a point estimate, for
example the posterior mean t̂Bayes(~R) = E[t | ~R] or the MAP
depth t̂map(~R) = argmaxt Pr(t|~R), together with a measure
of the dispersion such as the posterior variance.

Computationally, we have to solve the integration prob-
lem (9) at every pixel. Doing this at frame rate under low
compute resources is currently not feasible.

A second issue with (9) is that it requires the specification
of priors p(t), p(ρ), and p(λ). While using uniform priors on
depth and reflectivity is physically plausible, specifying the
prior on ambient light level is harder. For example, operating
the camera in a dark room versus a sunlit room, would
require very different priors. If the used prior deviates too
much from the actual situation our estimates of depth could
be biased, that is, suffer from systematic errors.

3.2 Maximum Likelihood Inference (MLE)
Alternatively we use maximum likelihood estimation for the
imaging conditions,

(t̂mle, ρ̂mle, λ̂mle) = argmax
t,ρ,λ

Pr(~R | t, ρ, λ). (10)

Instead of considering the depth that accumulates the
most probability over all reflectivity and ambient light
explanations, we consider the single combined imaging con-
ditions (t̂mle, ρ̂mle, λ̂mle) which have the highest probability
of producing the observed response ~R.

3.3 Maximum Aposteriori Inference (MAP)
This method is the most likely point estimate taking into
account prior preferences. We obtain it similar to the MLE
estimate as

(t̂map, ρ̂map, λ̂map) = argmax
t,ρ,λ

p(t) p(ρ) p(λ) Pr(~R | t, ρ, λ). (11)

The optimization problems (10) and (11) are non-linear
because ~µ(·) is non-linear and because our noise model (8)
has a signal-dependent variance. An iterative numerical
optimization is required and a frame rate solution at every
pixel is infeasible. We discuss further details of the inference
procedures for MLE, MAP, and Bayesian inference in the
supplementary materials.

4 A REGRESSION TREE APPROACH

All inference methods we propose, MLE t̂mle, MAP t̂map, and
Bayesian inference t̂Bayes produce reliable depth estimates.
However the computation of these estimates is expensive and
impractical for a realtime camera system. To perform realtime
inference we use a regression approach to approximate the
model as follows.

1) Offline: Sample imaging conditions (ti, ρi, λi) from
the prior and responses ~Ri from the model (6). Then
use one of the slow inference methods to generate
labeled training data (~Ri, t̂(~Ri)).

2) Offline: Train a regression tree/forest using the
training data set, to obtain a predictor t̂RF.

3) Online: Given an observed response ~R predict the
inferred depth t̂RF(~R).

Why would this procedure be a good idea?

– First, t̂mle, t̂map, and t̂Bayes are smooth functions from
the response space to depth and are simple to learn.

– Second, the regression tree t̂RF has small performance
requirements in terms of memory and computation.

– Third, it decouples the runtime from future changes to
the probabilistic model and inference procedures.
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In principle it would be desirable to train directly on a
large and diverse corpus of ground truth data captured
from the real world; however, capturing ground truth
depth data is challenging [45], expensive, and ensuring
the diversity in imaging conditions is difficult. Training on
our forward model instead allows us to represent a wide
variety of imaging conditions. Likewise, while we could train
directly on samples (~Ri, ti) from the model this would incur
additional variance because the noise makes ~R stochastic
even for a fixed depth value. By training on the estimator
(~R, t̂i) instead we effectively remove this variance from the
regression task.

For learning the regression tree we use the standard
CART sum-of-variances criterion in a greedy depth first
manner [9]. For the interior nodes of the trees we perform
binary comparisons on the individual responses, Ri ≤ a. At
each leaf node b we store a linear regression model,

t̂b(~R) = θTb ·
[
1, R1, . . . , Rn, R

2
1, R1R2, . . . , R

2
n

]T
, (12)

where we use a quadratic expansion of the responses. We
estimate the parameters θb of each leaf model using least
squares on all training samples that reach this leaf [46].

We cannot over emphasize the practical importance of
a flexible and decoupled-from-model regression scheme, in
handling unexpected or new phenomena. An example is
detailed in the supplementaries.

Approximation Tradeoffs. Because of its non-parametric
nature the regression tree or forest can approach the quality
of the exact inference output if given sufficient training data
and expressive power. However, the key limiting factor
in our actual implementation are specific constraints on
available memory and compute. Basically the depth of the
tree and the structure of the leaf predictor, determine the
memory requirements. In Section 9 we example the accuracy
vs memory tradeoffs experimentally.

4.1 Additional Regression Outputs

In addition to the estimated depth we output several
other quantities per pixel. These outputs too are produced
using trained regression trees. Specifically, we produce the
following additional outputs:

– Reflectivity, ρ̂, using E[ρ|~R] or via (10), (11).
– Ambient light level, λ̂, using E[λ|~R] or via (10), (11).
– Depth uncertainty, as described below.
– Fit-to-model invalidation score γ, for detection of

irregular imaging conditions, described in Section 6.

4.2 Computing Depth Uncertainty

In many applications of depth cameras to computer vision
problems the estimated depth is used as part of a larger
system; in these applications it is useful to know the
uncertainty of the depth estimate. One example would be
surface reconstruction [3], where uncertainty can be used to
weight individual estimates and to average them over time.

We use the variance of the depth, in the form of a standard
deviation σ̂(~R), as a measure of uncertainty. Depending on
whether we use t̂Bayes or t̂mle, we compute the standard
deviation as follows.

For t̂Bayes we use the posterior distribution (9), and
directly compute σ̂Bayes(~R) =

√
Vt∼Pr(t|~R)[t].

For t̂mle in (10), we employ the approach described in [47].
A first order Taylor expansion of the gradient (wrt imaging
conditions) of the likelihood function in (10) is used to
relate a perturbation ∆~R in the response to the resulting
perturbation of the estimator t̂mle(~R + ∆~R). This analysis
leads to the covariance matrix of the maximum likelihood
estimator and an approximation to the standard deviation,

σ̂mle(~R) =
√
V[t̂mle].

In Section 9 and Figure 8(b) we demonstrate the accuracy
of our uncertainty estimates by comparing them with the
actual observed uncertainty. In the context of phase-based
TOF, previous work [48] used random forests to output
depth confidence scores for measured phase signals; their
regressor was trained using laser scans. Here we instead
obtain uncertainty directly from our probabilistic model.

5 TWO-PATH MODEL FOR SIMPLE MULTIPATH

The generative model (4) we used so far assumed a single
direct response from the point being imaged. In order to
account for multipath, this model needs to be extended as to
describe the additional multipath light being integrated at
the pixel. We demonstrate a simple extension of the model
and inference as follows.

Consider a two-path model as proposed in [25, 26, 28].
In addition to the three unknowns t, ρ, and λ, we now also
assume a second contribution having travelled depth t2 > t,
from a patch with reflectivity ρ2. We extend the generative
model (7) to

~µ2(t, ρ, λ, t2, ρ2) = ρ
(
~C(t) + λ ~A+ ρ2 ~C(t2)

)
, (13)

where ρ scales both the direct and indirect response, and ρ2
scales only the indirect response. The model is exact for a
second specular surface, but becomes an approximation in
case the second surface is diffuse. For inference we extend
the inference procedures to this model in a straightforward
manner (details in the supplementaries).

For the prior of t2 we select a uniform prior relative to
t, such that t2 − t is uniform between 0cm and ∆ (typically
∆ = 150cm), that is,

p(t2|t) = U(t2; t, t+ ∆). (14)

For the second reflectivity we allow ρ2 > 1. This allows
us to approximate the aggregated response from a larger
surface patch. After studies of simulation data select a Beta
distribution on the interval [0; 2].

p(ρ2) = B(ρ2/2;α = 1, β = 5). (15)

This prior specifies that values up to ρ2 = 2 are possible,
but that low values of ρ2 are more likely. Both priors are
visualized in Figure 3 and we will evaluate this model on
real and simulated data in the experiments section.

It is important to emphasize that our regression-
decoupled-from-model approach allows us to seamlessly
use this extended model in the camera, just by plugging it in
the offline step 1 of the procedure outlined at the beginning
of Section 4. The runtime process and its computational cost
do not change at all.
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Fig. 3: Two-path model priors for the additional latent variables t2 and
ρ2. Left: The prior for the second bounce depth t2 is uniform over the
shaded polygon. Right: the prior for ρ2 is defined over [0; 2] in order to
handle large diffuse reflectors.

6 BAYESIAN MODEL INVALIDATION SCORE γ

Our imaging model is an idealization of the real world
and in each frame a certain number of pixels will have
measured responses ~R which do not conform to this model.
The main reasons for this are systematic errors such as
multipath [22, 28], pixels of mixed depth, sensor saturation,
as well as statistical extremes in imaging noise. In Section 5
we extended our model to explain some multipath effects,
but even this extended model may fail to explain some of
the responses.

When our model fails to accurately explain the observed
response vector ~R we would like to detect such a deviation
from the model assumptions and exclude affected observa-
tions from further processing. The strict Bayesian paradigm
cannot detect deviation from model assumptions because
it only provides the calculus to go from assumptions and
observations to conclusions and no mechanism to falsify the
assumptions themselves [49]. However, in Bayesian mod-
elling practice [50] a common method to assess deviations
from model assumptions is to perform so called posterior
predictive checks.

We use the posterior predictive p-value [38, 51, 52] for
our purposes. Intuitively our particular p-value will measure
the total probability mass of all observations which have
a smaller likelihood than the likelihood of the observed
response. Therefore the score is always between zero and
one and a value close to zero indicates that the observation is
unlikely under the assumed model. This intuition is helpful
but the controversy around p-values and model checking
more generally is deep and we give a brief discussion in the
supplementary materials.

To formalize this problem, let us first unify notation by
writing θ = (t, ρ, λ) or θ = (t, ρ, λ, t2, ρ2), depending on
whether we use the single path model (7) or the two path
model (13), so that θ are all the unknown imaging conditions
to be inferred. Given an observed response vector ~R and
using the model P (~R|θ) and the prior P (θ) we can use
Bayesian inference to infer the posterior distribution P (θ|~R).
Following the above intuition the invalidation score γ is
defined as

γ(~R) = Eθ∼P (θ|~R)

[
E~R′∼P (~R′|θ)

[
1{P (~R′|θ)≤P (~R|θ)}

]]
, (16)

Here we used the notation 1{predicate} which evaluates to
one if the predicate is true and to zero otherwise. The
above equation integrates all probability mass of less likely
observations, weighted by the posterior P (θ|~R). If we
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Fig. 4: Exposure profile optimization. Top: Simulated annealing over 100k
iterations, finding response curves to minimize (19), the expected error
(MSE) in depth estimation. Bottom: snapshots of the response curves
after 20k, 40k, and after all 100k iterations. The x-axis is depth (cm).

have many repetitions of the experiment θ ∼ P (θ) and
~R ∼ P (~R|θ) the scores γ(~R) would be uniformly distributed.
The computation of (16) is essentially free during our
approximate Bayesian inference procedure.

The value γ(~R) can be used to reject the null hypothesis
of the assumed model: if γ(~R) ≤ τ for some threshold τ we
reject the assumed model for this observation. The score (16)
is also applicable to MLE and MAP inference if we replace
the outer expectation by a unit point mass at the inferred
imaging conditions θ̂mle or θ̂map, respectively. We evaluate
the invalidation score experimentally in more detail in the
supplementary materials and in Section 9.7.

7 EXPOSURE PROFILES DESIGN

delay δ

width w

Fig. 5: A basis element j =
(δ, w) defining Bj(·).

So far we covered our imag-
ing model, our realtime re-
gression approach and how
we can invalidate responses
unlikely to have been gener-
ated by our model. We now
turn to an orthogonal ques-
tion of designing a suitable
response curve ~C for use in (4) ( ~A is closely related to ~C and
are both derived from Z which will immediately be defined).
Recall from (5) that ~C is the integral of the illumination pulse
P with the exposure profile S. In the camera, a laser diode
and driver produce the illumination pulse P , and its design
is fixed. The exposure profile S(u), however, has a flexible
design space parameterized by linear basis functions. We
would like to design response curves ~C that will produce
observations from which low-error estimates of the imaging
conditions could be inferred.

The hardware generates the exposure function S() from
a combination of basic gain profiles in the form of a boxcar
function, as shown in Fig. 5. Each basic exposure profile has
two parameters: a delay δ, and a width w. Each possible
pair j = (δ, w) specifies one possible profile Bj from a fixed
discrete set of choices J . Typically the set J contains several
hundred possible combinations. With (5) we now get the
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Fig. 6: Left, (a): basis functions {Qj/d} for a fixed delay δ and varying
width w. Right, (b): all basis functions {Qj/d}j∈J , defined by Eq. (17).

basis function Qj associated with Bj as convolution with the
pulse,

Qj(t) =

∫
Bj(u) P (u− t) d(t) du. (17)

Fig. 6 shows a set of basis functions for all possible j ∈ J .
We represent the basis response curves as vectors Qj ∈ RT ,
for a time discretization with T values. By stacking the
m = |J | vectors horizontally we obtain a matrix Q ∈ RT×m
containing all possible basis response curves. The possible
design space represents each curve as linear combination
of basis curves, that is S(·) =

∑
zjBj(·). The coefficients zj

have to be positive integers because each unit value of zj
is actually a single firing of the shutter driver (More details
are provided below). With (17) we then obtain the combined
response curve C(·) =

∑
zjQj(·). To design not just one but

n response curves Si(·) for i = 1, . . . , n, we represent the
design space using a matrix Z ∈ Rm×n as

C = QZ, (18)

where in C ∈ RT×n the k’th column contains the response
for the k’th exposure sequence.

For the design objective we utilize statistical decision the-
ory [53] to select Z to optimize the expected quality of depth
inference. There are two components to this idea: the quality
measure, and the expectation. The quality of depth inference
is measured by means of a loss function which compares
an estimated depth t̂ with a known ground truth depth t
to yield a quality score `(t̂, t). One possible loss function
which we use is the squared error, `(t̂, t) = (t̂− t)2, but we
can also use other functions, for example `t(t̂, t) = `(t̂, t)/t.
For the expectation, as for the Bayesian depth inference, we
devise priors, typically uniform, p(t), p(ρ), and p(λ) over the
unknowns. Then the design problem is

argmin
Z

Et,ρ,λ E~R∼Pr(~R|t,ρ,λ,Z)

[
`(t̂(~R), t)

]
(19)

sb.t.
m∑
j=1

n∑
i=1

Zji ≤ Kshutter, (20)

m∑
j=1

1{Zji>0} ≤ Ksparsity, i = 1, . . . , n, (21)

Zji ∈ N, j = 1, . . . ,m, i = 1, . . . , n,

where the notation 1{pred} evaluates to one if the predicate is
true and to zero otherwise.

The constraints (20) and (21) deserve some comments.
Each captured frame contains a fixed number Kshutter of light
pulses, each of which is associated with a basic exposure
signal Bj . Therefore the variables Zji are positive integers.
The total number of basis functions that may be used
is constrained by Ksparsity due to various shutter driver
restrictions. Because in each pulse a single basis function

is selected, this makes the effective response curve C a non-
negative linear combination of the basis functions (with
integer coefficients).

Solving (19) is a challenging combinatorial problem on
three levels: first, computing t̂(~R) is the inference problem,
which has no closed form solution. Second, as a result,
computing the expectations also has no closed form solution.
Third, more than just merely evaluating it, we would like to
optimize the objective function over Z.

The approximate solution which we adopt is as follows
(more details in the supplementary materials). We approxi-
mate the objective function by a Monte Carlo evaluation for
both expectations (imaging conditions, and responses): for
i = 1, . . . ,K we draw ti, ρi, λi, then draw ~Ri, then perform
inference to obtain t̂i = t̂(~Ri) and evaluate `i = `(t̂i, ti).
Finally we approximate the objective (19) as empirical mean
1
K

∑K
i=1 `i. For K = 8192 samples this computation takes

around one second. For optimization of (19) we use simulated
annealing [54] on a custom-designed Markov chain which
respects the structure induced by (20) and (21).

Figure 4 shows the progress of the optimization process.
We start the optimization at a completely closed exposure
profile with zero value, that is Zji = 0 for all j, i.

We remark that the optimization scheme just described
outperforms all our previous attempts to manually design
the exposure profiles.

8 MULTIPATH MODELING AND DESIGN

In this section we describe our method for simulating realistic
multipath images together with ground truth. Having a
realistic simulation enables several important goals:

– exposure design for reduced multipath artifacts
– learning/obtaining realistic priors for multipath effects
– benchmarking
We show results for the first and last goal in section 9.

8.1 Time of Flight Simulation

In computer graphics physically-accurate renderers are
mature technology that are readily available. We adapt the
open source Mitsuba renderer [55]. Mitsuba supports, based
on physical modeling of light scattering, light transport
simulation, integrating paths of light at every pixel, thereby
producing a highly realistic rendered image. We adapt the
code so that we obtain the total light path length and the
number of segments of the light trajectory.

In more detail, we modify two rendering algorithms, the
bidirectional path tracer algorithm [56] and the Metropolis
light transport (MLT) [57] algorithm; normally both algo-
rithms are used to render the intensity of a pixel by means of
approximating an integral over light pathes connecting light
sources to surfaces to camera pixels [58].

Our modification is to record for each pixel a weighted
set of light path samples {(wi, Li, ti)}i=1,...,N , typically a
few thousand, say N = 4096. For each light path we store
the intensity weight wi ≥ 0, the number of straight path
segments Li ∈ N, and the total length of the path ti. The
segment count allows us to distinguish direct responses
(Li = 2, emitter-to-surface and surface-to-camera) from
indirect responses (Li > 2, multipath). Together with a fixed
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Fig. 7: Insights into multipath using physically accurate light transport simulation. (a) A scene created in Blender. (b) Ground truth depth. (c)
Normalized measure of multipath intensity compared to direct contributions. (please see the main text). (d)-(f) Normalized light densities for three
selected pixels; pixel A has no multipath component, pixel B has one multipath component from 30–50cm further away, and pixel C, where a specular
component gives rise to a narrow multipath response.

ambient value τ measuring light intensity without active
illumination, for example from a regular rendering pass,
the path lengths and weights now permit us to simulate a
realistic mean response vector ~µ as

~µ = τ ~A+
N∑
i=1

wi
d(ti)

~C(ti). (22)

The sum in the second term approximates the time-of-flight
integral

∫
R+

~C(t) dν(t), where ν is an intensity measure over

time. The division by d(ti) is due to bothwi and ~C containing
the distance decay function d(t); see (5). Once we have ~µ we
can optionally simulate sensor noise as specified in (8). We
provide details in the supplementaries.

We remark that additional relevant work on light trans-
port is considered in [59, 60], published independently and
concurrently with our work.

8.2 Simulation Results
In part (a) of Figure 7 we show a synthetic scene. Part (b)
shows the ground truth depth map corresponding to the
scene. We marked three points (A, B and C shown in part
7(c)) at which we have different amounts of multipath. In
parts 7(d), 7(e), and 7(f) we show the depth histograms we
obtain from our modified Mitsuba renderer. For every point,
the histogram shows the distribution of distances travelled
by the photons integrated at this pixel. This distribution
is properly weighted to account for both distances and
reflectivity of materials along the pathes. Furthermore we
show the distribution of distances travelled over a direct
path in blue (this essentially corresponds to a delta function),
and distances travelled over multiple pathes in red. We see
that at point A (part 7(d)) there is no multipath, while at
point B (part 7(e)) there is multipath due to the wall. We may
see from the histogram the dominant additional path lengths
- 30 to 50 cm in this case. Finally, in part 7(c) we show a
normalized measure of the percentage of intensity integrated
from multipath (as opposed to intensity integrated from a
single direct light path), for every pixel in the image. We see
that corners and just in front of the wall or other vertical
surfaces actually return more multipath signals than direct
path signals.

8.3 Multipath-Robust Exposure Profile Design
In the exposure profile design objective (19) we take two
expectations: the first over prior imaging conditions (prior p)

(a) R1 response and 500 random
pixels.
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Fig. 8: Predicted uncertainty versus actual uncertainty; the model is
well-calibrated in that it accurately predicts depth uncertainty.
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Fig. 9: Sample scenes. Top: exposure profile used. Middle: first response
image R1. Bottom: inferred depth image using the SP-MLE model. The
left and middle column are scenes with a far-range design, the right
column is a scene with a near-range design. The designs were obtained
using different priors p(t) in (19).

and the second over the assumed forward model (forward
model P , equation (6)). This indeed is the way to minimize
the loss when responses come from our basic generative
model, which does not include multipath.

We now want to design an exposure profile that will be
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more resistant to multipath. Therefore we should measure
the loss over responses that also include multipath. We use
our realistic simulator for that as follows. Given one or
multiple 3D scenes and their realistic light transport pathes,
we sample responses from these scenes. Formally, the scenes
and the simulator are a more complex generative model
G. We denote the sampling from this complex model by
(~R, t) ∼ G, but do keep in mind that the model G uses
multiple reflectivity values and ambient lighting along the
pathes to generate the response ~R. Both P and G depend on
the design Z through (7) and (22), respectively.

We combine both generative models in a mixture: a
fraction β ∈ [0; 1] are samples from our assumed model prior
p and P , and a fraction 1− β are samples from the physical
simulation prior Q. Then the expectation (19) becomes

β Et,ρ,λ∼pE~R∼P [`(t̂(~R), t)] + (1− β) E(~R,t)∼G[`(t̂(~R), t)]. (23)

We see that the design objective (19) can, by a simple change
as in (23), accommodate richer priors over scenes and effects
such as multipath. We demonstrate this in section 9.5.

9 EXPERIMENTAL RESULTS

We use a prototype camera as shown in Figure 1. In our
experiments we avoid reference and comparison with other
depth cameras in terms of noise characteristics and variance
of depth estimates because the validity of such comparison
is affected by hardware configurations such as power used,
field of illumination, resolution, thermal design constraints,
and sensor sensitivity. Instead we focus on demonstrating the
validity of our model, inference procedures, and regression
approximations.

Throughout the experiments we will use the abbrevia-
tions SP and TP to refer to the single-path model (6) and
the two-path model (13), respectively. Depending on the
inference method we use MAP, MLE, and Bayes, so that
TP-Bayes for example means the two-path model with full
Bayesian inference.

9.1 Sample scenes
We start with a few sample scenes shown in Figure 9. We
designed two exposure profiles using two different uniform
priors on depth p(t) in (19). The first prior focused on larger
depths while the second prior focused on smaller ranges.
The two left columns show outdoor and indoor scenes using
the far range exposure profile, and the right column shows a
scene captured with the short range profile. The middle row
shows the first response image, and the bottom row shows
the inferred depth (obtained using the regression tree).

9.2 Accurate Depth Uncertainty
Next we show that by accurately modeling the noise present
in the observed response our model is able to assess its own
uncertainty in the inferred depth. To demonstrate this we
capture 200 frames of a static scene as shown in Figure 8(a)
and sample 500 pixel locations in the shown box.

Since the camera is static, we can obtain the empirical
standard deviation of the depth estimators for each of the 500
points. We plot this empirical depth uncertainty, against the
predicted uncertainty obtained in the first frame as described
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Fig. 11: Regression tree errors compared to full inference. Left: Cumula-
tive error distribution over test set. Right: mean absolute error over prior
albedo and ambient levels.

in Section 4.2 (the predicted uncertainty is nearly identical
over all 200 frames). Figure 8(b) shows the good agreement
between the predicted uncertainty and the actual uncertainty.
This provides empirical data about how well the model is
calibrated [61], that is, how accurately it judges the uncertainty
in its own predictions.

To gain some insight on what determines depth standard
deviation, we turn to Figure 10, showing a part of the scene
shown in Figure 1. In Fig. 10(a), we see one of the input
responses, showing the combined effect of different albedos
and shadows. In Fig. 10(b) we see how imaging conditions
affect the variance of the depth estimates. In the shadowed
regions the ratio between the active illumination and ambient
light is higher, and this generally leads to a tighter posterior.
On materials with higher albedo (the white page vs the dark
circles) the amount of reflected light is higher and this also
leads to smaller variances (as compared with the variances
on dark circles which reflect less light). In addition, the
depth itself affects the measure of uncertainty but this is not
illustrated in this zoomed scene.

9.3 Ambient and Effective Reflectivity

In our model, the inferred albedo image is illumination-
invariant and therefore does not contain shadows. Therefore
we can perform realtime shadow removal [20, 21], providing
illumination-invariant inputs to computer vision algorithms.
This is illustrated in Fig. 10(c). In Fig. 10(d) we show the
estimated ambient light level at each pixel.

For more results on realtime extraction of illumination,
reflectivity and shape please view the enclosed video.

9.4 Regression Tree Approximation Quality

As discussed we use regression trees to regress depth, thus
approximating full inference which is infeasible in realtime.
An optimized implementation running on a Intel HD Graphics
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Fig. 12: Multipath-robust exposure profile design. Left column: original
exposure profile. Right column: multipath-optimized exposure pro-
file. From top-to-bottom: Top; regular exposure profile and robust-
to-multipath profile. Bottom; bias magnitude (cm) of resulting depth
inference images.

4400 GPU, evaluates a regression tree of depth 12 with
full quadratic polynomials on a 200-by-300 pixel frame in
2.5ms. This means we are able to run four trees (depth,
illumination, albedo and depth std) effectively at ≈ 100fps.
The enclosed video shows this implementation running (the
std was computed but not shown in the output windows).

We now quantify the additional errors incurred due to
the use of regression trees instead of full inference. The
added error depends on the tree structure, which determines
required memory resources as described in section 4. We
tested two types of trees at three depths, yielding six possible
tree structures. The two types of trees used either a linear
polynomial or a quadratic polynomial on the leafs. The
depths we used were 8, 12 and 16 (full binary trees).

After training the trees, we generate test data by sampling
from the prior imaging conditions and our generative
model (6). We compute the baseline error by running full
inference (in this case MLE, but similar results hold for Bayes)
on the test data, then run the various tree predictors. Fig. 11
shows the results. On the left we plot the cumulative distribu-
tion of errors over the test set. On the right we partition the
test set by depths, and show the mean absolute error for each
depth, averaged over all albedos and illumination levels. We
see that as the trees get deeper the quality approaches that
of the full inference. At 16 levels they essentially match.

9.5 Design for Multipath Robustness
Now we demonstrate how we may use our simulator
for obtaining exposure profiles designed to be robust to
multipath. In section 8.3 we allowed for more complex
generative models during exposure profile design, one that
will generate responses that are “contaminated” by multipath.
We took two simple scenes of an object in front of highly
reflective wall (scene provided in supplementaries) and used
them as the model Q as in section 8.3. For the mixture model
we used β = 0.5. We then ran our design optimization
scheme to obtain a new exposure profile. Let us call this
exposure profile the MP-resistant design. We compare it with
the standard design obtained using β = 1. The two designs
are tested on the scene shown in Fig. 7. We emphasize that
this test scene is different than the scene used in design.

Fig. 12 compares the results we obtain. The top row shows
the regular design on the left, and the MP-resistant design
on the right (obtained using two different values of β in (23)).
The second row shows the magnitude of the resulting depth
bias. On the left we see significant biases due to multipath
(compare with the multipath map in Fig. 7(c)). With the
MP-resistant design we see a significant reduction in bias.

9.6 Experimental Verification of Simulation Accuracy
Our light transport simulation is based on an accurate
physical model of light and the simulation results should
agree with the real camera. However, a real time-of-flight
camera is a complex system with many components and
potentially unaccounted for interactions between them. In
this section we verify that our simulation serves as a good
proxy for the real system.

To this end, we take images from two real scenes with a
box and an optional reflector, shown in Figure 13(a) and 13(h),
keeping the camera static between captures. We then perform
camera mapping using the known camera intrinsics and
reconstruct a matching 3D scene for our simulator. The
synthetic scene allows us to assess the agreement between
qualitative effects in the real capture and in the synthetic
image. In our comparison we mask the results to the area
occupied by the box and reflector, and in addition mask
the bottom third of the sensor array because this particular
camera has no active illumination design in this region.

The top row in Figure 13 shows the scene with only the
box, the bottom row shows the multipath-corrupted scene
with a large diffuse reflector added.

The following important observations can be made: 1.
Comparing each of the four pairs of real and synthetic
results the qualitative and quantitative error agree between
the actual recording and the simulation; 2. The multipath
corruption is clearly visible for the single-path (SP) model in
Figure 13(k) and 13(l) and to a smaller extend in the two-path
(TP) models, Figure 13(m) and 13(n).

Overall the simulation agrees very well with the real cam-
era system. We remark that beyond this single experiment
we describe here, the simulator is in daily use in our group
and we have seen excellent agreement between simulated
results and live tests over many months of using it.

9.7 Benchmarking using Simulation Data
In this experiment we leverage the ability of our simulator
to provide ground truth depth. This allows us to assess
the depth inference performance quantitatively. We use five
scenes adapted from blendswap.com for this purpose. The
depth range in each of these scenes is within 50cm to 500cm
and the scene surfaces represent a good variety in materials
and convex and concave geometries.

For each scene we obtain the IR responses and then
run two inference engines. The first is Bayesian inference
using the single path model, and the second is Bayesian
inference using the two-path model. We emphasize that
these inference procedures were run on exactly the same IR
responses. Therefore any difference in results is due solely to
a change in the model (both engines used Bayesian inference).

The results are visualized in Figure 14 and we report
quantitative results for depth reconstruction in Table 1. Four
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Fig. 13: Validation of the accuracy of light transport simulation. From the measured IR0 frames we use camera mapping to approximately reconstruct
the 3D scene geometry and surface properties manually. The top row shows the no-multipath setting and we mask the frame so that only the target
object is shown. The bottom row shows the multipath setting with a large white reflector added to the scene (left side). In the error results, each
column corresponds to either real errors from the measured IR frames or is entirely simulated. Qualitatively there is an excellent agreement between
real measurements and synthetic simulations. Small quantitative differences remain, for example in the no-multipath setting with the two-path model.

additional visualizations are provided in the supplementary
materials. As error metric we use the 25/50/75 quantiles
of absolute depth errors because these approximately corre-
spond to easy/medium/difficult surfaces. We mask pixels
in white for which no direct single-path response is created
during rendering. These pixels typically correspond to either
infinite rays or to perfectly specular surfaces. In both cases
the time-of-flight operating principle does not apply.

We again re-emphasize that the absolute magnitude of the
errors is not material and incomparable to other cameras for
two reasons: first we report raw-depth errors with absolutely
no spatial or temporal filtering that is usually present. Second,
the jitter error highly depends on camera power, sensor size
and other hardware characteristics which are of no concern
in this paper.

From the results we make the following observations:

1) Surfaces with low reflectivity have large depth errors
but the model is aware of this through a large
inferred σ̂ value. For example, the black floor in
Figure 14(d) and 14(e). Improving on these regions
would require increasing the light output or sensor
sensitivity.

2) Areas affected by strong multipath also have large
depth errors; for example the ceiling in Figure 14(d).
The SP model σ̂ does not indicate a potential error,
but the γ score can invalidate these observations, for
example the ceiling in Figure 14(f).

3) The two-path model (TP) improves depth accuracy
in every scene but also reports increased model σ̂
compared to the single-path model. For example,
compare the absolute errors between Figures 14(d)
and 14(j), and the σ̂ maps in Figure 14(e) and 14(k).

4) Less invalidation happens in the two-path model.
In all scenes, the TP-Bayes γ invalidates less pixels
compared to the SP-Bayes γ map, because as a model
it is a better representation for the physical simulator.

Absolute error quantile (cm)
Scene Model 25% 50% 75%
Sitting Room SP-Bayes 7.23 13.46 21.20
Fig. 14 TP-Bayes 3.03 6.40 11.82
Breakfast Room SP-Bayes 3.13 6.17 11.79
(supp. mat.) TP-Bayes 1.85 4.18 8.75
Kitchen Nr 2 SP-Bayes 5.85 10.23 17.98
(supp. mat.) TP-Bayes 2.59 5.80 13.32
Country Kitchen SP-Bayes 4.86 10.22 18.74
(supp. mat) TP-Bayes 3.10 6.71 14.30
Wooden Staircase SP-Bayes 3.95 8.49 14.51
(supp. mat.) TP-Bayes 2.17 4.80 9.43

TABLE 1: Predictive performance of the Bayesian single-path (SP) and
two-path (TP) models on realistic data obtained from physically-accurate
light transport simulation. Across all scenes the 25/50/75 error quantiles
are significantly reduced by the two-path model. (raw-depth errors - no
spatial or temporal filtering whatsoever)

5) In Table 1 the errors are significantly reduced by the
two-path model, typically by 40 percent.

These results and insights agree with extensive live tests
performed in the process of productizing our system.

9.8 Comparison with phase-modulated TOF
Lastly, we demonstrate the strength of our computational
approach by comparing the results obtained by our general
inference mechanism, with those obtained by using classic
phase-based derivation of depth.

In a classic four-exposures phase-based TOF approach
(e.g. [39]) four measurements are captured using equally
spaced π/2 phase shifts. The phase associated with these
measurements is computed using an analytic formula. In
principle a linear relationship should hold between the phase
and depth, but in practice a lookup table is used to correct
for deviations from this linear relationship.

We simulated the responses as coming from the ideal
perfect sines response curve, as shown in part (a) of Figure 15
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Fig. 14: Rendered simulation (scene adapted from “sitting room” by cenobi, licensed CC-BY from blendswap.com). High errors are present due to low
reflectivity surfaces and multipath; the multipath errors are reduced by the two-path model (ceiling, wall, floor). The uncertainty estimate σ̂ is higher
for the two-path model, reflecting the multipath awareness (compare the σ̂ values at the ceiling).
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Fig. 15: Our general inference method outperforms the classic phase-
based TOF formula, even on a perfect sines response curve (see text)

(the modulation frequency we used is 30MHz leading to an
unambiguous range of 5 meters). To these responses we
added shot noise using the standard model [44] and then
ran depth inference using both the analytic phase-based TOF
formula [39], and our single path MAP inference as described
in Section 3.3. The cumulative distribution of the absolute
errors is presented in part (b) of Figure 15.

The responses corresponded to the ones expected from
the following imaging conditions: depth is uniform between
70cm and 370cm, ambient light level is uniform between
λ = 0 and λ = 20000 (covering a wide range of lighting
conditions2.) The reflectivity was chosen to be one of the
three values 100%, 50% or 10%. We see that in each of the
three cases, the errors of our probabilistic method were lower
than the errors of the classical phase-based formula (the red
CDF curves dominate the black ones).

We emphasize the fact that our inference method is
general and may be used with any response curve ~C(),
while this is not the case for the classic phase-based formula.
Indeed, an example of a response curve deviating from the
sines curve is given in the top-right part of Figure 12.

2. This light level corresponds to about 10 mW
cm2nm

- which fully covers
indoor conditions (where the maximal light level is usually below
5 mW

cm2nm
)

10 CONCLUSION

Our presented approach is based on sound probabilistic
modelling given our understanding of the physical reality.
Bayesian inference naturally provides a powerful formal
calculus to perform depth inference given our modelling
assumptions. We have shown that even a simple model
of multipath enables significant reductions in the depth
error. However, both parts of our approach—the prior and
model—are general and open to future extensions. For the
prior we plan to develop scene- and task-specific priors to
be able to improve performance in the presence of strong
multipath and ambient light. We envision more refined
models of multipath, for example by replacing the two-path
pulse response by a more accurate analytic model of diffuse
Lambertian multipath. This would require adding further
latent variables related to multipath responses and creating
suitable priors for them; this may be challenging but our
simulation framework will likely enable us to make progress
in this direction in the future. Our statistical view on time-
of-flight enables all these extensions within a principled
framework.
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N. Nešić, X. Wang, and P. Westling, “High-resolution stereo
datasets with subpixel-accurate ground truth,” in Pattern
Recognition. Springer, 2014, pp. 31–42.

[46] A. Criminisi, J. Shotton, and E. Konukoglu, “Decision
forests: A unified framework for classification, regression,
density estimation, manifold learning and semi-supervised
learning,” Foundations and Trends in Computer Graphics and
Vision, vol. 7, no. 2-3, pp. 81–227, 2012.

[47] R. M. Haralick, “Propagating covariance in computer
vision,” IJPRAI, vol. 10, no. 5, pp. 561–572, 1996.

[48] M. Reynolds, J. Dobos, L. Peel, T. Weyrich, and G. J. Brostow,
“Capturing time-of-flight data with confidence,” in CVPR,
2011.

[49] A. Gelman and C. R. Shalizi, “Philosophy and the practice
of Bayesian statistics,” British Journal of Mathematical and
Statistical Psychology, vol. 66, no. 1, pp. 8–38, 2013.

[50] D. Lunn, C. Jackson, N. Best, A. Thomas, and D. Spiegel-
halter, The BUGS book: A practical introduction to Bayesian
analysis. CRC Press, 2012.

[51] X.-L. Meng, “Posterior predictive p-values,” The Annals of
Statistics, pp. 1142–1160, 1994.

[52] J. M. Robins, A. van der Vaart, and V. Ventura, “Asymptotic
distribution of p values in composite null models,” Journal
of the American Statistical Association, vol. 95, no. 452, pp.
1143–1156, 2000.

[53] J. O. Berger, Statistical Decision Theory and Bayesian Analysis.
Springer, 1985.

[54] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, 1983.

[55] W. Jakob, “Mitsuba renderer,” 2010, http://www.
mitsuba-renderer.org.

[56] E. Veach and L. Guibas, “Bidirectional estimators for light
transport,” in Fifth Eurographics Workshop on Rendering, 1994.

[57] E. Veach and L. J. Guibas, “Metropolis light transport,” in
Proceedings of the ACM SIGGRAPH Conference, 1997, pp.
65–76.

[58] M. Pharr and G. Humphreys, Physically based rendering:
From theory to implementation. Morgan Kaufmann, 2010.

[59] P. Pitts, A. Benedetti, M. Slaney, and P. Chou, “Time of flight
tracer,” Microsoft Research, Tech. Rep. MSR-TR-2014-142,
November 2014.

[60] A. Jarabo, J. Marco, A. Muñoz, R. Buisan, W. Jarosz, and
D. Gutierrez, “A framework for transient rendering,” ACM
Trans. on Graphics (SIGGRAPH Asia 2014), vol. 33, no. 6,
2014.

[61] P. A. Dawid, “The well-calibrated Bayesian,” Journal of the
American Statistical Association, vol. 77, no. 379, pp. 605–610,
1982.

Amit Adam Amit Adam received the PhD degree
from the Technion-Israel Institute of Technology
in 2001 for a thesis on vision-based navigation.
Since his graduation, he has been working as an
applied computer vision researcher in various ap-
plication areas such as medical navigation, video
surveillance, and recognition. Joining Microsoft’s
Advanced Imaging Technologies Group (AIT) in
2012, he has since worked on computational
problems related to time-of-flight depth cameras.

Christoph Dann Christoph Dann obtained his
B.Sc. and M.Sc. degree in Computer Science
from the Technical University of Darmstadt, Ger-
many, in 2011 and 2014, respectively. He is
currently working toward a PhD degree in the
Machine Learning Department at Carnegie Mel-
lon University, USA. In the past, Christoph worked
as an undergraduate researcher at the Max-
Planck Institute for Informatics, the Intelligent
Autonomous Systems group at the Technical
University of Darmstadt, the Aerospace Controls

Laboratory at MIT and as a research intern at Microsoft Research,
Cambridge, UK. His research primarily focuses on sequential decision
making under uncertainty including reinforcement learning as well as
applications in computer vision.

Omer Yair received the BSc degree in Electrical
Engineering (summa cum laude) and a BSc in
Physics (summa cum laude) from the Technion-
Israel Institute of Technology in 2011. He is
currently with the Advance Imaging Technology
Group at Microsoft and pursuing a MSc degree
in Physics at the Technion.

Shai Mazor Shai received the B.Sc. and M.Sc.
degrees in Electrical Engineering from the
Technion-Israel Institute of Technology. After grad-
uating he worked as a developer and later pro-
gram manager, gaining experience both in startup
companies and large corporations. He joined Mi-
crosoft’s Advanced Imaging Technologies Group
(AIT) in 2013, where he is now a senior program
manager responsible for incubation of new ap-
plications for AIT technology. In addition to his
engineering education, Shai holds an MBA from

the IDC, where he was also an exchange student at the Wharton
Business School.

Sebastian Nowozin is a senior researcher in
the Machine Learning and Perception group at
Microsoft Research Cambridge. He received his
Master of Engineering degree from the Shang-
hai Jiaotong University (SJTU) and his diploma
degree in computer science with distinction from
the Technical University of Berlin in 2006. He
received his PhD degree summa cum laude in
2009 for his thesis on learning with structured
data in computer vision, completed at the Max
Planck Institute for Biological Cybernetics, Tübin-

gen and the Technical University of Berlin. His research interest is at the
intersection of computer vision and machine learning. He is associate
editor for TPAMI and JMLR and regularly serves as PC-member and
reviewer for machine learning (NIPS, ICML, AISTATS, UAI, ECML, JMLR)
and computer vision (CVPR, ICCV, ECCV, PAMI, IJCV) conferences and
journals.


