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Abstract

In this note we show that minimising the Kullback—Leibler divergence over a family in the class of
exponential distributions is achieved by matching the expected natural statistic. We will also give an
explicit update formula for distributions with only one likelihood term.

1 Notation
We use NV (x; pt, ) to denote a Gaussian density at x with a mean vector g and covariance matrix X,
n 1
N E) = @m) 3 E Texp (—5 x—mw'z7x- u)) : (1.1)

When dealing one dimensional Gaussians the vectors and matrices are replaced by scalars. If p is a density
over x, we will write (g (X)) ,(x) as a shorthand notation for the expectation of g over x, [ g x) p(x) dx.
Finally, the Kullback—Leibler divergence between two densities p and g is defined by

KL(p||q):=<log(”(x)>> . (1.2)
4 /[ px)

2 Minimising in the Exponential Family

A set of distributions over R is in the exponential family if its densities can be written as

1
X) = exp (07 ¢ (x ) ,
e A GRS
where ¢(x) is known as the natural statistic of x and Z(0) := f exp(0T¢(x))dX ensures normalisation.
The exponential family includes many known families of distributions including the Gaussian distribution.
For example, in the Gaussian case, the natural statistic ¢ (x) is simply the vector of all first and second
moments, ¢ (x) = (x1,...,xXn, xlz, X1X2, ..., xNxN_l,x%\,). Note that the expected natural statistic of

po(X) is given in terms of the gradient of log(Z(#)) w.r.t. @, that is,

[ [Veexp (0T¢ (x))] dx

Vo log (Z (0)) = A0

= (6 () ppcx) - @1

Theorem 1. For any distribution p, the distribution pg+ which minimises the Kullback-Leibler divergence,
KL (pl| pg*), over the exponential family with natural statistic ¢ is implicitly given by

(X)) pe o) = (& ) pex) - (2.2)



Proof. Let us recall the Kullback-Leibler divergence from (1.2) and consider it as a function f of the

parameters 6,
KL (plipg) = <log ( P& >>
Po (X) p(x)

(log (p (¥) ) + {log (Z 6))) ) — (676 )

= (log (p (X)) px) + 102 (Z (0) — 0" (¢ (X)) (x) -

1 @)

p(x)

Recall that a necessary condition for the minimum 6* is Vg f (0*) = 0. From (2.1) we have

Vo f (0) = (¢ (X)) pyx) — (¢ (X)) p(x) -

It remains to show that 8* such that (@X)) ppex) = (P (X)) px is @ minimum. To this end, consider the
matrix of second derivatives,

0%log (Z(#)) _ 3 [¢i mexp (679 (¥)dx
96,00,  06; Z(0)
= (¢ 0 d; X),, 00 — @i () pye) (#) )

[VVe f (0)];;

po(x)

At the solution 6%, this is the covariance matrix of the natural statistic ¢ (x) over the distribution pg=. By
definition, this is positive semi-definite matrix (in fact, for every distribution pg) and thus we have proven
the theorem. (]

Remark. In the case of the Gaussian family, {N'(-; u, )}, Theorem 1 reduces to matching the mean and
covariance (which are related in a one-to-one way to the first and second moments),

w= K - (2.3)
5 = <XXT>p(X)—(x)p(X) )Ty - (2.4)

3 Matching the Bayesian Posterior

We will now derive an explicit update formula for matching the expected natural statistic if p(x) has the
simple form

1
pX)=2z—-1(X)pg(X),
Z(0)
where Z () := [ (x) pg(x)dx ensures normalisation'. In fact, similar to (2.1), the expected natural statistic

under p(x) can again be expressed solely in terms of the gradient of Z(0) w.r.t. 8. In order to see this, note
that

Vopo (0 = [wﬁ}exp((ﬂmx))+#[Voexp(0T¢(x))]

Z )
[VoZ (6)]

_Wpo (x) + ¢ (X) pg (x)

= {0 X))y - Po () + ¢ (X) po (X) .
Multiplying both sides by Z~!(8)r(x), integrating over x and re-arranging terms we get

Z7NOVZ0) = — (X)) + (@)
@) = Volog(Z®)+ @) 0 - 3.1)

I Please note that the normalisation constant Z (0) should not be confused with the normalisation constant Z(6).



Finally, using Theorem 1 and (2.1) we obtain

Vp log (Z (%)) = Vg log (z (0)) + Vylog (Z (0)) .

All that is required to solve the above equation for a given exponential family is to know the analytical
solution of the gradient equation of log(Z(#)) and log(Z (#)). These two equations only depend on the
particular natural statistic function ¢ and the function ¢. This is applicable, for example, for Gamma
densities.

However, some exponential families are usually not parameterised in terms of € but rather in terms of
7(0) := (¢ (X)) p,(x)—a parameterisation also known as the moment representation. This representation
has particular advantages when minimising the KL divergence as Theorem 1 directly specifies the update
equation for the parameters. In this case, (3.1) can still be used together with the chain rule of differentiation
to obtain the update equation for a particular class of exponential densities if the mapping to T +— @ is easy
to differentiate. We can also follow the above argument simply in the new parameterisation. In the next
section we give a detailed derivation for the Gaussian family (which is represented in terms of its moments).

4 Matching the Bayesian Posterior in the Gaussian Family
We consider a family of Gaussians parameterised in terms of its mean, g, and covariance, X,
gx) :=qx;pn,2):=NxpnX).

Our ability to compute (2.3) and (2.4) when p(x)  ?(X)g (x) depends only on the tractability of the
normalisation constant,

Z::Z(;L,E) :=/t(x)q(x; o, X)dx.

Matching the Mean We will consider the mean of x under 7(x)g (x). First note that
Vg0 =27 (x—w)q® .

which can be re-expressed in terms of xg (X),
Xq (X) = pq (X) + XVpq (%) .

Now multiplying both sides by Z~'#(x), integrating over X, and exploiting the linearity of the gradient
operator gives

X)) = [L+Z_I'Z|:Vﬂ/t(x)q(x)dxj|
= w+Z7' %) -V Z (1, 2)

= p+XV,log (Z (r, Z))
= pn+Xg, 4.1)

where we have defined g := V, log(Z(;L, Y)).

The Second Moment Matrix Once again we take gradients” of ¢(x), but this time with respect to the
covariance matrix X,

1
Vig =3 (-2 + T x—w - =g

21t helps to remember that Vy log(g(x)) = (¢ (x))_1 - Vyq(x)).



which can be re-arranged, as we did before, in order to obtain
T _ T T T
xxTg (%) = 22 [Vzq 01 % + (E + x0T+ pux" — ") g (0 .

Multiplying both sides by Z 1 (x), integrating over x and exploiting the linearity of the gradient operator

gives
(o)
p(x)

T2% (27 B) Vs Z (1 B)) Tt Wy T+ B X)) — T

T 42X (V): log (Z (., Z))) T+ (X p i+ R (X — T

= T +2EGE + (X) 0 k1 + 1 (X)) — MR

where we have defined G := Vy log(Z(;L, ).

Matching the Covariance The update (2.4) for the covariance requires to compute
(XXT>p(X) — W)y K = = — = (28" —26) T, 4.2)

where we used (4.1). Substituting (4.1) and (4.2) into (2.3) and (2.4) we obtain the required updates for the
mean and covariance:

o= pn+ig,
¥+ E—Z(ggT—ZG)Z.



