
Per-packet Load-balanced, Low-Latency Routing for
Clos-based Data Center Networks

Jiaxin Cao1,2∗, Rui Xia1,2∗, Pengkun Yang3∗, Chuanxiong Guo4, Guohan Lu4, Lihua Yuan4,
Yixin Zheng5∗, Haitao Wu1, Yongqiang Xiong1, Dave Maltz4

Microsoft Research Asia1, University of Science and Technology of China2,
University of Illinois at Urbana-Champaign3, Microsoft4, Tsinghua University5,

{jiacao, v-ruxia, hwu, yqx}@microsoft.com1,
{caojx, xiarui}@mail.ustc.edu.cn2, pyang14@illinois.edu3,

{chguo, gulv, lyuan, dmaltz}@microsoft.com4, zhengyx12@mails.tsinghua.edu.cn5

ABSTRACT
Clos-based networks including Fat-tree and VL2 are being

built in data centers, but existing per-flow based routing

causes low network utilization and long latency tail. In

this paper, by studying the structural properties of Fat-

tree and VL2, we propose a per-packet round-robin based

routing algorithm called Digit-Reversal Bouncing (DRB).

DRB achieves perfect packet interleaving. Our analysis and

simulations show that, compared with random-based load-

balancing algorithms, DRB results in smaller and bounded

queues even when traffic load approaches 100%, and it uses

smaller re-sequencing buffer for absorbing out-of-order packet

arrivals. Our implementation demonstrates that our design

can be readily implemented with commodity switches. Ex-

periments on our testbed, a Fat-tree with 54 servers, con-

firm our analysis and simulations, and further show that our

design handles network failures in 1-2 seconds and has the

desirable graceful performance degradation property.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network

Protocols—Routing protocols

General Terms
Algorithms; Performance; Theory

Keywords
Load balance routing; low latency

∗The work was performed while Jiaxin Cao, Rui Xia,
Pengkun Yuan, Yixin Zheng were research interns at Mi-
crosoft Research Asia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CoNEXT’13, December 9-12, 2013, Santa Barbara, California, USA.
Copyright 2013 ACM 978-1-4503-2101-3/13/12 ...$15.00.
http://dx.doi.org/10.1145/2535372.2535375.

1. INTRODUCTION
The IT industry is experiencing a paradigm shift by mov-

ing towards cloud computing, in which a huge amount of

computing and storage resources are provided in large data

centers. A large data center may contain hundreds of thou-

sands of servers. These servers together provide various on-

line services, e.g., Web Search, EC2 [5], Windows Azure

Storage [7], and MapReduce [10]. Due to the large amount

of data shuffled among the large number of servers, the net-

work that interconnects the servers becomes a performance

bottleneck. Network bandwidth is a scarce resource [10] and

many latency sensitive services and applications (e.g., Web

search) are experiencing long network latency tail [3].

In order to provide scalable network infrastructure, many

data center network designs have been proposed [1, 12, 14,

13]. In these designs, Fat-tree [1] and VL2 [12] are built

from Clos network [9], and can provide high network capac-

ity. These Clos-based networks can be built using existing

commodity Ethernet switches and routing techniques (e.g.,

ECMP [25] and OSPF) [20, 12]. As a result, companies are

building these networks in data centers [27, 15].

Both Fat-tree and VL2 are re-arrangeable nonblocking

and provide high network bandwidth. Existing routing de-

signs [20, 12] count on ECMP for traffic load-balancing.

ECMP chooses the next hop of a packet by hashing the

five-tuple of the packet hence guarantees that a flow always

takes the same routing path. However, due to hash colli-

sion, ECMP cannot achieve full bisectional bandwidth. As

reported by [2], ECMP can only utilize 40-80% network ca-

pacity. Our measurement results further showed that even

when the traffic load is moderate, network latency may have

a long tail (several to tens ms, see Section 2.2). This long-tail

latency causes large RTTs (e.g., more than 2ms at the 99th-

percentile) and flow completion time, and directly results

in bad user experiences and loss of revenue [16, 18]. Flow-

based improvements (e.g., Hedera [2] and MicroTE [6]) may

alleviate hotspots and increase network utilization, but they

cannot reduce the long latency tail, since they perform flow

scheduling at seconds level.

49

In this paper, aiming at providing both high utilization,

low latency, and short latency tail, we explore per-packet

load-balanced routing. We design a per-packet round-robin

based routing algorithm called Digit-Reversal Bouncing (DRB).

DRB is based on a sufficient condition which enables per-

packet load-balanced routing to fully utilize network band-

width without causing bottlenecks for both Fat-tree and

VL2. In DRB, for each source-destination server pair, for

each outgoing packet, the source selects one of the highest

level switches as the bouncing switch and sends the packet to

that switch. The bouncing switch then bounces the packet

to the destination. DRB selects bouncing switches by digit-

reversing their IDs, and as a result achieves perfect packet

interleaving.

Compared with random-based per-packet routing, our anal-

ysis and modeling show that DRB achieves smaller and bounded

queue lengths in the network. Our simulations demonstrate

that DRB load-balances various traffic patterns well, results

in small queue lengths and causes few out-of-order packet

arrivals at the receivers. As a result, DRB achieves high

bandwidth utilization (90% or more) and low network la-

tency (795us RTT at the 99th-percentile) at the same time.

When integrated with TCP and ECN, DRB works for over-

subscribed networks and well handles network congestions.

We have implemented our design with commodity switches

using IP-in-IP encapsulation/decapsulation [22] for packet

bouncing. We have built a Fat-tree testbed with 54 servers.

Our experiments show that DRB works as designed, with av-

erage and max queue lengths of several packets and 970Mbps

per-server TCP throughput, can react to network failures in

1-2 seconds, and achieves graceful performance degradation

when failures happen.

The contributions of the paper are as follows. First, we

design a DRB routing algorithm for load-balancing packets

evenly for Clos-based networks. Second, we build an ana-

lytical model to analyze the network latency of DRB and

show that DRB outperforms the other algorithms. Third,

we demonstrate that DRB can be readily implemented with

existing commodity switches by building a testbed.

2. BACKGROUND

2.1 Clos-based Networks
Fat-tree. Fat-tree was proposed in [1]. Fat-tree has three

switch layers which are called spine, aggregation, and TOR

(Top Of Rack) layers from top to bottom, respectively. All

the switches have the same port number, n (an even num-

ber). Each TOR switch uses n
2

ports to connect n
2

servers,

and the rest n
2

ports to connect n
2

aggregation switches.

Each aggregation switch uses n
2

ports to connect n
2

TOR

switches, and the rest to spine switches. In a Fat-tree, there

are n3

4
servers, n2

2
TOR switches and aggregation switches,

and n2

4
core switches. Fig. 1(a) gives a Fat-tree network

with n = 4.

(a) Fat-tree

(b) VL2

Figure 1: Clos-based Networks. Each dashed box
contains a two-stage Clos network.

In Fat-tree, we use bouncing switches to do the routing.

When server i sends a packet to server j, the packet first

goes up to a spine switch r (up-path), and then travels down

to the destination server (down-path). The spine switch is

considered as a bouncing switch, since it bounces the packet

from server i to server j.

Fat-tree has a nice property: given a bouncing switch,

there is one and only one path from server i to server j. For

example, in the Fat-tree shown in Fig. 1(a), given a bouncing

switch 3.0, the green links show the uniquely determined

path from server 0 to server 15.

VL2. VL2 [12] is also a variant of the Clos network. In the

original design, VL2 uses 1GbE Ethernet for server-switch

links and 10GbE Ethernet for switch-switch interconnection.

There are also three switch layers in a VL2 network. In

VL2, each TOR switch has d0 10GbE ports and 10d0 1GbE

ports, each aggregation switch has d1 10GbE ports, and

each spine switch has d2 10GbE ports. Each TOR switch

connects 10d0 servers with 1GbE ports, and d0 aggregation

switches with 10GbE ports. Each aggregation switch con-

nects d1
2

TOR switches and d1
2

spine switches. In VL2, there

are d1
2

spine switches, d2 aggregation switches, d1d2
2d0

TOR

switches, and 5d1d2 servers. Fig. 1(b) gives an illustration

of a VL2 network with d0 = 2, d1 = 2, d2 = 4.

In VL2, we also use bouncing switch to do the routing.

However, there are d0 paths between a server and a bounc-

ing switch. Therefore, given a bouncing switch, the routing

path is not uniquely determined. At first glance, it seems to

suggest that bouncing switch based routing for Fat-tree can-

not be used in VL2. In the next section, we will show that

50

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25

N
e
tw

o
rk

 u
ti
liz

a
ti
o
n
 (

%
)

Time (hour)

(a) Traffic

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 1000 10000

R
T

T
 C

D
F

RTT (us)

(1)
(2)
(3)

(b) RTT

Figure 2: (a) Network utilization. (b) (1) RTT CDF
of light-loaded servers; (2) RTT CDF of all servers;
(3) intra-rack RTT CDF.

by studying the structural property of VL2, our bouncing

switch-based routing can also be used in VL2.

Fat-tree and VL2 are both Clos-based networks. They are

composed of Clos networks. For example, in the Fat-tree

shown in Fig. 1(a) and the VL2 shown in Fig. 1(b), each

dashed box contains a two-stage Clos network. Treating

each dashed box as a single virtual switch, we can see that

these virtual switches are further connected by a folded Clos

network.

2.2 Network Latency Measurement
Traditionally, Clos-based networks use ECMP to split traf-

fic among multi-paths [12]. It is well-known that ECMP

cannot well utilize full network bandwidth due to hash col-

lision [2]. In what follows, we further show that ECMP may

cause long network latency tail even when the network traffic

is only moderate.

We have measured the RTTs and network utilization of a

large data center with 94,000 servers for one day on Dec 23rd

2012. This data center supports a wide range of applications

and services which include Web search and MapReduce-like

computation platform. The network structure is a oversub-

scribed Fat-tree. The average network utilization of the

third-layer switches is around 20%, with peak utilization

around 45% (measured in 5min interval) as show in Fig. 2(a).

As Fig. 2(a) shows, the average traffic load is only moderate.

In this experiment, we measured TCP connection setup

time as RTT. All the servers participated in latency mea-

surement and all the measurements hit the third-layer switches

and have five network hops. In order to eliminate the latency

introduced by busy server CPU, we filtered the servers that

were busy from our result. We only counted the servers

with mean CPU utilization less than 50% and the 95th-

percentile usage less than 75%. After server filtering, only

44,374 servers were selected. Since all the servers have 12

or more cores, our server filtering ensures that no additional

latency is introduced by busy servers. After filtering, we got

4,043,399,907 RTT samples. Fig. 2(b)(1) shows the RTT

CDF. Before filtering, we got 18,064,955,037 RTT samples

in total. Fig. 2(b)(2) shows the total RTT CDF. We also

have measured the RTT CDF of light-loaded servers in the

same rack, as shown in Fig. 2(b)(3). This is to measure the

latency introduced by the end-host networking stack.

Fig. 2(b)(1) shows that, though the 50th-percentile (P50)

and P90 RTTs are relatively small (370 us and 577 us),

the P95, P99 RTTs can be as high as 772 us and 2014 us,

respectively. And the curve clearly shows a long tail. Large

RTTs directly result in large flow completion time and lead

to loss of revenue [18].

Fig. 2(b)(2) and (3) help us confirm that the long latency

tail is indeed caused by the network. Fig. 2(b)(3) shows

that the intra-rack RTT is within a small range, with the

P99 RTT as small as 366us. This demonstrates that the end-

host stack does not introduce long latency tail. Fig. 2(b)(2)

further shows that busy servers indeed increase the RTT;

for example, the P90 RTT of (2) is 716us, whereas it is only

577us in (1). But busy servers do not affect the long latency

tail, since the tails of (1) and (2) are almost identical.

3. DIGIT-REVERSAL BOUNCING (DRB)

3.1 DRB for Fat-tree

3.1.1 A Framework for High Network Utilization
We denote the traffic generated by the servers as an N×N

matrix, where ai,j is the normalized traffic rate (the ratio

of the traffic rate to the link capacity) from server i to j.

Apparently, the normalized egress traffic rate from server i

is eri =
∑N−1
j=0 ai,j and the normalized ingress traffic rate

to server i is iri =
∑N−1
j=0 aj,i. A traffic matrix is feasible iff

eri ≤ 1 and iri ≤ 1.

Before proposing the framework, we first show a sufficient

condition for a routing algorithm to support arbitrary feasi-

ble traffic matrix.

Theorem 1. In a Fat-tree network, given an arbitrary

feasible traffic matrix, if a routing algorithm can evenly spread

the traffic ai,j from server i to server j among all the pos-

sible uplinks at every layer, then all the links, including all

the downlinks, are not overloaded.

The proof is given in Appendix A. Although it looks simple,

Theorem 1 gives us two important pieces of information.

First, if we balance the traffic in the uplinks, the traffic

in the downlinks will be balanced automatically. Second,

using source-destination pair as the unit is a feasible way to

achieve load-balancing.

In real world, the real-time traffic matrix is hard to obtain.

Therefore, we design a traffic oblivious load-balanced rout-

ing framework for Fat-tree, which works as follows. When a

source server sends a packet to a destination server, it first

sends the packet to one of the bouncing switches. The packet

is then bounced to the destination. Although this framework

does not have any knowledge of the traffic matrix, it is still

able to split traffic evenly in this framework. The key prob-

lem is how to select the bouncing switches properly.

51

3.1.2 Digit-Reversal Bouncing (DRB)
Before we present our DRB algorithm for bouncing switch

selection, we introduce two algorithms, RB and RRB, and

discuss their performance issues, which motivate the design

of DRB.

In Random Bouncing (RB), for each packet to be sent,

server i randomly chooses a bouncing switch. However, due

to the randomness nature, queues can build up, which result

in large network latency and large number of out-of-order

packet arrivals, as we will show in Section 3.1.3.

To avoid the random burstiness caused by RB, one may

consider deterministic-based Round-Robin Bouncing (RRB).

In RRB, for each server pair (i, j), server i sends the first

packet via a randomly selected bouncing switch 3.r. Then

RRB uses round-robin to select the next bouncing switch

(i.e., the next bouncing switch is 3.{(r+1) mod M}, where

M is the number of core switches).

Though RRB selects bouncing switches deterministically,

it may still introduce large queues. We use an example to

illustrate the problem. In Fig. 1(a), suppose server 0 is send-

ing packets to server 15. Suppose it starts from the bouncing

switch 3.0. The next bouncing switch will be 3.1. The first

packet will use the up-path {0, 1.0, 2.0, 3.0}, and the second

packet will use {0, 1.0, 2.0, 3.1}. Similarly, the third and

fourth packets will use {0, 1.0, 2.1, 3.2} and {0, 1.0, 2.1,

3.3}, respectively. We can see that the first two successive

packets both go through the link {1.0, 2.0} and the next

two successive packets go through {1.0, 2.1}. In Fat-tree,

the number of successive packets that go through {1.0, 2.0}
is n

2
. In the worst-case, when all the servers start from the

same bouncing switch, the max queue length at the switches

is n
2

(n
2
− 1).

To overcome the problem of RRB, we need to prevent

packets of the same source-destination pair from clustering

together. Using the above example, we would like to spread

the packets as follows: The first packet goes through {0,

1.0, 2.0, 3.0}, and the second to fourth packets go through

{0, 1.0, 2.1, 3.2}, {0, 1.0, 2.0, 3.1}, {0, 1.0, 2.1, 3.3}, re-

spectively. Intuitively, no two successive packets should go

through the same link. This is what our DRB algorithm

tries to achieve.

In DRB, for each server-pair (i, j), server i sends the first

packet via the switch 3.DR(r), where r is a randomly chosen

number in [0, M−1]. The next packet is sent via the switch

3.DR((r + 1) mod M), and so on. DR(r) is defined as the

digit-reversal of r. Using the n
2

-ary number system, r can

be denoted by a two digit number, i.e., a1a2. Then DR(r)

is a2a1.

Using the same example in RRB, when DRB is used, the

bouncing switches will be visited in the following order: 3.0,

3.2, 3.1, and 3.3. We have the following result on how DRB

visits the links at different layers:

Theorem 2. When DRB is used for Fat-tree, the dis-

tance between any two successive visits of an i-th (1 ≤ i ≤ 2)

layer link is
∏i
j=1

n
2

. 1

The proof is omitted due to the space limitation. Next, we

show that DRB achieves lower latencies and higher network

utilization than RB and RRB.

3.1.3 Network Latency Analysis
The network latency experienced by a packet is composed

of the following parts: transmission delay, propagation delay,

and queueing delay. Since per-packet routing may introduce

out-of-order arrivals, we need to introduce re-sequencing

buffers to absorb the out-of-order arrivals for TCP at end-

hosts. The re-sequencing buffers introduce additional re-

sequencing delay, which is defined as the time a packet stays

in the re-sequencing buffer. Since transmission and propa-

gation delays are the same for all the algorithms, this paper

focuses on queueing delay and re-sequencing delay.

To understand the queueing delays of RB, RRB and DRB,

we have built a model in Appendix B. We use permutation

traffic and assume a time-slot model. In each time-slot, a

server follows the Bernoulli distribution for packet genera-

tion, based on different traffic load.

Fig. 3 and Fig. 4 show the numerical results of the mod-

eling. Fig. 3 shows the average queue length versus traffic

load in a Fat-tree with all the switches having 24 ports. We

have several observations: (1) the queue lengths of RB at

different hops increase dramatically when the traffic load is

large, while the queue lengths of both DRB and RRB are

bounded even when the load is 1. (2) RRB builds up large

queue length at the first hop as we have analyzed. (3) DRB

performs the best. For example, its average and max queue

lengths at the first hop are only 2.5 and 8, respectively.

Fig. 4 shows the queue length versus switch port number

when the traffic load is 0.95. It shows that: (1) as the switch

port number increases, the queue lengths at different hops

increases. Except for the first hop RRB, the queue lengths

converge when the port number increases. (For the first-hop

queueing of RB, when n is large enough, it becomes to be

the well-known M/D/1.) (2) DRB achieves the best perfor-

mance. This is especially true for the first hop, e.g., when

the port number is 24, the average 1st-hop queue lengths are

16.0, 7.9, and 2.2 for RRB, RB, and DRB, respectively.

We also have calculated the queue length variances (not

shown in the figures). DRB always produces the small-

est queue variance along the routing paths. For example,

when the traffic load is 0.95 and the port number is 24,

the 1st-hop variances are 151, 58, and 1.45 for RRB, RB,

and DRB, respectively. Small queue variance leads to small

re-sequencing delay. DRB therefore produces the smallest

re-sequencing delay. Our simulation results in Section 5 fur-

ther conform our analysis.

1If Fat-tree is extended to multiple layers, this theorem can
also be easily extended.

52

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
v
e

ra
g

e
 q

u
e

u
e

 l
e

n
g

th

Load

RB
RRB
DRB

(a) 1st Hop

 0

 2

 4

 6

 8

 10

 12

 14

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
v
e

ra
g

e
 q

u
e

u
e

 l
e

n
g

th

Load

RB
RRB
DRB

(b) 2nd Hop

 0

 2

 4

 6

 8

 10

 12

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
v
e

ra
g

e
 q

u
e

u
e

 l
e

n
g

th

Load

RB
RRB
DRB

(c) 3rd Hop

Figure 3: Average queue length vs. traffic load at hop 1, 2 and 3. The switch port number is 24.

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 10 20 30 40 50 60 70

A
v
e

ra
g

e
 q

u
e

u
e

 l
e

n
g

th

Switch port number

RB
RRB
DRB

(a) 1st Hop

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 0 10 20 30 40 50 60 70
A

v
e

ra
g

e
 q

u
e

u
e

 l
e

n
g

th

Switch port number

RB
RRB
DRB

(b) 2nd Hop

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50 60 70

A
v
e

ra
g

e
 q

u
e

u
e

 l
e

n
g

th

Switch port number

RB
RRB
DRB

(c) 3rd Hop

Figure 4: Average queue length vs. switch port number at hop 1, 2 and 3. The traffic load is 0.95.

Fig. 3 and Fig. 4 show the queue lengths of the up-path.

Our queue modeling also explains the queueing behavior of

the down-path. For Fat-tree, the 4th-hop queue is similar

to that of the 1st-hop. The modeling results suggest that

DRB achieves lower queue lengths than RB and RRB. In

Sections 5 and 6, we will use simulations and experiments

to demonstrate the accuracy of our modeling.

3.2 DRB for VL2
For Fat-tree, once the bouncing switch is chosen, the rout-

ing path from the source to the destination is decided with-

out ambiguity. However, this is not the case for VL2. Using

the VL2 topology in Fig. 1(b) as an example, from server 0

to switch 3.0, we have two paths. One is {0, 1.0, 2.0, 3.0}
and the other is {0, 1.0, 2.1, 3.0}. Similarly, from 3.0 to

server 79, we have two paths {3.0, 2.2, 1.3, 79} and {2.0,

2.3, 1.3, 79}, respectively. Therefore there are four paths

from server 0 to server 79 via switch 3.0.

More generically, the number of paths between two servers

via a spine switch is d20. In VL2, selecting a spine switch

cannot uniquely decide the routing path. Therefore, DRB

cannot be directly applied to VL2. Fortunately, by studying

the structure property of VL2, we can still build connections

between a VL2 and a Fat-tree by introducing virtual spine

switches.

Fig. 5 shows the extended VL2 network of the original VL2

network in Fig. 1(b). We split the physical spine switch 3.0

into two virtual spine switches 3.0 and 3.2, and the physical

switch 3.1 into virtual ones 3.1 and 3.3.

For a generic VL2 network, we split each physical spine

switch into d0 virtual spine switches. For each physical spine

switch i, the corresponding virtual spine switches are num-

bered as {i, i+ d1
2

, i+ 2d1
2

, · · · , i+ (d0−1)d1
2

}. In the original

Figure 5: Virtual spine switches for VL2.

VL2 network, a spine switch has d2 ports. In the extended

network, the d2 ports are evenly allocated to the d0 vir-

tual spine switches, with each virtual spine switch having
d2
d0

ports.

The connection rule is as follows: We divide the aggre-

gation switches into d2
d0

aggregation groups, each with d0
switches. Aggregation switch i belongs to group b i

d0
c. For

each group g, we number the uplink ports of this group as

p0, p1, · · · , p d1d0
2

. We then connect pj(j ∈ [0, d1d0
2
− 1]) to

the g-th (g ∈ [0, d2
d0
− 1]) port of the virtual switch j.

As we can see, the connection rule is the same as that of

Fat-tree. It is easy to see the following theorem holds for

the extended VL2 network.

Theorem 3. In an extended VL2 network, given a source

server i and a destination server j, which are in two different

aggregation groups, and a virtual spine switch r, there is one

and only one shortest-path from i to j via r.

Since Theorem 3 holds after we extend VL2 using the virtual

spine switches, DRB now can be directly applied to VL2.

53

3.3 Oversubscribed Network and Network Con-
gestion

Both Fat-tree and VL2 have full bisectional bandwidth

and are re-arrangeable nonblocking. Theorem 1 shows that

there is no congestion when the traffic matrix is feasible. In

reality, congestions may occur when multiple senders send

to the same receiver (i.e., many-to-one communication), or,

when the network is oversubscribed (e.g., if a TOR switch

in VL2 has 2 10GbE uplinks but connects 40 1GbE servers,

the whole network is 2:1 oversubscribed).

DRB alone cannot handle network congestion. Since DRB

already perfectly load-balances traffic in the network, the

only way to handle congestion is to ask the senders to slow

down. Existing TCP plus ECN can well handle this sit-

uation. When congestion is about to happen, switches in

the network use ECN to mark packets, TCP as an end-host

transport protocol then reacts and slows down. In Section 5,

we use simulation to demonstrate that, by integrating with

TCP and ECN, DRB well handles network congestion and

achieves low network latency.

4. ROUTING DESIGN AND FAILURE HAN-
DLING

We present an IP-based DRB routing design. When a

source server needs to send a packet to a destination server,

it first selects a bouncing switch using DRB, and then en-

capsulates the packet using IP-in-IP [22]. The destination

address of the outer IP header is set to the address of the se-

lected bouncing switch. When the bouncing switch receives

the packet, it decapsulates the packet and sends the packet

to the destination.

Our design triggers the following two design decisions:

static switch routing table and server-based bouncing switch

selection. We first discuss these two decisions and then dis-

cuss how we handle network failures using topology update.

4.1 Static Routing Table
When a bouncing switch is selected, there is only one path

from the source to the bouncing switch and one path from

the bouncing switch to the destination. Due to the unique-

ness of the routing path, we therefore can configure the rout-

ing tables of the switches statically.

In our design, servers of the same TOR switch are as-

signed addresses in the same IP subnet and the bouncing

switches are assigned /32 IP addresses. Using Fig. 1(a) as

an example, switch 1.0 has routing entries on how to reach

switches 3.0-3.3 (i.e., it uses uplink-port 0 to reach 3.0 and

3.1 and uplink-port 1 to reach 3.2 and 3.3). For switch 3.0,

it has entries on how to reach the servers (i.e., it uses port 0

to reach servers 0-3, port 1 for servers 4-7, etc.). The num-

ber of routing entries of a switch is at most the number of

server subnets plus the number of bouncing switches, which

is at most thousands. Existing switches can easily support

tens of thousands of routing entries, e.g, both Arista 7050

and Cisco Nexus 3000 have 16K IPv4 routes.

4.2 Server-based Bouncing Switch Selection
DRB uses server-based bouncing switch selection. DRB

uses IP-in-IP packet encapsulation to select the bouncing

switch. In DRB, each server needs to maintain a single inte-

ger for a machine pair’s bouncing switch state. This integer

is updated to the id of the next bouncing switch when a

packet is sent.

This method works well when there are no switch/link

failures, but failures are inevitable, and failures will affect

both the up-path and down-path routings. It is possible

to use the existing routing protocols to handle failures in

the up-path, by leveraging ECMP and anycast techniques

as shown in VL2 [12]. However, the down-path failure is

much harder to handle, since there is only one down-path

after the packet arrives at the bouncing switch.

We handle network failure by leveraging the rich pro-

grammability of servers. We assume that all the servers

know the baseline network topology and the IP addresses of

the bouncing switches. We have designed a topology update

protocol to let the servers know real-time network topology,

which will be discussed in the next subsection.

4.3 Topology Update
The goal of our topology update protocol is to provide

servers with the real-time network topology. Topology up-

date is essential to all routing protocols, but it is particularly

challenging for us due to the following reasons: a data cen-

ter may have thousands of switches, and furthermore, all the

servers need to know the updated topology information in

our design.

We use a switch-based proactive approach. Switches broad-

cast topology updates periodically or when failures are de-

tected. We use the following rules to address the scalabil-

ity issue faced by broadcast. (1) Servers do not generate

or forward broadcast messages. They are passive receivers

only. (2) When a TOR switch detects an uplink failure, it

only delivers the message to all its servers. This reduces the

number of switches that generate broadcast messages from

thousands to hundreds. It works because the switches above

the TORs can still detect the failures and broadcast them to

the whole network. (3) When a switch receives a broadcast

message from its uplink port, it forwards the message to its

downlink ports. This rule further reduces the number of

broadcast messages by only delivering messages along trees.

By leveraging the real-time topology information, servers

evenly split traffics among all the available bouncing switches.

Suppose the number of bouncing switches is n, removing

one bouncing switch will only reduce 1
n

network capacity.

Therefore, our topology update protocol helps DRB achieve

graceful performance degradation.

54

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000 2500 3000 3500

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Server ID

(a) Throughput (Fat-tree)

ECMP
RB

RRB
DRB

 0

 1

 2

 3

 4

 5

 6

Hop1 Hop2 Hop3 Hop4 Hop5 Total
 0

 50

 100

 150

 200

 250

Q
u

e
u

e
 L

e
n

g
th

 (
p

k
t)

T
o

ta
l
Q

u
e

u
e

in
g

 D
e

la
y
 (

u
s
)

Level

(b) Queueing Delay (Fat-tree)

RB
RRB
DRB

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

C
D

F

Re-sequencing Delay (ms)

(c) Re-sequencing Delay (Fat-tree)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
D

F

RTT (ms)

(d) RTT (Fat-tree)

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Server ID

(e) Throughput (VL2)

ECMP
RB

RRB
DRB

 0

 2

 4

 6

 8

 10

 12

 14

Hop1 Hop2 Hop3 Hop4 Hop5 Total
 0

 20

 40

 60

 80

 100

 120

 140

Q
u

e
u

e
 L

e
n

g
th

 (
p

k
t)

T
o

ta
l
Q

u
e

u
e

in
g

 D
e

la
y
 (

u
s
)

Level

(f) Queueing Delay (VL2)

RB
RRB
DRB

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

C
D

F

Re-sequencing Delay (ms)

(g) Re-sequencing Delay (VL2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
D

F

RTT (ms)

(h) RTT (VL2)

Figure 6: Performance of different routing algorithms with permutation traffic.

5. SIMULATION
In this section, we use simulations to study the perfor-

mance of DRB, and compare it with RB, RRB, ECMP [12],

MPTCP [23], and DeTail [28]. The network topologies we

use are a Fat-tree and a VL2. For the Fat-tree, we choose

n = 24, and the number of servers is 3456. All the links of

Fat-tree are 1GbE. For the VL2, d0 = 4, d1 = 64, and d2 =

24. VL2 uses 1GbE for server-switch connection and 5GbE

for switch-switch connection, and it connects 3840 servers.

The propagation delay for all the links is 5us. The buffer

sizes for 1GbE and 5GbE ports are 128KB and 640KB, re-

spectively. (We use 5GbE instead of 10GbE to let VL2 have

similar server numbers as Fat-tree.)

We have implemented all these algorithms and the two

topologies in NS3. We use TCP as the transport proto-

col. Since TCP data packets and ACKs are of different

packet sizes (1500 vs 40), in our simulation and implementa-

tion, for each source-destination pair, we maintain two sep-

arate bouncing switch selectors for data packets and ACKs,

respectively. We set the default TCP sending window to

256KB.

Since per-packet routing algorithms spread packets among

multiple paths, they may result in out-of-order packet ar-

rivals at the destination servers. In this paper, we use a

simple re-sequencing algorithm: we buffer out-of-order pack-

ets until the sequence gaps are filled or a pre-configured time

elapsed (default to 10ms).

Our simulations run at packet level, which enables us to

study the fine-grained behaviors (queue length, packet out-

of-order arrival, and network latency) of the algorithms. We

run each simulation for one second and ignore the first 0.5

seconds for steady statistics purpose.

5.1 Permutation Traffic
In this simulation, we use a randomly generated permuta-

tion traffic pattern. In the permutation traffic, each server

sends bulk data to one other server and no server receives

from more than one server. Though the permutation traf-

fic pattern is a bit artificial, it suits well for studying the

throughput, network latency, and re-sequencing behaviors

of different algorithms, due to its simplicity. Fig. 6 shows

the result.

ECMP cannot well utilize network bandwidth. As

Fig. 6(a) and 6(e) show, ECMP achieves only 396Mbps per

server for Fat-tree, and 671Mbps for VL2. Our result matches

that in [2]. RB, RRB, and DRB solve the flow collision prob-

lem by distributing each flow’s packets into different paths.

The results show that the average throughput of RB, RRB,

and DRB are 803Mbps, 725Mbps, and 895Mbps in Fat-tree,

and 901Mbps, 907Mbps, and 950Mbps in VL2, respectively.

DRB performs better than RB. Fig. 6(a) and 6(e) show

that RB achieves lower throughput than DRB. This is be-

cause reasons as follows.

1) RB builds up larger queues. As we have analyzed in Sec-

tion 3.1.3, RB builds up large queues when the load is high.

DRB mitigates this problem by its perfect packet interleav-

ing. As Fig. 6(b) and 6(f) show, DRB’s queue buildups are

lower than RB’s. The ‘Total’ bars show the sum of queueing

delays at different hops.

2) RB introduces larger re-sequencing delays. Since RB

builds up larger queues, it causes more out-of-order packet

arrivals. These out-of-order packets introduce additional re-

sequencing delay. DRB causes fewer out-of-order packet ar-

rivals, its re-sequencing delay is thus smaller. Fig. 6(c) and

6(g) shows the CDFs of re-sequencing delays. The average

re-sequencing delays of RB are 38us and 17us for Fat-tree

and VL2, respectively. DRB behaves much better. Its av-

erage re-sequencing delays are 2.4us and 0.2us for Fat-tree

and VL2, respectively.

Since RB introduces longer queues and larger re-sequencing

delays, the RTTs are apparently larger than those of DRB,

as shown in Fig. 6(d) and 6(h). The 99th-percentile RTTs

of DRB and RB are 795us and 972us in Fat-tree, 638us and

831us in VL2, respectively. Due to its larger RTT, RB’s

throughput is 92Mbps lower than DRB’s in Fat-tree, and

49Mbps in VL2, on average.

We also have observed that RRB achieves the lowest through-

put compared with RB and DRB. The reason is that RRB

builds up large queues at the 1st and 4th hops. As we show

in 6(b), RRB’s 1st and 4th hop queues are obviously larger

55

 0

 1

 2

 3

 4

 0.5 1 2 4 8 16 32 64

F
C

T
 (

m
s
)

Flow Size (KB)

(a) All flows

RB
RRB
DRB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5

C
D

F

FCT (ms)

(b) 4K flows

RB
RRB
DRB

Figure 7: Flow completion time of short flows with
trace-based simulation.

than those of RB and DRB, resulting in larger RTTs. Hence

its throughput is lower than those of RB and DRB. How-

ever, this effect is greatly mitigated in VL2, due to the much

higher uplink rate (5Gbps).

5.2 Real Trace-based Simulation
In this subsection, we use real trace to study the flow

completion time (FCT) of different algorithms. The real

trace was collected from a large production data center net-

work, which contains 23k+ servers. The trace is composed of

214k+ flows. Each flow has a start time, a source, a destina-

tion, and a flow size. The trace has the following properties:

80% flows are less than 4KB and only 1% flows are larger

than 50MB, and the most active servers may simultaneously

communicate with 756 servers, whereas some servers simply

do not talk.

We sort the servers in the trace by their sending bytes,

and then map the servers into our Fat-tree. Note that by

doing so, the servers in the first two racks are the busiest

ones. We also reserve one server in each of the first two

racks without assigning any flows. We ask the first server to

send probing short flows to the second server, and measure

the flow completion times. Note that in our simulation, the

communications between any two racks all hit the 3rd-layer

switches.

Fig. 7(a) shows the flow completion times of different per-

packet load balanced routing algorithms in Fat-tree. The

traffic loads of the first two racks are 92% and 90%, respec-

tively. The results show that the FCT of DRB is the best.

For example, when the flows size is 4KB, the FCT of RB is

29% higher than that of DRB (692us vs. 891us). We fur-

ther plot the CDF of the FCTs when the flow size is 4KB

in Fig 7(b), which illustrates that DRB’s latency is consis-

tently lower than RB’s. These results also show that the

FCT of RRB is the worst among the three per-packet algo-

rithms, which agrees with the result in Section 5.1. We also

have studied the FCT of ECMP. The FCT can be as large

as 20.0ms for a 4KB flow, due to the network congestion

caused by ECMP.

5.3 Comparison with MPTCP
We study MPTCP [23] performance using a different num-

ber of subflows. To maximize MPTCP performance, we let

different subflows take different paths. Fig. 8(a,b) show the

throughput and 8(c,d) show the network latency. The net-

work latency is defined as the time interval from the time

a packet enters the first switch to the time it leaves the last

switch. The throughput result is similar to that of [23]. We

have the following observations: First, the throughput of

MPTCP is related to the number of subflows. The per-

formance of MPTCP becomes better when more subflows

are used. When the number of subflows is small, network

utilization is low; e.g., when the number of subflows is 8,

the network utilization is only 76% for Fat-tree. Second,

the network latency of MPTCP is much larger than that of

DRB. When the number of subflow is 32, MPTCP achieves

relatively high network utilization in both Fat-tree and VL2.

But the average latencies are 1154us in Fat-tree and 1090us

in VL2 (or 4.4X and 6X higher than those of DRB).

DRB achieves lower latencies than MPTCP, since DRB

is a proactive approach, while MPTCP is a reactive ap-

proach. DRB prevent congestion before it happens, while

MPTCP handles congestion after it happens. DRB also

achieves higher throughput than MPTCP, due to its lower

latencies.

5.4 Comparison with DeTail
DeTail [28] reduces the flow completion time tail by us-

ing a lossless link layer priority flow control (PFC) and a

per-packet adaptive load-balanced routing. When a switch

forwards a packet, it randomly picks up a eligible port with

the queue length smaller than the predefined threshold.

We use a Fat-tree with 8-port switches and 128 servers.

We use the DeTail code provided by the authors. The DeTail

code uses NSC (Network Simulator Cradle) which is time

consuming. So it prevented us from using a larger network.

We again use permutation traffic and TCP as the transport

protocol, and study the throughput and network latency.

We set up the same priority for all the flows in DeTail.

Throughput. Fig. 9(a) plots the throughput achieved by

DeTail and DRB. DeTail gets 865Mbps throughput whereas

DRB gets 938Mbps on average. DRB achieves 8.4% gain

in throughput. Fig. 9(a) also shows that the throughput of

DeTail is identical to that of RB.

Network Latency. We next compare the network laten-

cies of DeTail and DRB. Fig. 9(b) shows the result. The

average latencies of DRB and DeTail are 279us and 397us,

respectively. DRB achieves not only much smaller network

latency, but also shorter latency tail. The 99th-percentile

latency for DRB is only 440us, while it is 735us for DeTail.

The reason that DeTail achieves lower throughput and

higher network latencies is that it randomly picks up a port

from eligible ones. As we have analyzed in previous sec-

tion, the random algorithm will cause larger queueing and

re-sequencing delays. DeTail mitigates the problem by pre-

ferring the queue with the queue length smaller than the

threshold. However, this reactive approach does not change

the randomness nature of the algorithm. As Fig. 9 shows,

DeTail has little improvement over RB.

56

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000 2500 3000 3500

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Server ID

(a) Fat-tree (throughput)

2 Subflows
8 Subflows

32 Subflows
64 Subflows

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000 2500 3000 3500 4000

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Server ID

(b) VL2 (throughput)

2 Subflows
8 Subflows

32 Subflows
64 Subflows

 0

 0.1

 0.2

 0.3

 0.4

 0.5
 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Latency (ms)

(c) Fat-tree (latency)

2 Subflows
8 Subflows

32 Subflows
64 Subflows

 0

 0.1

 0.2

 0.3

 0.4

 0.5
 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Latency (ms)

(d) VL2 (latency)

2 Subflows
8 Subflows

32 Subflows
64 Subflows

Figure 8: Performance of MPTCP.

 0

 200

 400

 600

 800

 1000

 0 16 32 48 64 80 96 112 128

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Server ID

(a) Throughput

DeTail
RB

DRB
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
D

F

Network Latency (ms)

(b) Network Latency

DeTail
RB

DRB

Figure 9: Comparison of DeTail and DRB.

5.5 Oversubscribed Networks
This experiment studies the performance of DRB when

the networks are oversubscribed. To create 2:1 oversub-

scription, we double the number of servers of the first-layer

switches. We use randomly generated permutation traffic,

and measure both throughput and network latency. Since

the network now is oversubscribed, bottlenecks will build up

in the network and network latencies will increase. We then

study if ECN can help to reduce latency. The ECN mark

thresholds are set to 32KB and 160KB for 1GbE and 5GbE

links, respectively. Similar to DCTCP, we use instant queue

length.

Our findings are: (1) without ECN, all the three algo-

rithms RB, RRB, and DRB achieve high network utiliza-

tion. But the network latencies are high due to the fact that

queues are built up in the network (e.g., the average net-

work latency for DRB in Fat-tree is 839us); (2) with ECN,

network latencies become much smaller (346us for DRB in

Fat-tree), due to the fact that ECN can effectively con-

trol congestion based on queue length; (3) with ECN, DRB

still achieves almost ideal per server throughput 456Mbps,

whereas RB and RRB only achieves 418Mbps and 340Mbps

in Fat-tree. The reason that RB and RRB has smaller

throughput is because, as we have shown in Section 5.1,

the queue lengths are larger in RB and RRB, hence ECN is

triggered more frequently.

6. IMPLEMENTATION AND EXPERIMENTS

6.1 Implementation
We have implemented our load-balanced routing frame-

work using commodity switches and servers. We first config-

ured the static IP forwarding tables for all the switches and

the IP-in-IP decapsulation at the bouncing switches. Then,

we developed three software modules: (1) a kernel mod-

ule at the server side that is beneath the TCP/IP stack and

implements the bouncing switch selection algorithms (DRB,

RRB, RB) and the IP-in-IP packet encapsulation; (2) a user

space daemon at the servers that listens to topology updates

from the switches; (3) a user space daemon at the switches

that monitors the point-to-point links, generates link-state

advertisements (LSA), and participates in LSA forwarding

using the forwarding rules described in Section 4.3.

At the server side, we have implemented both the kernel

and user space modules in Windows Server 2008R2. The

kernel module is implemented as an intermediate NDIS (net-

work driver interface specification) driver. The user space

LSA listener collects link state broadcast messages, and then

updates the network topology which is maintained in the

kernel module. At the switch side, the switches run Linux,

and our user space daemon runs on top of Linux.

In order to implement RRB and DRB, each server main-

tains the current selected spine switch for each source-destination

pair with a hash table. For each out-going packet, we first

find the spine switch ID in the hash table based on the source

and the destination of the packet, and forward this packet

to the destination with that spine switch. Then, we update

the spine switch ID based on the routing algorithm, i.e.,

RRB or DRB. Although RRB and DRB require per-packet

processing, the processing overhead is small, which is lower

than 1us on average in our experiment.

We have built a Fat-tree testbed. The testbed contains

54 servers numbered from 0 to 53. The servers are 40 Dell

PE R610s and 14 Dell PE2950s. The old PE2950s cannot

achieve 1+1Gbps bi-directional throughput when MTU is

1.5kB. We use 9kB jumbo frame in the following exper-

iments. Ideally, the network needs a total of 45 6-port

switches with 18 at the 1st-layer, 18 at the 2nd-layer, and

9 at the 3rd-layer. In practice, we use 10 Broadcom 24-

port GbE BCM956334K and 1 Quanta LB9A 48-port GbE

switches. Each BCM956334K acts as 4 6-port switches and

the LB9A acts as 5 6-port switches. Following the notation

in Fig. 1(a), we number the 1st-layer switches as 1.0-1.17,

the 2nd layer switches as 2.0-2.17, and the 3rd-layer (bounc-

ing) switches as 3.0-3.8. The 9 bouncing switches provide

54Gbps aggregate throughput.

6.2 Experiments
Throughput. In the first experiment, we use a randomly

generated permutation traffic carried by TCP. We compare

the performances of DRB, RRB, and RB. For each routing

algorithm, we run the experiment for 120 seconds. Overall,

57

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Server ID

(a) w/o reseq

Per-flow ECMP
RB

RRB
DRB

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Server ID

(b) w/ reseq

RB
RRB
DRB

Figure 10: Throughput of the servers.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120

Q
u

e
u

e
 L

e
n

g
th

 (
p

k
t)

Time (s)

(a) The 1st Hop

RB

RRB

DRB

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120

Q
u

e
u

e
 L

e
n

g
th

 (
p

k
t)

Time (s)

(b) The 4th Hop

RB

RRB

DRB

Figure 11: The queue lengths.

the experiment results echo our simulations results in Sec-

tion 5 in all aspects including throughput, queue length and

out-of-order arrivals.

Fig. 10(a) shows the average per-server throughput of

ECMP, RB, RRB and DRB with no packet re-sequencing

buffers. ECMP does not need re-sequencing buffer, but its

average per-server throughput is only 279Mbps. RB, RRB,

and DRB achieve 570Mbps, 694Mbps, and 905Mbps, re-

spectively. Though DRB performs the best, the through-

put is still much lower than that with re-sequence buffering

(970Mbps). This experiment demonstrates the necessity of

re-sequencing buffer. Fig. 10(b) also shows that RB and

RRB achieves 827Mbps and 968Mbps, respectively. In this

experiment, the throughput of RRB is larger than that of

RB, which may seem contradict with the result in Fig. 6(a).

The reason is when the switch port number is small, the per-

formances of RRB and DRB are similar (see Fig. 4). We also

have performed simulations using the same network setup

and the result agrees with the experiment.

Fig. 11 plots the instantaneous queue lengths of two out-

put ports at the 1st and 4th hops when re-sequencing is

enabled at the servers. The results clearly show that the

queues of RB are more burst than those of DRB; the aver-

age and max queue lengths at the 1st hop are 1.9 and 6.2

packets for DRB, 2.5 and 6.4 packets for RRB, and 3.4 and

27.9 packets for RB. Though RB achieves lower throughput,

its max queue length is much larger than that of DRB. Large

max queue length leads to long latency tail.

For ECMP, even though it achieves only 27.9% bandwidth

utilization, it creates congested ports. In fact, we observed

queue length as large as 170 packets (or 1.4MB)! Our exper-

iment also revealed that 3%, 15% and 74% packets experi-

ence ≥ 3 out-of-order degrees in DRB, RRB and RB with

re-sequencing enabled. The experiment demonstrated again

that DRB achieves both high network utilization and low

network latency.

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200

T
h
ro

u
g
h
p
u
t
(G

b
/s

)

Time (second)

switch 3.0 down

switch 3.1 down

switch 3.1 up

switch 3.0 up

Figure 12: Failure handling and graceful perfor-
mance degradation.

Failure handling. In the second experiment, we show how

our routing design reacts to network failures. We use the

same permutation traffic pattern and measure the aggrega-

tion throughput of all the servers. We remove the bouncing

switches 3.0 at time 50s and 3.1 at 90s; then bring back 3.1

at 130s and 3.0 at 170s. We show the result in Fig. 12.

As we can see, the aggregate throughput is around 52Gbps

when there is no switch failures, the throughput decreases to

44Gbps after 3.0 is down, and further decreases to 38Gbps

after 3.1 is gone. We achieve graceful performance degrada-

tion in that removing one bouncing switch only reduces the

capacity by 6-8Gbps. After the bouncing switches are re-

stored, the aggregate capacity is restored accordingly. The

experiment shows that the aggregate throughput becomes

stable in 1-2 seconds when there are switch failures.

7. RELATED WORK
Per-packet routing has been available for Internet routers

to balance traffic among multiple links for many years [8,

21]. Recently, several per-packet based designs have been

proposed for data center networks. In what follows, we com-

pare these designs with DRB.

LocalFlow [24] formulated the routing problem as multi-

commodity flow, then tried to minimize the number of split

flows by bin-packing multiple flows together. For flow split-

ting, it introduced multi-resolution splitting, which divides

a flow into subflows, and a subflow has a continuous num-

ber of packets. The multi-resolution splitting is similar to

RRB, hence may result in high network latency and low

throughput. Furthermore, LocalFlow needs switches to per-

form fine-grain flow measurement and multi-resolution split-

ting, which cannot be done by existing commodity switches.

In [11], Random Packet Spraying (RPS) is proposed. RPS

is a random based load-balancing routing algorithm, which

randomly assigns packets to one of the available shortest

paths to the destination. Compared with [11], we have

shown that, (1) the performance of random-based routing is

not as good as DRB; (2) DRB can be readily implemented

using commodity switches without maintaining flow state

in the switches. Furthermore, we have incorporate failure

handling into our design.

58

In [19], simulations were used to demonstrate that random-

based per-packet VLB achieves smaller latency compared

with per-flow VLB, and that the performance of per-flow

based, queue-length directed adaptive routing and probe-

based adaptive routing can be worse than packet-level VLB.

In this paper, we show, by analysis and experiments, that

carefully designed deterministic DRB routing can be better

than the random ones.

DeTail [28] reduces the flow completion time tail by using

a lossless link layer and a per-packet adaptive load-balanced

routing. We have compared DRB and DeTail in Section 5.4

and shown that DeTail may result in suboptimal through-

put and network latency compared with DRB. HULL [4]

also targets for high bandwidth utilization and low latency.

It achieves low network latency by introducing Phantom

queues, which sacrifices network bandwidth. MPTCP [23]

works at transport layer. It uses the available bandwidth of

a network with multiple TCP sub-flows. As we have shown

in Section 5.3, though MPTCP achieves high network uti-

lization when the number of subflows is large, it causes large

queue lengths and hence high network latency. Compared

with these three schemes, DRB achieves both low latency

and high throughput. Furthermore, our design can be di-

rectly implemented using existing commodity switches.

Recently, D3 [26], D2TCP, PDQ [17] all introduced flow-

level deadline and give priority to flows that approach their

deadlines. D3 and PDQ make revisions at switches and

D2TCP adjusts how TCP reacts to congestions. DRB works

at packet-level and is complementary to these approaches.

8. CONCLUSION
Motivated by the fact that per-flow based ECMP results

in both low network utilization and high network latency

tail, we have presented our per-packet routing algorithm,

Digit-Reversal Bouncing (DRB), for Clos-based networks.

DRB interleaves the packets of a source-destination pair

perfectly evenly in the network. Both our analysis and ex-

periments show that DRB achieves higher network utiliza-

tion, lower network latency, smaller latency tail, and fewer

packet out-of-order arrivals than per-packet random-based

routing. We have incorporated fault-tolerance in our rout-

ing design by leveraging switches for topology updates and

servers for bouncing switch selection. We have built a pro-

totype testbed and shown that DRB achieves the theoretical

benefits, handles network failures in 1-2 seconds, and can be

readily implemented and deployed with existing commodity

network devices.

9. ACKNOWLEDGEMENT
We thank Qin Jia for her work on per-packet routing sim-

ulations and David Zats for sharing with us the DeTail code.

We thank our shepherd Prof. Baochun Li and the anony-

mous reviewers for their valuable feedbacks on early versions

of this paper.

10. REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,

Commodity Data Center Network Architecture. In
SIGCOMM, 2008.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,
and A. Vahdat. Hedera: Dynamic Flow Scheduling for Data
Center Networks. In NSDI, 2010.

[3] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center
TCP (DCTCP). In SIGCOMM, 2010.

[4] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda. Less is More: Trading a little
Bandwidth for Ultra-Low Latency in the Data Center. In
NSDI, 2012.

[5] Amazon EC2. http://aws.amazon.com/ec2/.
[6] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE:

Fine Grained Traffic Engineering for Data Centers. In
CoNEXT, 2011.

[7] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,
S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, et al.
Windows Azure Storage: A Highly Available Cloud Storage
Service with Strong Consistency. In SOSP, 2011.

[8] Cisco. Per-packet load balancing.
http://www.cisco.com/en/US/docs/ios/12 0s/feature/guide/
pplb.html.

[9] C. Clos. A Study of Nonblocking Switching Networks. Bell
Syst. Tech. J., 32(2), 1953.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, 2004.

[11] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella. On
the Impact of Packet Spraying in Data Center Networks. In
INFOCOM, 2013.

[12] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta. VL2: A Scalable and
Flexible Data Center Network. In SIGCOMM, 2009.

[13] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. BCube: A High Performance,
Server-centric Network Architecture for Modular Data
Centers. In SIGCOMM, 2009.

[14] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu.
DCell: A Scalable and Fault Tolerant Network Structure
for Data Centers. In SIGCOMM, 2008.

[15] J. Hamilton. 42: the answer to the ultimate question of life,
the universe, and everything, Nov 2011.

[16] T. Hoff. Latency is Everywhere and it Costs You Sales -
How to Crush it, July 2009.
http://highscalability.com/latency-everywhere-and-it-costs-
you-sales-how-crush-it.

[17] C. Hong, M. Caesar, and P. B. Godfrey. Finishing Flows
Quickly with Preemptive Scheduling. In SIGCOMM, 2012.

[18] R. Kohavi and R. Longbotham. Online Epxeriments:
Lessons Learned. IEEE Computer, September 2007.

[19] S. Mahapatra and X. Yuan. Load Balancing Mechanisms in
Data Center Networks. In CEWIT, Sept 2010.

[20] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
PortLand: A Scalable Fault-Tolerant Layer 2 Data Center
Network Fabric. In SIGCOMM, 2009.

[21] Juniper Networks. Overview of per-packet load balancing.
http://www.juniper.net/techpubs/en US/junos11.2/topics/
concept/policy-per-packet-load-balancing-overview.html.

[22] C. Perkins. IP Encapsulation within IP, Oct 1996.
RFC2003.

[23] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik,
and M. Handley. Improving Datacenter Performance and
Robustness with Multipath TCP. In SIGCOMM, 2011.

[24] S. Sen, D. Shue, S. Ihm, and M. J. Freedman. Scalable,
Optimal Flow Routing in Datacenters via Local Link
Balancing. In CoNEXT, 2013.

[25] D. Thaler and C. Hopps. Multipath Issues in Unicast and
Multicast Next-Hop Selection, Nov 2000. RFC 2991.

59

[26] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron.
Better Never than Late: Meeting Deadlines in Datacenter
Networks. In SIGCOMM, 2011.

[27] X. Wu, D. Turner, C. Chen, D. Maltz, X. Yang, L. Yuan,
and M. Zhang. NetPilot: Automating Datacenter Network
Failure Mitigation. In SIGCOMM, 2012.

[28] D. Zats, T. Das, P. Mohan, D Borthakur, and R. Katz.
DeTail: Reducing the Flow Completion Time Tail in
Datacenter Networks. In SIGCOMM, 2012.

APPENDIX
A. PROOF OF THEOREM 1

Proof. We choose one up-path and one down-path to

show that they are not overloaded. The up-path we choose

connects server 0 to a core switch. We number the contained

links as l0, l1 and l2. Similarly, the down-path connects a

core switch to server N − 1, and we number the links as l3,

l4 and l5.

It is easy to see that l0 is not overloaded, since the traffic

over l0 is
∑N
i=0 a0,i ≤ 1. Similarly, link l5 is not overloaded.

For uplink lm(1 ≤ m ≤ 2), it carries traffic for server pairs

(i, j), i ∈ [0,M − 1] and j ∈ [0, N − 1], where M =
∏m
i=1

n
2

and N is the total number of servers. We know that the

traffic from server i to j is ai,j , and the portion sent to lm
is 1

M
ai,j . The traffic carried by lm therefore is

M−1∑
i=0

N−1∑
j=0

(
1

M
ai,j) =

M−1∑
i=0

1

M

N−1∑
j=0

ai,j ≤
M−1∑
i=0

1

M
= 1.

Similarly, for downlink lm′(3 ≤ m′ ≤ 4), it carries traffic

for server pairs (i, j), i ∈ [0, N − 1] and j ∈ [N −M ′, N − 1],

where M ′ =
∏5−m′

i=1
n
2

. When a packet hits a switch at the

highest level, the path from that switch to the destination

server is uniquely determined. Hence the portion of traffic

carried by lm′ for (i, j) is 1
M′ ai,j . The total traffic carried

by lm′ therefore is

N−1∑
i=0

M′−1∑
j=0

(
1

M ′
ai,j) =

M′−1∑
j=0

1

M ′

N−1∑
i=0

ai,j ≤
M′−1∑
j=0

1

M ′
= 1.

We therefore prove that all these six links are not over-

loaded. Similarly, we can prove that all the rest links are

not overloaded.

B. QUEUE MODELING
We use modeling to understand the queueing behaviors

of DRB, RB, and RRB at different hops in a Fat-tree. We

assume all the switches are output queued, the capacities of

all the ports are 1, the packets are of the same length and

one output switch port transmits one packet in one time-slot

if its queue is not empty.

The queue at an output port can be described by

q(t+ 1) = (q(t)− 1)+ +
∑
i

fi(t+ 1)

where q(t) is the queue length at time-slot t and (q(t)−1)+ =

0 when q(t) = 0. Once the set of input flows fi is decided,

the queue and the output can all be calculated numerically.

To make the modeling tractable, we assume permutation

traffic pattern. In each time-slot, each input generates pack-

ets using the Bernoulli distribution. Though the real-world

traffic pattern is more complicated (and much harder for

analysis), the analysis of permutation traffic pattern can

shed light in understanding the performances of different

algorithms.

Our modeling focuses on Fat-tree. Modeling for VL2 can

be performed similarly. As we have shown in Fig. 1(a), there

are 5 hops in a Fat-tree. We show how to model queues at

these five hops one-by-one.

Queue modeling of the up-path hops. A first-hop

queue is modeled as one server with one output flow and
n
2

input flows, and the average throughput of every input

flow is 2ρ
n

, where ρ ≤ 1 is the server input load.

A second-hop queue can be modeled as one server with

one output flow and n
2

input flows, and each input flow in

turn is the output flow of a first-hop queue with n
2

input

flows. The average throughput of a first-hop input flow is
4ρ
n2 .

Queue modeling at the bouncing switches. To model a

third-hop queue, we observe that the number of destination

flows of the output of a third-hop queue is n2

4
, and these

destination flows come from n input ports of a layer-3 switch.

Since a permutation is generated randomly, we therefore can

randomly assign these n2

4
flows to the n input ports. The

input of a layer-3 port in turn is the output of a second-hop

queue.

The modeling differences of RB, RRB and DRB are that

they produce different input flows. For the first-hop queue

modeling, the traffic for an input flow is generated as fol-

lows. For RB, in each time-slot, a packet is generated with

probability 2ρ
n

. For RRB, in each time-slot, a packet is gen-

erated with probability ρ, and then n
2

successive packets are

sent to an input flow for every n2

4
generated packets. For

DRB, in each time-slot, a packet is generated with proba-

bility ρ and one packet is sent to an input flow for every n
2

generated packets.

For the second and third-hop queue modeling, packets of

all the input flows in RB are still randomly generated, with

probability 4ρ
n2 , whereas in RRB and DRB, one packet is

sent to an input flow for every n2

4
generated packets.

Queue modeling of the down-path hops. The queues

of the down-path hops are more difficult to model due to

the ‘network’ effect, where other ‘interference’ flows may

change the packet arrival patterns of the input flows of a

queue. Nonetheless, we can still approximate the queueing

behavior by omitting the interferences of the previous hops.

By ignoring the interferences introduced by the network, it

is easy to see that hop 4 is symmetric to hop 1. Therefore

they have similar queue lengths.

60

